heap-inl.h revision cf58d4adf461eb9b8e84baa8019054c88cd8acc6
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_HEAP_INL_H_
18#define ART_RUNTIME_GC_HEAP_INL_H_
19
20#include "heap.h"
21
22#include "debugger.h"
23#include "gc/space/bump_pointer_space-inl.h"
24#include "gc/space/dlmalloc_space-inl.h"
25#include "gc/space/large_object_space.h"
26#include "gc/space/rosalloc_space-inl.h"
27#include "object_utils.h"
28#include "runtime.h"
29#include "thread.h"
30#include "thread-inl.h"
31
32namespace art {
33namespace gc {
34
35inline mirror::Object* Heap::AllocNonMovableObjectUninstrumented(Thread* self, mirror::Class* c,
36                                                                 size_t byte_count) {
37  DebugCheckPreconditionsForAllocObject(c, byte_count);
38  mirror::Object* obj;
39  size_t bytes_allocated;
40  AllocationTimer alloc_timer(this, &obj);
41  bool large_object_allocation = TryAllocLargeObjectUninstrumented(self, c, byte_count,
42                                                                   &obj, &bytes_allocated);
43  if (LIKELY(!large_object_allocation)) {
44    // Non-large object allocation.
45    if (!kUseRosAlloc) {
46      DCHECK(non_moving_space_->IsDlMallocSpace());
47      obj = AllocateUninstrumented(self, reinterpret_cast<space::DlMallocSpace*>(non_moving_space_),
48                                   byte_count, &bytes_allocated);
49    } else {
50      DCHECK(non_moving_space_->IsRosAllocSpace());
51      obj = AllocateUninstrumented(self, reinterpret_cast<space::RosAllocSpace*>(non_moving_space_),
52                                   byte_count, &bytes_allocated);
53    }
54    // Ensure that we did not allocate into a zygote space.
55    DCHECK(obj == NULL || !have_zygote_space_ || !FindSpaceFromObject(obj, false)->IsZygoteSpace());
56  }
57  if (LIKELY(obj != NULL)) {
58    obj->SetClass(c);
59    // Record allocation after since we want to use the atomic add for the atomic fence to guard
60    // the SetClass since we do not want the class to appear NULL in another thread.
61    size_t new_num_bytes_allocated = RecordAllocationUninstrumented(bytes_allocated, obj);
62    DCHECK(!Dbg::IsAllocTrackingEnabled());
63    CheckConcurrentGC(self, new_num_bytes_allocated, obj);
64    if (kDesiredHeapVerification > kNoHeapVerification) {
65      VerifyObject(obj);
66    }
67  } else {
68    ThrowOutOfMemoryError(self, byte_count, large_object_allocation);
69  }
70  if (kIsDebugBuild) {
71    self->VerifyStack();
72  }
73  return obj;
74}
75
76inline mirror::Object* Heap::AllocMovableObjectUninstrumented(Thread* self, mirror::Class* c,
77                                                              size_t byte_count) {
78  DebugCheckPreconditionsForAllocObject(c, byte_count);
79  mirror::Object* obj;
80  AllocationTimer alloc_timer(this, &obj);
81  byte_count = (byte_count + 7) & ~7;
82  if (UNLIKELY(IsOutOfMemoryOnAllocation(byte_count, false))) {
83    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseForAlloc, false);
84    if (UNLIKELY(IsOutOfMemoryOnAllocation(byte_count, true))) {
85      CollectGarbageInternal(collector::kGcTypeFull, kGcCauseForAlloc, true);
86    }
87  }
88  obj = bump_pointer_space_->AllocNonvirtual(byte_count);
89  if (LIKELY(obj != NULL)) {
90    obj->SetClass(c);
91    DCHECK(!obj->IsClass());
92    // Record allocation after since we want to use the atomic add for the atomic fence to guard
93    // the SetClass since we do not want the class to appear NULL in another thread.
94    num_bytes_allocated_.fetch_add(byte_count);
95    DCHECK(!Dbg::IsAllocTrackingEnabled());
96    if (kDesiredHeapVerification > kNoHeapVerification) {
97      VerifyObject(obj);
98    }
99  } else {
100    ThrowOutOfMemoryError(self, byte_count, false);
101  }
102  if (kIsDebugBuild) {
103    self->VerifyStack();
104  }
105  return obj;
106}
107
108inline size_t Heap::RecordAllocationUninstrumented(size_t size, mirror::Object* obj) {
109  DCHECK(obj != NULL);
110  DCHECK_GT(size, 0u);
111  size_t old_num_bytes_allocated = static_cast<size_t>(num_bytes_allocated_.fetch_add(size));
112
113  DCHECK(!Runtime::Current()->HasStatsEnabled());
114
115  // This is safe to do since the GC will never free objects which are neither in the allocation
116  // stack or the live bitmap.
117  while (!allocation_stack_->AtomicPushBack(obj)) {
118    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
119  }
120
121  return old_num_bytes_allocated + size;
122}
123
124inline mirror::Object* Heap::TryToAllocateUninstrumented(Thread* self, space::AllocSpace* space, size_t alloc_size,
125                                                         bool grow, size_t* bytes_allocated) {
126  if (UNLIKELY(IsOutOfMemoryOnAllocation(alloc_size, grow))) {
127    return NULL;
128  }
129  DCHECK(!running_on_valgrind_);
130  return space->Alloc(self, alloc_size, bytes_allocated);
131}
132
133// DlMallocSpace-specific version.
134inline mirror::Object* Heap::TryToAllocateUninstrumented(Thread* self, space::DlMallocSpace* space, size_t alloc_size,
135                                                         bool grow, size_t* bytes_allocated) {
136  if (UNLIKELY(IsOutOfMemoryOnAllocation(alloc_size, grow))) {
137    return NULL;
138  }
139  DCHECK(!running_on_valgrind_);
140  return space->AllocNonvirtual(self, alloc_size, bytes_allocated);
141}
142
143// RosAllocSpace-specific version.
144inline mirror::Object* Heap::TryToAllocateUninstrumented(Thread* self, space::RosAllocSpace* space, size_t alloc_size,
145                                                         bool grow, size_t* bytes_allocated) {
146  if (UNLIKELY(IsOutOfMemoryOnAllocation(alloc_size, grow))) {
147    return NULL;
148  }
149  DCHECK(!running_on_valgrind_);
150  return space->AllocNonvirtual(self, alloc_size, bytes_allocated);
151}
152
153template <class T>
154inline mirror::Object* Heap::AllocateUninstrumented(Thread* self, T* space, size_t alloc_size,
155                                                    size_t* bytes_allocated) {
156  // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
157  // done in the runnable state where suspension is expected.
158  DCHECK_EQ(self->GetState(), kRunnable);
159  self->AssertThreadSuspensionIsAllowable();
160
161  mirror::Object* ptr = TryToAllocateUninstrumented(self, space, alloc_size, false, bytes_allocated);
162  if (LIKELY(ptr != NULL)) {
163    return ptr;
164  }
165  return AllocateInternalWithGc(self, space, alloc_size, bytes_allocated);
166}
167
168inline bool Heap::TryAllocLargeObjectUninstrumented(Thread* self, mirror::Class* c, size_t byte_count,
169                                                    mirror::Object** obj_ptr, size_t* bytes_allocated) {
170  bool large_object_allocation = ShouldAllocLargeObject(c, byte_count);
171  if (UNLIKELY(large_object_allocation)) {
172    mirror::Object* obj = AllocateUninstrumented(self, large_object_space_, byte_count, bytes_allocated);
173    // Make sure that our large object didn't get placed anywhere within the space interval or else
174    // it breaks the immune range.
175    DCHECK(obj == NULL ||
176           reinterpret_cast<byte*>(obj) < continuous_spaces_.front()->Begin() ||
177           reinterpret_cast<byte*>(obj) >= continuous_spaces_.back()->End());
178    *obj_ptr = obj;
179  }
180  return large_object_allocation;
181}
182
183inline void Heap::DebugCheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
184  DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
185         (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
186         strlen(ClassHelper(c).GetDescriptor()) == 0);
187  DCHECK_GE(byte_count, sizeof(mirror::Object));
188}
189
190inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
191    : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) {
192  if (kMeasureAllocationTime) {
193    allocation_start_time_ = NanoTime() / kTimeAdjust;
194  }
195}
196
197inline Heap::AllocationTimer::~AllocationTimer() {
198  if (kMeasureAllocationTime) {
199    mirror::Object* allocated_obj = *allocated_obj_ptr_;
200    // Only if the allocation succeeded, record the time.
201    if (allocated_obj != NULL) {
202      uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
203      heap_->total_allocation_time_.fetch_add(allocation_end_time - allocation_start_time_);
204    }
205  }
206};
207
208inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) {
209  // We need to have a zygote space or else our newly allocated large object can end up in the
210  // Zygote resulting in it being prematurely freed.
211  // We can only do this for primitive objects since large objects will not be within the card table
212  // range. This also means that we rely on SetClass not dirtying the object's card.
213  return byte_count >= kLargeObjectThreshold && have_zygote_space_ && c->IsPrimitiveArray();
214}
215
216inline bool Heap::IsOutOfMemoryOnAllocation(size_t alloc_size, bool grow) {
217  size_t new_footprint = num_bytes_allocated_ + alloc_size;
218  if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
219    if (UNLIKELY(new_footprint > growth_limit_)) {
220      return true;
221    }
222    if (!concurrent_gc_) {
223      if (!grow) {
224        return true;
225      } else {
226        max_allowed_footprint_ = new_footprint;
227      }
228    }
229  }
230  return false;
231}
232
233inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, mirror::Object* obj) {
234  if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
235    // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint.
236    SirtRef<mirror::Object> ref(self, obj);
237    RequestConcurrentGC(self);
238  }
239}
240
241}  // namespace gc
242}  // namespace art
243
244#endif  // ART_RUNTIME_GC_HEAP_INL_H_
245