/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.layoutlib.bridge.util; import com.android.internal.util.ArrayUtils; import com.android.internal.util.GrowingArrayUtils; import android.util.SparseArray; import java.lang.ref.WeakReference; /** * This is a custom {@link SparseArray} that uses {@link WeakReference} around the objects added * to it. When the array is compacted, not only deleted indices but also empty references * are removed, making the array efficient at removing references that were reclaimed. * * The code is taken from {@link SparseArray} directly and adapted to use weak references. * * Because our usage means that we never actually call {@link #remove(long)} or * {@link #delete(long)}, we must manually check if there are reclaimed references to * trigger an internal compact step (which is normally only triggered when an item is manually * removed). * * SparseArrays map integral values to Objects. Unlike a normal array of Objects, * there can be gaps in the indices. It is intended to be more efficient * than using a HashMap to map Integers (or Longs) to Objects. */ @SuppressWarnings("unchecked") public class SparseWeakArray { private static final Object DELETED_REF = new Object(); private static final WeakReference DELETED = new WeakReference(DELETED_REF); private boolean mGarbage = false; /** * Creates a new SparseArray containing no mappings. */ public SparseWeakArray() { this(10); } /** * Creates a new SparseArray containing no mappings that will not * require any additional memory allocation to store the specified * number of mappings. */ public SparseWeakArray(int initialCapacity) { mKeys = ArrayUtils.newUnpaddedLongArray(initialCapacity); mValues = new WeakReference[mKeys.length]; mSize = 0; } /** * Gets the Object mapped from the specified key, or null * if no such mapping has been made. */ public E get(long key) { return get(key, null); } /** * Gets the Object mapped from the specified key, or the specified Object * if no such mapping has been made. */ public E get(long key, E valueIfKeyNotFound) { int i = binarySearch(mKeys, 0, mSize, key); if (i < 0 || mValues[i] == DELETED || mValues[i].get() == null) { return valueIfKeyNotFound; } else { return (E) mValues[i].get(); } } /** * Removes the mapping from the specified key, if there was any. */ public void delete(long key) { int i = binarySearch(mKeys, 0, mSize, key); if (i >= 0) { if (mValues[i] != DELETED) { mValues[i] = DELETED; mGarbage = true; } } } /** * Alias for {@link #delete(long)}. */ public void remove(long key) { delete(key); } /** * Removes the mapping at the specified index. */ public void removeAt(int index) { if (mValues[index] != DELETED) { mValues[index] = DELETED; mGarbage = true; } } private void gc() { int n = mSize; int o = 0; long[] keys = mKeys; WeakReference[] values = mValues; for (int i = 0; i < n; i++) { WeakReference val = values[i]; // Don't keep any non DELETED values, but only the one that still have a valid // reference. if (val != DELETED && val.get() != null) { if (i != o) { keys[o] = keys[i]; values[o] = val; } o++; } } mGarbage = false; mSize = o; } /** * Adds a mapping from the specified key to the specified value, * replacing the previous mapping from the specified key if there * was one. */ public void put(long key, E value) { int i = binarySearch(mKeys, 0, mSize, key); if (i >= 0) { mValues[i] = new WeakReference(value); } else { i = ~i; if (i < mSize && (mValues[i] == DELETED || mValues[i].get() == null)) { mKeys[i] = key; mValues[i] = new WeakReference(value); return; } if (mSize >= mKeys.length && (mGarbage || hasReclaimedRefs())) { gc(); // Search again because indices may have changed. i = ~binarySearch(mKeys, 0, mSize, key); } mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key); mValues = GrowingArrayUtils.insert(mValues, mSize, i, new WeakReference(value)); mSize++; } } /** * Returns the number of key-value mappings that this SparseArray * currently stores. */ public int size() { if (mGarbage) { gc(); } return mSize; } /** * Given an index in the range 0...size()-1, returns * the key from the indexth key-value mapping that this * SparseArray stores. */ public long keyAt(int index) { if (mGarbage) { gc(); } return mKeys[index]; } /** * Given an index in the range 0...size()-1, returns * the value from the indexth key-value mapping that this * SparseArray stores. */ public E valueAt(int index) { if (mGarbage) { gc(); } return (E) mValues[index].get(); } /** * Given an index in the range 0...size()-1, sets a new * value for the indexth key-value mapping that this * SparseArray stores. */ public void setValueAt(int index, E value) { if (mGarbage) { gc(); } mValues[index] = new WeakReference(value); } /** * Returns the index for which {@link #keyAt} would return the * specified key, or a negative number if the specified * key is not mapped. */ public int indexOfKey(long key) { if (mGarbage) { gc(); } return binarySearch(mKeys, 0, mSize, key); } /** * Returns an index for which {@link #valueAt} would return the * specified key, or a negative number if no keys map to the * specified value. * Beware that this is a linear search, unlike lookups by key, * and that multiple keys can map to the same value and this will * find only one of them. */ public int indexOfValue(E value) { if (mGarbage) { gc(); } for (int i = 0; i < mSize; i++) if (mValues[i].get() == value) return i; return -1; } /** * Removes all key-value mappings from this SparseArray. */ public void clear() { int n = mSize; WeakReference[] values = mValues; for (int i = 0; i < n; i++) { values[i] = null; } mSize = 0; mGarbage = false; } /** * Puts a key/value pair into the array, optimizing for the case where * the key is greater than all existing keys in the array. */ public void append(long key, E value) { if (mSize != 0 && key <= mKeys[mSize - 1]) { put(key, value); return; } if (mSize >= mKeys.length && (mGarbage || hasReclaimedRefs())) { gc(); } mKeys = GrowingArrayUtils.append(mKeys, mSize, key); mValues = GrowingArrayUtils.append(mValues, mSize, new WeakReference(value)); mSize++; } private boolean hasReclaimedRefs() { for (int i = 0 ; i < mSize ; i++) { if (mValues[i].get() == null) { // DELETED.get() never returns null. return true; } } return false; } private static int binarySearch(long[] a, int start, int len, long key) { int high = start + len, low = start - 1, guess; while (high - low > 1) { guess = (high + low) / 2; if (a[guess] < key) low = guess; else high = guess; } if (high == start + len) return ~(start + len); else if (a[high] == key) return high; else return ~high; } private long[] mKeys; private WeakReference[] mValues; private int mSize; }