thread.cc revision fb2802da02337309ac64970e06c90bb3b1b1de3f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "base/mutex.h"
34#include "class_linker.h"
35#include "class_linker-inl.h"
36#include "cutils/atomic.h"
37#include "cutils/atomic-inline.h"
38#include "debugger.h"
39#include "dex_file-inl.h"
40#include "gc_map.h"
41#include "gc/accounting/card_table-inl.h"
42#include "gc/heap.h"
43#include "gc/space/space.h"
44#include "invoke_arg_array_builder.h"
45#include "jni_internal.h"
46#include "mirror/abstract_method-inl.h"
47#include "mirror/class-inl.h"
48#include "mirror/class_loader.h"
49#include "mirror/field-inl.h"
50#include "mirror/object_array-inl.h"
51#include "mirror/stack_trace_element.h"
52#include "monitor.h"
53#include "oat/runtime/context.h"
54#include "object_utils.h"
55#include "reflection.h"
56#include "runtime.h"
57#include "runtime_support.h"
58#include "scoped_thread_state_change.h"
59#include "ScopedLocalRef.h"
60#include "ScopedUtfChars.h"
61#include "sirt_ref.h"
62#include "stack.h"
63#include "stack_indirect_reference_table.h"
64#include "thread-inl.h"
65#include "thread_list.h"
66#include "utils.h"
67#include "verifier/dex_gc_map.h"
68#include "verifier/method_verifier.h"
69#include "well_known_classes.h"
70
71namespace art {
72
73bool Thread::is_started_ = false;
74pthread_key_t Thread::pthread_key_self_;
75ConditionVariable* Thread::resume_cond_ = NULL;
76
77static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
78
79void Thread::InitCardTable() {
80  card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
81}
82
83#if !defined(__APPLE__)
84static void UnimplementedEntryPoint() {
85  UNIMPLEMENTED(FATAL);
86}
87#endif
88
89void Thread::InitFunctionPointers() {
90#if !defined(__APPLE__) // The Mac GCC is too old to accept this code.
91  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
92  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&entrypoints_);
93  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(entrypoints_));
94  for (uintptr_t* it = begin; it != end; ++it) {
95    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
96  }
97#endif
98  InitEntryPoints(&entrypoints_);
99}
100
101void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
102  deoptimization_shadow_frame_ = sf;
103}
104
105void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
106  deoptimization_return_value_.SetJ(ret_val.GetJ());
107}
108
109ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
110  ShadowFrame* sf = deoptimization_shadow_frame_;
111  deoptimization_shadow_frame_ = NULL;
112  ret_val->SetJ(deoptimization_return_value_.GetJ());
113  return sf;
114}
115
116void Thread::InitTid() {
117  tid_ = ::art::GetTid();
118}
119
120void Thread::InitAfterFork() {
121  // One thread (us) survived the fork, but we have a new tid so we need to
122  // update the value stashed in this Thread*.
123  InitTid();
124}
125
126void* Thread::CreateCallback(void* arg) {
127  Thread* self = reinterpret_cast<Thread*>(arg);
128  Runtime* runtime = Runtime::Current();
129  if (runtime == NULL) {
130    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
131    return NULL;
132  }
133  {
134    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
135    //       after self->Init().
136    MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
137    // Check that if we got here we cannot be shutting down (as shutdown should never have started
138    // while threads are being born).
139    CHECK(!runtime->IsShuttingDown());
140    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
141    Runtime::Current()->EndThreadBirth();
142  }
143  {
144    ScopedObjectAccess soa(self);
145
146    // Copy peer into self, deleting global reference when done.
147    CHECK(self->jpeer_ != NULL);
148    self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
149    self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
150    self->jpeer_ = NULL;
151
152    {
153      SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
154      self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
155    }
156    Dbg::PostThreadStart(self);
157
158    // Invoke the 'run' method of our java.lang.Thread.
159    mirror::Object* receiver = self->opeer_;
160    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
161    mirror::AbstractMethod* m =
162        receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
163    JValue result;
164    ArgArray arg_array(NULL, 0);
165    arg_array.Append(reinterpret_cast<uint32_t>(receiver));
166    m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
167  }
168  // Detach and delete self.
169  Runtime::Current()->GetThreadList()->Unregister(self);
170
171  return NULL;
172}
173
174Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
175                                  mirror::Object* thread_peer) {
176  mirror::Field* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
177  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer)));
178  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
179  // to stop it from going away.
180  if (kIsDebugBuild) {
181    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
182    if (result != NULL && !result->IsSuspended()) {
183      Locks::thread_list_lock_->AssertHeld(soa.Self());
184    }
185  }
186  return result;
187}
188
189Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
190  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
191}
192
193static size_t FixStackSize(size_t stack_size) {
194  // A stack size of zero means "use the default".
195  if (stack_size == 0) {
196    stack_size = Runtime::Current()->GetDefaultStackSize();
197  }
198
199  // Dalvik used the bionic pthread default stack size for native threads,
200  // so include that here to support apps that expect large native stacks.
201  stack_size += 1 * MB;
202
203  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
204  if (stack_size < PTHREAD_STACK_MIN) {
205    stack_size = PTHREAD_STACK_MIN;
206  }
207
208  // It's likely that callers are trying to ensure they have at least a certain amount of
209  // stack space, so we should add our reserved space on top of what they requested, rather
210  // than implicitly take it away from them.
211  stack_size += Thread::kStackOverflowReservedBytes;
212
213  // Some systems require the stack size to be a multiple of the system page size, so round up.
214  stack_size = RoundUp(stack_size, kPageSize);
215
216  return stack_size;
217}
218
219void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
220  CHECK(java_peer != NULL);
221  Thread* self = static_cast<JNIEnvExt*>(env)->self;
222  Runtime* runtime = Runtime::Current();
223
224  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
225  bool thread_start_during_shutdown = false;
226  {
227    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
228    if (runtime->IsShuttingDown()) {
229      thread_start_during_shutdown = true;
230    } else {
231      runtime->StartThreadBirth();
232    }
233  }
234  if (thread_start_during_shutdown) {
235    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
236    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
237    return;
238  }
239
240  Thread* child_thread = new Thread(is_daemon);
241  // Use global JNI ref to hold peer live while child thread starts.
242  child_thread->jpeer_ = env->NewGlobalRef(java_peer);
243  stack_size = FixStackSize(stack_size);
244
245  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
246  // assign it.
247  env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
248                   reinterpret_cast<jint>(child_thread));
249
250  pthread_t new_pthread;
251  pthread_attr_t attr;
252  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
253  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
254  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
255  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
256  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
257
258  if (pthread_create_result != 0) {
259    // pthread_create(3) failed, so clean up.
260    {
261      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
262      runtime->EndThreadBirth();
263    }
264    // Manually delete the global reference since Thread::Init will not have been run.
265    env->DeleteGlobalRef(child_thread->jpeer_);
266    child_thread->jpeer_ = NULL;
267    delete child_thread;
268    child_thread = NULL;
269    // TODO: remove from thread group?
270    env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
271    {
272      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
273                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
274      ScopedObjectAccess soa(env);
275      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
276    }
277  }
278}
279
280void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
281  // This function does all the initialization that must be run by the native thread it applies to.
282  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
283  // we can handshake with the corresponding native thread when it's ready.) Check this native
284  // thread hasn't been through here already...
285  CHECK(Thread::Current() == NULL);
286  SetUpAlternateSignalStack();
287  InitCpu();
288  InitFunctionPointers();
289  InitCardTable();
290  InitTid();
291  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
292  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
293  pthread_self_ = pthread_self();
294  CHECK(is_started_);
295  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
296  DCHECK_EQ(Thread::Current(), this);
297
298  thin_lock_id_ = thread_list->AllocThreadId(this);
299  InitStackHwm();
300
301  jni_env_ = new JNIEnvExt(this, java_vm);
302  thread_list->Register(this);
303}
304
305Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
306                       bool create_peer) {
307  Thread* self;
308  Runtime* runtime = Runtime::Current();
309  if (runtime == NULL) {
310    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
311    return NULL;
312  }
313  {
314    MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
315    if (runtime->IsShuttingDown()) {
316      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
317      return NULL;
318    } else {
319      Runtime::Current()->StartThreadBirth();
320      self = new Thread(as_daemon);
321      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
322      Runtime::Current()->EndThreadBirth();
323    }
324  }
325
326  CHECK_NE(self->GetState(), kRunnable);
327  self->SetState(kNative);
328
329  // If we're the main thread, ClassLinker won't be created until after we're attached,
330  // so that thread needs a two-stage attach. Regular threads don't need this hack.
331  // In the compiler, all threads need this hack, because no-one's going to be getting
332  // a native peer!
333  if (create_peer) {
334    self->CreatePeer(thread_name, as_daemon, thread_group);
335  } else {
336    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
337    if (thread_name != NULL) {
338      self->name_->assign(thread_name);
339      ::art::SetThreadName(thread_name);
340    }
341  }
342
343  return self;
344}
345
346void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
347  Runtime* runtime = Runtime::Current();
348  CHECK(runtime->IsStarted());
349  JNIEnv* env = jni_env_;
350
351  if (thread_group == NULL) {
352    thread_group = runtime->GetMainThreadGroup();
353  }
354  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
355  jint thread_priority = GetNativePriority();
356  jboolean thread_is_daemon = as_daemon;
357
358  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
359  if (peer.get() == NULL) {
360    CHECK(IsExceptionPending());
361    return;
362  }
363  {
364    ScopedObjectAccess soa(this);
365    opeer_ = soa.Decode<mirror::Object*>(peer.get());
366  }
367  env->CallNonvirtualVoidMethod(peer.get(),
368                                WellKnownClasses::java_lang_Thread,
369                                WellKnownClasses::java_lang_Thread_init,
370                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
371  AssertNoPendingException();
372
373  Thread* self = this;
374  DCHECK_EQ(self, Thread::Current());
375  jni_env_->SetIntField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
376                        reinterpret_cast<jint>(self));
377
378  ScopedObjectAccess soa(self);
379  SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
380  if (peer_thread_name.get() == NULL) {
381    // The Thread constructor should have set the Thread.name to a
382    // non-null value. However, because we can run without code
383    // available (in the compiler, in tests), we manually assign the
384    // fields the constructor should have set.
385    soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
386        SetBoolean(opeer_, thread_is_daemon);
387    soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
388        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_group));
389    soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
390        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_name.get()));
391    soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
392        SetInt(opeer_, thread_priority);
393    peer_thread_name.reset(GetThreadName(soa));
394  }
395  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
396  if (peer_thread_name.get() != NULL) {
397    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
398  }
399}
400
401void Thread::SetThreadName(const char* name) {
402  name_->assign(name);
403  ::art::SetThreadName(name);
404  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
405}
406
407void Thread::InitStackHwm() {
408  void* stack_base;
409  size_t stack_size;
410  GetThreadStack(pthread_self_, stack_base, stack_size);
411
412  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
413  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
414
415  stack_begin_ = reinterpret_cast<byte*>(stack_base);
416  stack_size_ = stack_size;
417
418  if (stack_size_ <= kStackOverflowReservedBytes) {
419    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
420  }
421
422  // TODO: move this into the Linux GetThreadStack implementation.
423#if !defined(__APPLE__)
424  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
425  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
426  // will be broken because we'll die long before we get close to 2GB.
427  bool is_main_thread = (::art::GetTid() == getpid());
428  if (is_main_thread) {
429    rlimit stack_limit;
430    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
431      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
432    }
433    if (stack_limit.rlim_cur == RLIM_INFINITY) {
434      // Find the default stack size for new threads...
435      pthread_attr_t default_attributes;
436      size_t default_stack_size;
437      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
438      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
439                         "default stack size query");
440      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
441
442      // ...and use that as our limit.
443      size_t old_stack_size = stack_size_;
444      stack_size_ = default_stack_size;
445      stack_begin_ += (old_stack_size - stack_size_);
446      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
447                    << " to " << PrettySize(stack_size_)
448                    << " with base " << reinterpret_cast<void*>(stack_begin_);
449    }
450  }
451#endif
452
453  // Set stack_end_ to the bottom of the stack saving space of stack overflows
454  ResetDefaultStackEnd();
455
456  // Sanity check.
457  int stack_variable;
458  CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
459}
460
461void Thread::ShortDump(std::ostream& os) const {
462  os << "Thread[";
463  if (GetThinLockId() != 0) {
464    // If we're in kStarting, we won't have a thin lock id or tid yet.
465    os << GetThinLockId()
466             << ",tid=" << GetTid() << ',';
467  }
468  os << GetState()
469           << ",Thread*=" << this
470           << ",peer=" << opeer_
471           << ",\"" << *name_ << "\""
472           << "]";
473}
474
475void Thread::Dump(std::ostream& os) const {
476  DumpState(os);
477  DumpStack(os);
478}
479
480mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
481  mirror::Field* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
482  return (opeer_ != NULL) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : NULL;
483}
484
485void Thread::GetThreadName(std::string& name) const {
486  name.assign(*name_);
487}
488
489void Thread::AtomicSetFlag(ThreadFlag flag) {
490  android_atomic_or(flag, &state_and_flags_.as_int);
491}
492
493void Thread::AtomicClearFlag(ThreadFlag flag) {
494  android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
495}
496
497// Attempt to rectify locks so that we dump thread list with required locks before exiting.
498static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
499  LOG(ERROR) << *thread << " suspend count already zero.";
500  Locks::thread_suspend_count_lock_->Unlock(self);
501  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
502    Locks::mutator_lock_->SharedTryLock(self);
503    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
504      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
505    }
506  }
507  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
508    Locks::thread_list_lock_->TryLock(self);
509    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
510      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
511    }
512  }
513  std::ostringstream ss;
514  Runtime::Current()->GetThreadList()->DumpLocked(ss);
515  LOG(FATAL) << ss.str();
516}
517
518void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
519  DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
520      << delta << " " << debug_suspend_count_ << " " << this;
521  DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
522  Locks::thread_suspend_count_lock_->AssertHeld(self);
523  if (this != self && !IsSuspended()) {
524    Locks::thread_list_lock_->AssertHeld(self);
525  }
526  if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
527    UnsafeLogFatalForSuspendCount(self, this);
528    return;
529  }
530
531  suspend_count_ += delta;
532  if (for_debugger) {
533    debug_suspend_count_ += delta;
534  }
535
536  if (suspend_count_ == 0) {
537    AtomicClearFlag(kSuspendRequest);
538  } else {
539    AtomicSetFlag(kSuspendRequest);
540  }
541}
542
543void Thread::RunCheckpointFunction() {
544  CHECK(checkpoint_function_ != NULL);
545  ATRACE_BEGIN("Checkpoint function");
546  checkpoint_function_->Run(this);
547  ATRACE_END();
548}
549
550bool Thread::RequestCheckpoint(Closure* function) {
551  CHECK(!ReadFlag(kCheckpointRequest)) << "Already have a pending checkpoint request";
552  checkpoint_function_ = function;
553  union StateAndFlags old_state_and_flags = state_and_flags_;
554  // We must be runnable to request a checkpoint.
555  old_state_and_flags.as_struct.state = kRunnable;
556  union StateAndFlags new_state_and_flags = old_state_and_flags;
557  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
558  int succeeded = android_atomic_cmpxchg(old_state_and_flags.as_int, new_state_and_flags.as_int,
559                                         &state_and_flags_.as_int);
560  return succeeded == 0;
561}
562
563void Thread::FullSuspendCheck() {
564  VLOG(threads) << this << " self-suspending";
565  ATRACE_BEGIN("Full suspend check");
566  // Make thread appear suspended to other threads, release mutator_lock_.
567  TransitionFromRunnableToSuspended(kSuspended);
568  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
569  TransitionFromSuspendedToRunnable();
570  ATRACE_END();
571  VLOG(threads) << this << " self-reviving";
572}
573
574Thread* Thread::SuspendForDebugger(jobject peer, bool request_suspension, bool* timed_out) {
575  static const useconds_t kTimeoutUs = 30 * 1000000; // 30s.
576  useconds_t total_delay_us = 0;
577  useconds_t delay_us = 0;
578  bool did_suspend_request = false;
579  *timed_out = false;
580  while (true) {
581    Thread* thread;
582    {
583      ScopedObjectAccess soa(Thread::Current());
584      Thread* self = soa.Self();
585      MutexLock mu(self, *Locks::thread_list_lock_);
586      thread = Thread::FromManagedThread(soa, peer);
587      if (thread == NULL) {
588        JNIEnv* env = self->GetJniEnv();
589        ScopedLocalRef<jstring> scoped_name_string(env,
590                                                   (jstring)env->GetObjectField(peer,
591                                                              WellKnownClasses::java_lang_Thread_name));
592        ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
593        if (scoped_name_chars.c_str() == NULL) {
594            LOG(WARNING) << "No such thread for suspend: " << peer;
595            env->ExceptionClear();
596        } else {
597            LOG(WARNING) << "No such thread for suspend: " << peer << ":" << scoped_name_chars.c_str();
598        }
599
600        return NULL;
601      }
602      {
603        MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
604        if (request_suspension) {
605          thread->ModifySuspendCount(soa.Self(), +1, true /* for_debugger */);
606          request_suspension = false;
607          did_suspend_request = true;
608        }
609        // IsSuspended on the current thread will fail as the current thread is changed into
610        // Runnable above. As the suspend count is now raised if this is the current thread
611        // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
612        // to just explicitly handle the current thread in the callers to this code.
613        CHECK_NE(thread, soa.Self()) << "Attempt to suspend the current thread for the debugger";
614        // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
615        // count, or else we've waited and it has self suspended) or is the current thread, we're
616        // done.
617        if (thread->IsSuspended()) {
618          return thread;
619        }
620        if (total_delay_us >= kTimeoutUs) {
621          LOG(ERROR) << "Thread suspension timed out: " << peer;
622          if (did_suspend_request) {
623            thread->ModifySuspendCount(soa.Self(), -1, true /* for_debugger */);
624          }
625          *timed_out = true;
626          return NULL;
627        }
628      }
629      // Release locks and come out of runnable state.
630    }
631    for (int i = kLockLevelCount - 1; i >= 0; --i) {
632      BaseMutex* held_mutex = Thread::Current()->GetHeldMutex(static_cast<LockLevel>(i));
633      if (held_mutex != NULL) {
634        LOG(FATAL) << "Holding " << held_mutex->GetName()
635            << " while sleeping for thread suspension";
636      }
637    }
638    {
639      useconds_t new_delay_us = delay_us * 2;
640      CHECK_GE(new_delay_us, delay_us);
641      if (new_delay_us < 500000) {  // Don't allow sleeping to be more than 0.5s.
642        delay_us = new_delay_us;
643      }
644    }
645    if (delay_us == 0) {
646      sched_yield();
647      // Default to 1 milliseconds (note that this gets multiplied by 2 before the first sleep).
648      delay_us = 500;
649    } else {
650      usleep(delay_us);
651      total_delay_us += delay_us;
652    }
653  }
654}
655
656void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
657  std::string group_name;
658  int priority;
659  bool is_daemon = false;
660  Thread* self = Thread::Current();
661
662  if (self != NULL && thread != NULL && thread->opeer_ != NULL) {
663    ScopedObjectAccessUnchecked soa(self);
664    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
665    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
666
667    mirror::Object* thread_group =
668        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
669
670    if (thread_group != NULL) {
671      mirror::Field* group_name_field =
672          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
673      mirror::String* group_name_string =
674          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
675      group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>";
676    }
677  } else {
678    priority = GetNativePriority();
679  }
680
681  std::string scheduler_group_name(GetSchedulerGroupName(tid));
682  if (scheduler_group_name.empty()) {
683    scheduler_group_name = "default";
684  }
685
686  if (thread != NULL) {
687    os << '"' << *thread->name_ << '"';
688    if (is_daemon) {
689      os << " daemon";
690    }
691    os << " prio=" << priority
692       << " tid=" << thread->GetThinLockId()
693       << " " << thread->GetState();
694    if (thread->IsStillStarting()) {
695      os << " (still starting up)";
696    }
697    os << "\n";
698  } else {
699    os << '"' << ::art::GetThreadName(tid) << '"'
700       << " prio=" << priority
701       << " (not attached)\n";
702  }
703
704  if (thread != NULL) {
705    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
706    os << "  | group=\"" << group_name << "\""
707       << " sCount=" << thread->suspend_count_
708       << " dsCount=" << thread->debug_suspend_count_
709       << " obj=" << reinterpret_cast<void*>(thread->opeer_)
710       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
711  }
712
713  os << "  | sysTid=" << tid
714     << " nice=" << getpriority(PRIO_PROCESS, tid)
715     << " cgrp=" << scheduler_group_name;
716  if (thread != NULL) {
717    int policy;
718    sched_param sp;
719    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
720    os << " sched=" << policy << "/" << sp.sched_priority
721       << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
722  }
723  os << "\n";
724
725  // Grab the scheduler stats for this thread.
726  std::string scheduler_stats;
727  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
728    scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
729  } else {
730    scheduler_stats = "0 0 0";
731  }
732
733  char native_thread_state = '?';
734  int utime = 0;
735  int stime = 0;
736  int task_cpu = 0;
737  GetTaskStats(tid, native_thread_state, utime, stime, task_cpu);
738
739  os << "  | state=" << native_thread_state
740     << " schedstat=( " << scheduler_stats << " )"
741     << " utm=" << utime
742     << " stm=" << stime
743     << " core=" << task_cpu
744     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
745  if (thread != NULL) {
746    os << "  | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
747       << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
748  }
749}
750
751void Thread::DumpState(std::ostream& os) const {
752  Thread::DumpState(os, this, GetTid());
753}
754
755struct StackDumpVisitor : public StackVisitor {
756  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
757      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
758      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
759        last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) {
760  }
761
762  virtual ~StackDumpVisitor() {
763    if (frame_count == 0) {
764      os << "  (no managed stack frames)\n";
765    }
766  }
767
768  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
769    mirror::AbstractMethod* m = GetMethod();
770    if (m->IsRuntimeMethod()) {
771      return true;
772    }
773    const int kMaxRepetition = 3;
774    mirror::Class* c = m->GetDeclaringClass();
775    const mirror::DexCache* dex_cache = c->GetDexCache();
776    int line_number = -1;
777    if (dex_cache != NULL) {  // be tolerant of bad input
778      const DexFile& dex_file = *dex_cache->GetDexFile();
779      line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
780    }
781    if (line_number == last_line_number && last_method == m) {
782      repetition_count++;
783    } else {
784      if (repetition_count >= kMaxRepetition) {
785        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
786      }
787      repetition_count = 0;
788      last_line_number = line_number;
789      last_method = m;
790    }
791    if (repetition_count < kMaxRepetition) {
792      os << "  at " << PrettyMethod(m, false);
793      if (m->IsNative()) {
794        os << "(Native method)";
795      } else {
796        mh.ChangeMethod(m);
797        const char* source_file(mh.GetDeclaringClassSourceFile());
798        os << "(" << (source_file != NULL ? source_file : "unavailable")
799           << ":" << line_number << ")";
800      }
801      os << "\n";
802      if (frame_count == 0) {
803        Monitor::DescribeWait(os, thread);
804      }
805      if (can_allocate) {
806        Monitor::VisitLocks(this, DumpLockedObject, &os);
807      }
808    }
809
810    ++frame_count;
811    return true;
812  }
813
814  static void DumpLockedObject(mirror::Object* o, void* context)
815      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
816    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
817    os << "  - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
818  }
819
820  std::ostream& os;
821  const Thread* thread;
822  const bool can_allocate;
823  MethodHelper mh;
824  mirror::AbstractMethod* last_method;
825  int last_line_number;
826  int repetition_count;
827  int frame_count;
828};
829
830static bool ShouldShowNativeStack(const Thread* thread)
831    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
832  ThreadState state = thread->GetState();
833
834  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
835  if (state > kWaiting && state < kStarting) {
836    return true;
837  }
838
839  // In an Object.wait variant or Thread.sleep? That's not interesting.
840  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
841    return false;
842  }
843
844  // In some other native method? That's interesting.
845  // We don't just check kNative because native methods will be in state kSuspended if they're
846  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
847  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
848  mirror::AbstractMethod* current_method = thread->GetCurrentMethod(NULL);
849  return current_method != NULL && current_method->IsNative();
850}
851
852void Thread::DumpStack(std::ostream& os) const {
853  // TODO: we call this code when dying but may not have suspended the thread ourself. The
854  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
855  //       the race with the thread_suspend_count_lock_).
856  bool dump_for_abort = (gAborting > 0);
857  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
858    // If we're currently in native code, dump that stack before dumping the managed stack.
859    if (dump_for_abort || ShouldShowNativeStack(this)) {
860      DumpKernelStack(os, GetTid(), "  kernel: ", false);
861      DumpNativeStack(os, GetTid(), "  native: ", false);
862    }
863    UniquePtr<Context> context(Context::Create());
864    StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
865    dumper.WalkStack();
866  } else {
867    os << "Not able to dump stack of thread that isn't suspended";
868  }
869}
870
871void Thread::ThreadExitCallback(void* arg) {
872  Thread* self = reinterpret_cast<Thread*>(arg);
873  if (self->thread_exit_check_count_ == 0) {
874    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
875    CHECK(is_started_);
876    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
877    self->thread_exit_check_count_ = 1;
878  } else {
879    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
880  }
881}
882
883void Thread::Startup() {
884  CHECK(!is_started_);
885  is_started_ = true;
886  {
887    // MutexLock to keep annotalysis happy.
888    //
889    // Note we use NULL for the thread because Thread::Current can
890    // return garbage since (is_started_ == true) and
891    // Thread::pthread_key_self_ is not yet initialized.
892    // This was seen on glibc.
893    MutexLock mu(NULL, *Locks::thread_suspend_count_lock_);
894    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
895                                         *Locks::thread_suspend_count_lock_);
896  }
897
898  // Allocate a TLS slot.
899  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
900
901  // Double-check the TLS slot allocation.
902  if (pthread_getspecific(pthread_key_self_) != NULL) {
903    LOG(FATAL) << "Newly-created pthread TLS slot is not NULL";
904  }
905}
906
907void Thread::FinishStartup() {
908  Runtime* runtime = Runtime::Current();
909  CHECK(runtime->IsStarted());
910
911  // Finish attaching the main thread.
912  ScopedObjectAccess soa(Thread::Current());
913  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
914
915  Runtime::Current()->GetClassLinker()->RunRootClinits();
916}
917
918void Thread::Shutdown() {
919  CHECK(is_started_);
920  is_started_ = false;
921  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
922  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
923  if (resume_cond_ != NULL) {
924    delete resume_cond_;
925    resume_cond_ = NULL;
926  }
927}
928
929Thread::Thread(bool daemon)
930    : suspend_count_(0),
931      card_table_(NULL),
932      exception_(NULL),
933      stack_end_(NULL),
934      managed_stack_(),
935      jni_env_(NULL),
936      self_(NULL),
937      opeer_(NULL),
938      jpeer_(NULL),
939      stack_begin_(NULL),
940      stack_size_(0),
941      thin_lock_id_(0),
942      tid_(0),
943      wait_mutex_(new Mutex("a thread wait mutex")),
944      wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
945      wait_monitor_(NULL),
946      interrupted_(false),
947      wait_next_(NULL),
948      monitor_enter_object_(NULL),
949      top_sirt_(NULL),
950      runtime_(NULL),
951      class_loader_override_(NULL),
952      long_jump_context_(NULL),
953      throwing_OutOfMemoryError_(false),
954      debug_suspend_count_(0),
955      debug_invoke_req_(new DebugInvokeReq),
956      deoptimization_shadow_frame_(NULL),
957      instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
958      name_(new std::string(kThreadNameDuringStartup)),
959      daemon_(daemon),
960      pthread_self_(0),
961      no_thread_suspension_(0),
962      last_no_thread_suspension_cause_(NULL),
963      checkpoint_function_(0),
964      thread_exit_check_count_(0) {
965  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
966  state_and_flags_.as_struct.flags = 0;
967  state_and_flags_.as_struct.state = kNative;
968  memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
969}
970
971bool Thread::IsStillStarting() const {
972  // You might think you can check whether the state is kStarting, but for much of thread startup,
973  // the thread is in kNative; it might also be in kVmWait.
974  // You might think you can check whether the peer is NULL, but the peer is actually created and
975  // assigned fairly early on, and needs to be.
976  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
977  // this thread _ever_ entered kRunnable".
978  return (jpeer_ == NULL && opeer_ == NULL) || (*name_ == kThreadNameDuringStartup);
979}
980
981void Thread::AssertNoPendingException() const {
982  if (UNLIKELY(IsExceptionPending())) {
983    ScopedObjectAccess soa(Thread::Current());
984    mirror::Throwable* exception = GetException(NULL);
985    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
986  }
987}
988
989static void MonitorExitVisitor(const mirror::Object* object, void* arg) NO_THREAD_SAFETY_ANALYSIS {
990  Thread* self = reinterpret_cast<Thread*>(arg);
991  mirror::Object* entered_monitor = const_cast<mirror::Object*>(object);
992  if (self->HoldsLock(entered_monitor)) {
993    LOG(WARNING) << "Calling MonitorExit on object "
994                 << object << " (" << PrettyTypeOf(object) << ")"
995                 << " left locked by native thread "
996                 << *Thread::Current() << " which is detaching";
997    entered_monitor->MonitorExit(self);
998  }
999}
1000
1001void Thread::Destroy() {
1002  Thread* self = this;
1003  DCHECK_EQ(self, Thread::Current());
1004
1005  if (opeer_ != NULL) {
1006    ScopedObjectAccess soa(self);
1007    // We may need to call user-supplied managed code, do this before final clean-up.
1008    HandleUncaughtExceptions(soa);
1009    RemoveFromThreadGroup(soa);
1010
1011    // this.nativePeer = 0;
1012    soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetInt(opeer_, 0);
1013    Dbg::PostThreadDeath(self);
1014
1015    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1016    // who is waiting.
1017    mirror::Object* lock =
1018        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
1019    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1020    if (lock != NULL) {
1021      ObjectLock locker(self, lock);
1022      locker.Notify();
1023    }
1024  }
1025
1026  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1027  if (jni_env_ != NULL) {
1028    jni_env_->monitors.VisitRoots(MonitorExitVisitor, self);
1029  }
1030}
1031
1032Thread::~Thread() {
1033  if (jni_env_ != NULL && jpeer_ != NULL) {
1034    // If pthread_create fails we don't have a jni env here.
1035    jni_env_->DeleteGlobalRef(jpeer_);
1036    jpeer_ = NULL;
1037  }
1038  opeer_ = NULL;
1039
1040  delete jni_env_;
1041  jni_env_ = NULL;
1042
1043  CHECK_NE(GetState(), kRunnable);
1044  // We may be deleting a still born thread.
1045  SetStateUnsafe(kTerminated);
1046
1047  delete wait_cond_;
1048  delete wait_mutex_;
1049
1050  if (long_jump_context_ != NULL) {
1051    delete long_jump_context_;
1052  }
1053
1054  delete debug_invoke_req_;
1055  delete instrumentation_stack_;
1056  delete name_;
1057
1058  TearDownAlternateSignalStack();
1059}
1060
1061void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1062  if (!IsExceptionPending()) {
1063    return;
1064  }
1065  ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
1066  ScopedThreadStateChange tsc(this, kNative);
1067
1068  // Get and clear the exception.
1069  ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
1070  jni_env_->ExceptionClear();
1071
1072  // If the thread has its own handler, use that.
1073  ScopedLocalRef<jobject> handler(jni_env_,
1074                                  jni_env_->GetObjectField(peer.get(),
1075                                                           WellKnownClasses::java_lang_Thread_uncaughtHandler));
1076  if (handler.get() == NULL) {
1077    // Otherwise use the thread group's default handler.
1078    handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
1079  }
1080
1081  // Call the handler.
1082  jni_env_->CallVoidMethod(handler.get(),
1083                           WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1084                           peer.get(), exception.get());
1085
1086  // If the handler threw, clear that exception too.
1087  jni_env_->ExceptionClear();
1088}
1089
1090void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1091  // this.group.removeThread(this);
1092  // group can be null if we're in the compiler or a test.
1093  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
1094  if (ogroup != NULL) {
1095    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1096    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
1097    ScopedThreadStateChange tsc(soa.Self(), kNative);
1098    jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
1099                             peer.get());
1100  }
1101}
1102
1103size_t Thread::NumSirtReferences() {
1104  size_t count = 0;
1105  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1106    count += cur->NumberOfReferences();
1107  }
1108  return count;
1109}
1110
1111bool Thread::SirtContains(jobject obj) const {
1112  mirror::Object** sirt_entry = reinterpret_cast<mirror::Object**>(obj);
1113  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1114    if (cur->Contains(sirt_entry)) {
1115      return true;
1116    }
1117  }
1118  // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1119  return managed_stack_.ShadowFramesContain(sirt_entry);
1120}
1121
1122void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) {
1123  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1124    size_t num_refs = cur->NumberOfReferences();
1125    for (size_t j = 0; j < num_refs; j++) {
1126      mirror::Object* object = cur->GetReference(j);
1127      if (object != NULL) {
1128        visitor(object, arg);
1129      }
1130    }
1131  }
1132}
1133
1134mirror::Object* Thread::DecodeJObject(jobject obj) const {
1135  Locks::mutator_lock_->AssertSharedHeld(this);
1136  if (obj == NULL) {
1137    return NULL;
1138  }
1139  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1140  IndirectRefKind kind = GetIndirectRefKind(ref);
1141  mirror::Object* result;
1142  // The "kinds" below are sorted by the frequency we expect to encounter them.
1143  if (kind == kLocal) {
1144    IndirectReferenceTable& locals = jni_env_->locals;
1145    result = const_cast<mirror::Object*>(locals.Get(ref));
1146  } else if (kind == kSirtOrInvalid) {
1147    // TODO: make stack indirect reference table lookup more efficient
1148    // Check if this is a local reference in the SIRT
1149    if (LIKELY(SirtContains(obj))) {
1150      result = *reinterpret_cast<mirror::Object**>(obj);  // Read from SIRT
1151    } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1152      // Assume an invalid local reference is actually a direct pointer.
1153      result = reinterpret_cast<mirror::Object*>(obj);
1154    } else {
1155      result = kInvalidIndirectRefObject;
1156    }
1157  } else if (kind == kGlobal) {
1158    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1159    IndirectReferenceTable& globals = vm->globals;
1160    MutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
1161    result = const_cast<mirror::Object*>(globals.Get(ref));
1162  } else {
1163    DCHECK_EQ(kind, kWeakGlobal);
1164    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1165    IndirectReferenceTable& weak_globals = vm->weak_globals;
1166    MutexLock mu(const_cast<Thread*>(this), vm->weak_globals_lock);
1167    result = const_cast<mirror::Object*>(weak_globals.Get(ref));
1168    if (result == kClearedJniWeakGlobal) {
1169      // This is a special case where it's okay to return NULL.
1170      return NULL;
1171    }
1172  }
1173
1174  if (UNLIKELY(result == NULL)) {
1175    JniAbortF(NULL, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1176  } else {
1177    if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) {
1178      Runtime::Current()->GetHeap()->VerifyObject(result);
1179    }
1180  }
1181  return result;
1182}
1183
1184// Implements java.lang.Thread.interrupted.
1185bool Thread::Interrupted() {
1186  MutexLock mu(Thread::Current(), *wait_mutex_);
1187  bool interrupted = interrupted_;
1188  interrupted_ = false;
1189  return interrupted;
1190}
1191
1192// Implements java.lang.Thread.isInterrupted.
1193bool Thread::IsInterrupted() {
1194  MutexLock mu(Thread::Current(), *wait_mutex_);
1195  return interrupted_;
1196}
1197
1198void Thread::Interrupt() {
1199  Thread* self = Thread::Current();
1200  MutexLock mu(self, *wait_mutex_);
1201  if (interrupted_) {
1202    return;
1203  }
1204  interrupted_ = true;
1205  NotifyLocked(self);
1206}
1207
1208void Thread::Notify() {
1209  Thread* self = Thread::Current();
1210  MutexLock mu(self, *wait_mutex_);
1211  NotifyLocked(self);
1212}
1213
1214void Thread::NotifyLocked(Thread* self) {
1215  if (wait_monitor_ != NULL) {
1216    wait_cond_->Signal(self);
1217  }
1218}
1219
1220class CountStackDepthVisitor : public StackVisitor {
1221 public:
1222  explicit CountStackDepthVisitor(Thread* thread)
1223      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1224      : StackVisitor(thread, NULL),
1225        depth_(0), skip_depth_(0), skipping_(true) {}
1226
1227  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1228    // We want to skip frames up to and including the exception's constructor.
1229    // Note we also skip the frame if it doesn't have a method (namely the callee
1230    // save frame)
1231    mirror::AbstractMethod* m = GetMethod();
1232    if (skipping_ && !m->IsRuntimeMethod() &&
1233        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1234      skipping_ = false;
1235    }
1236    if (!skipping_) {
1237      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1238        ++depth_;
1239      }
1240    } else {
1241      ++skip_depth_;
1242    }
1243    return true;
1244  }
1245
1246  int GetDepth() const {
1247    return depth_;
1248  }
1249
1250  int GetSkipDepth() const {
1251    return skip_depth_;
1252  }
1253
1254 private:
1255  uint32_t depth_;
1256  uint32_t skip_depth_;
1257  bool skipping_;
1258};
1259
1260class BuildInternalStackTraceVisitor : public StackVisitor {
1261 public:
1262  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1263      : StackVisitor(thread, NULL), self_(self),
1264        skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {}
1265
1266  bool Init(int depth)
1267      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1268    // Allocate method trace with an extra slot that will hold the PC trace
1269    SirtRef<mirror::ObjectArray<mirror::Object> >
1270        method_trace(self_,
1271                     Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1272                                                                                            depth + 1));
1273    if (method_trace.get() == NULL) {
1274      return false;
1275    }
1276    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1277    if (dex_pc_trace == NULL) {
1278      return false;
1279    }
1280    // Save PC trace in last element of method trace, also places it into the
1281    // object graph.
1282    method_trace->Set(depth, dex_pc_trace);
1283    // Set the Object*s and assert that no thread suspension is now possible.
1284    const char* last_no_suspend_cause =
1285        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1286    CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause;
1287    method_trace_ = method_trace.get();
1288    dex_pc_trace_ = dex_pc_trace;
1289    return true;
1290  }
1291
1292  virtual ~BuildInternalStackTraceVisitor() {
1293    if (method_trace_ != NULL) {
1294      self_->EndAssertNoThreadSuspension(NULL);
1295    }
1296  }
1297
1298  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1299    if (method_trace_ == NULL || dex_pc_trace_ == NULL) {
1300      return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1301    }
1302    if (skip_depth_ > 0) {
1303      skip_depth_--;
1304      return true;
1305    }
1306    mirror::AbstractMethod* m = GetMethod();
1307    if (m->IsRuntimeMethod()) {
1308      return true;  // Ignore runtime frames (in particular callee save).
1309    }
1310    method_trace_->Set(count_, m);
1311    dex_pc_trace_->Set(count_, GetDexPc());
1312    ++count_;
1313    return true;
1314  }
1315
1316  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1317    return method_trace_;
1318  }
1319
1320 private:
1321  Thread* const self_;
1322  // How many more frames to skip.
1323  int32_t skip_depth_;
1324  // Current position down stack trace.
1325  uint32_t count_;
1326  // Array of dex PC values.
1327  mirror::IntArray* dex_pc_trace_;
1328  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1329  mirror::ObjectArray<mirror::Object>* method_trace_;
1330};
1331
1332jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1333  // Compute depth of stack
1334  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1335  count_visitor.WalkStack();
1336  int32_t depth = count_visitor.GetDepth();
1337  int32_t skip_depth = count_visitor.GetSkipDepth();
1338
1339  // Build internal stack trace.
1340  BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
1341                                                     skip_depth);
1342  if (!build_trace_visitor.Init(depth)) {
1343    return NULL;  // Allocation failed.
1344  }
1345  build_trace_visitor.WalkStack();
1346  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1347  if (kIsDebugBuild) {
1348    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1349      CHECK(trace->Get(i) != NULL);
1350    }
1351  }
1352  return soa.AddLocalReference<jobjectArray>(trace);
1353}
1354
1355jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1356    jobjectArray output_array, int* stack_depth) {
1357  // Transition into runnable state to work on Object*/Array*
1358  ScopedObjectAccess soa(env);
1359  // Decode the internal stack trace into the depth, method trace and PC trace
1360  mirror::ObjectArray<mirror::Object>* method_trace =
1361      soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1362  int32_t depth = method_trace->GetLength() - 1;
1363  mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1364
1365  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1366
1367  jobjectArray result;
1368  mirror::ObjectArray<mirror::StackTraceElement>* java_traces;
1369  if (output_array != NULL) {
1370    // Reuse the array we were given.
1371    result = output_array;
1372    java_traces = soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(output_array);
1373    // ...adjusting the number of frames we'll write to not exceed the array length.
1374    depth = std::min(depth, java_traces->GetLength());
1375  } else {
1376    // Create java_trace array and place in local reference table
1377    java_traces = class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1378    if (java_traces == NULL) {
1379      return NULL;
1380    }
1381    result = soa.AddLocalReference<jobjectArray>(java_traces);
1382  }
1383
1384  if (stack_depth != NULL) {
1385    *stack_depth = depth;
1386  }
1387
1388  MethodHelper mh;
1389  for (int32_t i = 0; i < depth; ++i) {
1390    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1391    mirror::AbstractMethod* method = down_cast<mirror::AbstractMethod*>(method_trace->Get(i));
1392    mh.ChangeMethod(method);
1393    uint32_t dex_pc = pc_trace->Get(i);
1394    int32_t line_number = mh.GetLineNumFromDexPC(dex_pc);
1395    // Allocate element, potentially triggering GC
1396    // TODO: reuse class_name_object via Class::name_?
1397    const char* descriptor = mh.GetDeclaringClassDescriptor();
1398    CHECK(descriptor != NULL);
1399    std::string class_name(PrettyDescriptor(descriptor));
1400    SirtRef<mirror::String> class_name_object(soa.Self(),
1401                                              mirror::String::AllocFromModifiedUtf8(soa.Self(),
1402                                                                                    class_name.c_str()));
1403    if (class_name_object.get() == NULL) {
1404      return NULL;
1405    }
1406    const char* method_name = mh.GetName();
1407    CHECK(method_name != NULL);
1408    SirtRef<mirror::String> method_name_object(soa.Self(),
1409                                               mirror::String::AllocFromModifiedUtf8(soa.Self(),
1410                                                                                     method_name));
1411    if (method_name_object.get() == NULL) {
1412      return NULL;
1413    }
1414    const char* source_file = mh.GetDeclaringClassSourceFile();
1415    SirtRef<mirror::String> source_name_object(soa.Self(), mirror::String::AllocFromModifiedUtf8(soa.Self(),
1416                                                                                                 source_file));
1417    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(soa.Self(),
1418                                                                      class_name_object.get(),
1419                                                                      method_name_object.get(),
1420                                                                      source_name_object.get(),
1421                                                                      line_number);
1422    if (obj == NULL) {
1423      return NULL;
1424    }
1425#ifdef MOVING_GARBAGE_COLLECTOR
1426    // Re-read after potential GC
1427    java_traces = Decode<ObjectArray<Object>*>(soa.Env(), result);
1428    method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(soa.Env(), internal));
1429    pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
1430#endif
1431    java_traces->Set(i, obj);
1432  }
1433  return result;
1434}
1435
1436void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1437                                const char* exception_class_descriptor, const char* fmt, ...) {
1438  va_list args;
1439  va_start(args, fmt);
1440  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1441                     fmt, args);
1442  va_end(args);
1443}
1444
1445void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1446                                const char* exception_class_descriptor,
1447                                const char* fmt, va_list ap) {
1448  std::string msg;
1449  StringAppendV(&msg, fmt, ap);
1450  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1451}
1452
1453void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1454                               const char* msg) {
1455  AssertNoPendingException(); // Callers should either clear or call ThrowNewWrappedException.
1456  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1457}
1458
1459void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1460                                      const char* exception_class_descriptor,
1461                                      const char* msg) {
1462  DCHECK_EQ(this, Thread::Current());
1463  // Ensure we don't forget arguments over object allocation.
1464  SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1465  SirtRef<mirror::AbstractMethod> saved_throw_method(this, throw_location.GetMethod());
1466  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1467  SirtRef<mirror::Throwable> cause(this, GetException(NULL));
1468  ClearException();
1469  Runtime* runtime = Runtime::Current();
1470
1471  mirror::ClassLoader* cl = NULL;
1472  if (throw_location.GetMethod() != NULL) {
1473    cl = throw_location.GetMethod()->GetDeclaringClass()->GetClassLoader();
1474  }
1475  SirtRef<mirror::Class>
1476      exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor, cl));
1477  if (UNLIKELY(exception_class.get() == NULL)) {
1478    CHECK(IsExceptionPending());
1479    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1480    return;
1481  }
1482
1483  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class.get(), true, true))) {
1484    DCHECK(IsExceptionPending());
1485    return;
1486  }
1487  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1488  SirtRef<mirror::Throwable> exception(this,
1489                                down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1490
1491  // Choose an appropriate constructor and set up the arguments.
1492  const char* signature;
1493  SirtRef<mirror::String> msg_string(this, NULL);
1494  if (msg != NULL) {
1495    // Ensure we remember this and the method over the String allocation.
1496    msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
1497    if (UNLIKELY(msg_string.get() == NULL)) {
1498      CHECK(IsExceptionPending());  // OOME.
1499      return;
1500    }
1501    if (cause.get() == NULL) {
1502      signature = "(Ljava/lang/String;)V";
1503    } else {
1504      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1505    }
1506  } else {
1507    if (cause.get() == NULL) {
1508      signature = "()V";
1509    } else {
1510      signature = "(Ljava/lang/Throwable;)V";
1511    }
1512  }
1513  mirror::AbstractMethod* exception_init_method =
1514      exception_class->FindDeclaredDirectMethod("<init>", signature);
1515
1516  CHECK(exception_init_method != NULL) << "No <init>" << signature << " in "
1517      << PrettyDescriptor(exception_class_descriptor);
1518
1519  if (UNLIKELY(!runtime->IsStarted())) {
1520    // Something is trying to throw an exception without a started runtime, which is the common
1521    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1522    // the exception fields directly.
1523    if (msg != NULL) {
1524      exception->SetDetailMessage(msg_string.get());
1525    }
1526    if (cause.get() != NULL) {
1527      exception->SetCause(cause.get());
1528    }
1529    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1530                                         throw_location.GetDexPc());
1531    SetException(gc_safe_throw_location, exception.get());
1532  } else {
1533    ArgArray args("VLL", 3);
1534    args.Append(reinterpret_cast<uint32_t>(exception.get()));
1535    if (msg != NULL) {
1536      args.Append(reinterpret_cast<uint32_t>(msg_string.get()));
1537    }
1538    if (cause.get() != NULL) {
1539      args.Append(reinterpret_cast<uint32_t>(cause.get()));
1540    }
1541    JValue result;
1542    exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V');
1543    if (LIKELY(!IsExceptionPending())) {
1544      ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1545                                           throw_location.GetDexPc());
1546      SetException(gc_safe_throw_location, exception.get());
1547    }
1548  }
1549}
1550
1551void Thread::ThrowOutOfMemoryError(const char* msg) {
1552  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1553      msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1554  ThrowLocation throw_location = GetCurrentLocationForThrow();
1555  if (!throwing_OutOfMemoryError_) {
1556    throwing_OutOfMemoryError_ = true;
1557    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1558    throwing_OutOfMemoryError_ = false;
1559  } else {
1560    Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one.
1561    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1562  }
1563}
1564
1565Thread* Thread::CurrentFromGdb() {
1566  return Thread::Current();
1567}
1568
1569void Thread::DumpFromGdb() const {
1570  std::ostringstream ss;
1571  Dump(ss);
1572  std::string str(ss.str());
1573  // log to stderr for debugging command line processes
1574  std::cerr << str;
1575#ifdef HAVE_ANDROID_OS
1576  // log to logcat for debugging frameworks processes
1577  LOG(INFO) << str;
1578#endif
1579}
1580
1581struct EntryPointInfo {
1582  uint32_t offset;
1583  const char* name;
1584};
1585#define ENTRY_POINT_INFO(x) { ENTRYPOINT_OFFSET(x), #x }
1586static const EntryPointInfo gThreadEntryPointInfo[] = {
1587  ENTRY_POINT_INFO(pAllocArrayFromCode),
1588  ENTRY_POINT_INFO(pAllocArrayFromCodeWithAccessCheck),
1589  ENTRY_POINT_INFO(pAllocObjectFromCode),
1590  ENTRY_POINT_INFO(pAllocObjectFromCodeWithAccessCheck),
1591  ENTRY_POINT_INFO(pCheckAndAllocArrayFromCode),
1592  ENTRY_POINT_INFO(pCheckAndAllocArrayFromCodeWithAccessCheck),
1593  ENTRY_POINT_INFO(pInstanceofNonTrivialFromCode),
1594  ENTRY_POINT_INFO(pCanPutArrayElementFromCode),
1595  ENTRY_POINT_INFO(pCheckCastFromCode),
1596  ENTRY_POINT_INFO(pInitializeStaticStorage),
1597  ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccessFromCode),
1598  ENTRY_POINT_INFO(pInitializeTypeFromCode),
1599  ENTRY_POINT_INFO(pResolveStringFromCode),
1600  ENTRY_POINT_INFO(pSet32Instance),
1601  ENTRY_POINT_INFO(pSet32Static),
1602  ENTRY_POINT_INFO(pSet64Instance),
1603  ENTRY_POINT_INFO(pSet64Static),
1604  ENTRY_POINT_INFO(pSetObjInstance),
1605  ENTRY_POINT_INFO(pSetObjStatic),
1606  ENTRY_POINT_INFO(pGet32Instance),
1607  ENTRY_POINT_INFO(pGet32Static),
1608  ENTRY_POINT_INFO(pGet64Instance),
1609  ENTRY_POINT_INFO(pGet64Static),
1610  ENTRY_POINT_INFO(pGetObjInstance),
1611  ENTRY_POINT_INFO(pGetObjStatic),
1612  ENTRY_POINT_INFO(pHandleFillArrayDataFromCode),
1613  ENTRY_POINT_INFO(pJniMethodStart),
1614  ENTRY_POINT_INFO(pJniMethodStartSynchronized),
1615  ENTRY_POINT_INFO(pJniMethodEnd),
1616  ENTRY_POINT_INFO(pJniMethodEndSynchronized),
1617  ENTRY_POINT_INFO(pJniMethodEndWithReference),
1618  ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
1619  ENTRY_POINT_INFO(pLockObjectFromCode),
1620  ENTRY_POINT_INFO(pUnlockObjectFromCode),
1621  ENTRY_POINT_INFO(pCmpgDouble),
1622  ENTRY_POINT_INFO(pCmpgFloat),
1623  ENTRY_POINT_INFO(pCmplDouble),
1624  ENTRY_POINT_INFO(pCmplFloat),
1625  ENTRY_POINT_INFO(pFmod),
1626  ENTRY_POINT_INFO(pSqrt),
1627  ENTRY_POINT_INFO(pL2d),
1628  ENTRY_POINT_INFO(pFmodf),
1629  ENTRY_POINT_INFO(pL2f),
1630  ENTRY_POINT_INFO(pD2iz),
1631  ENTRY_POINT_INFO(pF2iz),
1632  ENTRY_POINT_INFO(pIdivmod),
1633  ENTRY_POINT_INFO(pD2l),
1634  ENTRY_POINT_INFO(pF2l),
1635  ENTRY_POINT_INFO(pLdiv),
1636  ENTRY_POINT_INFO(pLdivmod),
1637  ENTRY_POINT_INFO(pLmul),
1638  ENTRY_POINT_INFO(pShlLong),
1639  ENTRY_POINT_INFO(pShrLong),
1640  ENTRY_POINT_INFO(pUshrLong),
1641  ENTRY_POINT_INFO(pInterpreterToInterpreterEntry),
1642  ENTRY_POINT_INFO(pInterpreterToQuickEntry),
1643  ENTRY_POINT_INFO(pIndexOf),
1644  ENTRY_POINT_INFO(pMemcmp16),
1645  ENTRY_POINT_INFO(pStringCompareTo),
1646  ENTRY_POINT_INFO(pMemcpy),
1647  ENTRY_POINT_INFO(pPortableResolutionTrampolineFromCode),
1648  ENTRY_POINT_INFO(pQuickResolutionTrampolineFromCode),
1649  ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1650  ENTRY_POINT_INFO(pInvokeInterfaceTrampoline),
1651  ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1652  ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1653  ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1654  ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1655  ENTRY_POINT_INFO(pCheckSuspendFromCode),
1656  ENTRY_POINT_INFO(pTestSuspendFromCode),
1657  ENTRY_POINT_INFO(pDeliverException),
1658  ENTRY_POINT_INFO(pThrowArrayBoundsFromCode),
1659  ENTRY_POINT_INFO(pThrowDivZeroFromCode),
1660  ENTRY_POINT_INFO(pThrowNoSuchMethodFromCode),
1661  ENTRY_POINT_INFO(pThrowNullPointerFromCode),
1662  ENTRY_POINT_INFO(pThrowStackOverflowFromCode),
1663};
1664#undef ENTRY_POINT_INFO
1665
1666void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1667  CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets.
1668
1669#define DO_THREAD_OFFSET(x) \
1670    if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \
1671      os << # x; \
1672      return; \
1673    }
1674  DO_THREAD_OFFSET(state_and_flags_);
1675  DO_THREAD_OFFSET(card_table_);
1676  DO_THREAD_OFFSET(exception_);
1677  DO_THREAD_OFFSET(opeer_);
1678  DO_THREAD_OFFSET(jni_env_);
1679  DO_THREAD_OFFSET(self_);
1680  DO_THREAD_OFFSET(stack_end_);
1681  DO_THREAD_OFFSET(suspend_count_);
1682  DO_THREAD_OFFSET(thin_lock_id_);
1683  //DO_THREAD_OFFSET(top_of_managed_stack_);
1684  //DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1685  DO_THREAD_OFFSET(top_sirt_);
1686#undef DO_THREAD_OFFSET
1687
1688  size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1689  CHECK_EQ(entry_point_count * size_of_pointers, sizeof(EntryPoints));
1690  uint32_t expected_offset = OFFSETOF_MEMBER(Thread, entrypoints_);
1691  for (size_t i = 0; i < entry_point_count; ++i) {
1692    CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
1693    expected_offset += size_of_pointers;
1694    if (gThreadEntryPointInfo[i].offset == offset) {
1695      os << gThreadEntryPointInfo[i].name;
1696      return;
1697    }
1698  }
1699  os << offset;
1700}
1701
1702static const bool kDebugExceptionDelivery = false;
1703class CatchBlockStackVisitor : public StackVisitor {
1704 public:
1705  CatchBlockStackVisitor(Thread* self, const ThrowLocation& throw_location,
1706                         mirror::Throwable* exception, bool is_deoptimization)
1707      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1708      : StackVisitor(self, self->GetLongJumpContext()),
1709        self_(self), exception_(exception), is_deoptimization_(is_deoptimization),
1710        to_find_(is_deoptimization ? NULL : exception->GetClass()), throw_location_(throw_location),
1711        handler_quick_frame_(NULL), handler_quick_frame_pc_(0), handler_dex_pc_(0),
1712        native_method_count_(0),
1713        method_tracing_active_(is_deoptimization ||
1714                               Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()),
1715        instrumentation_frames_to_pop_(0), top_shadow_frame_(NULL), prev_shadow_frame_(NULL) {
1716    // Exception not in root sets, can't allow GC.
1717    last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block");
1718  }
1719
1720  ~CatchBlockStackVisitor() {
1721    LOG(FATAL) << "UNREACHABLE";  // Expected to take long jump.
1722  }
1723
1724  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1725    mirror::AbstractMethod* method = GetMethod();
1726    if (method == NULL) {
1727      // This is the upcall, we remember the frame and last pc so that we may long jump to them.
1728      handler_quick_frame_pc_ = GetCurrentQuickFramePc();
1729      handler_quick_frame_ = GetCurrentQuickFrame();
1730      return false;  // End stack walk.
1731    } else {
1732      if (UNLIKELY(method_tracing_active_ &&
1733                   GetInstrumentationExitPc() == GetReturnPc())) {
1734        // Keep count of the number of unwinds during instrumentation.
1735        instrumentation_frames_to_pop_++;
1736      }
1737      if (method->IsRuntimeMethod()) {
1738        // Ignore callee save method.
1739        DCHECK(method->IsCalleeSaveMethod());
1740        return true;
1741      } else if (is_deoptimization_) {
1742        return HandleDeoptimization(method);
1743      } else {
1744        return HandleTryItems(method);
1745      }
1746    }
1747  }
1748
1749  bool HandleTryItems(mirror::AbstractMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1750    uint32_t dex_pc = DexFile::kDexNoIndex;
1751    if (method->IsNative()) {
1752      native_method_count_++;
1753    } else {
1754      dex_pc = GetDexPc();
1755    }
1756    if (dex_pc != DexFile::kDexNoIndex) {
1757      uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc);
1758      if (found_dex_pc != DexFile::kDexNoIndex) {
1759        handler_dex_pc_ = found_dex_pc;
1760        handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc);
1761        handler_quick_frame_ = GetCurrentQuickFrame();
1762        return false;  // End stack walk.
1763      }
1764    }
1765    return true;  // Continue stack walk.
1766  }
1767
1768  bool HandleDeoptimization(mirror::AbstractMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1769    MethodHelper mh(m);
1770    const DexFile::CodeItem* code_item = mh.GetCodeItem();
1771    CHECK(code_item != NULL);
1772    uint16_t num_regs =  code_item->registers_size_;
1773    uint32_t dex_pc = GetDexPc();
1774    const Instruction* inst = Instruction::At(code_item->insns_ + dex_pc);
1775    uint32_t new_dex_pc = dex_pc + inst->SizeInCodeUnits();
1776    ShadowFrame* new_frame = ShadowFrame::Create(num_regs, NULL, m, new_dex_pc);
1777    verifier::MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
1778                                      mh.GetClassDefIndex(), code_item,
1779                                      m->GetDexMethodIndex(), m, m->GetAccessFlags(), false, true);
1780    verifier.Verify();
1781    std::vector<int32_t> kinds = verifier.DescribeVRegs(dex_pc);
1782    for (uint16_t reg = 0; reg < num_regs; reg++) {
1783      VRegKind kind = static_cast<VRegKind>(kinds.at(reg * 2));
1784      switch (kind) {
1785        case kUndefined:
1786          new_frame->SetVReg(reg, 0xEBADDE09);
1787          break;
1788        case kConstant:
1789          new_frame->SetVReg(reg, kinds.at((reg * 2) + 1));
1790          break;
1791        case kReferenceVReg:
1792          new_frame->SetVRegReference(reg,
1793                                      reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kind)));
1794          break;
1795        default:
1796          new_frame->SetVReg(reg, GetVReg(m, reg, kind));
1797          break;
1798      }
1799    }
1800    if (prev_shadow_frame_ != NULL) {
1801      prev_shadow_frame_->SetLink(new_frame);
1802    } else {
1803      top_shadow_frame_ = new_frame;
1804    }
1805    prev_shadow_frame_ = new_frame;
1806    return true;
1807  }
1808
1809  void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1810    mirror::AbstractMethod* catch_method = *handler_quick_frame_;
1811    if (catch_method == NULL) {
1812      if (kDebugExceptionDelivery) {
1813        LOG(INFO) << "Handler is upcall";
1814      }
1815    } else {
1816      CHECK(!is_deoptimization_);
1817      if (kDebugExceptionDelivery) {
1818        const DexFile& dex_file = *catch_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1819        int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_);
1820        LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")";
1821      }
1822    }
1823    // Put exception back in root set and clear throw location.
1824    self_->SetException(ThrowLocation(), exception_);
1825    self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_);
1826    // Do instrumentation events after allowing thread suspension again.
1827    instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1828    for (size_t i = 0; i < instrumentation_frames_to_pop_; ++i) {
1829      // We pop the instrumentation stack here so as not to corrupt it during the stack walk.
1830      if (i != instrumentation_frames_to_pop_ - 1 || self_->GetInstrumentationStack()->front().method_ != catch_method) {
1831        // Don't pop the instrumentation frame of the catch handler.
1832        instrumentation->PopMethodForUnwind(self_, is_deoptimization_);
1833      }
1834    }
1835    if (!is_deoptimization_) {
1836      instrumentation->ExceptionCaughtEvent(self_, throw_location_, catch_method, handler_dex_pc_,
1837                                            exception_);
1838    } else {
1839      // TODO: proper return value.
1840      self_->SetDeoptimizationShadowFrame(top_shadow_frame_);
1841    }
1842    // Place context back on thread so it will be available when we continue.
1843    self_->ReleaseLongJumpContext(context_);
1844    context_->SetSP(reinterpret_cast<uintptr_t>(handler_quick_frame_));
1845    CHECK_NE(handler_quick_frame_pc_, 0u);
1846    context_->SetPC(handler_quick_frame_pc_);
1847    context_->SmashCallerSaves();
1848    context_->DoLongJump();
1849  }
1850
1851 private:
1852  Thread* const self_;
1853  mirror::Throwable* const exception_;
1854  const bool is_deoptimization_;
1855  // The type of the exception catch block to find.
1856  mirror::Class* const to_find_;
1857  // Location of the throw.
1858  const ThrowLocation& throw_location_;
1859  // Quick frame with found handler or last frame if no handler found.
1860  mirror::AbstractMethod** handler_quick_frame_;
1861  // PC to branch to for the handler.
1862  uintptr_t handler_quick_frame_pc_;
1863  // Associated dex PC.
1864  uint32_t handler_dex_pc_;
1865  // Number of native methods passed in crawl (equates to number of SIRTs to pop)
1866  uint32_t native_method_count_;
1867  // Is method tracing active?
1868  const bool method_tracing_active_;
1869  // Support for nesting no thread suspension checks.
1870  const char* last_no_assert_suspension_cause_;
1871  // Number of frames to pop in long jump.
1872  size_t instrumentation_frames_to_pop_;
1873  ShadowFrame* top_shadow_frame_;
1874  ShadowFrame* prev_shadow_frame_;
1875};
1876
1877void Thread::QuickDeliverException() {
1878  // Get exception from thread.
1879  ThrowLocation throw_location;
1880  mirror::Throwable* exception = GetException(&throw_location);
1881  CHECK(exception != NULL);
1882  // Don't leave exception visible while we try to find the handler, which may cause class
1883  // resolution.
1884  ClearException();
1885  bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
1886  if (kDebugExceptionDelivery) {
1887    if (!is_deoptimization) {
1888      mirror::String* msg = exception->GetDetailMessage();
1889      std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : "");
1890      DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1891                << ": " << str_msg << "\n");
1892    } else {
1893      DumpStack(LOG(INFO) << "Deoptimizing: ");
1894    }
1895  }
1896  CatchBlockStackVisitor catch_finder(this, throw_location, exception, is_deoptimization);
1897  catch_finder.WalkStack(true);
1898  catch_finder.DoLongJump();
1899  LOG(FATAL) << "UNREACHABLE";
1900}
1901
1902Context* Thread::GetLongJumpContext() {
1903  Context* result = long_jump_context_;
1904  if (result == NULL) {
1905    result = Context::Create();
1906  } else {
1907    long_jump_context_ = NULL;  // Avoid context being shared.
1908    result->Reset();
1909  }
1910  return result;
1911}
1912
1913struct CurrentMethodVisitor : public StackVisitor {
1914  CurrentMethodVisitor(Thread* thread, Context* context)
1915      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1916      : StackVisitor(thread, context), this_object_(NULL), method_(NULL), dex_pc_(0) {}
1917  virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1918    mirror::AbstractMethod* m = GetMethod();
1919    if (m->IsRuntimeMethod()) {
1920      // Continue if this is a runtime method.
1921      return true;
1922    }
1923    if (context_ != NULL) {
1924      this_object_ = GetThisObject();
1925    }
1926    method_ = m;
1927    dex_pc_ = GetDexPc();
1928    return false;
1929  }
1930  mirror::Object* this_object_;
1931  mirror::AbstractMethod* method_;
1932  uint32_t dex_pc_;
1933};
1934
1935mirror::AbstractMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1936  CurrentMethodVisitor visitor(const_cast<Thread*>(this), NULL);
1937  visitor.WalkStack(false);
1938  if (dex_pc != NULL) {
1939    *dex_pc = visitor.dex_pc_;
1940  }
1941  return visitor.method_;
1942}
1943
1944ThrowLocation Thread::GetCurrentLocationForThrow() {
1945  Context* context = GetLongJumpContext();
1946  CurrentMethodVisitor visitor(this, context);
1947  visitor.WalkStack(false);
1948  ReleaseLongJumpContext(context);
1949  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1950}
1951
1952bool Thread::HoldsLock(mirror::Object* object) {
1953  if (object == NULL) {
1954    return false;
1955  }
1956  return object->GetThinLockId() == thin_lock_id_;
1957}
1958
1959// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1960template <typename RootVisitor>
1961class ReferenceMapVisitor : public StackVisitor {
1962 public:
1963  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1964      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1965      : StackVisitor(thread, context), visitor_(visitor) {}
1966
1967  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1968    if (false) {
1969      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1970          << StringPrintf("@ PC:%04x", GetDexPc());
1971    }
1972    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1973    if (shadow_frame != NULL) {
1974      mirror::AbstractMethod* m = shadow_frame->GetMethod();
1975      size_t num_regs = shadow_frame->NumberOfVRegs();
1976      if (m->IsNative() || shadow_frame->HasReferenceArray()) {
1977        // SIRT for JNI or References for interpreter.
1978        for (size_t reg = 0; reg < num_regs; ++reg) {
1979          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1980          if (ref != NULL) {
1981            visitor_(ref, reg, this);
1982          }
1983        }
1984      } else {
1985        // Java method.
1986        // Portable path use DexGcMap and store in Method.native_gc_map_.
1987        const uint8_t* gc_map = m->GetNativeGcMap();
1988        CHECK(gc_map != NULL) << PrettyMethod(m);
1989        uint32_t gc_map_length = static_cast<uint32_t>((gc_map[0] << 24) |
1990                                                       (gc_map[1] << 16) |
1991                                                       (gc_map[2] << 8) |
1992                                                       (gc_map[3] << 0));
1993        verifier::DexPcToReferenceMap dex_gc_map(gc_map + 4, gc_map_length);
1994        uint32_t dex_pc = GetDexPc();
1995        const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
1996        DCHECK(reg_bitmap != NULL);
1997        num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
1998        for (size_t reg = 0; reg < num_regs; ++reg) {
1999          if (TestBitmap(reg, reg_bitmap)) {
2000            mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2001            if (ref != NULL) {
2002              visitor_(ref, reg, this);
2003            }
2004          }
2005        }
2006      }
2007    } else {
2008      mirror::AbstractMethod* m = GetMethod();
2009      // Process register map (which native and runtime methods don't have)
2010      if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2011        const uint8_t* native_gc_map = m->GetNativeGcMap();
2012        CHECK(native_gc_map != NULL) << PrettyMethod(m);
2013        mh_.ChangeMethod(m);
2014        const DexFile::CodeItem* code_item = mh_.GetCodeItem();
2015        DCHECK(code_item != NULL) << PrettyMethod(m); // Can't be NULL or how would we compile its instructions?
2016        NativePcOffsetToReferenceMap map(native_gc_map);
2017        size_t num_regs = std::min(map.RegWidth() * 8,
2018                                   static_cast<size_t>(code_item->registers_size_));
2019        if (num_regs > 0) {
2020          const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
2021          DCHECK(reg_bitmap != NULL);
2022          const VmapTable vmap_table(m->GetVmapTableRaw());
2023          uint32_t core_spills = m->GetCoreSpillMask();
2024          uint32_t fp_spills = m->GetFpSpillMask();
2025          size_t frame_size = m->GetFrameSizeInBytes();
2026          // For all dex registers in the bitmap
2027          mirror::AbstractMethod** cur_quick_frame = GetCurrentQuickFrame();
2028          DCHECK(cur_quick_frame != NULL);
2029          for (size_t reg = 0; reg < num_regs; ++reg) {
2030            // Does this register hold a reference?
2031            if (TestBitmap(reg, reg_bitmap)) {
2032              uint32_t vmap_offset;
2033              mirror::Object* ref;
2034              if (vmap_table.IsInContext(reg, vmap_offset, kReferenceVReg)) {
2035                uintptr_t val = GetGPR(vmap_table.ComputeRegister(core_spills, vmap_offset,
2036                                                                  kReferenceVReg));
2037                ref = reinterpret_cast<mirror::Object*>(val);
2038              } else {
2039                ref = reinterpret_cast<mirror::Object*>(GetVReg(cur_quick_frame, code_item,
2040                                                                core_spills, fp_spills, frame_size,
2041                                                                reg));
2042              }
2043
2044              if (ref != NULL) {
2045                visitor_(ref, reg, this);
2046              }
2047            }
2048          }
2049        }
2050      }
2051    }
2052    return true;
2053  }
2054
2055 private:
2056  static bool TestBitmap(int reg, const uint8_t* reg_vector) {
2057    return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
2058  }
2059
2060  // Visitor for when we visit a root.
2061  const RootVisitor& visitor_;
2062
2063  // A method helper we keep around to avoid dex file/cache re-computations.
2064  MethodHelper mh_;
2065};
2066
2067class RootCallbackVisitor {
2068 public:
2069  RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {}
2070
2071  void operator()(const mirror::Object* obj, size_t, const StackVisitor*) const {
2072    visitor_(obj, arg_);
2073  }
2074
2075 private:
2076  RootVisitor* visitor_;
2077  void* arg_;
2078};
2079
2080class VerifyCallbackVisitor {
2081 public:
2082  VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg)
2083      : visitor_(visitor),
2084        arg_(arg) {
2085  }
2086
2087  void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const {
2088    visitor_(obj, arg_, vreg, visitor);
2089  }
2090
2091 private:
2092  VerifyRootVisitor* const visitor_;
2093  void* const arg_;
2094};
2095
2096struct VerifyRootWrapperArg {
2097  VerifyRootVisitor* visitor;
2098  void* arg;
2099};
2100
2101static void VerifyRootWrapperCallback(const mirror::Object* root, void* arg) {
2102  VerifyRootWrapperArg* wrapperArg = reinterpret_cast<VerifyRootWrapperArg*>(arg);
2103  wrapperArg->visitor(root, wrapperArg->arg, 0, NULL);
2104}
2105
2106void Thread::VerifyRoots(VerifyRootVisitor* visitor, void* arg) {
2107  // We need to map from a RootVisitor to VerifyRootVisitor, so pass in nulls for arguments we
2108  // don't have.
2109  VerifyRootWrapperArg wrapperArg;
2110  wrapperArg.arg = arg;
2111  wrapperArg.visitor = visitor;
2112
2113  if (opeer_ != NULL) {
2114    VerifyRootWrapperCallback(opeer_, &wrapperArg);
2115  }
2116  if (exception_ != NULL) {
2117    VerifyRootWrapperCallback(exception_, &wrapperArg);
2118  }
2119  throw_location_.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2120  if (class_loader_override_ != NULL) {
2121    VerifyRootWrapperCallback(class_loader_override_, &wrapperArg);
2122  }
2123  jni_env_->locals.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2124  jni_env_->monitors.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2125
2126  SirtVisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2127
2128  // Visit roots on this thread's stack
2129  Context* context = GetLongJumpContext();
2130  VerifyCallbackVisitor visitorToCallback(visitor, arg);
2131  ReferenceMapVisitor<VerifyCallbackVisitor> mapper(this, context, visitorToCallback);
2132  mapper.WalkStack();
2133  ReleaseLongJumpContext(context);
2134
2135  std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack = GetInstrumentationStack();
2136  typedef std::deque<instrumentation::InstrumentationStackFrame>::const_iterator It;
2137  for (It it = instrumentation_stack->begin(), end = instrumentation_stack->end(); it != end; ++it) {
2138    mirror::Object* this_object = (*it).this_object_;
2139    if (this_object != NULL) {
2140      VerifyRootWrapperCallback(this_object, &wrapperArg);
2141    }
2142    mirror::AbstractMethod* method = (*it).method_;
2143    VerifyRootWrapperCallback(method, &wrapperArg);
2144  }
2145}
2146
2147void Thread::VisitRoots(RootVisitor* visitor, void* arg) {
2148  if (opeer_ != NULL) {
2149    visitor(opeer_, arg);
2150  }
2151  if (exception_ != NULL) {
2152    visitor(exception_, arg);
2153  }
2154  throw_location_.VisitRoots(visitor, arg);
2155  if (class_loader_override_ != NULL) {
2156    visitor(class_loader_override_, arg);
2157  }
2158  jni_env_->locals.VisitRoots(visitor, arg);
2159  jni_env_->monitors.VisitRoots(visitor, arg);
2160
2161  SirtVisitRoots(visitor, arg);
2162
2163  // Visit roots on this thread's stack
2164  Context* context = GetLongJumpContext();
2165  RootCallbackVisitor visitorToCallback(visitor, arg);
2166  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2167  mapper.WalkStack();
2168  ReleaseLongJumpContext(context);
2169
2170  std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack = GetInstrumentationStack();
2171  typedef std::deque<instrumentation::InstrumentationStackFrame>::const_iterator It;
2172  for (It it = instrumentation_stack->begin(), end = instrumentation_stack->end(); it != end; ++it) {
2173    mirror::Object* this_object = (*it).this_object_;
2174    if (this_object != NULL) {
2175      visitor(this_object, arg);
2176    }
2177    mirror::AbstractMethod* method = (*it).method_;
2178    visitor(method, arg);
2179  }
2180}
2181
2182static void VerifyObject(const mirror::Object* root, void* arg) {
2183  gc::Heap* heap = reinterpret_cast<gc::Heap*>(arg);
2184  heap->VerifyObject(root);
2185}
2186
2187void Thread::VerifyStackImpl() {
2188  UniquePtr<Context> context(Context::Create());
2189  RootCallbackVisitor visitorToCallback(VerifyObject, Runtime::Current()->GetHeap());
2190  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2191  mapper.WalkStack();
2192}
2193
2194// Set the stack end to that to be used during a stack overflow
2195void Thread::SetStackEndForStackOverflow() {
2196  // During stack overflow we allow use of the full stack
2197  if (stack_end_ == stack_begin_) {
2198    DumpStack(std::cerr);
2199    LOG(FATAL) << "Need to increase kStackOverflowReservedBytes (currently "
2200               << kStackOverflowReservedBytes << ")";
2201  }
2202
2203  stack_end_ = stack_begin_;
2204}
2205
2206std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2207  thread.ShortDump(os);
2208  return os;
2209}
2210
2211}  // namespace art
2212