heap-inl.h revision 27f5ae830c5418fa92094608a6e9f693ea88bb69
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_HEAP_INL_H_
18#define ART_RUNTIME_GC_HEAP_INL_H_
19
20#include "heap.h"
21
22#include "debugger.h"
23#include "gc/accounting/card_table-inl.h"
24#include "gc/collector/semi_space.h"
25#include "gc/space/bump_pointer_space-inl.h"
26#include "gc/space/dlmalloc_space-inl.h"
27#include "gc/space/large_object_space.h"
28#include "gc/space/rosalloc_space-inl.h"
29#include "runtime.h"
30#include "handle_scope-inl.h"
31#include "thread.h"
32#include "thread-inl.h"
33#include "verify_object-inl.h"
34
35namespace art {
36namespace gc {
37
38template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
39inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass,
40                                                      size_t byte_count, AllocatorType allocator,
41                                                      const PreFenceVisitor& pre_fence_visitor) {
42  if (kIsDebugBuild) {
43    CheckPreconditionsForAllocObject(klass, byte_count);
44    // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
45    // done in the runnable state where suspension is expected.
46    CHECK_EQ(self->GetState(), kRunnable);
47    self->AssertThreadSuspensionIsAllowable();
48  }
49  // Need to check that we arent the large object allocator since the large object allocation code
50  // path this function. If we didn't check we would have an infinite loop.
51  if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
52    return AllocLargeObject<kInstrumented, PreFenceVisitor>(self, klass, byte_count,
53                                                            pre_fence_visitor);
54  }
55  mirror::Object* obj;
56  AllocationTimer alloc_timer(this, &obj);
57  size_t bytes_allocated;
58  size_t usable_size;
59  size_t new_num_bytes_allocated = 0;
60  if (allocator == kAllocatorTypeTLAB) {
61    byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
62  }
63  // If we have a thread local allocation we don't need to update bytes allocated.
64  if (allocator == kAllocatorTypeTLAB && byte_count <= self->TlabSize()) {
65    obj = self->AllocTlab(byte_count);
66    DCHECK(obj != nullptr) << "AllocTlab can't fail";
67    obj->SetClass(klass);
68    if (kUseBakerOrBrooksReadBarrier) {
69      if (kUseBrooksReadBarrier) {
70        obj->SetReadBarrierPointer(obj);
71      }
72      obj->AssertReadBarrierPointer();
73    }
74    bytes_allocated = byte_count;
75    usable_size = bytes_allocated;
76    pre_fence_visitor(obj, usable_size);
77    QuasiAtomic::ThreadFenceForConstructor();
78  } else {
79    obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
80                                              &usable_size);
81    if (UNLIKELY(obj == nullptr)) {
82      bool is_current_allocator = allocator == GetCurrentAllocator();
83      obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated, &usable_size,
84                                   &klass);
85      if (obj == nullptr) {
86        bool after_is_current_allocator = allocator == GetCurrentAllocator();
87        // If there is a pending exception, fail the allocation right away since the next one
88        // could cause OOM and abort the runtime.
89        if (!self->IsExceptionPending() && is_current_allocator && !after_is_current_allocator) {
90          // If the allocator changed, we need to restart the allocation.
91          return AllocObject<kInstrumented>(self, klass, byte_count, pre_fence_visitor);
92        }
93        return nullptr;
94      }
95    }
96    DCHECK_GT(bytes_allocated, 0u);
97    DCHECK_GT(usable_size, 0u);
98    obj->SetClass(klass);
99    if (kUseBakerOrBrooksReadBarrier) {
100      if (kUseBrooksReadBarrier) {
101        obj->SetReadBarrierPointer(obj);
102      }
103      obj->AssertReadBarrierPointer();
104    }
105    if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
106      // (Note this if statement will be constant folded away for the
107      // fast-path quick entry points.) Because SetClass() has no write
108      // barrier, if a non-moving space allocation, we need a write
109      // barrier as the class pointer may point to the bump pointer
110      // space (where the class pointer is an "old-to-young" reference,
111      // though rare) under the GSS collector with the remembered set
112      // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
113      // cases because we don't directly allocate into the main alloc
114      // space (besides promotions) under the SS/GSS collector.
115      WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
116    }
117    pre_fence_visitor(obj, usable_size);
118    new_num_bytes_allocated =
119        static_cast<size_t>(num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated))
120        + bytes_allocated;
121  }
122  if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
123    CHECK_LE(obj->SizeOf(), usable_size);
124  }
125  // TODO: Deprecate.
126  if (kInstrumented) {
127    if (Runtime::Current()->HasStatsEnabled()) {
128      RuntimeStats* thread_stats = self->GetStats();
129      ++thread_stats->allocated_objects;
130      thread_stats->allocated_bytes += bytes_allocated;
131      RuntimeStats* global_stats = Runtime::Current()->GetStats();
132      ++global_stats->allocated_objects;
133      global_stats->allocated_bytes += bytes_allocated;
134    }
135  } else {
136    DCHECK(!Runtime::Current()->HasStatsEnabled());
137  }
138  if (AllocatorHasAllocationStack(allocator)) {
139    PushOnAllocationStack(self, &obj);
140  }
141  if (kInstrumented) {
142    if (Dbg::IsAllocTrackingEnabled()) {
143      Dbg::RecordAllocation(klass, bytes_allocated);
144    }
145  } else {
146    DCHECK(!Dbg::IsAllocTrackingEnabled());
147  }
148  // IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for
149  // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
150  // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
151  // the allocator_type should be constant propagated.
152  if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
153    CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
154  }
155  VerifyObject(obj);
156  self->VerifyStack();
157  return obj;
158}
159
160// The size of a thread-local allocation stack in the number of references.
161static constexpr size_t kThreadLocalAllocationStackSize = 128;
162
163inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) {
164  if (kUseThreadLocalAllocationStack) {
165    if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(*obj))) {
166      PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
167    }
168  } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(*obj))) {
169    PushOnAllocationStackWithInternalGC(self, obj);
170  }
171}
172
173template <bool kInstrumented, typename PreFenceVisitor>
174inline mirror::Object* Heap::AllocLargeObject(Thread* self, mirror::Class* klass,
175                                              size_t byte_count,
176                                              const PreFenceVisitor& pre_fence_visitor) {
177  return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, klass, byte_count,
178                                                                         kAllocatorTypeLOS,
179                                                                         pre_fence_visitor);
180}
181
182template <const bool kInstrumented, const bool kGrow>
183inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type,
184                                           size_t alloc_size, size_t* bytes_allocated,
185                                           size_t* usable_size) {
186  if (allocator_type != kAllocatorTypeTLAB &&
187      UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
188    return nullptr;
189  }
190  mirror::Object* ret;
191  switch (allocator_type) {
192    case kAllocatorTypeBumpPointer: {
193      DCHECK(bump_pointer_space_ != nullptr);
194      alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
195      ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
196      if (LIKELY(ret != nullptr)) {
197        *bytes_allocated = alloc_size;
198        *usable_size = alloc_size;
199      }
200      break;
201    }
202    case kAllocatorTypeRosAlloc: {
203      if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
204        // If running on valgrind, we should be using the instrumented path.
205        ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
206      } else {
207        DCHECK(!running_on_valgrind_);
208        ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
209      }
210      break;
211    }
212    case kAllocatorTypeDlMalloc: {
213      if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
214        // If running on valgrind, we should be using the instrumented path.
215        ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
216      } else {
217        DCHECK(!running_on_valgrind_);
218        ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
219      }
220      break;
221    }
222    case kAllocatorTypeNonMoving: {
223      ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
224      break;
225    }
226    case kAllocatorTypeLOS: {
227      ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
228      // Note that the bump pointer spaces aren't necessarily next to
229      // the other continuous spaces like the non-moving alloc space or
230      // the zygote space.
231      DCHECK(ret == nullptr || large_object_space_->Contains(ret));
232      break;
233    }
234    case kAllocatorTypeTLAB: {
235      DCHECK_ALIGNED(alloc_size, space::BumpPointerSpace::kAlignment);
236      if (UNLIKELY(self->TlabSize() < alloc_size)) {
237        const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
238        if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, new_tlab_size))) {
239          return nullptr;
240        }
241        // Try allocating a new thread local buffer, if the allocaiton fails the space must be
242        // full so return nullptr.
243        if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
244          return nullptr;
245        }
246        *bytes_allocated = new_tlab_size;
247      } else {
248        *bytes_allocated = 0;
249      }
250      // The allocation can't fail.
251      ret = self->AllocTlab(alloc_size);
252      DCHECK(ret != nullptr);
253      *usable_size = alloc_size;
254      break;
255    }
256    default: {
257      LOG(FATAL) << "Invalid allocator type";
258      ret = nullptr;
259    }
260  }
261  return ret;
262}
263
264inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
265    : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) {
266  if (kMeasureAllocationTime) {
267    allocation_start_time_ = NanoTime() / kTimeAdjust;
268  }
269}
270
271inline Heap::AllocationTimer::~AllocationTimer() {
272  if (kMeasureAllocationTime) {
273    mirror::Object* allocated_obj = *allocated_obj_ptr_;
274    // Only if the allocation succeeded, record the time.
275    if (allocated_obj != nullptr) {
276      uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
277      heap_->total_allocation_time_.FetchAndAddSequentiallyConsistent(allocation_end_time - allocation_start_time_);
278    }
279  }
280};
281
282inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const {
283  // We need to have a zygote space or else our newly allocated large object can end up in the
284  // Zygote resulting in it being prematurely freed.
285  // We can only do this for primitive objects since large objects will not be within the card table
286  // range. This also means that we rely on SetClass not dirtying the object's card.
287  return byte_count >= large_object_threshold_ && c->IsPrimitiveArray();
288}
289
290template <bool kGrow>
291inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) {
292  size_t new_footprint = num_bytes_allocated_.LoadSequentiallyConsistent() + alloc_size;
293  if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
294    if (UNLIKELY(new_footprint > growth_limit_)) {
295      return true;
296    }
297    if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) {
298      if (!kGrow) {
299        return true;
300      }
301      // TODO: Grow for allocation is racy, fix it.
302      VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to "
303          << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
304      max_allowed_footprint_ = new_footprint;
305    }
306  }
307  return false;
308}
309
310inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
311                                    mirror::Object** obj) {
312  if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
313    RequestConcurrentGCAndSaveObject(self, obj);
314  }
315}
316
317}  // namespace gc
318}  // namespace art
319
320#endif  // ART_RUNTIME_GC_HEAP_INL_H_
321