utils.cc revision 8d31bbd3d6536de12bc20e3d29cfe03fe848f9da
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "utils.h"
18
19#include <pthread.h>
20#include <sys/stat.h>
21#include <sys/syscall.h>
22#include <sys/types.h>
23#include <unistd.h>
24
25#include "UniquePtr.h"
26#include "base/unix_file/fd_file.h"
27#include "dex_file-inl.h"
28#include "mirror/art_field-inl.h"
29#include "mirror/art_method-inl.h"
30#include "mirror/class-inl.h"
31#include "mirror/class_loader.h"
32#include "mirror/object-inl.h"
33#include "mirror/object_array-inl.h"
34#include "mirror/string.h"
35#include "object_utils.h"
36#include "os.h"
37#include "utf-inl.h"
38
39#if !defined(HAVE_POSIX_CLOCKS)
40#include <sys/time.h>
41#endif
42
43#if defined(HAVE_PRCTL)
44#include <sys/prctl.h>
45#endif
46
47#if defined(__APPLE__)
48#include "AvailabilityMacros.h"  // For MAC_OS_X_VERSION_MAX_ALLOWED
49#include <sys/syscall.h>
50#endif
51
52#include <corkscrew/backtrace.h>  // For DumpNativeStack.
53#include <corkscrew/demangle.h>  // For DumpNativeStack.
54
55#if defined(__linux__)
56#include <linux/unistd.h>
57#endif
58
59namespace art {
60
61pid_t GetTid() {
62#if defined(__APPLE__)
63  uint64_t owner;
64  CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__);  // Requires Mac OS 10.6
65  return owner;
66#else
67  // Neither bionic nor glibc exposes gettid(2).
68  return syscall(__NR_gettid);
69#endif
70}
71
72std::string GetThreadName(pid_t tid) {
73  std::string result;
74  if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
75    result.resize(result.size() - 1);  // Lose the trailing '\n'.
76  } else {
77    result = "<unknown>";
78  }
79  return result;
80}
81
82void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size) {
83#if defined(__APPLE__)
84  *stack_size = pthread_get_stacksize_np(thread);
85  void* stack_addr = pthread_get_stackaddr_np(thread);
86
87  // Check whether stack_addr is the base or end of the stack.
88  // (On Mac OS 10.7, it's the end.)
89  int stack_variable;
90  if (stack_addr > &stack_variable) {
91    *stack_base = reinterpret_cast<byte*>(stack_addr) - *stack_size;
92  } else {
93    *stack_base = stack_addr;
94  }
95#else
96  pthread_attr_t attributes;
97  CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
98  CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
99  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
100#endif
101}
102
103bool ReadFileToString(const std::string& file_name, std::string* result) {
104  UniquePtr<File> file(new File);
105  if (!file->Open(file_name, O_RDONLY)) {
106    return false;
107  }
108
109  std::vector<char> buf(8 * KB);
110  while (true) {
111    int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size()));
112    if (n == -1) {
113      return false;
114    }
115    if (n == 0) {
116      return true;
117    }
118    result->append(&buf[0], n);
119  }
120}
121
122std::string GetIsoDate() {
123  time_t now = time(NULL);
124  tm tmbuf;
125  tm* ptm = localtime_r(&now, &tmbuf);
126  return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
127      ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
128      ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
129}
130
131uint64_t MilliTime() {
132#if defined(HAVE_POSIX_CLOCKS)
133  timespec now;
134  clock_gettime(CLOCK_MONOTONIC, &now);
135  return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_nsec / 1000000LL;
136#else
137  timeval now;
138  gettimeofday(&now, NULL);
139  return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_usec / 1000LL;
140#endif
141}
142
143uint64_t MicroTime() {
144#if defined(HAVE_POSIX_CLOCKS)
145  timespec now;
146  clock_gettime(CLOCK_MONOTONIC, &now);
147  return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
148#else
149  timeval now;
150  gettimeofday(&now, NULL);
151  return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_usec;
152#endif
153}
154
155uint64_t NanoTime() {
156#if defined(HAVE_POSIX_CLOCKS)
157  timespec now;
158  clock_gettime(CLOCK_MONOTONIC, &now);
159  return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
160#else
161  timeval now;
162  gettimeofday(&now, NULL);
163  return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_usec * 1000LL;
164#endif
165}
166
167uint64_t ThreadCpuNanoTime() {
168#if defined(HAVE_POSIX_CLOCKS)
169  timespec now;
170  clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
171  return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
172#else
173  UNIMPLEMENTED(WARNING);
174  return -1;
175#endif
176}
177
178void NanoSleep(uint64_t ns) {
179  timespec tm;
180  tm.tv_sec = 0;
181  tm.tv_nsec = ns;
182  nanosleep(&tm, NULL);
183}
184
185void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
186  int64_t endSec;
187
188  if (absolute) {
189#if !defined(__APPLE__)
190    clock_gettime(clock, ts);
191#else
192    UNUSED(clock);
193    timeval tv;
194    gettimeofday(&tv, NULL);
195    ts->tv_sec = tv.tv_sec;
196    ts->tv_nsec = tv.tv_usec * 1000;
197#endif
198  } else {
199    ts->tv_sec = 0;
200    ts->tv_nsec = 0;
201  }
202  endSec = ts->tv_sec + ms / 1000;
203  if (UNLIKELY(endSec >= 0x7fffffff)) {
204    std::ostringstream ss;
205    LOG(INFO) << "Note: end time exceeds epoch: " << ss.str();
206    endSec = 0x7ffffffe;
207  }
208  ts->tv_sec = endSec;
209  ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
210
211  // Catch rollover.
212  if (ts->tv_nsec >= 1000000000L) {
213    ts->tv_sec++;
214    ts->tv_nsec -= 1000000000L;
215  }
216}
217
218std::string PrettyDescriptor(const mirror::String* java_descriptor) {
219  if (java_descriptor == NULL) {
220    return "null";
221  }
222  return PrettyDescriptor(java_descriptor->ToModifiedUtf8());
223}
224
225std::string PrettyDescriptor(const mirror::Class* klass) {
226  if (klass == NULL) {
227    return "null";
228  }
229  return PrettyDescriptor(ClassHelper(klass).GetDescriptor());
230}
231
232std::string PrettyDescriptor(const std::string& descriptor) {
233  // Count the number of '['s to get the dimensionality.
234  const char* c = descriptor.c_str();
235  size_t dim = 0;
236  while (*c == '[') {
237    dim++;
238    c++;
239  }
240
241  // Reference or primitive?
242  if (*c == 'L') {
243    // "[[La/b/C;" -> "a.b.C[][]".
244    c++;  // Skip the 'L'.
245  } else {
246    // "[[B" -> "byte[][]".
247    // To make life easier, we make primitives look like unqualified
248    // reference types.
249    switch (*c) {
250    case 'B': c = "byte;"; break;
251    case 'C': c = "char;"; break;
252    case 'D': c = "double;"; break;
253    case 'F': c = "float;"; break;
254    case 'I': c = "int;"; break;
255    case 'J': c = "long;"; break;
256    case 'S': c = "short;"; break;
257    case 'Z': c = "boolean;"; break;
258    case 'V': c = "void;"; break;  // Used when decoding return types.
259    default: return descriptor;
260    }
261  }
262
263  // At this point, 'c' is a string of the form "fully/qualified/Type;"
264  // or "primitive;". Rewrite the type with '.' instead of '/':
265  std::string result;
266  const char* p = c;
267  while (*p != ';') {
268    char ch = *p++;
269    if (ch == '/') {
270      ch = '.';
271    }
272    result.push_back(ch);
273  }
274  // ...and replace the semicolon with 'dim' "[]" pairs:
275  while (dim--) {
276    result += "[]";
277  }
278  return result;
279}
280
281std::string PrettyDescriptor(Primitive::Type type) {
282  std::string descriptor_string(Primitive::Descriptor(type));
283  return PrettyDescriptor(descriptor_string);
284}
285
286std::string PrettyField(const mirror::ArtField* f, bool with_type) {
287  if (f == NULL) {
288    return "null";
289  }
290  FieldHelper fh(f);
291  std::string result;
292  if (with_type) {
293    result += PrettyDescriptor(fh.GetTypeDescriptor());
294    result += ' ';
295  }
296  result += PrettyDescriptor(fh.GetDeclaringClassDescriptor());
297  result += '.';
298  result += fh.GetName();
299  return result;
300}
301
302std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
303  if (field_idx >= dex_file.NumFieldIds()) {
304    return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
305  }
306  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
307  std::string result;
308  if (with_type) {
309    result += dex_file.GetFieldTypeDescriptor(field_id);
310    result += ' ';
311  }
312  result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
313  result += '.';
314  result += dex_file.GetFieldName(field_id);
315  return result;
316}
317
318std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
319  if (type_idx >= dex_file.NumTypeIds()) {
320    return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
321  }
322  const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
323  return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
324}
325
326std::string PrettyArguments(const char* signature) {
327  std::string result;
328  result += '(';
329  CHECK_EQ(*signature, '(');
330  ++signature;  // Skip the '('.
331  while (*signature != ')') {
332    size_t argument_length = 0;
333    while (signature[argument_length] == '[') {
334      ++argument_length;
335    }
336    if (signature[argument_length] == 'L') {
337      argument_length = (strchr(signature, ';') - signature + 1);
338    } else {
339      ++argument_length;
340    }
341    std::string argument_descriptor(signature, argument_length);
342    result += PrettyDescriptor(argument_descriptor);
343    if (signature[argument_length] != ')') {
344      result += ", ";
345    }
346    signature += argument_length;
347  }
348  CHECK_EQ(*signature, ')');
349  ++signature;  // Skip the ')'.
350  result += ')';
351  return result;
352}
353
354std::string PrettyReturnType(const char* signature) {
355  const char* return_type = strchr(signature, ')');
356  CHECK(return_type != NULL);
357  ++return_type;  // Skip ')'.
358  return PrettyDescriptor(return_type);
359}
360
361std::string PrettyMethod(const mirror::ArtMethod* m, bool with_signature) {
362  if (m == NULL) {
363    return "null";
364  }
365  MethodHelper mh(m);
366  std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor()));
367  result += '.';
368  result += mh.GetName();
369  if (with_signature) {
370    const Signature signature = mh.GetSignature();
371    std::string sig_as_string(signature.ToString());
372    if (signature == Signature::NoSignature()) {
373      return result + sig_as_string;
374    }
375    result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
376        PrettyArguments(sig_as_string.c_str());
377  }
378  return result;
379}
380
381std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
382  if (method_idx >= dex_file.NumMethodIds()) {
383    return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
384  }
385  const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
386  std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
387  result += '.';
388  result += dex_file.GetMethodName(method_id);
389  if (with_signature) {
390    const Signature signature = dex_file.GetMethodSignature(method_id);
391    std::string sig_as_string(signature.ToString());
392    if (signature == Signature::NoSignature()) {
393      return result + sig_as_string;
394    }
395    result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
396        PrettyArguments(sig_as_string.c_str());
397  }
398  return result;
399}
400
401std::string PrettyTypeOf(const mirror::Object* obj) {
402  if (obj == NULL) {
403    return "null";
404  }
405  if (obj->GetClass() == NULL) {
406    return "(raw)";
407  }
408  ClassHelper kh(obj->GetClass());
409  std::string result(PrettyDescriptor(kh.GetDescriptor()));
410  if (obj->IsClass()) {
411    kh.ChangeClass(obj->AsClass());
412    result += "<" + PrettyDescriptor(kh.GetDescriptor()) + ">";
413  }
414  return result;
415}
416
417std::string PrettyClass(const mirror::Class* c) {
418  if (c == NULL) {
419    return "null";
420  }
421  std::string result;
422  result += "java.lang.Class<";
423  result += PrettyDescriptor(c);
424  result += ">";
425  return result;
426}
427
428std::string PrettyClassAndClassLoader(const mirror::Class* c) {
429  if (c == NULL) {
430    return "null";
431  }
432  std::string result;
433  result += "java.lang.Class<";
434  result += PrettyDescriptor(c);
435  result += ",";
436  result += PrettyTypeOf(c->GetClassLoader());
437  // TODO: add an identifying hash value for the loader
438  result += ">";
439  return result;
440}
441
442std::string PrettySize(size_t byte_count) {
443  // The byte thresholds at which we display amounts.  A byte count is displayed
444  // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
445  static const size_t kUnitThresholds[] = {
446    0,              // B up to...
447    3*1024,         // KB up to...
448    2*1024*1024,    // MB up to...
449    1024*1024*1024  // GB from here.
450  };
451  static const size_t kBytesPerUnit[] = { 1, KB, MB, GB };
452  static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
453
454  int i = arraysize(kUnitThresholds);
455  while (--i > 0) {
456    if (byte_count >= kUnitThresholds[i]) {
457      break;
458    }
459  }
460
461  return StringPrintf("%zd%s", byte_count / kBytesPerUnit[i], kUnitStrings[i]);
462}
463
464std::string PrettyDuration(uint64_t nano_duration) {
465  if (nano_duration == 0) {
466    return "0";
467  } else {
468    return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration));
469  }
470}
471
472TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
473  const uint64_t one_sec = 1000 * 1000 * 1000;
474  const uint64_t one_ms  = 1000 * 1000;
475  const uint64_t one_us  = 1000;
476  if (nano_duration >= one_sec) {
477    return kTimeUnitSecond;
478  } else if (nano_duration >= one_ms) {
479    return kTimeUnitMillisecond;
480  } else if (nano_duration >= one_us) {
481    return kTimeUnitMicrosecond;
482  } else {
483    return kTimeUnitNanosecond;
484  }
485}
486
487uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
488  const uint64_t one_sec = 1000 * 1000 * 1000;
489  const uint64_t one_ms  = 1000 * 1000;
490  const uint64_t one_us  = 1000;
491
492  switch (time_unit) {
493    case kTimeUnitSecond:
494      return one_sec;
495    case kTimeUnitMillisecond:
496      return one_ms;
497    case kTimeUnitMicrosecond:
498      return one_us;
499    case kTimeUnitNanosecond:
500      return 1;
501  }
502  return 0;
503}
504
505std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit) {
506  const char* unit = NULL;
507  uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
508  uint32_t zero_fill = 1;
509  switch (time_unit) {
510    case kTimeUnitSecond:
511      unit = "s";
512      zero_fill = 9;
513      break;
514    case kTimeUnitMillisecond:
515      unit = "ms";
516      zero_fill = 6;
517      break;
518    case kTimeUnitMicrosecond:
519      unit = "us";
520      zero_fill = 3;
521      break;
522    case kTimeUnitNanosecond:
523      unit = "ns";
524      zero_fill = 0;
525      break;
526  }
527
528  uint64_t whole_part = nano_duration / divisor;
529  uint64_t fractional_part = nano_duration % divisor;
530  if (fractional_part == 0) {
531    return StringPrintf("%llu%s", whole_part, unit);
532  } else {
533    while ((fractional_part % 1000) == 0) {
534      zero_fill -= 3;
535      fractional_part /= 1000;
536    }
537    if (zero_fill == 3) {
538      return StringPrintf("%llu.%03llu%s", whole_part, fractional_part, unit);
539    } else if (zero_fill == 6) {
540      return StringPrintf("%llu.%06llu%s", whole_part, fractional_part, unit);
541    } else {
542      return StringPrintf("%llu.%09llu%s", whole_part, fractional_part, unit);
543    }
544  }
545}
546
547std::string PrintableString(const std::string& utf) {
548  std::string result;
549  result += '"';
550  const char* p = utf.c_str();
551  size_t char_count = CountModifiedUtf8Chars(p);
552  for (size_t i = 0; i < char_count; ++i) {
553    uint16_t ch = GetUtf16FromUtf8(&p);
554    if (ch == '\\') {
555      result += "\\\\";
556    } else if (ch == '\n') {
557      result += "\\n";
558    } else if (ch == '\r') {
559      result += "\\r";
560    } else if (ch == '\t') {
561      result += "\\t";
562    } else if (NeedsEscaping(ch)) {
563      StringAppendF(&result, "\\u%04x", ch);
564    } else {
565      result += ch;
566    }
567  }
568  result += '"';
569  return result;
570}
571
572// See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
573std::string MangleForJni(const std::string& s) {
574  std::string result;
575  size_t char_count = CountModifiedUtf8Chars(s.c_str());
576  const char* cp = &s[0];
577  for (size_t i = 0; i < char_count; ++i) {
578    uint16_t ch = GetUtf16FromUtf8(&cp);
579    if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
580      result.push_back(ch);
581    } else if (ch == '.' || ch == '/') {
582      result += "_";
583    } else if (ch == '_') {
584      result += "_1";
585    } else if (ch == ';') {
586      result += "_2";
587    } else if (ch == '[') {
588      result += "_3";
589    } else {
590      StringAppendF(&result, "_0%04x", ch);
591    }
592  }
593  return result;
594}
595
596std::string DotToDescriptor(const char* class_name) {
597  std::string descriptor(class_name);
598  std::replace(descriptor.begin(), descriptor.end(), '.', '/');
599  if (descriptor.length() > 0 && descriptor[0] != '[') {
600    descriptor = "L" + descriptor + ";";
601  }
602  return descriptor;
603}
604
605std::string DescriptorToDot(const char* descriptor) {
606  size_t length = strlen(descriptor);
607  if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
608    std::string result(descriptor + 1, length - 2);
609    std::replace(result.begin(), result.end(), '/', '.');
610    return result;
611  }
612  return descriptor;
613}
614
615std::string DescriptorToName(const char* descriptor) {
616  size_t length = strlen(descriptor);
617  if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
618    std::string result(descriptor + 1, length - 2);
619    return result;
620  }
621  return descriptor;
622}
623
624std::string JniShortName(const mirror::ArtMethod* m) {
625  MethodHelper mh(m);
626  std::string class_name(mh.GetDeclaringClassDescriptor());
627  // Remove the leading 'L' and trailing ';'...
628  CHECK_EQ(class_name[0], 'L') << class_name;
629  CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
630  class_name.erase(0, 1);
631  class_name.erase(class_name.size() - 1, 1);
632
633  std::string method_name(mh.GetName());
634
635  std::string short_name;
636  short_name += "Java_";
637  short_name += MangleForJni(class_name);
638  short_name += "_";
639  short_name += MangleForJni(method_name);
640  return short_name;
641}
642
643std::string JniLongName(const mirror::ArtMethod* m) {
644  std::string long_name;
645  long_name += JniShortName(m);
646  long_name += "__";
647
648  std::string signature(MethodHelper(m).GetSignature().ToString());
649  signature.erase(0, 1);
650  signature.erase(signature.begin() + signature.find(')'), signature.end());
651
652  long_name += MangleForJni(signature);
653
654  return long_name;
655}
656
657// Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
658uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
659  0x00000000,  // 00..1f low control characters; nothing valid
660  0x03ff2010,  // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
661  0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
662  0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
663};
664
665// Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
666bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
667  /*
668   * It's a multibyte encoded character. Decode it and analyze. We
669   * accept anything that isn't (a) an improperly encoded low value,
670   * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
671   * control character, or (e) a high space, layout, or special
672   * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
673   * U+fff0..U+ffff). This is all specified in the dex format
674   * document.
675   */
676
677  uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
678
679  // Perform follow-up tests based on the high 8 bits.
680  switch (utf16 >> 8) {
681  case 0x00:
682    // It's only valid if it's above the ISO-8859-1 high space (0xa0).
683    return (utf16 > 0x00a0);
684  case 0xd8:
685  case 0xd9:
686  case 0xda:
687  case 0xdb:
688    // It's a leading surrogate. Check to see that a trailing
689    // surrogate follows.
690    utf16 = GetUtf16FromUtf8(pUtf8Ptr);
691    return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
692  case 0xdc:
693  case 0xdd:
694  case 0xde:
695  case 0xdf:
696    // It's a trailing surrogate, which is not valid at this point.
697    return false;
698  case 0x20:
699  case 0xff:
700    // It's in the range that has spaces, controls, and specials.
701    switch (utf16 & 0xfff8) {
702    case 0x2000:
703    case 0x2008:
704    case 0x2028:
705    case 0xfff0:
706    case 0xfff8:
707      return false;
708    }
709    break;
710  }
711  return true;
712}
713
714/* Return whether the pointed-at modified-UTF-8 encoded character is
715 * valid as part of a member name, updating the pointer to point past
716 * the consumed character. This will consume two encoded UTF-16 code
717 * points if the character is encoded as a surrogate pair. Also, if
718 * this function returns false, then the given pointer may only have
719 * been partially advanced.
720 */
721static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
722  uint8_t c = (uint8_t) **pUtf8Ptr;
723  if (LIKELY(c <= 0x7f)) {
724    // It's low-ascii, so check the table.
725    uint32_t wordIdx = c >> 5;
726    uint32_t bitIdx = c & 0x1f;
727    (*pUtf8Ptr)++;
728    return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
729  }
730
731  // It's a multibyte encoded character. Call a non-inline function
732  // for the heavy lifting.
733  return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
734}
735
736bool IsValidMemberName(const char* s) {
737  bool angle_name = false;
738
739  switch (*s) {
740    case '\0':
741      // The empty string is not a valid name.
742      return false;
743    case '<':
744      angle_name = true;
745      s++;
746      break;
747  }
748
749  while (true) {
750    switch (*s) {
751      case '\0':
752        return !angle_name;
753      case '>':
754        return angle_name && s[1] == '\0';
755    }
756
757    if (!IsValidPartOfMemberNameUtf8(&s)) {
758      return false;
759    }
760  }
761}
762
763enum ClassNameType { kName, kDescriptor };
764static bool IsValidClassName(const char* s, ClassNameType type, char separator) {
765  int arrayCount = 0;
766  while (*s == '[') {
767    arrayCount++;
768    s++;
769  }
770
771  if (arrayCount > 255) {
772    // Arrays may have no more than 255 dimensions.
773    return false;
774  }
775
776  if (arrayCount != 0) {
777    /*
778     * If we're looking at an array of some sort, then it doesn't
779     * matter if what is being asked for is a class name; the
780     * format looks the same as a type descriptor in that case, so
781     * treat it as such.
782     */
783    type = kDescriptor;
784  }
785
786  if (type == kDescriptor) {
787    /*
788     * We are looking for a descriptor. Either validate it as a
789     * single-character primitive type, or continue on to check the
790     * embedded class name (bracketed by "L" and ";").
791     */
792    switch (*(s++)) {
793    case 'B':
794    case 'C':
795    case 'D':
796    case 'F':
797    case 'I':
798    case 'J':
799    case 'S':
800    case 'Z':
801      // These are all single-character descriptors for primitive types.
802      return (*s == '\0');
803    case 'V':
804      // Non-array void is valid, but you can't have an array of void.
805      return (arrayCount == 0) && (*s == '\0');
806    case 'L':
807      // Class name: Break out and continue below.
808      break;
809    default:
810      // Oddball descriptor character.
811      return false;
812    }
813  }
814
815  /*
816   * We just consumed the 'L' that introduces a class name as part
817   * of a type descriptor, or we are looking for an unadorned class
818   * name.
819   */
820
821  bool sepOrFirst = true;  // first character or just encountered a separator.
822  for (;;) {
823    uint8_t c = (uint8_t) *s;
824    switch (c) {
825    case '\0':
826      /*
827       * Premature end for a type descriptor, but valid for
828       * a class name as long as we haven't encountered an
829       * empty component (including the degenerate case of
830       * the empty string "").
831       */
832      return (type == kName) && !sepOrFirst;
833    case ';':
834      /*
835       * Invalid character for a class name, but the
836       * legitimate end of a type descriptor. In the latter
837       * case, make sure that this is the end of the string
838       * and that it doesn't end with an empty component
839       * (including the degenerate case of "L;").
840       */
841      return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
842    case '/':
843    case '.':
844      if (c != separator) {
845        // The wrong separator character.
846        return false;
847      }
848      if (sepOrFirst) {
849        // Separator at start or two separators in a row.
850        return false;
851      }
852      sepOrFirst = true;
853      s++;
854      break;
855    default:
856      if (!IsValidPartOfMemberNameUtf8(&s)) {
857        return false;
858      }
859      sepOrFirst = false;
860      break;
861    }
862  }
863}
864
865bool IsValidBinaryClassName(const char* s) {
866  return IsValidClassName(s, kName, '.');
867}
868
869bool IsValidJniClassName(const char* s) {
870  return IsValidClassName(s, kName, '/');
871}
872
873bool IsValidDescriptor(const char* s) {
874  return IsValidClassName(s, kDescriptor, '/');
875}
876
877void Split(const std::string& s, char separator, std::vector<std::string>& result) {
878  const char* p = s.data();
879  const char* end = p + s.size();
880  while (p != end) {
881    if (*p == separator) {
882      ++p;
883    } else {
884      const char* start = p;
885      while (++p != end && *p != separator) {
886        // Skip to the next occurrence of the separator.
887      }
888      result.push_back(std::string(start, p - start));
889    }
890  }
891}
892
893template <typename StringT>
894std::string Join(std::vector<StringT>& strings, char separator) {
895  if (strings.empty()) {
896    return "";
897  }
898
899  std::string result(strings[0]);
900  for (size_t i = 1; i < strings.size(); ++i) {
901    result += separator;
902    result += strings[i];
903  }
904  return result;
905}
906
907// Explicit instantiations.
908template std::string Join<std::string>(std::vector<std::string>& strings, char separator);
909template std::string Join<const char*>(std::vector<const char*>& strings, char separator);
910template std::string Join<char*>(std::vector<char*>& strings, char separator);
911
912bool StartsWith(const std::string& s, const char* prefix) {
913  return s.compare(0, strlen(prefix), prefix) == 0;
914}
915
916bool EndsWith(const std::string& s, const char* suffix) {
917  size_t suffix_length = strlen(suffix);
918  size_t string_length = s.size();
919  if (suffix_length > string_length) {
920    return false;
921  }
922  size_t offset = string_length - suffix_length;
923  return s.compare(offset, suffix_length, suffix) == 0;
924}
925
926void SetThreadName(const char* thread_name) {
927  int hasAt = 0;
928  int hasDot = 0;
929  const char* s = thread_name;
930  while (*s) {
931    if (*s == '.') {
932      hasDot = 1;
933    } else if (*s == '@') {
934      hasAt = 1;
935    }
936    s++;
937  }
938  int len = s - thread_name;
939  if (len < 15 || hasAt || !hasDot) {
940    s = thread_name;
941  } else {
942    s = thread_name + len - 15;
943  }
944#if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
945  // pthread_setname_np fails rather than truncating long strings.
946  char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
947  strncpy(buf, s, sizeof(buf)-1);
948  buf[sizeof(buf)-1] = '\0';
949  errno = pthread_setname_np(pthread_self(), buf);
950  if (errno != 0) {
951    PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
952  }
953#elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
954  pthread_setname_np(thread_name);
955#elif defined(HAVE_PRCTL)
956  prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);  // NOLINT (unsigned long)
957#else
958  UNIMPLEMENTED(WARNING) << thread_name;
959#endif
960}
961
962void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
963  *utime = *stime = *task_cpu = 0;
964  std::string stats;
965  if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
966    return;
967  }
968  // Skip the command, which may contain spaces.
969  stats = stats.substr(stats.find(')') + 2);
970  // Extract the three fields we care about.
971  std::vector<std::string> fields;
972  Split(stats, ' ', fields);
973  *state = fields[0][0];
974  *utime = strtoull(fields[11].c_str(), NULL, 10);
975  *stime = strtoull(fields[12].c_str(), NULL, 10);
976  *task_cpu = strtoull(fields[36].c_str(), NULL, 10);
977}
978
979std::string GetSchedulerGroupName(pid_t tid) {
980  // /proc/<pid>/cgroup looks like this:
981  // 2:devices:/
982  // 1:cpuacct,cpu:/
983  // We want the third field from the line whose second field contains the "cpu" token.
984  std::string cgroup_file;
985  if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
986    return "";
987  }
988  std::vector<std::string> cgroup_lines;
989  Split(cgroup_file, '\n', cgroup_lines);
990  for (size_t i = 0; i < cgroup_lines.size(); ++i) {
991    std::vector<std::string> cgroup_fields;
992    Split(cgroup_lines[i], ':', cgroup_fields);
993    std::vector<std::string> cgroups;
994    Split(cgroup_fields[1], ',', cgroups);
995    for (size_t i = 0; i < cgroups.size(); ++i) {
996      if (cgroups[i] == "cpu") {
997        return cgroup_fields[2].substr(1);  // Skip the leading slash.
998      }
999    }
1000  }
1001  return "";
1002}
1003
1004static const char* CleanMapName(const backtrace_symbol_t* symbol) {
1005  const char* map_name = symbol->map_name;
1006  if (map_name == NULL) {
1007    map_name = "???";
1008  }
1009  // Turn "/usr/local/google/home/enh/clean-dalvik-dev/out/host/linux-x86/lib/libartd.so"
1010  // into "libartd.so".
1011  const char* last_slash = strrchr(map_name, '/');
1012  if (last_slash != NULL) {
1013    map_name = last_slash + 1;
1014  }
1015  return map_name;
1016}
1017
1018static void FindSymbolInElf(const backtrace_frame_t* frame, const backtrace_symbol_t* symbol,
1019                            std::string& symbol_name, uint32_t& pc_offset) {
1020  symbol_table_t* symbol_table = NULL;
1021  if (symbol->map_name != NULL) {
1022    symbol_table = load_symbol_table(symbol->map_name);
1023  }
1024  const symbol_t* elf_symbol = NULL;
1025  bool was_relative = true;
1026  if (symbol_table != NULL) {
1027    elf_symbol = find_symbol(symbol_table, symbol->relative_pc);
1028    if (elf_symbol == NULL) {
1029      elf_symbol = find_symbol(symbol_table, frame->absolute_pc);
1030      was_relative = false;
1031    }
1032  }
1033  if (elf_symbol != NULL) {
1034    const char* demangled_symbol_name = demangle_symbol_name(elf_symbol->name);
1035    if (demangled_symbol_name != NULL) {
1036      symbol_name = demangled_symbol_name;
1037    } else {
1038      symbol_name = elf_symbol->name;
1039    }
1040
1041    // TODO: is it a libcorkscrew bug that we have to do this?
1042    pc_offset = (was_relative ? symbol->relative_pc : frame->absolute_pc) - elf_symbol->start;
1043  } else {
1044    symbol_name = "???";
1045  }
1046  free_symbol_table(symbol_table);
1047}
1048
1049void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1050  // Ensure libcorkscrew doesn't use a stale cache of /proc/self/maps.
1051  flush_my_map_info_list();
1052
1053  const size_t MAX_DEPTH = 32;
1054  UniquePtr<backtrace_frame_t[]> frames(new backtrace_frame_t[MAX_DEPTH]);
1055  size_t ignore_count = 2;  // Don't include unwind_backtrace_thread or DumpNativeStack.
1056  ssize_t frame_count = unwind_backtrace_thread(tid, frames.get(), ignore_count, MAX_DEPTH);
1057  if (frame_count == -1) {
1058    os << prefix << "(unwind_backtrace_thread failed for thread " << tid << ")\n";
1059    return;
1060  } else if (frame_count == 0) {
1061    os << prefix << "(no native stack frames for thread " << tid << ")\n";
1062    return;
1063  }
1064
1065  UniquePtr<backtrace_symbol_t[]> backtrace_symbols(new backtrace_symbol_t[frame_count]);
1066  get_backtrace_symbols(frames.get(), frame_count, backtrace_symbols.get());
1067
1068  for (size_t i = 0; i < static_cast<size_t>(frame_count); ++i) {
1069    const backtrace_frame_t* frame = &frames[i];
1070    const backtrace_symbol_t* symbol = &backtrace_symbols[i];
1071
1072    // We produce output like this:
1073    // ]    #00 unwind_backtrace_thread+536 [0x55d75bb8] (libcorkscrew.so)
1074
1075    std::string symbol_name;
1076    uint32_t pc_offset = 0;
1077    if (symbol->demangled_name != NULL) {
1078      symbol_name = symbol->demangled_name;
1079      pc_offset = symbol->relative_pc - symbol->relative_symbol_addr;
1080    } else if (symbol->symbol_name != NULL) {
1081      symbol_name = symbol->symbol_name;
1082      pc_offset = symbol->relative_pc - symbol->relative_symbol_addr;
1083    } else {
1084      // dladdr(3) didn't find a symbol; maybe it's static? Look in the ELF file...
1085      FindSymbolInElf(frame, symbol, symbol_name, pc_offset);
1086    }
1087
1088    os << prefix;
1089    if (include_count) {
1090      os << StringPrintf("#%02zd ", i);
1091    }
1092    os << symbol_name;
1093    if (pc_offset != 0) {
1094      os << "+" << pc_offset;
1095    }
1096    os << StringPrintf(" [%p] (%s)\n",
1097                       reinterpret_cast<void*>(frame->absolute_pc), CleanMapName(symbol));
1098  }
1099
1100  free_backtrace_symbols(backtrace_symbols.get(), frame_count);
1101}
1102
1103#if defined(__APPLE__)
1104
1105// TODO: is there any way to get the kernel stack on Mac OS?
1106void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
1107
1108#else
1109
1110void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1111  if (tid == GetTid()) {
1112    // There's no point showing that we're reading our stack out of /proc!
1113    return;
1114  }
1115
1116  std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
1117  std::string kernel_stack;
1118  if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
1119    os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
1120    return;
1121  }
1122
1123  std::vector<std::string> kernel_stack_frames;
1124  Split(kernel_stack, '\n', kernel_stack_frames);
1125  // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
1126  // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
1127  kernel_stack_frames.pop_back();
1128  for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
1129    // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110" into "futex_wait_queue_me+0xcd/0x110".
1130    const char* text = kernel_stack_frames[i].c_str();
1131    const char* close_bracket = strchr(text, ']');
1132    if (close_bracket != NULL) {
1133      text = close_bracket + 2;
1134    }
1135    os << prefix;
1136    if (include_count) {
1137      os << StringPrintf("#%02zd ", i);
1138    }
1139    os << text << "\n";
1140  }
1141}
1142
1143#endif
1144
1145const char* GetAndroidRoot() {
1146  const char* android_root = getenv("ANDROID_ROOT");
1147  if (android_root == NULL) {
1148    if (OS::DirectoryExists("/system")) {
1149      android_root = "/system";
1150    } else {
1151      LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
1152      return "";
1153    }
1154  }
1155  if (!OS::DirectoryExists(android_root)) {
1156    LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
1157    return "";
1158  }
1159  return android_root;
1160}
1161
1162const char* GetAndroidData() {
1163  const char* android_data = getenv("ANDROID_DATA");
1164  if (android_data == NULL) {
1165    if (OS::DirectoryExists("/data")) {
1166      android_data = "/data";
1167    } else {
1168      LOG(FATAL) << "ANDROID_DATA not set and /data does not exist";
1169      return "";
1170    }
1171  }
1172  if (!OS::DirectoryExists(android_data)) {
1173    LOG(FATAL) << "Failed to find ANDROID_DATA directory " << android_data;
1174    return "";
1175  }
1176  return android_data;
1177}
1178
1179std::string GetDalvikCacheOrDie(const char* android_data) {
1180  std::string dalvik_cache(StringPrintf("%s/dalvik-cache", android_data));
1181
1182  if (!OS::DirectoryExists(dalvik_cache.c_str())) {
1183    if (StartsWith(dalvik_cache, "/tmp/")) {
1184      int result = mkdir(dalvik_cache.c_str(), 0700);
1185      if (result != 0) {
1186        LOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
1187        return "";
1188      }
1189    } else {
1190      LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache;
1191      return "";
1192    }
1193  }
1194  return dalvik_cache;
1195}
1196
1197std::string GetDalvikCacheFilenameOrDie(const char* location) {
1198  std::string dalvik_cache(GetDalvikCacheOrDie(GetAndroidData()));
1199  if (location[0] != '/') {
1200    LOG(FATAL) << "Expected path in location to be absolute: "<< location;
1201  }
1202  std::string cache_file(&location[1]);  // skip leading slash
1203  if (!EndsWith(location, ".dex") && !EndsWith(location, ".art")) {
1204    cache_file += "/";
1205    cache_file += DexFile::kClassesDex;
1206  }
1207  std::replace(cache_file.begin(), cache_file.end(), '/', '@');
1208  return dalvik_cache + "/" + cache_file;
1209}
1210
1211bool IsZipMagic(uint32_t magic) {
1212  return (('P' == ((magic >> 0) & 0xff)) &&
1213          ('K' == ((magic >> 8) & 0xff)));
1214}
1215
1216bool IsDexMagic(uint32_t magic) {
1217  return DexFile::IsMagicValid(reinterpret_cast<const byte*>(&magic));
1218}
1219
1220bool IsOatMagic(uint32_t magic) {
1221  return (memcmp(reinterpret_cast<const byte*>(magic),
1222                 OatHeader::kOatMagic,
1223                 sizeof(OatHeader::kOatMagic)) == 0);
1224}
1225
1226}  // namespace art
1227