thread.cc revision 7624d25dad2d1ba25969ae704fccf68649103ae5
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker.h"
36#include "class_linker-inl.h"
37#include "cutils/atomic.h"
38#include "cutils/atomic-inline.h"
39#include "debugger.h"
40#include "dex_file-inl.h"
41#include "entrypoints/entrypoint_utils.h"
42#include "entrypoints/quick/quick_alloc_entrypoints.h"
43#include "gc_map.h"
44#include "gc/accounting/card_table-inl.h"
45#include "gc/heap.h"
46#include "gc/space/space.h"
47#include "indirect_reference_table-inl.h"
48#include "jni_internal.h"
49#include "mirror/art_field-inl.h"
50#include "mirror/art_method-inl.h"
51#include "mirror/class-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/object_array-inl.h"
54#include "mirror/stack_trace_element.h"
55#include "monitor.h"
56#include "object_utils.h"
57#include "quick_exception_handler.h"
58#include "quick/quick_method_frame_info.h"
59#include "reflection.h"
60#include "runtime.h"
61#include "scoped_thread_state_change.h"
62#include "ScopedLocalRef.h"
63#include "ScopedUtfChars.h"
64#include "sirt_ref.h"
65#include "stack.h"
66#include "stack_indirect_reference_table.h"
67#include "thread-inl.h"
68#include "thread_list.h"
69#include "utils.h"
70#include "verifier/dex_gc_map.h"
71#include "verify_object-inl.h"
72#include "vmap_table.h"
73#include "well_known_classes.h"
74
75namespace art {
76
77bool Thread::is_started_ = false;
78pthread_key_t Thread::pthread_key_self_;
79ConditionVariable* Thread::resume_cond_ = nullptr;
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::InitTid() {
126  tls32_.tid = ::art::GetTid();
127}
128
129void Thread::InitAfterFork() {
130  // One thread (us) survived the fork, but we have a new tid so we need to
131  // update the value stashed in this Thread*.
132  InitTid();
133}
134
135void* Thread::CreateCallback(void* arg) {
136  Thread* self = reinterpret_cast<Thread*>(arg);
137  Runtime* runtime = Runtime::Current();
138  if (runtime == nullptr) {
139    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
140    return nullptr;
141  }
142  {
143    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
144    //       after self->Init().
145    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
146    // Check that if we got here we cannot be shutting down (as shutdown should never have started
147    // while threads are being born).
148    CHECK(!runtime->IsShuttingDownLocked());
149    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
150    Runtime::Current()->EndThreadBirth();
151  }
152  {
153    ScopedObjectAccess soa(self);
154
155    // Copy peer into self, deleting global reference when done.
156    CHECK(self->tlsPtr_.jpeer != nullptr);
157    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
158    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
159    self->tlsPtr_.jpeer = nullptr;
160
161    {
162      SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
163      self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
164    }
165    Dbg::PostThreadStart(self);
166
167    // Invoke the 'run' method of our java.lang.Thread.
168    mirror::Object* receiver = self->tlsPtr_.opeer;
169    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
170    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
171  }
172  // Detach and delete self.
173  Runtime::Current()->GetThreadList()->Unregister(self);
174
175  return nullptr;
176}
177
178Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
179                                  mirror::Object* thread_peer) {
180  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
181  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
182  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
183  // to stop it from going away.
184  if (kIsDebugBuild) {
185    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
186    if (result != nullptr && !result->IsSuspended()) {
187      Locks::thread_list_lock_->AssertHeld(soa.Self());
188    }
189  }
190  return result;
191}
192
193Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
194  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
195}
196
197static size_t FixStackSize(size_t stack_size) {
198  // A stack size of zero means "use the default".
199  if (stack_size == 0) {
200    stack_size = Runtime::Current()->GetDefaultStackSize();
201  }
202
203  // Dalvik used the bionic pthread default stack size for native threads,
204  // so include that here to support apps that expect large native stacks.
205  stack_size += 1 * MB;
206
207  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
208  if (stack_size < PTHREAD_STACK_MIN) {
209    stack_size = PTHREAD_STACK_MIN;
210  }
211
212  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
213    // It's likely that callers are trying to ensure they have at least a certain amount of
214    // stack space, so we should add our reserved space on top of what they requested, rather
215    // than implicitly take it away from them.
216    stack_size += Thread::kStackOverflowReservedBytes;
217  } else {
218    // If we are going to use implicit stack checks, allocate space for the protected
219    // region at the bottom of the stack.
220    stack_size += Thread::kStackOverflowImplicitCheckSize;
221  }
222
223  // Some systems require the stack size to be a multiple of the system page size, so round up.
224  stack_size = RoundUp(stack_size, kPageSize);
225
226  return stack_size;
227}
228
229// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
230// overflow is detected.  It is located right below the stack_end_.  Just below that
231// is the StackOverflow reserved region used when creating the StackOverflow
232// exception.
233void Thread::InstallImplicitProtection(bool is_main_stack) {
234  byte* pregion = tlsPtr_.stack_end;
235
236  constexpr uint32_t kMarker = 0xdadadada;
237  uintptr_t *marker = reinterpret_cast<uintptr_t*>(pregion);
238  if (*marker == kMarker) {
239    // The region has already been set up.
240    return;
241  }
242  // Add marker so that we can detect a second attempt to do this.
243  *marker = kMarker;
244
245  pregion -= kStackOverflowProtectedSize;
246
247  // Touch the pages in the region to map them in.  Otherwise mprotect fails.  Only
248  // need to do this on the main stack.  We only need to touch one byte per page.
249  if (is_main_stack) {
250    byte* start = pregion;
251    byte* end = pregion + kStackOverflowProtectedSize;
252    while (start < end) {
253      *start = static_cast<byte>(0);
254      start += kPageSize;
255    }
256  }
257
258  VLOG(threads) << "installing stack protected region at " << std::hex <<
259      static_cast<void*>(pregion) << " to " <<
260      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
261
262  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
263    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. Reason:"
264        << strerror(errno);
265  }
266
267  // Tell the kernel that we won't be needing these pages any more.
268  if (is_main_stack) {
269    madvise(pregion, kStackOverflowProtectedSize, MADV_DONTNEED);
270  }
271}
272
273void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
274  CHECK(java_peer != nullptr);
275  Thread* self = static_cast<JNIEnvExt*>(env)->self;
276  Runtime* runtime = Runtime::Current();
277
278  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
279  bool thread_start_during_shutdown = false;
280  {
281    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
282    if (runtime->IsShuttingDownLocked()) {
283      thread_start_during_shutdown = true;
284    } else {
285      runtime->StartThreadBirth();
286    }
287  }
288  if (thread_start_during_shutdown) {
289    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
290    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
291    return;
292  }
293
294  Thread* child_thread = new Thread(is_daemon);
295  // Use global JNI ref to hold peer live while child thread starts.
296  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
297  stack_size = FixStackSize(stack_size);
298
299  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
300  // assign it.
301  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
302                    reinterpret_cast<jlong>(child_thread));
303
304  pthread_t new_pthread;
305  pthread_attr_t attr;
306  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
307  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
308  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
309  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
310  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
311
312  if (pthread_create_result != 0) {
313    // pthread_create(3) failed, so clean up.
314    {
315      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
316      runtime->EndThreadBirth();
317    }
318    // Manually delete the global reference since Thread::Init will not have been run.
319    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
320    child_thread->tlsPtr_.jpeer = nullptr;
321    delete child_thread;
322    child_thread = nullptr;
323    // TODO: remove from thread group?
324    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
325    {
326      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
327                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
328      ScopedObjectAccess soa(env);
329      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
330    }
331  }
332}
333
334void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
335  // This function does all the initialization that must be run by the native thread it applies to.
336  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
337  // we can handshake with the corresponding native thread when it's ready.) Check this native
338  // thread hasn't been through here already...
339  CHECK(Thread::Current() == nullptr);
340  SetUpAlternateSignalStack();
341  InitCpu();
342  InitTlsEntryPoints();
343  RemoveSuspendTrigger();
344  InitCardTable();
345  InitTid();
346  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
347  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
348  tlsPtr_.pthread_self = pthread_self();
349  CHECK(is_started_);
350  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
351  DCHECK_EQ(Thread::Current(), this);
352
353  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
354  InitStackHwm();
355
356  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
357  thread_list->Register(this);
358}
359
360Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
361                       bool create_peer) {
362  Thread* self;
363  Runtime* runtime = Runtime::Current();
364  if (runtime == nullptr) {
365    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
366    return nullptr;
367  }
368  {
369    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
370    if (runtime->IsShuttingDownLocked()) {
371      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
372      return nullptr;
373    } else {
374      Runtime::Current()->StartThreadBirth();
375      self = new Thread(as_daemon);
376      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
377      Runtime::Current()->EndThreadBirth();
378    }
379  }
380
381  CHECK_NE(self->GetState(), kRunnable);
382  self->SetState(kNative);
383
384  // If we're the main thread, ClassLinker won't be created until after we're attached,
385  // so that thread needs a two-stage attach. Regular threads don't need this hack.
386  // In the compiler, all threads need this hack, because no-one's going to be getting
387  // a native peer!
388  if (create_peer) {
389    self->CreatePeer(thread_name, as_daemon, thread_group);
390  } else {
391    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
392    if (thread_name != nullptr) {
393      self->tlsPtr_.name->assign(thread_name);
394      ::art::SetThreadName(thread_name);
395    }
396  }
397
398  return self;
399}
400
401void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
402  Runtime* runtime = Runtime::Current();
403  CHECK(runtime->IsStarted());
404  JNIEnv* env = tlsPtr_.jni_env;
405
406  if (thread_group == nullptr) {
407    thread_group = runtime->GetMainThreadGroup();
408  }
409  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
410  jint thread_priority = GetNativePriority();
411  jboolean thread_is_daemon = as_daemon;
412
413  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
414  if (peer.get() == nullptr) {
415    CHECK(IsExceptionPending());
416    return;
417  }
418  {
419    ScopedObjectAccess soa(this);
420    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
421  }
422  env->CallNonvirtualVoidMethod(peer.get(),
423                                WellKnownClasses::java_lang_Thread,
424                                WellKnownClasses::java_lang_Thread_init,
425                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
426  AssertNoPendingException();
427
428  Thread* self = this;
429  DCHECK_EQ(self, Thread::Current());
430  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
431                    reinterpret_cast<jlong>(self));
432
433  ScopedObjectAccess soa(self);
434  SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
435  if (peer_thread_name.get() == nullptr) {
436    // The Thread constructor should have set the Thread.name to a
437    // non-null value. However, because we can run without code
438    // available (in the compiler, in tests), we manually assign the
439    // fields the constructor should have set.
440    if (runtime->IsActiveTransaction()) {
441      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
442    } else {
443      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
444    }
445    peer_thread_name.reset(GetThreadName(soa));
446  }
447  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
448  if (peer_thread_name.get() != nullptr) {
449    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
450  }
451}
452
453template<bool kTransactionActive>
454void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
455                      jobject thread_name, jint thread_priority) {
456  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
457      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
458  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
459      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
460  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
461      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
462  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
463      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
464}
465
466void Thread::SetThreadName(const char* name) {
467  tlsPtr_.name->assign(name);
468  ::art::SetThreadName(name);
469  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
470}
471
472void Thread::InitStackHwm() {
473  void* read_stack_base;
474  size_t read_stack_size;
475  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
476
477  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
478  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
479                                PrettySize(read_stack_size).c_str());
480
481  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
482  tlsPtr_.stack_size = read_stack_size;
483
484  if (read_stack_size <= kStackOverflowReservedBytes) {
485    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
486        << " bytes)";
487  }
488
489  // TODO: move this into the Linux GetThreadStack implementation.
490#if !defined(__APPLE__)
491  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
492  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
493  // will be broken because we'll die long before we get close to 2GB.
494  bool is_main_thread = (::art::GetTid() == getpid());
495  if (is_main_thread) {
496    rlimit stack_limit;
497    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
498      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
499    }
500    if (stack_limit.rlim_cur == RLIM_INFINITY) {
501      // Find the default stack size for new threads...
502      pthread_attr_t default_attributes;
503      size_t default_stack_size;
504      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
505      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
506                         "default stack size query");
507      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
508
509      // ...and use that as our limit.
510      size_t old_stack_size = read_stack_size;
511      tlsPtr_.stack_size = default_stack_size;
512      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
513      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
514                    << " to " << PrettySize(default_stack_size)
515                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
516    }
517  }
518#endif
519
520  // Set stack_end_ to the bottom of the stack saving space of stack overflows
521  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
522  ResetDefaultStackEnd(implicit_stack_check);
523
524  // Install the protected region if we are doing implicit overflow checks.
525  if (implicit_stack_check) {
526    if (is_main_thread) {
527      // The main thread has a 16K protected region at the bottom.  We need
528      // to install our own region so we need to move the limits
529      // of the stack to make room for it.
530      constexpr uint32_t kDelta = 16 * KB;
531      tlsPtr_.stack_begin += kDelta;
532      tlsPtr_.stack_end += kDelta;
533      tlsPtr_.stack_size -= kDelta;
534    }
535    InstallImplicitProtection(is_main_thread);
536  }
537
538  // Sanity check.
539  int stack_variable;
540  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
541}
542
543void Thread::ShortDump(std::ostream& os) const {
544  os << "Thread[";
545  if (GetThreadId() != 0) {
546    // If we're in kStarting, we won't have a thin lock id or tid yet.
547    os << GetThreadId()
548             << ",tid=" << GetTid() << ',';
549  }
550  os << GetState()
551           << ",Thread*=" << this
552           << ",peer=" << tlsPtr_.opeer
553           << ",\"" << *tlsPtr_.name << "\""
554           << "]";
555}
556
557void Thread::Dump(std::ostream& os) const {
558  DumpState(os);
559  DumpStack(os);
560}
561
562mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
563  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
564  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
565}
566
567void Thread::GetThreadName(std::string& name) const {
568  name.assign(*tlsPtr_.name);
569}
570
571uint64_t Thread::GetCpuMicroTime() const {
572#if defined(HAVE_POSIX_CLOCKS)
573  clockid_t cpu_clock_id;
574  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
575  timespec now;
576  clock_gettime(cpu_clock_id, &now);
577  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
578#else
579  UNIMPLEMENTED(WARNING);
580  return -1;
581#endif
582}
583
584void Thread::AtomicSetFlag(ThreadFlag flag) {
585  android_atomic_or(flag, &tls32_.state_and_flags.as_int);
586}
587
588void Thread::AtomicClearFlag(ThreadFlag flag) {
589  android_atomic_and(-1 ^ flag, &tls32_.state_and_flags.as_int);
590}
591
592// Attempt to rectify locks so that we dump thread list with required locks before exiting.
593static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
594  LOG(ERROR) << *thread << " suspend count already zero.";
595  Locks::thread_suspend_count_lock_->Unlock(self);
596  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
597    Locks::mutator_lock_->SharedTryLock(self);
598    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
599      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
600    }
601  }
602  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
603    Locks::thread_list_lock_->TryLock(self);
604    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
605      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
606    }
607  }
608  std::ostringstream ss;
609  Runtime::Current()->GetThreadList()->DumpLocked(ss);
610  LOG(FATAL) << ss.str();
611}
612
613void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
614  if (kIsDebugBuild) {
615    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
616          << delta << " " << tls32_.debug_suspend_count << " " << this;
617    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
618    Locks::thread_suspend_count_lock_->AssertHeld(self);
619    if (this != self && !IsSuspended()) {
620      Locks::thread_list_lock_->AssertHeld(self);
621    }
622  }
623  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
624    UnsafeLogFatalForSuspendCount(self, this);
625    return;
626  }
627
628  tls32_.suspend_count += delta;
629  if (for_debugger) {
630    tls32_.debug_suspend_count += delta;
631  }
632
633  if (tls32_.suspend_count == 0) {
634    AtomicClearFlag(kSuspendRequest);
635  } else {
636    AtomicSetFlag(kSuspendRequest);
637    TriggerSuspend();
638  }
639}
640
641void Thread::RunCheckpointFunction() {
642  Closure *checkpoints[kMaxCheckpoints];
643
644  // Grab the suspend_count lock and copy the current set of
645  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
646  // function will also grab this lock so we prevent a race between setting
647  // the kCheckpointRequest flag and clearing it.
648  {
649    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
650    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
651      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
652      tlsPtr_.checkpoint_functions[i] = nullptr;
653    }
654    AtomicClearFlag(kCheckpointRequest);
655  }
656
657  // Outside the lock, run all the checkpoint functions that
658  // we collected.
659  bool found_checkpoint = false;
660  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
661    if (checkpoints[i] != nullptr) {
662      ATRACE_BEGIN("Checkpoint function");
663      checkpoints[i]->Run(this);
664      ATRACE_END();
665      found_checkpoint = true;
666    }
667  }
668  CHECK(found_checkpoint);
669}
670
671bool Thread::RequestCheckpoint(Closure* function) {
672  union StateAndFlags old_state_and_flags;
673  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
674  if (old_state_and_flags.as_struct.state != kRunnable) {
675    return false;  // Fail, thread is suspended and so can't run a checkpoint.
676  }
677
678  uint32_t available_checkpoint = kMaxCheckpoints;
679  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
680    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
681      available_checkpoint = i;
682      break;
683    }
684  }
685  if (available_checkpoint == kMaxCheckpoints) {
686    // No checkpoint functions available, we can't run a checkpoint
687    return false;
688  }
689  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
690
691  // Checkpoint function installed now install flag bit.
692  // We must be runnable to request a checkpoint.
693  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
694  union StateAndFlags new_state_and_flags;
695  new_state_and_flags.as_int = old_state_and_flags.as_int;
696  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
697  int succeeded = android_atomic_acquire_cas(old_state_and_flags.as_int, new_state_and_flags.as_int,
698                                             &tls32_.state_and_flags.as_int);
699  if (UNLIKELY(succeeded != 0)) {
700    // The thread changed state before the checkpoint was installed.
701    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
702    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
703  } else {
704    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
705    TriggerSuspend();
706  }
707  return succeeded == 0;
708}
709
710void Thread::FullSuspendCheck() {
711  VLOG(threads) << this << " self-suspending";
712  ATRACE_BEGIN("Full suspend check");
713  // Make thread appear suspended to other threads, release mutator_lock_.
714  TransitionFromRunnableToSuspended(kSuspended);
715  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
716  TransitionFromSuspendedToRunnable();
717  ATRACE_END();
718  VLOG(threads) << this << " self-reviving";
719}
720
721void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
722  std::string group_name;
723  int priority;
724  bool is_daemon = false;
725  Thread* self = Thread::Current();
726
727  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
728  // cause ScopedObjectAccessUnchecked to deadlock.
729  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
730    ScopedObjectAccessUnchecked soa(self);
731    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
732        ->GetInt(thread->tlsPtr_.opeer);
733    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
734        ->GetBoolean(thread->tlsPtr_.opeer);
735
736    mirror::Object* thread_group =
737        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
738
739    if (thread_group != nullptr) {
740      mirror::ArtField* group_name_field =
741          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
742      mirror::String* group_name_string =
743          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
744      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
745    }
746  } else {
747    priority = GetNativePriority();
748  }
749
750  std::string scheduler_group_name(GetSchedulerGroupName(tid));
751  if (scheduler_group_name.empty()) {
752    scheduler_group_name = "default";
753  }
754
755  if (thread != nullptr) {
756    os << '"' << *thread->tlsPtr_.name << '"';
757    if (is_daemon) {
758      os << " daemon";
759    }
760    os << " prio=" << priority
761       << " tid=" << thread->GetThreadId()
762       << " " << thread->GetState();
763    if (thread->IsStillStarting()) {
764      os << " (still starting up)";
765    }
766    os << "\n";
767  } else {
768    os << '"' << ::art::GetThreadName(tid) << '"'
769       << " prio=" << priority
770       << " (not attached)\n";
771  }
772
773  if (thread != nullptr) {
774    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
775    os << "  | group=\"" << group_name << "\""
776       << " sCount=" << thread->tls32_.suspend_count
777       << " dsCount=" << thread->tls32_.debug_suspend_count
778       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
779       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
780  }
781
782  os << "  | sysTid=" << tid
783     << " nice=" << getpriority(PRIO_PROCESS, tid)
784     << " cgrp=" << scheduler_group_name;
785  if (thread != nullptr) {
786    int policy;
787    sched_param sp;
788    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
789                       __FUNCTION__);
790    os << " sched=" << policy << "/" << sp.sched_priority
791       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
792  }
793  os << "\n";
794
795  // Grab the scheduler stats for this thread.
796  std::string scheduler_stats;
797  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
798    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
799  } else {
800    scheduler_stats = "0 0 0";
801  }
802
803  char native_thread_state = '?';
804  int utime = 0;
805  int stime = 0;
806  int task_cpu = 0;
807  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
808
809  os << "  | state=" << native_thread_state
810     << " schedstat=( " << scheduler_stats << " )"
811     << " utm=" << utime
812     << " stm=" << stime
813     << " core=" << task_cpu
814     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
815  if (thread != nullptr) {
816    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
817        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
818        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
819  }
820}
821
822void Thread::DumpState(std::ostream& os) const {
823  Thread::DumpState(os, this, GetTid());
824}
825
826struct StackDumpVisitor : public StackVisitor {
827  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
828      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
829      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
830        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
831  }
832
833  virtual ~StackDumpVisitor() {
834    if (frame_count == 0) {
835      os << "  (no managed stack frames)\n";
836    }
837  }
838
839  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
840    mirror::ArtMethod* m = GetMethod();
841    if (m->IsRuntimeMethod()) {
842      return true;
843    }
844    const int kMaxRepetition = 3;
845    mirror::Class* c = m->GetDeclaringClass();
846    mirror::DexCache* dex_cache = c->GetDexCache();
847    int line_number = -1;
848    if (dex_cache != nullptr) {  // be tolerant of bad input
849      const DexFile& dex_file = *dex_cache->GetDexFile();
850      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
851    }
852    if (line_number == last_line_number && last_method == m) {
853      ++repetition_count;
854    } else {
855      if (repetition_count >= kMaxRepetition) {
856        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
857      }
858      repetition_count = 0;
859      last_line_number = line_number;
860      last_method = m;
861    }
862    if (repetition_count < kMaxRepetition) {
863      os << "  at " << PrettyMethod(m, false);
864      if (m->IsNative()) {
865        os << "(Native method)";
866      } else {
867        mh.ChangeMethod(m);
868        const char* source_file(mh.GetDeclaringClassSourceFile());
869        os << "(" << (source_file != nullptr ? source_file : "unavailable")
870           << ":" << line_number << ")";
871      }
872      os << "\n";
873      if (frame_count == 0) {
874        Monitor::DescribeWait(os, thread);
875      }
876      if (can_allocate) {
877        Monitor::VisitLocks(this, DumpLockedObject, &os);
878      }
879    }
880
881    ++frame_count;
882    return true;
883  }
884
885  static void DumpLockedObject(mirror::Object* o, void* context)
886      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
887    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
888    os << "  - locked ";
889    if (o == nullptr) {
890      os << "an unknown object";
891    } else {
892      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
893          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
894        // Getting the identity hashcode here would result in lock inflation and suspension of the
895        // current thread, which isn't safe if this is the only runnable thread.
896        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
897                           PrettyTypeOf(o).c_str());
898      } else {
899        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
900      }
901    }
902    os << "\n";
903  }
904
905  std::ostream& os;
906  const Thread* thread;
907  const bool can_allocate;
908  MethodHelper mh;
909  mirror::ArtMethod* last_method;
910  int last_line_number;
911  int repetition_count;
912  int frame_count;
913};
914
915static bool ShouldShowNativeStack(const Thread* thread)
916    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
917  ThreadState state = thread->GetState();
918
919  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
920  if (state > kWaiting && state < kStarting) {
921    return true;
922  }
923
924  // In an Object.wait variant or Thread.sleep? That's not interesting.
925  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
926    return false;
927  }
928
929  // In some other native method? That's interesting.
930  // We don't just check kNative because native methods will be in state kSuspended if they're
931  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
932  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
933  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
934  return current_method != nullptr && current_method->IsNative();
935}
936
937void Thread::DumpJavaStack(std::ostream& os) const {
938  UniquePtr<Context> context(Context::Create());
939  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
940                          !tls32_.throwing_OutOfMemoryError);
941  dumper.WalkStack();
942}
943
944void Thread::DumpStack(std::ostream& os) const {
945  // TODO: we call this code when dying but may not have suspended the thread ourself. The
946  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
947  //       the race with the thread_suspend_count_lock_).
948  // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack.
949  bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild;
950  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
951    // If we're currently in native code, dump that stack before dumping the managed stack.
952    if (dump_for_abort || ShouldShowNativeStack(this)) {
953      DumpKernelStack(os, GetTid(), "  kernel: ", false);
954      SirtRef<mirror::ArtMethod> method_ref(Thread::Current(), GetCurrentMethod(nullptr));
955      DumpNativeStack(os, GetTid(), "  native: ", method_ref.get());
956    }
957    DumpJavaStack(os);
958  } else {
959    os << "Not able to dump stack of thread that isn't suspended";
960  }
961}
962
963void Thread::ThreadExitCallback(void* arg) {
964  Thread* self = reinterpret_cast<Thread*>(arg);
965  if (self->tls32_.thread_exit_check_count == 0) {
966    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
967        "going to use a pthread_key_create destructor?): " << *self;
968    CHECK(is_started_);
969    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
970    self->tls32_.thread_exit_check_count = 1;
971  } else {
972    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
973  }
974}
975
976void Thread::Startup() {
977  CHECK(!is_started_);
978  is_started_ = true;
979  {
980    // MutexLock to keep annotalysis happy.
981    //
982    // Note we use nullptr for the thread because Thread::Current can
983    // return garbage since (is_started_ == true) and
984    // Thread::pthread_key_self_ is not yet initialized.
985    // This was seen on glibc.
986    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
987    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
988                                         *Locks::thread_suspend_count_lock_);
989  }
990
991  // Allocate a TLS slot.
992  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
993
994  // Double-check the TLS slot allocation.
995  if (pthread_getspecific(pthread_key_self_) != nullptr) {
996    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
997  }
998}
999
1000void Thread::FinishStartup() {
1001  Runtime* runtime = Runtime::Current();
1002  CHECK(runtime->IsStarted());
1003
1004  // Finish attaching the main thread.
1005  ScopedObjectAccess soa(Thread::Current());
1006  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1007
1008  Runtime::Current()->GetClassLinker()->RunRootClinits();
1009}
1010
1011void Thread::Shutdown() {
1012  CHECK(is_started_);
1013  is_started_ = false;
1014  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1015  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1016  if (resume_cond_ != nullptr) {
1017    delete resume_cond_;
1018    resume_cond_ = nullptr;
1019  }
1020}
1021
1022Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1023  wait_mutex_ = new Mutex("a thread wait mutex");
1024  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1025  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1026  tlsPtr_.single_step_control = new SingleStepControl;
1027  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1028  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1029
1030  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1031  tls32_.state_and_flags.as_struct.flags = 0;
1032  tls32_.state_and_flags.as_struct.state = kNative;
1033  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1034  std::fill(tlsPtr_.rosalloc_runs,
1035            tlsPtr_.rosalloc_runs + gc::allocator::RosAlloc::kNumThreadLocalSizeBrackets,
1036            gc::allocator::RosAlloc::GetDedicatedFullRun());
1037  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1038    tlsPtr_.checkpoint_functions[i] = nullptr;
1039  }
1040}
1041
1042bool Thread::IsStillStarting() const {
1043  // You might think you can check whether the state is kStarting, but for much of thread startup,
1044  // the thread is in kNative; it might also be in kVmWait.
1045  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1046  // assigned fairly early on, and needs to be.
1047  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1048  // this thread _ever_ entered kRunnable".
1049  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1050      (*tlsPtr_.name == kThreadNameDuringStartup);
1051}
1052
1053void Thread::AssertNoPendingException() const {
1054  if (UNLIKELY(IsExceptionPending())) {
1055    ScopedObjectAccess soa(Thread::Current());
1056    mirror::Throwable* exception = GetException(nullptr);
1057    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1058  }
1059}
1060
1061void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1062  if (UNLIKELY(IsExceptionPending())) {
1063    ScopedObjectAccess soa(Thread::Current());
1064    mirror::Throwable* exception = GetException(nullptr);
1065    LOG(FATAL) << "Throwing new exception " << msg << " with unexpected pending exception: "
1066        << exception->Dump();
1067  }
1068}
1069
1070static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1071                               RootType /*root_type*/)
1072    NO_THREAD_SAFETY_ANALYSIS {
1073  Thread* self = reinterpret_cast<Thread*>(arg);
1074  mirror::Object* entered_monitor = *object;
1075  if (self->HoldsLock(entered_monitor)) {
1076    LOG(WARNING) << "Calling MonitorExit on object "
1077                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1078                 << " left locked by native thread "
1079                 << *Thread::Current() << " which is detaching";
1080    entered_monitor->MonitorExit(self);
1081  }
1082}
1083
1084void Thread::Destroy() {
1085  Thread* self = this;
1086  DCHECK_EQ(self, Thread::Current());
1087
1088  if (tlsPtr_.opeer != nullptr) {
1089    ScopedObjectAccess soa(self);
1090    // We may need to call user-supplied managed code, do this before final clean-up.
1091    HandleUncaughtExceptions(soa);
1092    RemoveFromThreadGroup(soa);
1093
1094    // this.nativePeer = 0;
1095    if (Runtime::Current()->IsActiveTransaction()) {
1096      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1097          ->SetLong<true>(tlsPtr_.opeer, 0);
1098    } else {
1099      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1100          ->SetLong<false>(tlsPtr_.opeer, 0);
1101    }
1102    Dbg::PostThreadDeath(self);
1103
1104    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1105    // who is waiting.
1106    mirror::Object* lock =
1107        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1108    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1109    if (lock != nullptr) {
1110      SirtRef<mirror::Object> sirt_obj(self, lock);
1111      ObjectLock<mirror::Object> locker(self, &sirt_obj);
1112      locker.NotifyAll();
1113    }
1114  }
1115
1116  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1117  if (tlsPtr_.jni_env != nullptr) {
1118    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1119  }
1120}
1121
1122Thread::~Thread() {
1123  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1124    // If pthread_create fails we don't have a jni env here.
1125    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1126    tlsPtr_.jpeer = nullptr;
1127  }
1128  tlsPtr_.opeer = nullptr;
1129
1130  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1131  if (initialized) {
1132    delete tlsPtr_.jni_env;
1133    tlsPtr_.jni_env = nullptr;
1134  }
1135  CHECK_NE(GetState(), kRunnable);
1136  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1137  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1138  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1139  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1140
1141  // We may be deleting a still born thread.
1142  SetStateUnsafe(kTerminated);
1143
1144  delete wait_cond_;
1145  delete wait_mutex_;
1146
1147  if (tlsPtr_.long_jump_context != nullptr) {
1148    delete tlsPtr_.long_jump_context;
1149  }
1150
1151  if (initialized) {
1152    CleanupCpu();
1153  }
1154
1155  delete tlsPtr_.debug_invoke_req;
1156  delete tlsPtr_.single_step_control;
1157  delete tlsPtr_.instrumentation_stack;
1158  delete tlsPtr_.name;
1159  delete tlsPtr_.stack_trace_sample;
1160
1161  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1162
1163  TearDownAlternateSignalStack();
1164}
1165
1166void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1167  if (!IsExceptionPending()) {
1168    return;
1169  }
1170  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1171  ScopedThreadStateChange tsc(this, kNative);
1172
1173  // Get and clear the exception.
1174  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1175  tlsPtr_.jni_env->ExceptionClear();
1176
1177  // If the thread has its own handler, use that.
1178  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1179                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1180                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1181  if (handler.get() == nullptr) {
1182    // Otherwise use the thread group's default handler.
1183    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1184                                                  WellKnownClasses::java_lang_Thread_group));
1185  }
1186
1187  // Call the handler.
1188  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1189      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1190      peer.get(), exception.get());
1191
1192  // If the handler threw, clear that exception too.
1193  tlsPtr_.jni_env->ExceptionClear();
1194}
1195
1196void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1197  // this.group.removeThread(this);
1198  // group can be null if we're in the compiler or a test.
1199  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1200      ->GetObject(tlsPtr_.opeer);
1201  if (ogroup != nullptr) {
1202    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1203    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1204    ScopedThreadStateChange tsc(soa.Self(), kNative);
1205    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1206                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1207                                    peer.get());
1208  }
1209}
1210
1211size_t Thread::NumSirtReferences() {
1212  size_t count = 0;
1213  for (StackIndirectReferenceTable* cur = tlsPtr_.top_sirt; cur; cur = cur->GetLink()) {
1214    count += cur->NumberOfReferences();
1215  }
1216  return count;
1217}
1218
1219bool Thread::SirtContains(jobject obj) const {
1220  StackReference<mirror::Object>* sirt_entry =
1221      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1222  for (StackIndirectReferenceTable* cur = tlsPtr_.top_sirt; cur; cur = cur->GetLink()) {
1223    if (cur->Contains(sirt_entry)) {
1224      return true;
1225    }
1226  }
1227  // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1228  return tlsPtr_.managed_stack.ShadowFramesContain(sirt_entry);
1229}
1230
1231void Thread::SirtVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1232  for (StackIndirectReferenceTable* cur = tlsPtr_.top_sirt; cur; cur = cur->GetLink()) {
1233    size_t num_refs = cur->NumberOfReferences();
1234    for (size_t j = 0; j < num_refs; ++j) {
1235      mirror::Object* object = cur->GetReference(j);
1236      if (object != nullptr) {
1237        mirror::Object* old_obj = object;
1238        visitor(&object, arg, thread_id, kRootNativeStack);
1239        if (old_obj != object) {
1240          cur->SetReference(j, object);
1241        }
1242      }
1243    }
1244  }
1245}
1246
1247mirror::Object* Thread::DecodeJObject(jobject obj) const {
1248  Locks::mutator_lock_->AssertSharedHeld(this);
1249  if (obj == nullptr) {
1250    return nullptr;
1251  }
1252  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1253  IndirectRefKind kind = GetIndirectRefKind(ref);
1254  mirror::Object* result;
1255  // The "kinds" below are sorted by the frequency we expect to encounter them.
1256  if (kind == kLocal) {
1257    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1258    result = locals.Get(ref);
1259  } else if (kind == kSirtOrInvalid) {
1260    // TODO: make stack indirect reference table lookup more efficient.
1261    // Check if this is a local reference in the SIRT.
1262    if (LIKELY(SirtContains(obj))) {
1263      // Read from SIRT.
1264      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1265      VerifyObject(result);
1266    } else {
1267      result = kInvalidIndirectRefObject;
1268    }
1269  } else if (kind == kGlobal) {
1270    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1271    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1272  } else {
1273    DCHECK_EQ(kind, kWeakGlobal);
1274    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1275    if (result == kClearedJniWeakGlobal) {
1276      // This is a special case where it's okay to return nullptr.
1277      return nullptr;
1278    }
1279  }
1280
1281  if (UNLIKELY(result == nullptr)) {
1282    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1283  }
1284  return result;
1285}
1286
1287// Implements java.lang.Thread.interrupted.
1288bool Thread::Interrupted() {
1289  MutexLock mu(Thread::Current(), *wait_mutex_);
1290  bool interrupted = IsInterruptedLocked();
1291  SetInterruptedLocked(false);
1292  return interrupted;
1293}
1294
1295// Implements java.lang.Thread.isInterrupted.
1296bool Thread::IsInterrupted() {
1297  MutexLock mu(Thread::Current(), *wait_mutex_);
1298  return IsInterruptedLocked();
1299}
1300
1301void Thread::Interrupt(Thread* self) {
1302  MutexLock mu(self, *wait_mutex_);
1303  if (interrupted_) {
1304    return;
1305  }
1306  interrupted_ = true;
1307  NotifyLocked(self);
1308}
1309
1310void Thread::Notify() {
1311  Thread* self = Thread::Current();
1312  MutexLock mu(self, *wait_mutex_);
1313  NotifyLocked(self);
1314}
1315
1316void Thread::NotifyLocked(Thread* self) {
1317  if (wait_monitor_ != nullptr) {
1318    wait_cond_->Signal(self);
1319  }
1320}
1321
1322class CountStackDepthVisitor : public StackVisitor {
1323 public:
1324  explicit CountStackDepthVisitor(Thread* thread)
1325      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1326      : StackVisitor(thread, nullptr),
1327        depth_(0), skip_depth_(0), skipping_(true) {}
1328
1329  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1330    // We want to skip frames up to and including the exception's constructor.
1331    // Note we also skip the frame if it doesn't have a method (namely the callee
1332    // save frame)
1333    mirror::ArtMethod* m = GetMethod();
1334    if (skipping_ && !m->IsRuntimeMethod() &&
1335        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1336      skipping_ = false;
1337    }
1338    if (!skipping_) {
1339      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1340        ++depth_;
1341      }
1342    } else {
1343      ++skip_depth_;
1344    }
1345    return true;
1346  }
1347
1348  int GetDepth() const {
1349    return depth_;
1350  }
1351
1352  int GetSkipDepth() const {
1353    return skip_depth_;
1354  }
1355
1356 private:
1357  uint32_t depth_;
1358  uint32_t skip_depth_;
1359  bool skipping_;
1360};
1361
1362template<bool kTransactionActive>
1363class BuildInternalStackTraceVisitor : public StackVisitor {
1364 public:
1365  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1366      : StackVisitor(thread, nullptr), self_(self),
1367        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1368
1369  bool Init(int depth)
1370      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1371    // Allocate method trace with an extra slot that will hold the PC trace
1372    SirtRef<mirror::ObjectArray<mirror::Object> >
1373        method_trace(self_,
1374                     Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1375                                                                                            depth + 1));
1376    if (method_trace.get() == nullptr) {
1377      return false;
1378    }
1379    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1380    if (dex_pc_trace == nullptr) {
1381      return false;
1382    }
1383    // Save PC trace in last element of method trace, also places it into the
1384    // object graph.
1385    // We are called from native: use non-transactional mode.
1386    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1387    // Set the Object*s and assert that no thread suspension is now possible.
1388    const char* last_no_suspend_cause =
1389        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1390    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1391    method_trace_ = method_trace.get();
1392    dex_pc_trace_ = dex_pc_trace;
1393    return true;
1394  }
1395
1396  virtual ~BuildInternalStackTraceVisitor() {
1397    if (method_trace_ != nullptr) {
1398      self_->EndAssertNoThreadSuspension(nullptr);
1399    }
1400  }
1401
1402  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1403    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1404      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1405    }
1406    if (skip_depth_ > 0) {
1407      skip_depth_--;
1408      return true;
1409    }
1410    mirror::ArtMethod* m = GetMethod();
1411    if (m->IsRuntimeMethod()) {
1412      return true;  // Ignore runtime frames (in particular callee save).
1413    }
1414    method_trace_->Set<kTransactionActive>(count_, m);
1415    dex_pc_trace_->Set<kTransactionActive>(count_,
1416        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1417    ++count_;
1418    return true;
1419  }
1420
1421  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1422    return method_trace_;
1423  }
1424
1425 private:
1426  Thread* const self_;
1427  // How many more frames to skip.
1428  int32_t skip_depth_;
1429  // Current position down stack trace.
1430  uint32_t count_;
1431  // Array of dex PC values.
1432  mirror::IntArray* dex_pc_trace_;
1433  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1434  mirror::ObjectArray<mirror::Object>* method_trace_;
1435};
1436
1437template<bool kTransactionActive>
1438jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1439  // Compute depth of stack
1440  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1441  count_visitor.WalkStack();
1442  int32_t depth = count_visitor.GetDepth();
1443  int32_t skip_depth = count_visitor.GetSkipDepth();
1444
1445  // Build internal stack trace.
1446  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1447                                                                         const_cast<Thread*>(this),
1448                                                                         skip_depth);
1449  if (!build_trace_visitor.Init(depth)) {
1450    return nullptr;  // Allocation failed.
1451  }
1452  build_trace_visitor.WalkStack();
1453  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1454  if (kIsDebugBuild) {
1455    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1456      CHECK(trace->Get(i) != nullptr);
1457    }
1458  }
1459  return soa.AddLocalReference<jobjectArray>(trace);
1460}
1461template jobject Thread::CreateInternalStackTrace<false>(const ScopedObjectAccessUnchecked& soa) const;
1462template jobject Thread::CreateInternalStackTrace<true>(const ScopedObjectAccessUnchecked& soa) const;
1463
1464jobjectArray Thread::InternalStackTraceToStackTraceElementArray(const ScopedObjectAccess& soa,
1465    jobject internal, jobjectArray output_array, int* stack_depth) {
1466  // Decode the internal stack trace into the depth, method trace and PC trace
1467  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1468
1469  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1470
1471  jobjectArray result;
1472
1473  if (output_array != nullptr) {
1474    // Reuse the array we were given.
1475    result = output_array;
1476    // ...adjusting the number of frames we'll write to not exceed the array length.
1477    const int32_t traces_length =
1478        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1479    depth = std::min(depth, traces_length);
1480  } else {
1481    // Create java_trace array and place in local reference table
1482    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1483        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1484    if (java_traces == nullptr) {
1485      return nullptr;
1486    }
1487    result = soa.AddLocalReference<jobjectArray>(java_traces);
1488  }
1489
1490  if (stack_depth != nullptr) {
1491    *stack_depth = depth;
1492  }
1493
1494  for (int32_t i = 0; i < depth; ++i) {
1495    mirror::ObjectArray<mirror::Object>* method_trace =
1496          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1497    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1498    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1499    MethodHelper mh(method);
1500    int32_t line_number;
1501    SirtRef<mirror::String> class_name_object(soa.Self(), nullptr);
1502    SirtRef<mirror::String> source_name_object(soa.Self(), nullptr);
1503    if (method->IsProxyMethod()) {
1504      line_number = -1;
1505      class_name_object.reset(method->GetDeclaringClass()->GetName());
1506      // source_name_object intentionally left null for proxy methods
1507    } else {
1508      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1509      uint32_t dex_pc = pc_trace->Get(i);
1510      line_number = mh.GetLineNumFromDexPC(dex_pc);
1511      // Allocate element, potentially triggering GC
1512      // TODO: reuse class_name_object via Class::name_?
1513      const char* descriptor = mh.GetDeclaringClassDescriptor();
1514      CHECK(descriptor != nullptr);
1515      std::string class_name(PrettyDescriptor(descriptor));
1516      class_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1517      if (class_name_object.get() == nullptr) {
1518        return nullptr;
1519      }
1520      const char* source_file = mh.GetDeclaringClassSourceFile();
1521      if (source_file != nullptr) {
1522        source_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1523        if (source_name_object.get() == nullptr) {
1524          return nullptr;
1525        }
1526      }
1527    }
1528    const char* method_name = mh.GetName();
1529    CHECK(method_name != nullptr);
1530    SirtRef<mirror::String> method_name_object(soa.Self(),
1531                                               mirror::String::AllocFromModifiedUtf8(soa.Self(),
1532                                                                                     method_name));
1533    if (method_name_object.get() == nullptr) {
1534      return nullptr;
1535    }
1536    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1537        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1538    if (obj == nullptr) {
1539      return nullptr;
1540    }
1541    // We are called from native: use non-transactional mode.
1542    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1543  }
1544  return result;
1545}
1546
1547void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1548                                const char* exception_class_descriptor, const char* fmt, ...) {
1549  va_list args;
1550  va_start(args, fmt);
1551  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1552                     fmt, args);
1553  va_end(args);
1554}
1555
1556void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1557                                const char* exception_class_descriptor,
1558                                const char* fmt, va_list ap) {
1559  std::string msg;
1560  StringAppendV(&msg, fmt, ap);
1561  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1562}
1563
1564void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1565                               const char* msg) {
1566  // Callers should either clear or call ThrowNewWrappedException.
1567  AssertNoPendingExceptionForNewException(msg);
1568  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1569}
1570
1571void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1572                                      const char* exception_class_descriptor,
1573                                      const char* msg) {
1574  DCHECK_EQ(this, Thread::Current());
1575  ScopedObjectAccessUnchecked soa(this);
1576  // Ensure we don't forget arguments over object allocation.
1577  SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1578  SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod());
1579  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1580  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1581  ClearException();
1582  Runtime* runtime = Runtime::Current();
1583
1584  mirror::ClassLoader* cl = nullptr;
1585  if (saved_throw_method.get() != nullptr) {
1586    cl = saved_throw_method.get()->GetDeclaringClass()->GetClassLoader();
1587  }
1588  SirtRef<mirror::ClassLoader> class_loader(this, cl);
1589  SirtRef<mirror::Class>
1590      exception_class(this, runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1591                                                                 class_loader));
1592  if (UNLIKELY(exception_class.get() == nullptr)) {
1593    CHECK(IsExceptionPending());
1594    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1595    return;
1596  }
1597
1598  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1599    DCHECK(IsExceptionPending());
1600    return;
1601  }
1602  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1603  SirtRef<mirror::Throwable> exception(this,
1604                                down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1605
1606  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1607  if (exception.get() == nullptr) {
1608    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1609                                         throw_location.GetDexPc());
1610    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1611    return;
1612  }
1613
1614  // Choose an appropriate constructor and set up the arguments.
1615  const char* signature;
1616  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1617  if (msg != nullptr) {
1618    // Ensure we remember this and the method over the String allocation.
1619    msg_string.reset(
1620        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1621    if (UNLIKELY(msg_string.get() == nullptr)) {
1622      CHECK(IsExceptionPending());  // OOME.
1623      return;
1624    }
1625    if (cause.get() == nullptr) {
1626      signature = "(Ljava/lang/String;)V";
1627    } else {
1628      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1629    }
1630  } else {
1631    if (cause.get() == nullptr) {
1632      signature = "()V";
1633    } else {
1634      signature = "(Ljava/lang/Throwable;)V";
1635    }
1636  }
1637  mirror::ArtMethod* exception_init_method =
1638      exception_class->FindDeclaredDirectMethod("<init>", signature);
1639
1640  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1641      << PrettyDescriptor(exception_class_descriptor);
1642
1643  if (UNLIKELY(!runtime->IsStarted())) {
1644    // Something is trying to throw an exception without a started runtime, which is the common
1645    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1646    // the exception fields directly.
1647    if (msg != nullptr) {
1648      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1649    }
1650    if (cause.get() != nullptr) {
1651      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1652    }
1653    ScopedLocalRef<jobject> trace(GetJniEnv(),
1654                                  Runtime::Current()->IsActiveTransaction()
1655                                      ? CreateInternalStackTrace<true>(soa)
1656                                      : CreateInternalStackTrace<false>(soa));
1657    if (trace.get() != nullptr) {
1658      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1659    }
1660    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1661                                         throw_location.GetDexPc());
1662    SetException(gc_safe_throw_location, exception.get());
1663  } else {
1664    jvalue jv_args[2];
1665    size_t i = 0;
1666
1667    if (msg != nullptr) {
1668      jv_args[i].l = msg_string.get();
1669      ++i;
1670    }
1671    if (cause.get() != nullptr) {
1672      jv_args[i].l = cause.get();
1673      ++i;
1674    }
1675    InvokeWithJValues(soa, exception.get(), soa.EncodeMethod(exception_init_method), jv_args);
1676    if (LIKELY(!IsExceptionPending())) {
1677      ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1678                                           throw_location.GetDexPc());
1679      SetException(gc_safe_throw_location, exception.get());
1680    }
1681  }
1682}
1683
1684void Thread::ThrowOutOfMemoryError(const char* msg) {
1685  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1686      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1687  ThrowLocation throw_location = GetCurrentLocationForThrow();
1688  if (!tls32_.throwing_OutOfMemoryError) {
1689    tls32_.throwing_OutOfMemoryError = true;
1690    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1691    tls32_.throwing_OutOfMemoryError = false;
1692  } else {
1693    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1694    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1695  }
1696}
1697
1698Thread* Thread::CurrentFromGdb() {
1699  return Thread::Current();
1700}
1701
1702void Thread::DumpFromGdb() const {
1703  std::ostringstream ss;
1704  Dump(ss);
1705  std::string str(ss.str());
1706  // log to stderr for debugging command line processes
1707  std::cerr << str;
1708#ifdef HAVE_ANDROID_OS
1709  // log to logcat for debugging frameworks processes
1710  LOG(INFO) << str;
1711#endif
1712}
1713
1714// Explicitly instantiate 32 and 64bit thread offset dumping support.
1715template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1716template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1717
1718template<size_t ptr_size>
1719void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1720#define DO_THREAD_OFFSET(x, y) \
1721    if (offset == x.Uint32Value()) { \
1722      os << y; \
1723      return; \
1724    }
1725  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1726  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1727  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1728  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1729  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1730  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1731  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1732  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1733  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1734  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1735  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1736  DO_THREAD_OFFSET(TopSirtOffset<ptr_size>(), "top_sirt")
1737  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1738#undef DO_THREAD_OFFSET
1739
1740#define INTERPRETER_ENTRY_POINT_INFO(x) \
1741    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1742      os << #x; \
1743      return; \
1744    }
1745  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1746  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1747#undef INTERPRETER_ENTRY_POINT_INFO
1748
1749#define JNI_ENTRY_POINT_INFO(x) \
1750    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1751      os << #x; \
1752      return; \
1753    }
1754  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1755#undef JNI_ENTRY_POINT_INFO
1756
1757#define PORTABLE_ENTRY_POINT_INFO(x) \
1758    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1759      os << #x; \
1760      return; \
1761    }
1762  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1763  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1764  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1765#undef PORTABLE_ENTRY_POINT_INFO
1766
1767#define QUICK_ENTRY_POINT_INFO(x) \
1768    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1769      os << #x; \
1770      return; \
1771    }
1772  QUICK_ENTRY_POINT_INFO(pAllocArray)
1773  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1774  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1775  QUICK_ENTRY_POINT_INFO(pAllocObject)
1776  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1777  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1778  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1779  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1780  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1781  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1782  QUICK_ENTRY_POINT_INFO(pCheckCast)
1783  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1784  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1785  QUICK_ENTRY_POINT_INFO(pInitializeType)
1786  QUICK_ENTRY_POINT_INFO(pResolveString)
1787  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1788  QUICK_ENTRY_POINT_INFO(pSet32Static)
1789  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1790  QUICK_ENTRY_POINT_INFO(pSet64Static)
1791  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1792  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1793  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1794  QUICK_ENTRY_POINT_INFO(pGet32Static)
1795  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1796  QUICK_ENTRY_POINT_INFO(pGet64Static)
1797  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1798  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1799  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1800  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1801  QUICK_ENTRY_POINT_INFO(pAputObject)
1802  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1803  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1804  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1805  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1806  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1807  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1808  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1809  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1810  QUICK_ENTRY_POINT_INFO(pLockObject)
1811  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1812  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1813  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1814  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1815  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1816  QUICK_ENTRY_POINT_INFO(pFmod)
1817  QUICK_ENTRY_POINT_INFO(pSqrt)
1818  QUICK_ENTRY_POINT_INFO(pL2d)
1819  QUICK_ENTRY_POINT_INFO(pFmodf)
1820  QUICK_ENTRY_POINT_INFO(pL2f)
1821  QUICK_ENTRY_POINT_INFO(pD2iz)
1822  QUICK_ENTRY_POINT_INFO(pF2iz)
1823  QUICK_ENTRY_POINT_INFO(pIdivmod)
1824  QUICK_ENTRY_POINT_INFO(pD2l)
1825  QUICK_ENTRY_POINT_INFO(pF2l)
1826  QUICK_ENTRY_POINT_INFO(pLdiv)
1827  QUICK_ENTRY_POINT_INFO(pLmod)
1828  QUICK_ENTRY_POINT_INFO(pLmul)
1829  QUICK_ENTRY_POINT_INFO(pShlLong)
1830  QUICK_ENTRY_POINT_INFO(pShrLong)
1831  QUICK_ENTRY_POINT_INFO(pUshrLong)
1832  QUICK_ENTRY_POINT_INFO(pIndexOf)
1833  QUICK_ENTRY_POINT_INFO(pMemcmp16)
1834  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1835  QUICK_ENTRY_POINT_INFO(pMemcpy)
1836  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1837  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1838  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1839  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1840  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1841  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1842  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1843  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1844  QUICK_ENTRY_POINT_INFO(pCheckSuspend)
1845  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1846  QUICK_ENTRY_POINT_INFO(pDeliverException)
1847  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1848  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1849  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1850  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1851  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1852#undef QUICK_ENTRY_POINT_INFO
1853
1854  os << offset;
1855}
1856
1857void Thread::QuickDeliverException() {
1858  // Get exception from thread.
1859  ThrowLocation throw_location;
1860  mirror::Throwable* exception = GetException(&throw_location);
1861  CHECK(exception != nullptr);
1862  // Don't leave exception visible while we try to find the handler, which may cause class
1863  // resolution.
1864  ClearException();
1865  bool is_deoptimization = (exception == GetDeoptimizationException());
1866  if (kDebugExceptionDelivery) {
1867    if (!is_deoptimization) {
1868      mirror::String* msg = exception->GetDetailMessage();
1869      std::string str_msg(msg != nullptr ? msg->ToModifiedUtf8() : "");
1870      DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1871                << ": " << str_msg << "\n");
1872    } else {
1873      DumpStack(LOG(INFO) << "Deoptimizing: ");
1874    }
1875  }
1876  QuickExceptionHandler exception_handler(this, is_deoptimization);
1877  if (is_deoptimization) {
1878    exception_handler.DeoptimizeStack();
1879  } else {
1880    exception_handler.FindCatch(throw_location, exception);
1881  }
1882  exception_handler.UpdateInstrumentationStack();
1883  exception_handler.DoLongJump();
1884  LOG(FATAL) << "UNREACHABLE";
1885}
1886
1887Context* Thread::GetLongJumpContext() {
1888  Context* result = tlsPtr_.long_jump_context;
1889  if (result == nullptr) {
1890    result = Context::Create();
1891  } else {
1892    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1893    result->Reset();
1894  }
1895  return result;
1896}
1897
1898struct CurrentMethodVisitor FINAL : public StackVisitor {
1899  CurrentMethodVisitor(Thread* thread, Context* context)
1900      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1901      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0) {}
1902  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1903    mirror::ArtMethod* m = GetMethod();
1904    if (m->IsRuntimeMethod()) {
1905      // Continue if this is a runtime method.
1906      return true;
1907    }
1908    if (context_ != nullptr) {
1909      this_object_ = GetThisObject();
1910    }
1911    method_ = m;
1912    dex_pc_ = GetDexPc();
1913    return false;
1914  }
1915  mirror::Object* this_object_;
1916  mirror::ArtMethod* method_;
1917  uint32_t dex_pc_;
1918};
1919
1920mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1921  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr);
1922  visitor.WalkStack(false);
1923  if (dex_pc != nullptr) {
1924    *dex_pc = visitor.dex_pc_;
1925  }
1926  return visitor.method_;
1927}
1928
1929ThrowLocation Thread::GetCurrentLocationForThrow() {
1930  Context* context = GetLongJumpContext();
1931  CurrentMethodVisitor visitor(this, context);
1932  visitor.WalkStack(false);
1933  ReleaseLongJumpContext(context);
1934  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1935}
1936
1937bool Thread::HoldsLock(mirror::Object* object) const {
1938  if (object == nullptr) {
1939    return false;
1940  }
1941  return object->GetLockOwnerThreadId() == GetThreadId();
1942}
1943
1944// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1945template <typename RootVisitor>
1946class ReferenceMapVisitor : public StackVisitor {
1947 public:
1948  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1949      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1950      : StackVisitor(thread, context), visitor_(visitor) {}
1951
1952  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1953    if (false) {
1954      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1955                << StringPrintf("@ PC:%04x", GetDexPc());
1956    }
1957    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1958    if (shadow_frame != nullptr) {
1959      VisitShadowFrame(shadow_frame);
1960    } else {
1961      VisitQuickFrame();
1962    }
1963    return true;
1964  }
1965
1966  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1967    mirror::ArtMethod* m = shadow_frame->GetMethod();
1968    size_t num_regs = shadow_frame->NumberOfVRegs();
1969    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
1970      // SIRT for JNI or References for interpreter.
1971      for (size_t reg = 0; reg < num_regs; ++reg) {
1972        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1973        if (ref != nullptr) {
1974          mirror::Object* new_ref = ref;
1975          visitor_(&new_ref, reg, this);
1976          if (new_ref != ref) {
1977            shadow_frame->SetVRegReference(reg, new_ref);
1978          }
1979        }
1980      }
1981    } else {
1982      // Java method.
1983      // Portable path use DexGcMap and store in Method.native_gc_map_.
1984      const uint8_t* gc_map = m->GetNativeGcMap();
1985      CHECK(gc_map != nullptr) << PrettyMethod(m);
1986      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
1987      uint32_t dex_pc = shadow_frame->GetDexPC();
1988      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
1989      DCHECK(reg_bitmap != nullptr);
1990      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
1991      for (size_t reg = 0; reg < num_regs; ++reg) {
1992        if (TestBitmap(reg, reg_bitmap)) {
1993          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1994          if (ref != nullptr) {
1995            mirror::Object* new_ref = ref;
1996            visitor_(&new_ref, reg, this);
1997            if (new_ref != ref) {
1998              shadow_frame->SetVRegReference(reg, new_ref);
1999            }
2000          }
2001        }
2002      }
2003    }
2004  }
2005
2006 private:
2007  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2008    mirror::ArtMethod* m = GetMethod();
2009    // Process register map (which native and runtime methods don't have)
2010    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2011      const uint8_t* native_gc_map = m->GetNativeGcMap();
2012      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2013      mh_.ChangeMethod(m);
2014      const DexFile::CodeItem* code_item = mh_.GetCodeItem();
2015      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2016      NativePcOffsetToReferenceMap map(native_gc_map);
2017      size_t num_regs = std::min(map.RegWidth() * 8,
2018                                 static_cast<size_t>(code_item->registers_size_));
2019      if (num_regs > 0) {
2020        const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
2021        DCHECK(reg_bitmap != nullptr);
2022        const VmapTable vmap_table(m->GetVmapTable());
2023        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo();
2024        // For all dex registers in the bitmap
2025        mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
2026        DCHECK(cur_quick_frame != nullptr);
2027        for (size_t reg = 0; reg < num_regs; ++reg) {
2028          // Does this register hold a reference?
2029          if (TestBitmap(reg, reg_bitmap)) {
2030            uint32_t vmap_offset;
2031            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2032              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2033                                                        kReferenceVReg);
2034              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2035              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2036              if (*ref_addr != nullptr) {
2037                visitor_(ref_addr, reg, this);
2038              }
2039            } else {
2040              StackReference<mirror::Object>* ref_addr =
2041                  reinterpret_cast<StackReference<mirror::Object>*>(
2042                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2043                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2044              mirror::Object* ref = ref_addr->AsMirrorPtr();
2045              if (ref != nullptr) {
2046                mirror::Object* new_ref = ref;
2047                visitor_(&new_ref, reg, this);
2048                if (ref != new_ref) {
2049                  ref_addr->Assign(new_ref);
2050                }
2051              }
2052            }
2053          }
2054        }
2055      }
2056    }
2057  }
2058
2059  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2060    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2061  }
2062
2063  // Visitor for when we visit a root.
2064  const RootVisitor& visitor_;
2065
2066  // A method helper we keep around to avoid dex file/cache re-computations.
2067  MethodHelper mh_;
2068};
2069
2070class RootCallbackVisitor {
2071 public:
2072  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2073     : callback_(callback), arg_(arg), tid_(tid) {}
2074
2075  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2076    callback_(obj, arg_, tid_, kRootJavaFrame);
2077  }
2078
2079 private:
2080  RootCallback* const callback_;
2081  void* const arg_;
2082  const uint32_t tid_;
2083};
2084
2085void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2086  VerifyObject(class_loader_override);
2087  tlsPtr_.class_loader_override = class_loader_override;
2088}
2089
2090void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2091  uint32_t thread_id = GetThreadId();
2092  if (tlsPtr_.opeer != nullptr) {
2093    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2094  }
2095  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2096    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2097  }
2098  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2099  if (tlsPtr_.class_loader_override != nullptr) {
2100    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2101            kRootNativeStack);
2102  }
2103  if (tlsPtr_.monitor_enter_object != nullptr) {
2104    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2105  }
2106  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2107  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2108  SirtVisitRoots(visitor, arg, thread_id);
2109  if (tlsPtr_.debug_invoke_req != nullptr) {
2110    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2111  }
2112  if (tlsPtr_.single_step_control != nullptr) {
2113    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2114  }
2115  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2116    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2117    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2118    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2119        shadow_frame = shadow_frame->GetLink()) {
2120      mapper.VisitShadowFrame(shadow_frame);
2121    }
2122  }
2123  // Visit roots on this thread's stack
2124  Context* context = GetLongJumpContext();
2125  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2126  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2127  mapper.WalkStack();
2128  ReleaseLongJumpContext(context);
2129  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2130    if (frame.this_object_ != nullptr) {
2131      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2132    }
2133    DCHECK(frame.method_ != nullptr);
2134    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2135  }
2136}
2137
2138static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2139                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2140  VerifyObject(*root);
2141}
2142
2143void Thread::VerifyStackImpl() {
2144  UniquePtr<Context> context(Context::Create());
2145  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2146  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2147  mapper.WalkStack();
2148}
2149
2150// Set the stack end to that to be used during a stack overflow
2151void Thread::SetStackEndForStackOverflow() {
2152  // During stack overflow we allow use of the full stack.
2153  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2154    // However, we seem to have already extended to use the full stack.
2155    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2156               << kStackOverflowReservedBytes << ")?";
2157    DumpStack(LOG(ERROR));
2158    LOG(FATAL) << "Recursive stack overflow.";
2159  }
2160
2161  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2162}
2163
2164void Thread::SetTlab(byte* start, byte* end) {
2165  DCHECK_LE(start, end);
2166  tlsPtr_.thread_local_start = start;
2167  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2168  tlsPtr_.thread_local_end = end;
2169  tlsPtr_.thread_local_objects = 0;
2170}
2171
2172bool Thread::HasTlab() const {
2173  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2174  if (has_tlab) {
2175    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2176  } else {
2177    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2178  }
2179  return has_tlab;
2180}
2181
2182std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2183  thread.ShortDump(os);
2184  return os;
2185}
2186
2187}  // namespace art
2188