thread.cc revision a7ade888ab99b1453571d14c41d4a0322c400fcd
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker-inl.h"
36#include "class_linker.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/allocator/rosalloc.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "handle_scope-inl.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/class-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_lock.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "stack.h"
66#include "thread_list.h"
67#include "thread-inl.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171
172    mirror::ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
173    self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
174    Dbg::PostThreadStart(self);
175
176    // Invoke the 'run' method of our java.lang.Thread.
177    mirror::Object* receiver = self->tlsPtr_.opeer;
178    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
179    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
180  }
181  // Detach and delete self.
182  Runtime::Current()->GetThreadList()->Unregister(self);
183
184  return nullptr;
185}
186
187Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
188                                  mirror::Object* thread_peer) {
189  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
190  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
191  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
192  // to stop it from going away.
193  if (kIsDebugBuild) {
194    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
195    if (result != nullptr && !result->IsSuspended()) {
196      Locks::thread_list_lock_->AssertHeld(soa.Self());
197    }
198  }
199  return result;
200}
201
202Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
203                                  jobject java_thread) {
204  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
205}
206
207static size_t FixStackSize(size_t stack_size) {
208  // A stack size of zero means "use the default".
209  if (stack_size == 0) {
210    stack_size = Runtime::Current()->GetDefaultStackSize();
211  }
212
213  // Dalvik used the bionic pthread default stack size for native threads,
214  // so include that here to support apps that expect large native stacks.
215  stack_size += 1 * MB;
216
217  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
218  if (stack_size < PTHREAD_STACK_MIN) {
219    stack_size = PTHREAD_STACK_MIN;
220  }
221
222  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
223    // It's likely that callers are trying to ensure they have at least a certain amount of
224    // stack space, so we should add our reserved space on top of what they requested, rather
225    // than implicitly take it away from them.
226    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
227  } else {
228    // If we are going to use implicit stack checks, allocate space for the protected
229    // region at the bottom of the stack.
230    stack_size += Thread::kStackOverflowImplicitCheckSize +
231        GetStackOverflowReservedBytes(kRuntimeISA);
232  }
233
234  // Some systems require the stack size to be a multiple of the system page size, so round up.
235  stack_size = RoundUp(stack_size, kPageSize);
236
237  return stack_size;
238}
239
240// Global variable to prevent the compiler optimizing away the page reads for the stack.
241byte dont_optimize_this;
242
243// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
244// overflow is detected.  It is located right below the stack_begin_.
245//
246// There is a little complexity here that deserves a special mention.  On some
247// architectures, the stack created using a VM_GROWSDOWN flag
248// to prevent memory being allocated when it's not needed.  This flag makes the
249// kernel only allocate memory for the stack by growing down in memory.  Because we
250// want to put an mprotected region far away from that at the stack top, we need
251// to make sure the pages for the stack are mapped in before we call mprotect.  We do
252// this by reading every page from the stack bottom (highest address) to the stack top.
253// We then madvise this away.
254void Thread::InstallImplicitProtection() {
255  byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
256  byte* stack_himem = tlsPtr_.stack_end;
257  byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
258      ~(kPageSize - 1));    // Page containing current top of stack.
259
260  // First remove the protection on the protected region as will want to read and
261  // write it.  This may fail (on the first attempt when the stack is not mapped)
262  // but we ignore that.
263  UnprotectStack();
264
265  // Map in the stack.  This must be done by reading from the
266  // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
267  // in the kernel.  Any access more than a page below the current SP might cause
268  // a segv.
269
270  // Read every page from the high address to the low.
271  for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
272    dont_optimize_this = *p;
273  }
274
275  VLOG(threads) << "installing stack protected region at " << std::hex <<
276      static_cast<void*>(pregion) << " to " <<
277      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
278
279  // Protect the bottom of the stack to prevent read/write to it.
280  ProtectStack();
281
282  // Tell the kernel that we won't be needing these pages any more.
283  // NB. madvise will probably write zeroes into the memory (on linux it does).
284  uint32_t unwanted_size = stack_top - pregion - kPageSize;
285  madvise(pregion, unwanted_size, MADV_DONTNEED);
286}
287
288void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
289  CHECK(java_peer != nullptr);
290  Thread* self = static_cast<JNIEnvExt*>(env)->self;
291  Runtime* runtime = Runtime::Current();
292
293  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
294  bool thread_start_during_shutdown = false;
295  {
296    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
297    if (runtime->IsShuttingDownLocked()) {
298      thread_start_during_shutdown = true;
299    } else {
300      runtime->StartThreadBirth();
301    }
302  }
303  if (thread_start_during_shutdown) {
304    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
305    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
306    return;
307  }
308
309  Thread* child_thread = new Thread(is_daemon);
310  // Use global JNI ref to hold peer live while child thread starts.
311  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
312  stack_size = FixStackSize(stack_size);
313
314  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
315  // assign it.
316  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
317                    reinterpret_cast<jlong>(child_thread));
318
319  pthread_t new_pthread;
320  pthread_attr_t attr;
321  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
322  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
323  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
324  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
325  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
326
327  if (pthread_create_result != 0) {
328    // pthread_create(3) failed, so clean up.
329    {
330      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
331      runtime->EndThreadBirth();
332    }
333    // Manually delete the global reference since Thread::Init will not have been run.
334    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
335    child_thread->tlsPtr_.jpeer = nullptr;
336    delete child_thread;
337    child_thread = nullptr;
338    // TODO: remove from thread group?
339    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
340    {
341      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
342                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
343      ScopedObjectAccess soa(env);
344      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
345    }
346  }
347}
348
349void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
350  // This function does all the initialization that must be run by the native thread it applies to.
351  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
352  // we can handshake with the corresponding native thread when it's ready.) Check this native
353  // thread hasn't been through here already...
354  CHECK(Thread::Current() == nullptr);
355  SetUpAlternateSignalStack();
356  InitCpu();
357  InitTlsEntryPoints();
358  RemoveSuspendTrigger();
359  InitCardTable();
360  InitTid();
361  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
362  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
363  tlsPtr_.pthread_self = pthread_self();
364  CHECK(is_started_);
365  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
366  DCHECK_EQ(Thread::Current(), this);
367
368  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
369  InitStackHwm();
370
371  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
372  thread_list->Register(this);
373}
374
375Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
376                       bool create_peer) {
377  Thread* self;
378  Runtime* runtime = Runtime::Current();
379  if (runtime == nullptr) {
380    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
381    return nullptr;
382  }
383  {
384    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
385    if (runtime->IsShuttingDownLocked()) {
386      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
387      return nullptr;
388    } else {
389      Runtime::Current()->StartThreadBirth();
390      self = new Thread(as_daemon);
391      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
392      Runtime::Current()->EndThreadBirth();
393    }
394  }
395
396  CHECK_NE(self->GetState(), kRunnable);
397  self->SetState(kNative);
398
399  // If we're the main thread, ClassLinker won't be created until after we're attached,
400  // so that thread needs a two-stage attach. Regular threads don't need this hack.
401  // In the compiler, all threads need this hack, because no-one's going to be getting
402  // a native peer!
403  if (create_peer) {
404    self->CreatePeer(thread_name, as_daemon, thread_group);
405  } else {
406    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
407    if (thread_name != nullptr) {
408      self->tlsPtr_.name->assign(thread_name);
409      ::art::SetThreadName(thread_name);
410    } else if (self->GetJniEnv()->check_jni) {
411      LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
412    }
413  }
414
415  {
416    ScopedObjectAccess soa(self);
417    Dbg::PostThreadStart(self);
418  }
419
420  return self;
421}
422
423void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
424  Runtime* runtime = Runtime::Current();
425  CHECK(runtime->IsStarted());
426  JNIEnv* env = tlsPtr_.jni_env;
427
428  if (thread_group == nullptr) {
429    thread_group = runtime->GetMainThreadGroup();
430  }
431  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
432  if (thread_name.get() == nullptr) {
433    CHECK(IsExceptionPending());
434    return;
435  }
436  jint thread_priority = GetNativePriority();
437  jboolean thread_is_daemon = as_daemon;
438
439  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
440  if (peer.get() == nullptr) {
441    CHECK(IsExceptionPending());
442    return;
443  }
444  {
445    ScopedObjectAccess soa(this);
446    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
447  }
448  env->CallNonvirtualVoidMethod(peer.get(),
449                                WellKnownClasses::java_lang_Thread,
450                                WellKnownClasses::java_lang_Thread_init,
451                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
452  AssertNoPendingException();
453
454  Thread* self = this;
455  DCHECK_EQ(self, Thread::Current());
456  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
457                    reinterpret_cast<jlong>(self));
458
459  ScopedObjectAccess soa(self);
460  StackHandleScope<1> hs(self);
461  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
462  if (peer_thread_name.Get() == nullptr) {
463    // The Thread constructor should have set the Thread.name to a
464    // non-null value. However, because we can run without code
465    // available (in the compiler, in tests), we manually assign the
466    // fields the constructor should have set.
467    if (runtime->IsActiveTransaction()) {
468      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
469    } else {
470      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
471    }
472    peer_thread_name.Assign(GetThreadName(soa));
473  }
474  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
475  if (peer_thread_name.Get() != nullptr) {
476    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
477  }
478}
479
480template<bool kTransactionActive>
481void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
482                      jobject thread_name, jint thread_priority) {
483  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
484      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
485  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
486      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
487  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
488      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
489  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
490      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
491}
492
493void Thread::SetThreadName(const char* name) {
494  tlsPtr_.name->assign(name);
495  ::art::SetThreadName(name);
496  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
497}
498
499void Thread::InitStackHwm() {
500  void* read_stack_base;
501  size_t read_stack_size;
502  size_t read_guard_size;
503  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
504
505  // This is included in the SIGQUIT output, but it's useful here for thread debugging.
506  VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
507                                read_stack_base,
508                                PrettySize(read_stack_size).c_str(),
509                                PrettySize(read_guard_size).c_str());
510
511  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
512  tlsPtr_.stack_size = read_stack_size;
513
514  // The minimum stack size we can cope with is the overflow reserved bytes (typically
515  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
516  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
517  // between 8K and 12K.
518  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
519    + 4 * KB;
520  if (read_stack_size <= min_stack) {
521    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
522        << " bytes)";
523  }
524
525  // TODO: move this into the Linux GetThreadStack implementation.
526#if !defined(__APPLE__)
527  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
528  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
529  // will be broken because we'll die long before we get close to 2GB.
530  bool is_main_thread = (::art::GetTid() == getpid());
531  if (is_main_thread) {
532    rlimit stack_limit;
533    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
534      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
535    }
536    if (stack_limit.rlim_cur == RLIM_INFINITY) {
537      // Find the default stack size for new threads...
538      pthread_attr_t default_attributes;
539      size_t default_stack_size;
540      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
541      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
542                         "default stack size query");
543      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
544
545      // ...and use that as our limit.
546      size_t old_stack_size = read_stack_size;
547      tlsPtr_.stack_size = default_stack_size;
548      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
549      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
550                    << " to " << PrettySize(default_stack_size)
551                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
552    }
553  }
554#endif
555
556  // Set stack_end_ to the bottom of the stack saving space of stack overflows
557
558  Runtime* runtime = Runtime::Current();
559  bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler();
560  ResetDefaultStackEnd();
561
562  // Install the protected region if we are doing implicit overflow checks.
563  if (implicit_stack_check) {
564    // The thread might have protected region at the bottom.  We need
565    // to install our own region so we need to move the limits
566    // of the stack to make room for it.
567
568    tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
569    tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
570    tlsPtr_.stack_size -= read_guard_size;
571
572    InstallImplicitProtection();
573  }
574
575  // Sanity check.
576  int stack_variable;
577  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
578}
579
580void Thread::ShortDump(std::ostream& os) const {
581  os << "Thread[";
582  if (GetThreadId() != 0) {
583    // If we're in kStarting, we won't have a thin lock id or tid yet.
584    os << GetThreadId()
585             << ",tid=" << GetTid() << ',';
586  }
587  os << GetState()
588           << ",Thread*=" << this
589           << ",peer=" << tlsPtr_.opeer
590           << ",\"" << *tlsPtr_.name << "\""
591           << "]";
592}
593
594void Thread::Dump(std::ostream& os) const {
595  DumpState(os);
596  DumpStack(os);
597}
598
599mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
600  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
601  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
602}
603
604void Thread::GetThreadName(std::string& name) const {
605  name.assign(*tlsPtr_.name);
606}
607
608uint64_t Thread::GetCpuMicroTime() const {
609#if defined(HAVE_POSIX_CLOCKS)
610  clockid_t cpu_clock_id;
611  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
612  timespec now;
613  clock_gettime(cpu_clock_id, &now);
614  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
615#else
616  UNIMPLEMENTED(WARNING);
617  return -1;
618#endif
619}
620
621// Attempt to rectify locks so that we dump thread list with required locks before exiting.
622static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
623  LOG(ERROR) << *thread << " suspend count already zero.";
624  Locks::thread_suspend_count_lock_->Unlock(self);
625  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
626    Locks::mutator_lock_->SharedTryLock(self);
627    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
628      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
629    }
630  }
631  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
632    Locks::thread_list_lock_->TryLock(self);
633    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
634      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
635    }
636  }
637  std::ostringstream ss;
638  Runtime::Current()->GetThreadList()->DumpLocked(ss);
639  LOG(FATAL) << ss.str();
640}
641
642void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
643  if (kIsDebugBuild) {
644    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
645          << delta << " " << tls32_.debug_suspend_count << " " << this;
646    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
647    Locks::thread_suspend_count_lock_->AssertHeld(self);
648    if (this != self && !IsSuspended()) {
649      Locks::thread_list_lock_->AssertHeld(self);
650    }
651  }
652  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
653    UnsafeLogFatalForSuspendCount(self, this);
654    return;
655  }
656
657  tls32_.suspend_count += delta;
658  if (for_debugger) {
659    tls32_.debug_suspend_count += delta;
660  }
661
662  if (tls32_.suspend_count == 0) {
663    AtomicClearFlag(kSuspendRequest);
664  } else {
665    AtomicSetFlag(kSuspendRequest);
666    TriggerSuspend();
667  }
668}
669
670void Thread::RunCheckpointFunction() {
671  Closure *checkpoints[kMaxCheckpoints];
672
673  // Grab the suspend_count lock and copy the current set of
674  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
675  // function will also grab this lock so we prevent a race between setting
676  // the kCheckpointRequest flag and clearing it.
677  {
678    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
679    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
680      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
681      tlsPtr_.checkpoint_functions[i] = nullptr;
682    }
683    AtomicClearFlag(kCheckpointRequest);
684  }
685
686  // Outside the lock, run all the checkpoint functions that
687  // we collected.
688  bool found_checkpoint = false;
689  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
690    if (checkpoints[i] != nullptr) {
691      ATRACE_BEGIN("Checkpoint function");
692      checkpoints[i]->Run(this);
693      ATRACE_END();
694      found_checkpoint = true;
695    }
696  }
697  CHECK(found_checkpoint);
698}
699
700bool Thread::RequestCheckpoint(Closure* function) {
701  union StateAndFlags old_state_and_flags;
702  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
703  if (old_state_and_flags.as_struct.state != kRunnable) {
704    return false;  // Fail, thread is suspended and so can't run a checkpoint.
705  }
706
707  uint32_t available_checkpoint = kMaxCheckpoints;
708  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
709    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
710      available_checkpoint = i;
711      break;
712    }
713  }
714  if (available_checkpoint == kMaxCheckpoints) {
715    // No checkpoint functions available, we can't run a checkpoint
716    return false;
717  }
718  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
719
720  // Checkpoint function installed now install flag bit.
721  // We must be runnable to request a checkpoint.
722  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
723  union StateAndFlags new_state_and_flags;
724  new_state_and_flags.as_int = old_state_and_flags.as_int;
725  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
726  bool success =
727      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
728                                                                                       new_state_and_flags.as_int);
729  if (UNLIKELY(!success)) {
730    // The thread changed state before the checkpoint was installed.
731    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
732    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
733  } else {
734    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
735    TriggerSuspend();
736  }
737  return success;
738}
739
740void Thread::FullSuspendCheck() {
741  VLOG(threads) << this << " self-suspending";
742  ATRACE_BEGIN("Full suspend check");
743  // Make thread appear suspended to other threads, release mutator_lock_.
744  TransitionFromRunnableToSuspended(kSuspended);
745  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
746  TransitionFromSuspendedToRunnable();
747  ATRACE_END();
748  VLOG(threads) << this << " self-reviving";
749}
750
751void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
752  std::string group_name;
753  int priority;
754  bool is_daemon = false;
755  Thread* self = Thread::Current();
756
757  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
758  // cause ScopedObjectAccessUnchecked to deadlock.
759  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
760    ScopedObjectAccessUnchecked soa(self);
761    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
762        ->GetInt(thread->tlsPtr_.opeer);
763    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
764        ->GetBoolean(thread->tlsPtr_.opeer);
765
766    mirror::Object* thread_group =
767        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
768
769    if (thread_group != nullptr) {
770      mirror::ArtField* group_name_field =
771          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
772      mirror::String* group_name_string =
773          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
774      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
775    }
776  } else {
777    priority = GetNativePriority();
778  }
779
780  std::string scheduler_group_name(GetSchedulerGroupName(tid));
781  if (scheduler_group_name.empty()) {
782    scheduler_group_name = "default";
783  }
784
785  if (thread != nullptr) {
786    os << '"' << *thread->tlsPtr_.name << '"';
787    if (is_daemon) {
788      os << " daemon";
789    }
790    os << " prio=" << priority
791       << " tid=" << thread->GetThreadId()
792       << " " << thread->GetState();
793    if (thread->IsStillStarting()) {
794      os << " (still starting up)";
795    }
796    os << "\n";
797  } else {
798    os << '"' << ::art::GetThreadName(tid) << '"'
799       << " prio=" << priority
800       << " (not attached)\n";
801  }
802
803  if (thread != nullptr) {
804    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
805    os << "  | group=\"" << group_name << "\""
806       << " sCount=" << thread->tls32_.suspend_count
807       << " dsCount=" << thread->tls32_.debug_suspend_count
808       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
809       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
810  }
811
812  os << "  | sysTid=" << tid
813     << " nice=" << getpriority(PRIO_PROCESS, tid)
814     << " cgrp=" << scheduler_group_name;
815  if (thread != nullptr) {
816    int policy;
817    sched_param sp;
818    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
819                       __FUNCTION__);
820    os << " sched=" << policy << "/" << sp.sched_priority
821       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
822  }
823  os << "\n";
824
825  // Grab the scheduler stats for this thread.
826  std::string scheduler_stats;
827  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
828    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
829  } else {
830    scheduler_stats = "0 0 0";
831  }
832
833  char native_thread_state = '?';
834  int utime = 0;
835  int stime = 0;
836  int task_cpu = 0;
837  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
838
839  os << "  | state=" << native_thread_state
840     << " schedstat=( " << scheduler_stats << " )"
841     << " utm=" << utime
842     << " stm=" << stime
843     << " core=" << task_cpu
844     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
845  if (thread != nullptr) {
846    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
847        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
848        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
849    // Dump the held mutexes.
850    os << "  | held mutexes=";
851    for (size_t i = 0; i < kLockLevelCount; ++i) {
852      if (i != kMonitorLock) {
853        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
854        if (mutex != nullptr) {
855          os << " \"" << mutex->GetName() << "\"";
856          if (mutex->IsReaderWriterMutex()) {
857            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
858            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
859              os << "(exclusive held)";
860            } else {
861              os << "(shared held)";
862            }
863          }
864        }
865      }
866    }
867    os << "\n";
868  }
869}
870
871void Thread::DumpState(std::ostream& os) const {
872  Thread::DumpState(os, this, GetTid());
873}
874
875struct StackDumpVisitor : public StackVisitor {
876  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
877      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
878      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
879        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
880  }
881
882  virtual ~StackDumpVisitor() {
883    if (frame_count == 0) {
884      os << "  (no managed stack frames)\n";
885    }
886  }
887
888  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
889    mirror::ArtMethod* m = GetMethod();
890    if (m->IsRuntimeMethod()) {
891      return true;
892    }
893    const int kMaxRepetition = 3;
894    mirror::Class* c = m->GetDeclaringClass();
895    mirror::DexCache* dex_cache = c->GetDexCache();
896    int line_number = -1;
897    if (dex_cache != nullptr) {  // be tolerant of bad input
898      const DexFile& dex_file = *dex_cache->GetDexFile();
899      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
900    }
901    if (line_number == last_line_number && last_method == m) {
902      ++repetition_count;
903    } else {
904      if (repetition_count >= kMaxRepetition) {
905        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
906      }
907      repetition_count = 0;
908      last_line_number = line_number;
909      last_method = m;
910    }
911    if (repetition_count < kMaxRepetition) {
912      os << "  at " << PrettyMethod(m, false);
913      if (m->IsNative()) {
914        os << "(Native method)";
915      } else {
916        const char* source_file(m->GetDeclaringClassSourceFile());
917        os << "(" << (source_file != nullptr ? source_file : "unavailable")
918           << ":" << line_number << ")";
919      }
920      os << "\n";
921      if (frame_count == 0) {
922        Monitor::DescribeWait(os, thread);
923      }
924      if (can_allocate) {
925        // Visit locks, but do not abort on errors. This would trigger a nested abort.
926        Monitor::VisitLocks(this, DumpLockedObject, &os, false);
927      }
928    }
929
930    ++frame_count;
931    return true;
932  }
933
934  static void DumpLockedObject(mirror::Object* o, void* context)
935      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
936    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
937    os << "  - locked ";
938    if (o == nullptr) {
939      os << "an unknown object";
940    } else {
941      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
942          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
943        // Getting the identity hashcode here would result in lock inflation and suspension of the
944        // current thread, which isn't safe if this is the only runnable thread.
945        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
946                           PrettyTypeOf(o).c_str());
947      } else {
948        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
949      }
950    }
951    os << "\n";
952  }
953
954  std::ostream& os;
955  const Thread* thread;
956  const bool can_allocate;
957  mirror::ArtMethod* last_method;
958  int last_line_number;
959  int repetition_count;
960  int frame_count;
961};
962
963static bool ShouldShowNativeStack(const Thread* thread)
964    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
965  ThreadState state = thread->GetState();
966
967  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
968  if (state > kWaiting && state < kStarting) {
969    return true;
970  }
971
972  // In an Object.wait variant or Thread.sleep? That's not interesting.
973  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
974    return false;
975  }
976
977  // Threads with no managed stack frames should be shown.
978  const ManagedStack* managed_stack = thread->GetManagedStack();
979  if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL &&
980      managed_stack->GetTopShadowFrame() == NULL)) {
981    return true;
982  }
983
984  // In some other native method? That's interesting.
985  // We don't just check kNative because native methods will be in state kSuspended if they're
986  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
987  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
988  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
989  return current_method != nullptr && current_method->IsNative();
990}
991
992void Thread::DumpJavaStack(std::ostream& os) const {
993  // Dumping the Java stack involves the verifier for locks. The verifier operates under the
994  // assumption that there is no exception pending on entry. Thus, stash any pending exception.
995  // TODO: Find a way to avoid const_cast.
996  StackHandleScope<3> scope(const_cast<Thread*>(this));
997  Handle<mirror::Throwable> exc;
998  Handle<mirror::Object> throw_location_this_object;
999  Handle<mirror::ArtMethod> throw_location_method;
1000  uint32_t throw_location_dex_pc;
1001  bool have_exception = false;
1002  if (IsExceptionPending()) {
1003    ThrowLocation exc_location;
1004    exc = scope.NewHandle(GetException(&exc_location));
1005    throw_location_this_object = scope.NewHandle(exc_location.GetThis());
1006    throw_location_method = scope.NewHandle(exc_location.GetMethod());
1007    throw_location_dex_pc = exc_location.GetDexPc();
1008    const_cast<Thread*>(this)->ClearException();
1009    have_exception = true;
1010  }
1011
1012  std::unique_ptr<Context> context(Context::Create());
1013  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1014                          !tls32_.throwing_OutOfMemoryError);
1015  dumper.WalkStack();
1016
1017  if (have_exception) {
1018    ThrowLocation exc_location(throw_location_this_object.Get(),
1019                               throw_location_method.Get(),
1020                               throw_location_dex_pc);
1021    const_cast<Thread*>(this)->SetException(exc_location, exc.Get());
1022  }
1023}
1024
1025void Thread::DumpStack(std::ostream& os) const {
1026  // TODO: we call this code when dying but may not have suspended the thread ourself. The
1027  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1028  //       the race with the thread_suspend_count_lock_).
1029  bool dump_for_abort = (gAborting > 0);
1030  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1031  if (!kIsDebugBuild) {
1032    // We always want to dump the stack for an abort, however, there is no point dumping another
1033    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1034    safe_to_dump = (safe_to_dump || dump_for_abort);
1035  }
1036  if (safe_to_dump) {
1037    // If we're currently in native code, dump that stack before dumping the managed stack.
1038    if (dump_for_abort || ShouldShowNativeStack(this)) {
1039      DumpKernelStack(os, GetTid(), "  kernel: ", false);
1040      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr, !dump_for_abort));
1041    }
1042    DumpJavaStack(os);
1043  } else {
1044    os << "Not able to dump stack of thread that isn't suspended";
1045  }
1046}
1047
1048void Thread::ThreadExitCallback(void* arg) {
1049  Thread* self = reinterpret_cast<Thread*>(arg);
1050  if (self->tls32_.thread_exit_check_count == 0) {
1051    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1052        "going to use a pthread_key_create destructor?): " << *self;
1053    CHECK(is_started_);
1054    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1055    self->tls32_.thread_exit_check_count = 1;
1056  } else {
1057    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1058  }
1059}
1060
1061void Thread::Startup() {
1062  CHECK(!is_started_);
1063  is_started_ = true;
1064  {
1065    // MutexLock to keep annotalysis happy.
1066    //
1067    // Note we use nullptr for the thread because Thread::Current can
1068    // return garbage since (is_started_ == true) and
1069    // Thread::pthread_key_self_ is not yet initialized.
1070    // This was seen on glibc.
1071    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1072    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1073                                         *Locks::thread_suspend_count_lock_);
1074  }
1075
1076  // Allocate a TLS slot.
1077  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1078
1079  // Double-check the TLS slot allocation.
1080  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1081    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1082  }
1083}
1084
1085void Thread::FinishStartup() {
1086  Runtime* runtime = Runtime::Current();
1087  CHECK(runtime->IsStarted());
1088
1089  // Finish attaching the main thread.
1090  ScopedObjectAccess soa(Thread::Current());
1091  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1092
1093  Runtime::Current()->GetClassLinker()->RunRootClinits();
1094}
1095
1096void Thread::Shutdown() {
1097  CHECK(is_started_);
1098  is_started_ = false;
1099  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1100  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1101  if (resume_cond_ != nullptr) {
1102    delete resume_cond_;
1103    resume_cond_ = nullptr;
1104  }
1105}
1106
1107Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1108  wait_mutex_ = new Mutex("a thread wait mutex");
1109  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1110  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1111  tlsPtr_.single_step_control = new SingleStepControl;
1112  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1113  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1114  tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1115
1116  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1117  tls32_.state_and_flags.as_struct.flags = 0;
1118  tls32_.state_and_flags.as_struct.state = kNative;
1119  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1120  std::fill(tlsPtr_.rosalloc_runs,
1121            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1122            gc::allocator::RosAlloc::GetDedicatedFullRun());
1123  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1124    tlsPtr_.checkpoint_functions[i] = nullptr;
1125  }
1126}
1127
1128bool Thread::IsStillStarting() const {
1129  // You might think you can check whether the state is kStarting, but for much of thread startup,
1130  // the thread is in kNative; it might also be in kVmWait.
1131  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1132  // assigned fairly early on, and needs to be.
1133  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1134  // this thread _ever_ entered kRunnable".
1135  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1136      (*tlsPtr_.name == kThreadNameDuringStartup);
1137}
1138
1139void Thread::AssertNoPendingException() const {
1140  if (UNLIKELY(IsExceptionPending())) {
1141    ScopedObjectAccess soa(Thread::Current());
1142    mirror::Throwable* exception = GetException(nullptr);
1143    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1144  }
1145}
1146
1147void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1148  if (UNLIKELY(IsExceptionPending())) {
1149    ScopedObjectAccess soa(Thread::Current());
1150    mirror::Throwable* exception = GetException(nullptr);
1151    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1152        << exception->Dump();
1153  }
1154}
1155
1156static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1157                               RootType /*root_type*/)
1158    NO_THREAD_SAFETY_ANALYSIS {
1159  Thread* self = reinterpret_cast<Thread*>(arg);
1160  mirror::Object* entered_monitor = *object;
1161  if (self->HoldsLock(entered_monitor)) {
1162    LOG(WARNING) << "Calling MonitorExit on object "
1163                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1164                 << " left locked by native thread "
1165                 << *Thread::Current() << " which is detaching";
1166    entered_monitor->MonitorExit(self);
1167  }
1168}
1169
1170void Thread::Destroy() {
1171  Thread* self = this;
1172  DCHECK_EQ(self, Thread::Current());
1173
1174  if (tlsPtr_.opeer != nullptr) {
1175    ScopedObjectAccess soa(self);
1176    // We may need to call user-supplied managed code, do this before final clean-up.
1177    HandleUncaughtExceptions(soa);
1178    RemoveFromThreadGroup(soa);
1179
1180    // this.nativePeer = 0;
1181    if (Runtime::Current()->IsActiveTransaction()) {
1182      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1183          ->SetLong<true>(tlsPtr_.opeer, 0);
1184    } else {
1185      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1186          ->SetLong<false>(tlsPtr_.opeer, 0);
1187    }
1188    Dbg::PostThreadDeath(self);
1189
1190    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1191    // who is waiting.
1192    mirror::Object* lock =
1193        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1194    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1195    if (lock != nullptr) {
1196      StackHandleScope<1> hs(self);
1197      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1198      ObjectLock<mirror::Object> locker(self, h_obj);
1199      locker.NotifyAll();
1200    }
1201  }
1202
1203  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1204  if (tlsPtr_.jni_env != nullptr) {
1205    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1206  }
1207}
1208
1209Thread::~Thread() {
1210  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1211    // If pthread_create fails we don't have a jni env here.
1212    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1213    tlsPtr_.jpeer = nullptr;
1214  }
1215  tlsPtr_.opeer = nullptr;
1216
1217  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1218  if (initialized) {
1219    delete tlsPtr_.jni_env;
1220    tlsPtr_.jni_env = nullptr;
1221  }
1222  CHECK_NE(GetState(), kRunnable);
1223  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1224  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1225  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1226  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1227
1228  // We may be deleting a still born thread.
1229  SetStateUnsafe(kTerminated);
1230
1231  delete wait_cond_;
1232  delete wait_mutex_;
1233
1234  if (tlsPtr_.long_jump_context != nullptr) {
1235    delete tlsPtr_.long_jump_context;
1236  }
1237
1238  if (initialized) {
1239    CleanupCpu();
1240  }
1241
1242  delete tlsPtr_.debug_invoke_req;
1243  delete tlsPtr_.single_step_control;
1244  delete tlsPtr_.instrumentation_stack;
1245  delete tlsPtr_.name;
1246  delete tlsPtr_.stack_trace_sample;
1247  free(tlsPtr_.nested_signal_state);
1248
1249  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1250
1251  TearDownAlternateSignalStack();
1252}
1253
1254void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1255  if (!IsExceptionPending()) {
1256    return;
1257  }
1258  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1259  ScopedThreadStateChange tsc(this, kNative);
1260
1261  // Get and clear the exception.
1262  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1263  tlsPtr_.jni_env->ExceptionClear();
1264
1265  // If the thread has its own handler, use that.
1266  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1267                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1268                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1269  if (handler.get() == nullptr) {
1270    // Otherwise use the thread group's default handler.
1271    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1272                                                  WellKnownClasses::java_lang_Thread_group));
1273  }
1274
1275  // Call the handler.
1276  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1277      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1278      peer.get(), exception.get());
1279
1280  // If the handler threw, clear that exception too.
1281  tlsPtr_.jni_env->ExceptionClear();
1282}
1283
1284void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1285  // this.group.removeThread(this);
1286  // group can be null if we're in the compiler or a test.
1287  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1288      ->GetObject(tlsPtr_.opeer);
1289  if (ogroup != nullptr) {
1290    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1291    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1292    ScopedThreadStateChange tsc(soa.Self(), kNative);
1293    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1294                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1295                                    peer.get());
1296  }
1297}
1298
1299size_t Thread::NumHandleReferences() {
1300  size_t count = 0;
1301  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1302    count += cur->NumberOfReferences();
1303  }
1304  return count;
1305}
1306
1307bool Thread::HandleScopeContains(jobject obj) const {
1308  StackReference<mirror::Object>* hs_entry =
1309      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1310  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1311    if (cur->Contains(hs_entry)) {
1312      return true;
1313    }
1314  }
1315  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1316  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1317}
1318
1319void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1320  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1321    size_t num_refs = cur->NumberOfReferences();
1322    for (size_t j = 0; j < num_refs; ++j) {
1323      mirror::Object* object = cur->GetReference(j);
1324      if (object != nullptr) {
1325        mirror::Object* old_obj = object;
1326        visitor(&object, arg, thread_id, kRootNativeStack);
1327        if (old_obj != object) {
1328          cur->SetReference(j, object);
1329        }
1330      }
1331    }
1332  }
1333}
1334
1335mirror::Object* Thread::DecodeJObject(jobject obj) const {
1336  Locks::mutator_lock_->AssertSharedHeld(this);
1337  if (obj == nullptr) {
1338    return nullptr;
1339  }
1340  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1341  IndirectRefKind kind = GetIndirectRefKind(ref);
1342  mirror::Object* result;
1343  // The "kinds" below are sorted by the frequency we expect to encounter them.
1344  if (kind == kLocal) {
1345    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1346    // Local references do not need a read barrier.
1347    result = locals.Get<kWithoutReadBarrier>(ref);
1348  } else if (kind == kHandleScopeOrInvalid) {
1349    // TODO: make stack indirect reference table lookup more efficient.
1350    // Check if this is a local reference in the handle scope.
1351    if (LIKELY(HandleScopeContains(obj))) {
1352      // Read from handle scope.
1353      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1354      VerifyObject(result);
1355    } else {
1356      result = kInvalidIndirectRefObject;
1357    }
1358  } else if (kind == kGlobal) {
1359    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1360    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1361  } else {
1362    DCHECK_EQ(kind, kWeakGlobal);
1363    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1364    if (result == kClearedJniWeakGlobal) {
1365      // This is a special case where it's okay to return nullptr.
1366      return nullptr;
1367    }
1368  }
1369
1370  if (UNLIKELY(result == nullptr)) {
1371    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1372  }
1373  return result;
1374}
1375
1376// Implements java.lang.Thread.interrupted.
1377bool Thread::Interrupted() {
1378  MutexLock mu(Thread::Current(), *wait_mutex_);
1379  bool interrupted = IsInterruptedLocked();
1380  SetInterruptedLocked(false);
1381  return interrupted;
1382}
1383
1384// Implements java.lang.Thread.isInterrupted.
1385bool Thread::IsInterrupted() {
1386  MutexLock mu(Thread::Current(), *wait_mutex_);
1387  return IsInterruptedLocked();
1388}
1389
1390void Thread::Interrupt(Thread* self) {
1391  MutexLock mu(self, *wait_mutex_);
1392  if (interrupted_) {
1393    return;
1394  }
1395  interrupted_ = true;
1396  NotifyLocked(self);
1397}
1398
1399void Thread::Notify() {
1400  Thread* self = Thread::Current();
1401  MutexLock mu(self, *wait_mutex_);
1402  NotifyLocked(self);
1403}
1404
1405void Thread::NotifyLocked(Thread* self) {
1406  if (wait_monitor_ != nullptr) {
1407    wait_cond_->Signal(self);
1408  }
1409}
1410
1411class CountStackDepthVisitor : public StackVisitor {
1412 public:
1413  explicit CountStackDepthVisitor(Thread* thread)
1414      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1415      : StackVisitor(thread, nullptr),
1416        depth_(0), skip_depth_(0), skipping_(true) {}
1417
1418  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1419    // We want to skip frames up to and including the exception's constructor.
1420    // Note we also skip the frame if it doesn't have a method (namely the callee
1421    // save frame)
1422    mirror::ArtMethod* m = GetMethod();
1423    if (skipping_ && !m->IsRuntimeMethod() &&
1424        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1425      skipping_ = false;
1426    }
1427    if (!skipping_) {
1428      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1429        ++depth_;
1430      }
1431    } else {
1432      ++skip_depth_;
1433    }
1434    return true;
1435  }
1436
1437  int GetDepth() const {
1438    return depth_;
1439  }
1440
1441  int GetSkipDepth() const {
1442    return skip_depth_;
1443  }
1444
1445 private:
1446  uint32_t depth_;
1447  uint32_t skip_depth_;
1448  bool skipping_;
1449};
1450
1451template<bool kTransactionActive>
1452class BuildInternalStackTraceVisitor : public StackVisitor {
1453 public:
1454  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1455      : StackVisitor(thread, nullptr), self_(self),
1456        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1457
1458  bool Init(int depth)
1459      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1460    // Allocate method trace with an extra slot that will hold the PC trace
1461    StackHandleScope<1> hs(self_);
1462    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1463    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1464        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1465    if (method_trace.Get() == nullptr) {
1466      return false;
1467    }
1468    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1469    if (dex_pc_trace == nullptr) {
1470      return false;
1471    }
1472    // Save PC trace in last element of method trace, also places it into the
1473    // object graph.
1474    // We are called from native: use non-transactional mode.
1475    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1476    // Set the Object*s and assert that no thread suspension is now possible.
1477    const char* last_no_suspend_cause =
1478        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1479    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1480    method_trace_ = method_trace.Get();
1481    dex_pc_trace_ = dex_pc_trace;
1482    return true;
1483  }
1484
1485  virtual ~BuildInternalStackTraceVisitor() {
1486    if (method_trace_ != nullptr) {
1487      self_->EndAssertNoThreadSuspension(nullptr);
1488    }
1489  }
1490
1491  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1492    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1493      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1494    }
1495    if (skip_depth_ > 0) {
1496      skip_depth_--;
1497      return true;
1498    }
1499    mirror::ArtMethod* m = GetMethod();
1500    if (m->IsRuntimeMethod()) {
1501      return true;  // Ignore runtime frames (in particular callee save).
1502    }
1503    method_trace_->Set<kTransactionActive>(count_, m);
1504    dex_pc_trace_->Set<kTransactionActive>(count_,
1505        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1506    ++count_;
1507    return true;
1508  }
1509
1510  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1511    return method_trace_;
1512  }
1513
1514 private:
1515  Thread* const self_;
1516  // How many more frames to skip.
1517  int32_t skip_depth_;
1518  // Current position down stack trace.
1519  uint32_t count_;
1520  // Array of dex PC values.
1521  mirror::IntArray* dex_pc_trace_;
1522  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1523  mirror::ObjectArray<mirror::Object>* method_trace_;
1524};
1525
1526template<bool kTransactionActive>
1527jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1528  // Compute depth of stack
1529  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1530  count_visitor.WalkStack();
1531  int32_t depth = count_visitor.GetDepth();
1532  int32_t skip_depth = count_visitor.GetSkipDepth();
1533
1534  // Build internal stack trace.
1535  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1536                                                                         const_cast<Thread*>(this),
1537                                                                         skip_depth);
1538  if (!build_trace_visitor.Init(depth)) {
1539    return nullptr;  // Allocation failed.
1540  }
1541  build_trace_visitor.WalkStack();
1542  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1543  if (kIsDebugBuild) {
1544    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1545      CHECK(trace->Get(i) != nullptr);
1546    }
1547  }
1548  return soa.AddLocalReference<jobjectArray>(trace);
1549}
1550template jobject Thread::CreateInternalStackTrace<false>(
1551    const ScopedObjectAccessAlreadyRunnable& soa) const;
1552template jobject Thread::CreateInternalStackTrace<true>(
1553    const ScopedObjectAccessAlreadyRunnable& soa) const;
1554
1555jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1556    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1557    int* stack_depth) {
1558  // Decode the internal stack trace into the depth, method trace and PC trace
1559  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1560
1561  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1562
1563  jobjectArray result;
1564
1565  if (output_array != nullptr) {
1566    // Reuse the array we were given.
1567    result = output_array;
1568    // ...adjusting the number of frames we'll write to not exceed the array length.
1569    const int32_t traces_length =
1570        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1571    depth = std::min(depth, traces_length);
1572  } else {
1573    // Create java_trace array and place in local reference table
1574    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1575        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1576    if (java_traces == nullptr) {
1577      return nullptr;
1578    }
1579    result = soa.AddLocalReference<jobjectArray>(java_traces);
1580  }
1581
1582  if (stack_depth != nullptr) {
1583    *stack_depth = depth;
1584  }
1585
1586  for (int32_t i = 0; i < depth; ++i) {
1587    mirror::ObjectArray<mirror::Object>* method_trace =
1588          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1589    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1590    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1591    int32_t line_number;
1592    StackHandleScope<3> hs(soa.Self());
1593    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1594    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1595    if (method->IsProxyMethod()) {
1596      line_number = -1;
1597      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1598      // source_name_object intentionally left null for proxy methods
1599    } else {
1600      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1601      uint32_t dex_pc = pc_trace->Get(i);
1602      line_number = method->GetLineNumFromDexPC(dex_pc);
1603      // Allocate element, potentially triggering GC
1604      // TODO: reuse class_name_object via Class::name_?
1605      const char* descriptor = method->GetDeclaringClassDescriptor();
1606      CHECK(descriptor != nullptr);
1607      std::string class_name(PrettyDescriptor(descriptor));
1608      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1609      if (class_name_object.Get() == nullptr) {
1610        return nullptr;
1611      }
1612      const char* source_file = method->GetDeclaringClassSourceFile();
1613      if (source_file != nullptr) {
1614        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1615        if (source_name_object.Get() == nullptr) {
1616          return nullptr;
1617        }
1618      }
1619    }
1620    const char* method_name = method->GetName();
1621    CHECK(method_name != nullptr);
1622    Handle<mirror::String> method_name_object(
1623        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1624    if (method_name_object.Get() == nullptr) {
1625      return nullptr;
1626    }
1627    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1628        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1629    if (obj == nullptr) {
1630      return nullptr;
1631    }
1632    // We are called from native: use non-transactional mode.
1633    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1634  }
1635  return result;
1636}
1637
1638void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1639                                const char* exception_class_descriptor, const char* fmt, ...) {
1640  va_list args;
1641  va_start(args, fmt);
1642  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1643                     fmt, args);
1644  va_end(args);
1645}
1646
1647void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1648                                const char* exception_class_descriptor,
1649                                const char* fmt, va_list ap) {
1650  std::string msg;
1651  StringAppendV(&msg, fmt, ap);
1652  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1653}
1654
1655void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1656                               const char* msg) {
1657  // Callers should either clear or call ThrowNewWrappedException.
1658  AssertNoPendingExceptionForNewException(msg);
1659  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1660}
1661
1662void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1663                                      const char* exception_class_descriptor,
1664                                      const char* msg) {
1665  DCHECK_EQ(this, Thread::Current());
1666  ScopedObjectAccessUnchecked soa(this);
1667  StackHandleScope<5> hs(soa.Self());
1668  // Ensure we don't forget arguments over object allocation.
1669  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1670  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1671  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1672  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1673  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1674  ClearException();
1675  Runtime* runtime = Runtime::Current();
1676
1677  mirror::ClassLoader* cl = nullptr;
1678  if (saved_throw_method.Get() != nullptr) {
1679    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1680  }
1681  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1682  Handle<mirror::Class> exception_class(
1683      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1684                                                        class_loader)));
1685  if (UNLIKELY(exception_class.Get() == nullptr)) {
1686    CHECK(IsExceptionPending());
1687    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1688    return;
1689  }
1690
1691  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1692    DCHECK(IsExceptionPending());
1693    return;
1694  }
1695  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1696  Handle<mirror::Throwable> exception(
1697      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1698
1699  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1700  if (exception.Get() == nullptr) {
1701    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1702                                         throw_location.GetDexPc());
1703    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1704    SetExceptionReportedToInstrumentation(is_exception_reported);
1705    return;
1706  }
1707
1708  // Choose an appropriate constructor and set up the arguments.
1709  const char* signature;
1710  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1711  if (msg != nullptr) {
1712    // Ensure we remember this and the method over the String allocation.
1713    msg_string.reset(
1714        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1715    if (UNLIKELY(msg_string.get() == nullptr)) {
1716      CHECK(IsExceptionPending());  // OOME.
1717      return;
1718    }
1719    if (cause.get() == nullptr) {
1720      signature = "(Ljava/lang/String;)V";
1721    } else {
1722      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1723    }
1724  } else {
1725    if (cause.get() == nullptr) {
1726      signature = "()V";
1727    } else {
1728      signature = "(Ljava/lang/Throwable;)V";
1729    }
1730  }
1731  mirror::ArtMethod* exception_init_method =
1732      exception_class->FindDeclaredDirectMethod("<init>", signature);
1733
1734  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1735      << PrettyDescriptor(exception_class_descriptor);
1736
1737  if (UNLIKELY(!runtime->IsStarted())) {
1738    // Something is trying to throw an exception without a started runtime, which is the common
1739    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1740    // the exception fields directly.
1741    if (msg != nullptr) {
1742      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1743    }
1744    if (cause.get() != nullptr) {
1745      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1746    }
1747    ScopedLocalRef<jobject> trace(GetJniEnv(),
1748                                  Runtime::Current()->IsActiveTransaction()
1749                                      ? CreateInternalStackTrace<true>(soa)
1750                                      : CreateInternalStackTrace<false>(soa));
1751    if (trace.get() != nullptr) {
1752      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1753    }
1754    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1755                                         throw_location.GetDexPc());
1756    SetException(gc_safe_throw_location, exception.Get());
1757    SetExceptionReportedToInstrumentation(is_exception_reported);
1758  } else {
1759    jvalue jv_args[2];
1760    size_t i = 0;
1761
1762    if (msg != nullptr) {
1763      jv_args[i].l = msg_string.get();
1764      ++i;
1765    }
1766    if (cause.get() != nullptr) {
1767      jv_args[i].l = cause.get();
1768      ++i;
1769    }
1770    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1771    if (LIKELY(!IsExceptionPending())) {
1772      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1773                                           throw_location.GetDexPc());
1774      SetException(gc_safe_throw_location, exception.Get());
1775      SetExceptionReportedToInstrumentation(is_exception_reported);
1776    }
1777  }
1778}
1779
1780void Thread::ThrowOutOfMemoryError(const char* msg) {
1781  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1782      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1783  ThrowLocation throw_location = GetCurrentLocationForThrow();
1784  if (!tls32_.throwing_OutOfMemoryError) {
1785    tls32_.throwing_OutOfMemoryError = true;
1786    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1787    tls32_.throwing_OutOfMemoryError = false;
1788  } else {
1789    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1790    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1791  }
1792}
1793
1794Thread* Thread::CurrentFromGdb() {
1795  return Thread::Current();
1796}
1797
1798void Thread::DumpFromGdb() const {
1799  std::ostringstream ss;
1800  Dump(ss);
1801  std::string str(ss.str());
1802  // log to stderr for debugging command line processes
1803  std::cerr << str;
1804#ifdef HAVE_ANDROID_OS
1805  // log to logcat for debugging frameworks processes
1806  LOG(INFO) << str;
1807#endif
1808}
1809
1810// Explicitly instantiate 32 and 64bit thread offset dumping support.
1811template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1812template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1813
1814template<size_t ptr_size>
1815void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1816#define DO_THREAD_OFFSET(x, y) \
1817    if (offset == x.Uint32Value()) { \
1818      os << y; \
1819      return; \
1820    }
1821  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1822  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1823  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1824  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1825  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1826  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1827  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1828  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1829  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1830  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1831  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1832  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1833  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1834#undef DO_THREAD_OFFSET
1835
1836#define INTERPRETER_ENTRY_POINT_INFO(x) \
1837    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1838      os << #x; \
1839      return; \
1840    }
1841  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1842  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1843#undef INTERPRETER_ENTRY_POINT_INFO
1844
1845#define JNI_ENTRY_POINT_INFO(x) \
1846    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1847      os << #x; \
1848      return; \
1849    }
1850  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1851#undef JNI_ENTRY_POINT_INFO
1852
1853#define PORTABLE_ENTRY_POINT_INFO(x) \
1854    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1855      os << #x; \
1856      return; \
1857    }
1858  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1859  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1860  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1861#undef PORTABLE_ENTRY_POINT_INFO
1862
1863#define QUICK_ENTRY_POINT_INFO(x) \
1864    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1865      os << #x; \
1866      return; \
1867    }
1868  QUICK_ENTRY_POINT_INFO(pAllocArray)
1869  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1870  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1871  QUICK_ENTRY_POINT_INFO(pAllocObject)
1872  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1873  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1874  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1875  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1876  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1877  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1878  QUICK_ENTRY_POINT_INFO(pCheckCast)
1879  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1880  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1881  QUICK_ENTRY_POINT_INFO(pInitializeType)
1882  QUICK_ENTRY_POINT_INFO(pResolveString)
1883  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1884  QUICK_ENTRY_POINT_INFO(pSet32Static)
1885  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1886  QUICK_ENTRY_POINT_INFO(pSet64Static)
1887  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1888  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1889  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1890  QUICK_ENTRY_POINT_INFO(pGet32Static)
1891  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1892  QUICK_ENTRY_POINT_INFO(pGet64Static)
1893  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1894  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1895  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1896  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1897  QUICK_ENTRY_POINT_INFO(pAputObject)
1898  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1899  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1900  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1901  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1902  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1903  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1904  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1905  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1906  QUICK_ENTRY_POINT_INFO(pLockObject)
1907  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1908  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1909  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1910  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1911  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1912  QUICK_ENTRY_POINT_INFO(pFmod)
1913  QUICK_ENTRY_POINT_INFO(pL2d)
1914  QUICK_ENTRY_POINT_INFO(pFmodf)
1915  QUICK_ENTRY_POINT_INFO(pL2f)
1916  QUICK_ENTRY_POINT_INFO(pD2iz)
1917  QUICK_ENTRY_POINT_INFO(pF2iz)
1918  QUICK_ENTRY_POINT_INFO(pIdivmod)
1919  QUICK_ENTRY_POINT_INFO(pD2l)
1920  QUICK_ENTRY_POINT_INFO(pF2l)
1921  QUICK_ENTRY_POINT_INFO(pLdiv)
1922  QUICK_ENTRY_POINT_INFO(pLmod)
1923  QUICK_ENTRY_POINT_INFO(pLmul)
1924  QUICK_ENTRY_POINT_INFO(pShlLong)
1925  QUICK_ENTRY_POINT_INFO(pShrLong)
1926  QUICK_ENTRY_POINT_INFO(pUshrLong)
1927  QUICK_ENTRY_POINT_INFO(pIndexOf)
1928  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1929  QUICK_ENTRY_POINT_INFO(pMemcpy)
1930  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1931  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1932  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1933  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1934  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1935  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1936  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1937  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1938  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1939  QUICK_ENTRY_POINT_INFO(pDeliverException)
1940  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1941  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1942  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1943  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1944  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1945  QUICK_ENTRY_POINT_INFO(pA64Load)
1946  QUICK_ENTRY_POINT_INFO(pA64Store)
1947#undef QUICK_ENTRY_POINT_INFO
1948
1949  os << offset;
1950}
1951
1952void Thread::QuickDeliverException() {
1953  // Get exception from thread.
1954  ThrowLocation throw_location;
1955  mirror::Throwable* exception = GetException(&throw_location);
1956  CHECK(exception != nullptr);
1957  // Don't leave exception visible while we try to find the handler, which may cause class
1958  // resolution.
1959  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1960  ClearException();
1961  bool is_deoptimization = (exception == GetDeoptimizationException());
1962  QuickExceptionHandler exception_handler(this, is_deoptimization);
1963  if (is_deoptimization) {
1964    exception_handler.DeoptimizeStack();
1965  } else {
1966    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1967  }
1968  exception_handler.UpdateInstrumentationStack();
1969  exception_handler.DoLongJump();
1970  LOG(FATAL) << "UNREACHABLE";
1971}
1972
1973Context* Thread::GetLongJumpContext() {
1974  Context* result = tlsPtr_.long_jump_context;
1975  if (result == nullptr) {
1976    result = Context::Create();
1977  } else {
1978    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1979    result->Reset();
1980  }
1981  return result;
1982}
1983
1984// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1985//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1986struct CurrentMethodVisitor FINAL : public StackVisitor {
1987  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1988      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1989      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1990        abort_on_error_(abort_on_error) {}
1991  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1992    mirror::ArtMethod* m = GetMethod();
1993    if (m->IsRuntimeMethod()) {
1994      // Continue if this is a runtime method.
1995      return true;
1996    }
1997    if (context_ != nullptr) {
1998      this_object_ = GetThisObject();
1999    }
2000    method_ = m;
2001    dex_pc_ = GetDexPc(abort_on_error_);
2002    return false;
2003  }
2004  mirror::Object* this_object_;
2005  mirror::ArtMethod* method_;
2006  uint32_t dex_pc_;
2007  const bool abort_on_error_;
2008};
2009
2010mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2011  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2012  visitor.WalkStack(false);
2013  if (dex_pc != nullptr) {
2014    *dex_pc = visitor.dex_pc_;
2015  }
2016  return visitor.method_;
2017}
2018
2019ThrowLocation Thread::GetCurrentLocationForThrow() {
2020  Context* context = GetLongJumpContext();
2021  CurrentMethodVisitor visitor(this, context, true);
2022  visitor.WalkStack(false);
2023  ReleaseLongJumpContext(context);
2024  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
2025}
2026
2027bool Thread::HoldsLock(mirror::Object* object) const {
2028  if (object == nullptr) {
2029    return false;
2030  }
2031  return object->GetLockOwnerThreadId() == GetThreadId();
2032}
2033
2034// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2035template <typename RootVisitor>
2036class ReferenceMapVisitor : public StackVisitor {
2037 public:
2038  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2039      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2040      : StackVisitor(thread, context), visitor_(visitor) {}
2041
2042  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2043    if (false) {
2044      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2045                << StringPrintf("@ PC:%04x", GetDexPc());
2046    }
2047    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2048    if (shadow_frame != nullptr) {
2049      VisitShadowFrame(shadow_frame);
2050    } else {
2051      VisitQuickFrame();
2052    }
2053    return true;
2054  }
2055
2056  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2057    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2058    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2059    mirror::ArtMethod* m = *method_addr;
2060    DCHECK(m != nullptr);
2061    size_t num_regs = shadow_frame->NumberOfVRegs();
2062    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2063      // handle scope for JNI or References for interpreter.
2064      for (size_t reg = 0; reg < num_regs; ++reg) {
2065        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2066        if (ref != nullptr) {
2067          mirror::Object* new_ref = ref;
2068          visitor_(&new_ref, reg, this);
2069          if (new_ref != ref) {
2070            shadow_frame->SetVRegReference(reg, new_ref);
2071          }
2072        }
2073      }
2074    } else {
2075      // Java method.
2076      // Portable path use DexGcMap and store in Method.native_gc_map_.
2077      const uint8_t* gc_map = m->GetNativeGcMap();
2078      CHECK(gc_map != nullptr) << PrettyMethod(m);
2079      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2080      uint32_t dex_pc = shadow_frame->GetDexPC();
2081      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2082      DCHECK(reg_bitmap != nullptr);
2083      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2084      for (size_t reg = 0; reg < num_regs; ++reg) {
2085        if (TestBitmap(reg, reg_bitmap)) {
2086          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2087          if (ref != nullptr) {
2088            mirror::Object* new_ref = ref;
2089            visitor_(&new_ref, reg, this);
2090            if (new_ref != ref) {
2091              shadow_frame->SetVRegReference(reg, new_ref);
2092            }
2093          }
2094        }
2095      }
2096    }
2097  }
2098
2099 private:
2100  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2101    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2102    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2103    mirror::ArtMethod* old_method = m;
2104    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2105    if (m != old_method) {
2106      cur_quick_frame->Assign(m);
2107    }
2108
2109    // Process register map (which native and runtime methods don't have)
2110    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2111      const uint8_t* native_gc_map = m->GetNativeGcMap();
2112      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2113      const DexFile::CodeItem* code_item = m->GetCodeItem();
2114      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2115      NativePcOffsetToReferenceMap map(native_gc_map);
2116      size_t num_regs = std::min(map.RegWidth() * 8,
2117                                 static_cast<size_t>(code_item->registers_size_));
2118      if (num_regs > 0) {
2119        Runtime* runtime = Runtime::Current();
2120        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2121        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2122        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2123        DCHECK(reg_bitmap != nullptr);
2124        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2125        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2126        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2127        // For all dex registers in the bitmap
2128        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2129        DCHECK(cur_quick_frame != nullptr);
2130        for (size_t reg = 0; reg < num_regs; ++reg) {
2131          // Does this register hold a reference?
2132          if (TestBitmap(reg, reg_bitmap)) {
2133            uint32_t vmap_offset;
2134            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2135              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2136                                                        kReferenceVReg);
2137              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2138              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2139              if (*ref_addr != nullptr) {
2140                visitor_(ref_addr, reg, this);
2141              }
2142            } else {
2143              StackReference<mirror::Object>* ref_addr =
2144                  reinterpret_cast<StackReference<mirror::Object>*>(
2145                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2146                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2147              mirror::Object* ref = ref_addr->AsMirrorPtr();
2148              if (ref != nullptr) {
2149                mirror::Object* new_ref = ref;
2150                visitor_(&new_ref, reg, this);
2151                if (ref != new_ref) {
2152                  ref_addr->Assign(new_ref);
2153                }
2154              }
2155            }
2156          }
2157        }
2158      }
2159    }
2160  }
2161
2162  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2163    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2164  }
2165
2166  // Visitor for when we visit a root.
2167  const RootVisitor& visitor_;
2168};
2169
2170class RootCallbackVisitor {
2171 public:
2172  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2173     : callback_(callback), arg_(arg), tid_(tid) {}
2174
2175  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2176    callback_(obj, arg_, tid_, kRootJavaFrame);
2177  }
2178
2179 private:
2180  RootCallback* const callback_;
2181  void* const arg_;
2182  const uint32_t tid_;
2183};
2184
2185void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2186  VerifyObject(class_loader_override);
2187  tlsPtr_.class_loader_override = class_loader_override;
2188}
2189
2190void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2191  uint32_t thread_id = GetThreadId();
2192  if (tlsPtr_.opeer != nullptr) {
2193    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2194  }
2195  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2196    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2197  }
2198  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2199  if (tlsPtr_.class_loader_override != nullptr) {
2200    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2201            kRootNativeStack);
2202  }
2203  if (tlsPtr_.monitor_enter_object != nullptr) {
2204    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2205  }
2206  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2207  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2208  HandleScopeVisitRoots(visitor, arg, thread_id);
2209  if (tlsPtr_.debug_invoke_req != nullptr) {
2210    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2211  }
2212  if (tlsPtr_.single_step_control != nullptr) {
2213    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2214  }
2215  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2216    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2217    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2218    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2219        shadow_frame = shadow_frame->GetLink()) {
2220      mapper.VisitShadowFrame(shadow_frame);
2221    }
2222  }
2223  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2224    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2225    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2226    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2227        shadow_frame != nullptr;
2228        shadow_frame = shadow_frame->GetLink()) {
2229      mapper.VisitShadowFrame(shadow_frame);
2230    }
2231  }
2232  // Visit roots on this thread's stack
2233  Context* context = GetLongJumpContext();
2234  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2235  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2236  mapper.WalkStack();
2237  ReleaseLongJumpContext(context);
2238  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2239    if (frame.this_object_ != nullptr) {
2240      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2241    }
2242    DCHECK(frame.method_ != nullptr);
2243    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2244  }
2245}
2246
2247static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2248                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2249  VerifyObject(*root);
2250}
2251
2252void Thread::VerifyStackImpl() {
2253  std::unique_ptr<Context> context(Context::Create());
2254  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2255  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2256  mapper.WalkStack();
2257}
2258
2259// Set the stack end to that to be used during a stack overflow
2260void Thread::SetStackEndForStackOverflow() {
2261  // During stack overflow we allow use of the full stack.
2262  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2263    // However, we seem to have already extended to use the full stack.
2264    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2265               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2266    DumpStack(LOG(ERROR));
2267    LOG(FATAL) << "Recursive stack overflow.";
2268  }
2269
2270  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2271
2272  // Remove the stack overflow protection if is it set up.
2273  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2274  if (implicit_stack_check) {
2275    if (!UnprotectStack()) {
2276      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2277    }
2278  }
2279}
2280
2281void Thread::SetTlab(byte* start, byte* end) {
2282  DCHECK_LE(start, end);
2283  tlsPtr_.thread_local_start = start;
2284  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2285  tlsPtr_.thread_local_end = end;
2286  tlsPtr_.thread_local_objects = 0;
2287}
2288
2289bool Thread::HasTlab() const {
2290  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2291  if (has_tlab) {
2292    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2293  } else {
2294    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2295  }
2296  return has_tlab;
2297}
2298
2299std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2300  thread.ShortDump(os);
2301  return os;
2302}
2303
2304void Thread::ProtectStack() {
2305  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2306  VLOG(threads) << "Protecting stack at " << pregion;
2307  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2308    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2309        "Reason: "
2310        << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2311  }
2312}
2313
2314bool Thread::UnprotectStack() {
2315  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2316  VLOG(threads) << "Unprotecting stack at " << pregion;
2317  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2318}
2319
2320
2321}  // namespace art
2322