1/*
2  This is a version (aka dlmalloc) of malloc/free/realloc written by
3  Doug Lea and released to the public domain, as explained at
4  http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
5  comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.6 Wed Aug 29 06:57:58 2012  Doug Lea
8   Note: There may be an updated version of this malloc obtainable at
9           ftp://gee.cs.oswego.edu/pub/misc/malloc.c
10         Check before installing!
11
12* Quickstart
13
14  This library is all in one file to simplify the most common usage:
15  ftp it, compile it (-O3), and link it into another program. All of
16  the compile-time options default to reasonable values for use on
17  most platforms.  You might later want to step through various
18  compile-time and dynamic tuning options.
19
20  For convenience, an include file for code using this malloc is at:
21     ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
22  You don't really need this .h file unless you call functions not
23  defined in your system include files.  The .h file contains only the
24  excerpts from this file needed for using this malloc on ANSI C/C++
25  systems, so long as you haven't changed compile-time options about
26  naming and tuning parameters.  If you do, then you can create your
27  own malloc.h that does include all settings by cutting at the point
28  indicated below. Note that you may already by default be using a C
29  library containing a malloc that is based on some version of this
30  malloc (for example in linux). You might still want to use the one
31  in this file to customize settings or to avoid overheads associated
32  with library versions.
33
34* Vital statistics:
35
36  Supported pointer/size_t representation:       4 or 8 bytes
37       size_t MUST be an unsigned type of the same width as
38       pointers. (If you are using an ancient system that declares
39       size_t as a signed type, or need it to be a different width
40       than pointers, you can use a previous release of this malloc
41       (e.g. 2.7.2) supporting these.)
42
43  Alignment:                                     8 bytes (minimum)
44       This suffices for nearly all current machines and C compilers.
45       However, you can define MALLOC_ALIGNMENT to be wider than this
46       if necessary (up to 128bytes), at the expense of using more space.
47
48  Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes)
49                                          8 or 16 bytes (if 8byte sizes)
50       Each malloced chunk has a hidden word of overhead holding size
51       and status information, and additional cross-check word
52       if FOOTERS is defined.
53
54  Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead)
55                          8-byte ptrs:  32 bytes    (including overhead)
56
57       Even a request for zero bytes (i.e., malloc(0)) returns a
58       pointer to something of the minimum allocatable size.
59       The maximum overhead wastage (i.e., number of extra bytes
60       allocated than were requested in malloc) is less than or equal
61       to the minimum size, except for requests >= mmap_threshold that
62       are serviced via mmap(), where the worst case wastage is about
63       32 bytes plus the remainder from a system page (the minimal
64       mmap unit); typically 4096 or 8192 bytes.
65
66  Security: static-safe; optionally more or less
67       The "security" of malloc refers to the ability of malicious
68       code to accentuate the effects of errors (for example, freeing
69       space that is not currently malloc'ed or overwriting past the
70       ends of chunks) in code that calls malloc.  This malloc
71       guarantees not to modify any memory locations below the base of
72       heap, i.e., static variables, even in the presence of usage
73       errors.  The routines additionally detect most improper frees
74       and reallocs.  All this holds as long as the static bookkeeping
75       for malloc itself is not corrupted by some other means.  This
76       is only one aspect of security -- these checks do not, and
77       cannot, detect all possible programming errors.
78
79       If FOOTERS is defined nonzero, then each allocated chunk
80       carries an additional check word to verify that it was malloced
81       from its space.  These check words are the same within each
82       execution of a program using malloc, but differ across
83       executions, so externally crafted fake chunks cannot be
84       freed. This improves security by rejecting frees/reallocs that
85       could corrupt heap memory, in addition to the checks preventing
86       writes to statics that are always on.  This may further improve
87       security at the expense of time and space overhead.  (Note that
88       FOOTERS may also be worth using with MSPACES.)
89
90       By default detected errors cause the program to abort (calling
91       "abort()"). You can override this to instead proceed past
92       errors by defining PROCEED_ON_ERROR.  In this case, a bad free
93       has no effect, and a malloc that encounters a bad address
94       caused by user overwrites will ignore the bad address by
95       dropping pointers and indices to all known memory. This may
96       be appropriate for programs that should continue if at all
97       possible in the face of programming errors, although they may
98       run out of memory because dropped memory is never reclaimed.
99
100       If you don't like either of these options, you can define
101       CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
102       else. And if if you are sure that your program using malloc has
103       no errors or vulnerabilities, you can define INSECURE to 1,
104       which might (or might not) provide a small performance improvement.
105
106       It is also possible to limit the maximum total allocatable
107       space, using malloc_set_footprint_limit. This is not
108       designed as a security feature in itself (calls to set limits
109       are not screened or privileged), but may be useful as one
110       aspect of a secure implementation.
111
112  Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
113       When USE_LOCKS is defined, each public call to malloc, free,
114       etc is surrounded with a lock. By default, this uses a plain
115       pthread mutex, win32 critical section, or a spin-lock if if
116       available for the platform and not disabled by setting
117       USE_SPIN_LOCKS=0.  However, if USE_RECURSIVE_LOCKS is defined,
118       recursive versions are used instead (which are not required for
119       base functionality but may be needed in layered extensions).
120       Using a global lock is not especially fast, and can be a major
121       bottleneck.  It is designed only to provide minimal protection
122       in concurrent environments, and to provide a basis for
123       extensions.  If you are using malloc in a concurrent program,
124       consider instead using nedmalloc
125       (http://www.nedprod.com/programs/portable/nedmalloc/) or
126       ptmalloc (See http://www.malloc.de), which are derived from
127       versions of this malloc.
128
129  System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
130       This malloc can use unix sbrk or any emulation (invoked using
131       the CALL_MORECORE macro) and/or mmap/munmap or any emulation
132       (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
133       memory.  On most unix systems, it tends to work best if both
134       MORECORE and MMAP are enabled.  On Win32, it uses emulations
135       based on VirtualAlloc. It also uses common C library functions
136       like memset.
137
138  Compliance: I believe it is compliant with the Single Unix Specification
139       (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
140       others as well.
141
142* Overview of algorithms
143
144  This is not the fastest, most space-conserving, most portable, or
145  most tunable malloc ever written. However it is among the fastest
146  while also being among the most space-conserving, portable and
147  tunable.  Consistent balance across these factors results in a good
148  general-purpose allocator for malloc-intensive programs.
149
150  In most ways, this malloc is a best-fit allocator. Generally, it
151  chooses the best-fitting existing chunk for a request, with ties
152  broken in approximately least-recently-used order. (This strategy
153  normally maintains low fragmentation.) However, for requests less
154  than 256bytes, it deviates from best-fit when there is not an
155  exactly fitting available chunk by preferring to use space adjacent
156  to that used for the previous small request, as well as by breaking
157  ties in approximately most-recently-used order. (These enhance
158  locality of series of small allocations.)  And for very large requests
159  (>= 256Kb by default), it relies on system memory mapping
160  facilities, if supported.  (This helps avoid carrying around and
161  possibly fragmenting memory used only for large chunks.)
162
163  All operations (except malloc_stats and mallinfo) have execution
164  times that are bounded by a constant factor of the number of bits in
165  a size_t, not counting any clearing in calloc or copying in realloc,
166  or actions surrounding MORECORE and MMAP that have times
167  proportional to the number of non-contiguous regions returned by
168  system allocation routines, which is often just 1. In real-time
169  applications, you can optionally suppress segment traversals using
170  NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
171  system allocators return non-contiguous spaces, at the typical
172  expense of carrying around more memory and increased fragmentation.
173
174  The implementation is not very modular and seriously overuses
175  macros. Perhaps someday all C compilers will do as good a job
176  inlining modular code as can now be done by brute-force expansion,
177  but now, enough of them seem not to.
178
179  Some compilers issue a lot of warnings about code that is
180  dead/unreachable only on some platforms, and also about intentional
181  uses of negation on unsigned types. All known cases of each can be
182  ignored.
183
184  For a longer but out of date high-level description, see
185     http://gee.cs.oswego.edu/dl/html/malloc.html
186
187* MSPACES
188  If MSPACES is defined, then in addition to malloc, free, etc.,
189  this file also defines mspace_malloc, mspace_free, etc. These
190  are versions of malloc routines that take an "mspace" argument
191  obtained using create_mspace, to control all internal bookkeeping.
192  If ONLY_MSPACES is defined, only these versions are compiled.
193  So if you would like to use this allocator for only some allocations,
194  and your system malloc for others, you can compile with
195  ONLY_MSPACES and then do something like...
196    static mspace mymspace = create_mspace(0,0); // for example
197    #define mymalloc(bytes)  mspace_malloc(mymspace, bytes)
198
199  (Note: If you only need one instance of an mspace, you can instead
200  use "USE_DL_PREFIX" to relabel the global malloc.)
201
202  You can similarly create thread-local allocators by storing
203  mspaces as thread-locals. For example:
204    static __thread mspace tlms = 0;
205    void*  tlmalloc(size_t bytes) {
206      if (tlms == 0) tlms = create_mspace(0, 0);
207      return mspace_malloc(tlms, bytes);
208    }
209    void  tlfree(void* mem) { mspace_free(tlms, mem); }
210
211  Unless FOOTERS is defined, each mspace is completely independent.
212  You cannot allocate from one and free to another (although
213  conformance is only weakly checked, so usage errors are not always
214  caught). If FOOTERS is defined, then each chunk carries around a tag
215  indicating its originating mspace, and frees are directed to their
216  originating spaces. Normally, this requires use of locks.
217
218 -------------------------  Compile-time options ---------------------------
219
220Be careful in setting #define values for numerical constants of type
221size_t. On some systems, literal values are not automatically extended
222to size_t precision unless they are explicitly casted. You can also
223use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
224
225WIN32                    default: defined if _WIN32 defined
226  Defining WIN32 sets up defaults for MS environment and compilers.
227  Otherwise defaults are for unix. Beware that there seem to be some
228  cases where this malloc might not be a pure drop-in replacement for
229  Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
230  SetDIBits()) may be due to bugs in some video driver implementations
231  when pixel buffers are malloc()ed, and the region spans more than
232  one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
233  default granularity, pixel buffers may straddle virtual allocation
234  regions more often than when using the Microsoft allocator.  You can
235  avoid this by using VirtualAlloc() and VirtualFree() for all pixel
236  buffers rather than using malloc().  If this is not possible,
237  recompile this malloc with a larger DEFAULT_GRANULARITY. Note:
238  in cases where MSC and gcc (cygwin) are known to differ on WIN32,
239  conditions use _MSC_VER to distinguish them.
240
241DLMALLOC_EXPORT       default: extern
242  Defines how public APIs are declared. If you want to export via a
243  Windows DLL, you might define this as
244    #define DLMALLOC_EXPORT extern  __declspec(dllexport)
245  If you want a POSIX ELF shared object, you might use
246    #define DLMALLOC_EXPORT extern __attribute__((visibility("default")))
247
248MALLOC_ALIGNMENT         default: (size_t)(2 * sizeof(void *))
249  Controls the minimum alignment for malloc'ed chunks.  It must be a
250  power of two and at least 8, even on machines for which smaller
251  alignments would suffice. It may be defined as larger than this
252  though. Note however that code and data structures are optimized for
253  the case of 8-byte alignment.
254
255MSPACES                  default: 0 (false)
256  If true, compile in support for independent allocation spaces.
257  This is only supported if HAVE_MMAP is true.
258
259ONLY_MSPACES             default: 0 (false)
260  If true, only compile in mspace versions, not regular versions.
261
262USE_LOCKS                default: 0 (false)
263  Causes each call to each public routine to be surrounded with
264  pthread or WIN32 mutex lock/unlock. (If set true, this can be
265  overridden on a per-mspace basis for mspace versions.) If set to a
266  non-zero value other than 1, locks are used, but their
267  implementation is left out, so lock functions must be supplied manually,
268  as described below.
269
270USE_SPIN_LOCKS           default: 1 iff USE_LOCKS and spin locks available
271  If true, uses custom spin locks for locking. This is currently
272  supported only gcc >= 4.1, older gccs on x86 platforms, and recent
273  MS compilers.  Otherwise, posix locks or win32 critical sections are
274  used.
275
276USE_RECURSIVE_LOCKS      default: not defined
277  If defined nonzero, uses recursive (aka reentrant) locks, otherwise
278  uses plain mutexes. This is not required for malloc proper, but may
279  be needed for layered allocators such as nedmalloc.
280
281LOCK_AT_FORK            default: not defined
282  If defined nonzero, performs pthread_atfork upon initialization
283  to initialize child lock while holding parent lock. The implementation
284  assumes that pthread locks (not custom locks) are being used. In other
285  cases, you may need to customize the implementation.
286
287FOOTERS                  default: 0
288  If true, provide extra checking and dispatching by placing
289  information in the footers of allocated chunks. This adds
290  space and time overhead.
291
292INSECURE                 default: 0
293  If true, omit checks for usage errors and heap space overwrites.
294
295USE_DL_PREFIX            default: NOT defined
296  Causes compiler to prefix all public routines with the string 'dl'.
297  This can be useful when you only want to use this malloc in one part
298  of a program, using your regular system malloc elsewhere.
299
300MALLOC_INSPECT_ALL       default: NOT defined
301  If defined, compiles malloc_inspect_all and mspace_inspect_all, that
302  perform traversal of all heap space.  Unless access to these
303  functions is otherwise restricted, you probably do not want to
304  include them in secure implementations.
305
306ABORT                    default: defined as abort()
307  Defines how to abort on failed checks.  On most systems, a failed
308  check cannot die with an "assert" or even print an informative
309  message, because the underlying print routines in turn call malloc,
310  which will fail again.  Generally, the best policy is to simply call
311  abort(). It's not very useful to do more than this because many
312  errors due to overwriting will show up as address faults (null, odd
313  addresses etc) rather than malloc-triggered checks, so will also
314  abort.  Also, most compilers know that abort() does not return, so
315  can better optimize code conditionally calling it.
316
317PROCEED_ON_ERROR           default: defined as 0 (false)
318  Controls whether detected bad addresses cause them to bypassed
319  rather than aborting. If set, detected bad arguments to free and
320  realloc are ignored. And all bookkeeping information is zeroed out
321  upon a detected overwrite of freed heap space, thus losing the
322  ability to ever return it from malloc again, but enabling the
323  application to proceed. If PROCEED_ON_ERROR is defined, the
324  static variable malloc_corruption_error_count is compiled in
325  and can be examined to see if errors have occurred. This option
326  generates slower code than the default abort policy.
327
328DEBUG                    default: NOT defined
329  The DEBUG setting is mainly intended for people trying to modify
330  this code or diagnose problems when porting to new platforms.
331  However, it may also be able to better isolate user errors than just
332  using runtime checks.  The assertions in the check routines spell
333  out in more detail the assumptions and invariants underlying the
334  algorithms.  The checking is fairly extensive, and will slow down
335  execution noticeably. Calling malloc_stats or mallinfo with DEBUG
336  set will attempt to check every non-mmapped allocated and free chunk
337  in the course of computing the summaries.
338
339ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true)
340  Debugging assertion failures can be nearly impossible if your
341  version of the assert macro causes malloc to be called, which will
342  lead to a cascade of further failures, blowing the runtime stack.
343  ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
344  which will usually make debugging easier.
345
346MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32
347  The action to take before "return 0" when malloc fails to be able to
348  return memory because there is none available.
349
350HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES
351  True if this system supports sbrk or an emulation of it.
352
353MORECORE                  default: sbrk
354  The name of the sbrk-style system routine to call to obtain more
355  memory.  See below for guidance on writing custom MORECORE
356  functions. The type of the argument to sbrk/MORECORE varies across
357  systems.  It cannot be size_t, because it supports negative
358  arguments, so it is normally the signed type of the same width as
359  size_t (sometimes declared as "intptr_t").  It doesn't much matter
360  though. Internally, we only call it with arguments less than half
361  the max value of a size_t, which should work across all reasonable
362  possibilities, although sometimes generating compiler warnings.
363
364MORECORE_CONTIGUOUS       default: 1 (true) if HAVE_MORECORE
365  If true, take advantage of fact that consecutive calls to MORECORE
366  with positive arguments always return contiguous increasing
367  addresses.  This is true of unix sbrk. It does not hurt too much to
368  set it true anyway, since malloc copes with non-contiguities.
369  Setting it false when definitely non-contiguous saves time
370  and possibly wasted space it would take to discover this though.
371
372MORECORE_CANNOT_TRIM      default: NOT defined
373  True if MORECORE cannot release space back to the system when given
374  negative arguments. This is generally necessary only if you are
375  using a hand-crafted MORECORE function that cannot handle negative
376  arguments.
377
378NO_SEGMENT_TRAVERSAL       default: 0
379  If non-zero, suppresses traversals of memory segments
380  returned by either MORECORE or CALL_MMAP. This disables
381  merging of segments that are contiguous, and selectively
382  releasing them to the OS if unused, but bounds execution times.
383
384HAVE_MMAP                 default: 1 (true)
385  True if this system supports mmap or an emulation of it.  If so, and
386  HAVE_MORECORE is not true, MMAP is used for all system
387  allocation. If set and HAVE_MORECORE is true as well, MMAP is
388  primarily used to directly allocate very large blocks. It is also
389  used as a backup strategy in cases where MORECORE fails to provide
390  space from system. Note: A single call to MUNMAP is assumed to be
391  able to unmap memory that may have be allocated using multiple calls
392  to MMAP, so long as they are adjacent.
393
394HAVE_MREMAP               default: 1 on linux, else 0
395  If true realloc() uses mremap() to re-allocate large blocks and
396  extend or shrink allocation spaces.
397
398MMAP_CLEARS               default: 1 except on WINCE.
399  True if mmap clears memory so calloc doesn't need to. This is true
400  for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
401
402USE_BUILTIN_FFS            default: 0 (i.e., not used)
403  Causes malloc to use the builtin ffs() function to compute indices.
404  Some compilers may recognize and intrinsify ffs to be faster than the
405  supplied C version. Also, the case of x86 using gcc is special-cased
406  to an asm instruction, so is already as fast as it can be, and so
407  this setting has no effect. Similarly for Win32 under recent MS compilers.
408  (On most x86s, the asm version is only slightly faster than the C version.)
409
410malloc_getpagesize         default: derive from system includes, or 4096.
411  The system page size. To the extent possible, this malloc manages
412  memory from the system in page-size units.  This may be (and
413  usually is) a function rather than a constant. This is ignored
414  if WIN32, where page size is determined using getSystemInfo during
415  initialization.
416
417USE_DEV_RANDOM             default: 0 (i.e., not used)
418  Causes malloc to use /dev/random to initialize secure magic seed for
419  stamping footers. Otherwise, the current time is used.
420
421NO_MALLINFO                default: 0
422  If defined, don't compile "mallinfo". This can be a simple way
423  of dealing with mismatches between system declarations and
424  those in this file.
425
426MALLINFO_FIELD_TYPE        default: size_t
427  The type of the fields in the mallinfo struct. This was originally
428  defined as "int" in SVID etc, but is more usefully defined as
429  size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set
430
431NO_MALLOC_STATS            default: 0
432  If defined, don't compile "malloc_stats". This avoids calls to
433  fprintf and bringing in stdio dependencies you might not want.
434
435REALLOC_ZERO_BYTES_FREES    default: not defined
436  This should be set if a call to realloc with zero bytes should
437  be the same as a call to free. Some people think it should. Otherwise,
438  since this malloc returns a unique pointer for malloc(0), so does
439  realloc(p, 0).
440
441LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
442LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H
443LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H  default: NOT defined unless on WIN32
444  Define these if your system does not have these header files.
445  You might need to manually insert some of the declarations they provide.
446
447DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS,
448                                system_info.dwAllocationGranularity in WIN32,
449                                otherwise 64K.
450      Also settable using mallopt(M_GRANULARITY, x)
451  The unit for allocating and deallocating memory from the system.  On
452  most systems with contiguous MORECORE, there is no reason to
453  make this more than a page. However, systems with MMAP tend to
454  either require or encourage larger granularities.  You can increase
455  this value to prevent system allocation functions to be called so
456  often, especially if they are slow.  The value must be at least one
457  page and must be a power of two.  Setting to 0 causes initialization
458  to either page size or win32 region size.  (Note: In previous
459  versions of malloc, the equivalent of this option was called
460  "TOP_PAD")
461
462DEFAULT_TRIM_THRESHOLD    default: 2MB
463      Also settable using mallopt(M_TRIM_THRESHOLD, x)
464  The maximum amount of unused top-most memory to keep before
465  releasing via malloc_trim in free().  Automatic trimming is mainly
466  useful in long-lived programs using contiguous MORECORE.  Because
467  trimming via sbrk can be slow on some systems, and can sometimes be
468  wasteful (in cases where programs immediately afterward allocate
469  more large chunks) the value should be high enough so that your
470  overall system performance would improve by releasing this much
471  memory.  As a rough guide, you might set to a value close to the
472  average size of a process (program) running on your system.
473  Releasing this much memory would allow such a process to run in
474  memory.  Generally, it is worth tuning trim thresholds when a
475  program undergoes phases where several large chunks are allocated
476  and released in ways that can reuse each other's storage, perhaps
477  mixed with phases where there are no such chunks at all. The trim
478  value must be greater than page size to have any useful effect.  To
479  disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
480  some people use of mallocing a huge space and then freeing it at
481  program startup, in an attempt to reserve system memory, doesn't
482  have the intended effect under automatic trimming, since that memory
483  will immediately be returned to the system.
484
485DEFAULT_MMAP_THRESHOLD       default: 256K
486      Also settable using mallopt(M_MMAP_THRESHOLD, x)
487  The request size threshold for using MMAP to directly service a
488  request. Requests of at least this size that cannot be allocated
489  using already-existing space will be serviced via mmap.  (If enough
490  normal freed space already exists it is used instead.)  Using mmap
491  segregates relatively large chunks of memory so that they can be
492  individually obtained and released from the host system. A request
493  serviced through mmap is never reused by any other request (at least
494  not directly; the system may just so happen to remap successive
495  requests to the same locations).  Segregating space in this way has
496  the benefits that: Mmapped space can always be individually released
497  back to the system, which helps keep the system level memory demands
498  of a long-lived program low.  Also, mapped memory doesn't become
499  `locked' between other chunks, as can happen with normally allocated
500  chunks, which means that even trimming via malloc_trim would not
501  release them.  However, it has the disadvantage that the space
502  cannot be reclaimed, consolidated, and then used to service later
503  requests, as happens with normal chunks.  The advantages of mmap
504  nearly always outweigh disadvantages for "large" chunks, but the
505  value of "large" may vary across systems.  The default is an
506  empirically derived value that works well in most systems. You can
507  disable mmap by setting to MAX_SIZE_T.
508
509MAX_RELEASE_CHECK_RATE   default: 4095 unless not HAVE_MMAP
510  The number of consolidated frees between checks to release
511  unused segments when freeing. When using non-contiguous segments,
512  especially with multiple mspaces, checking only for topmost space
513  doesn't always suffice to trigger trimming. To compensate for this,
514  free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
515  current number of segments, if greater) try to release unused
516  segments to the OS when freeing chunks that result in
517  consolidation. The best value for this parameter is a compromise
518  between slowing down frees with relatively costly checks that
519  rarely trigger versus holding on to unused memory. To effectively
520  disable, set to MAX_SIZE_T. This may lead to a very slight speed
521  improvement at the expense of carrying around more memory.
522*/
523
524/* Version identifier to allow people to support multiple versions */
525#ifndef DLMALLOC_VERSION
526#define DLMALLOC_VERSION 20806
527#endif /* DLMALLOC_VERSION */
528
529#ifndef DLMALLOC_EXPORT
530#define DLMALLOC_EXPORT extern
531#endif
532
533#ifndef WIN32
534#ifdef _WIN32
535#define WIN32 1
536#endif  /* _WIN32 */
537#ifdef _WIN32_WCE
538#define LACKS_FCNTL_H
539#define WIN32 1
540#endif /* _WIN32_WCE */
541#endif  /* WIN32 */
542#ifdef WIN32
543#define WIN32_LEAN_AND_MEAN
544#include <windows.h>
545#include <tchar.h>
546#define HAVE_MMAP 1
547#define HAVE_MORECORE 0
548#define LACKS_UNISTD_H
549#define LACKS_SYS_PARAM_H
550#define LACKS_SYS_MMAN_H
551#define LACKS_STRING_H
552#define LACKS_STRINGS_H
553#define LACKS_SYS_TYPES_H
554#define LACKS_ERRNO_H
555#define LACKS_SCHED_H
556#ifndef MALLOC_FAILURE_ACTION
557#define MALLOC_FAILURE_ACTION
558#endif /* MALLOC_FAILURE_ACTION */
559#ifndef MMAP_CLEARS
560#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
561#define MMAP_CLEARS 0
562#else
563#define MMAP_CLEARS 1
564#endif /* _WIN32_WCE */
565#endif /*MMAP_CLEARS */
566#endif  /* WIN32 */
567
568#if defined(DARWIN) || defined(_DARWIN)
569/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
570#ifndef HAVE_MORECORE
571#define HAVE_MORECORE 0
572#define HAVE_MMAP 1
573/* OSX allocators provide 16 byte alignment */
574#ifndef MALLOC_ALIGNMENT
575#define MALLOC_ALIGNMENT ((size_t)16U)
576#endif
577#endif  /* HAVE_MORECORE */
578#endif  /* DARWIN */
579
580#ifndef LACKS_SYS_TYPES_H
581#include <sys/types.h>  /* For size_t */
582#endif  /* LACKS_SYS_TYPES_H */
583
584/* The maximum possible size_t value has all bits set */
585#define MAX_SIZE_T           (~(size_t)0)
586
587#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */
588#define USE_LOCKS  ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
589                    (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
590#endif /* USE_LOCKS */
591
592#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */
593#if ((defined(__GNUC__) &&                                              \
594      ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) ||      \
595       defined(__i386__) || defined(__x86_64__))) ||                    \
596     (defined(_MSC_VER) && _MSC_VER>=1310))
597#ifndef USE_SPIN_LOCKS
598#define USE_SPIN_LOCKS 1
599#endif /* USE_SPIN_LOCKS */
600#elif USE_SPIN_LOCKS
601#error "USE_SPIN_LOCKS defined without implementation"
602#endif /* ... locks available... */
603#elif !defined(USE_SPIN_LOCKS)
604#define USE_SPIN_LOCKS 0
605#endif /* USE_LOCKS */
606
607#ifndef ONLY_MSPACES
608#define ONLY_MSPACES 0
609#endif  /* ONLY_MSPACES */
610#ifndef MSPACES
611#if ONLY_MSPACES
612#define MSPACES 1
613#else   /* ONLY_MSPACES */
614#define MSPACES 0
615#endif  /* ONLY_MSPACES */
616#endif  /* MSPACES */
617#ifndef MALLOC_ALIGNMENT
618#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
619#endif  /* MALLOC_ALIGNMENT */
620#ifndef FOOTERS
621#define FOOTERS 0
622#endif  /* FOOTERS */
623#ifndef ABORT
624#define ABORT  abort()
625#endif  /* ABORT */
626#ifndef ABORT_ON_ASSERT_FAILURE
627#define ABORT_ON_ASSERT_FAILURE 1
628#endif  /* ABORT_ON_ASSERT_FAILURE */
629#ifndef PROCEED_ON_ERROR
630#define PROCEED_ON_ERROR 0
631#endif  /* PROCEED_ON_ERROR */
632
633#ifndef INSECURE
634#define INSECURE 0
635#endif  /* INSECURE */
636#ifndef MALLOC_INSPECT_ALL
637#define MALLOC_INSPECT_ALL 0
638#endif  /* MALLOC_INSPECT_ALL */
639#ifndef HAVE_MMAP
640#define HAVE_MMAP 1
641#endif  /* HAVE_MMAP */
642#ifndef MMAP_CLEARS
643#define MMAP_CLEARS 1
644#endif  /* MMAP_CLEARS */
645#ifndef HAVE_MREMAP
646#ifdef linux
647#define HAVE_MREMAP 1
648#define _GNU_SOURCE /* Turns on mremap() definition */
649#else   /* linux */
650#define HAVE_MREMAP 0
651#endif  /* linux */
652#endif  /* HAVE_MREMAP */
653#ifndef MALLOC_FAILURE_ACTION
654#define MALLOC_FAILURE_ACTION  errno = ENOMEM;
655#endif  /* MALLOC_FAILURE_ACTION */
656#ifndef HAVE_MORECORE
657#if ONLY_MSPACES
658#define HAVE_MORECORE 0
659#else   /* ONLY_MSPACES */
660#define HAVE_MORECORE 1
661#endif  /* ONLY_MSPACES */
662#endif  /* HAVE_MORECORE */
663#if !HAVE_MORECORE
664#define MORECORE_CONTIGUOUS 0
665#else   /* !HAVE_MORECORE */
666#define MORECORE_DEFAULT sbrk
667#ifndef MORECORE_CONTIGUOUS
668#define MORECORE_CONTIGUOUS 1
669#endif  /* MORECORE_CONTIGUOUS */
670#endif  /* HAVE_MORECORE */
671#ifndef DEFAULT_GRANULARITY
672#if (MORECORE_CONTIGUOUS || defined(WIN32))
673#define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */
674#else   /* MORECORE_CONTIGUOUS */
675#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
676#endif  /* MORECORE_CONTIGUOUS */
677#endif  /* DEFAULT_GRANULARITY */
678#ifndef DEFAULT_TRIM_THRESHOLD
679#ifndef MORECORE_CANNOT_TRIM
680#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
681#else   /* MORECORE_CANNOT_TRIM */
682#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
683#endif  /* MORECORE_CANNOT_TRIM */
684#endif  /* DEFAULT_TRIM_THRESHOLD */
685#ifndef DEFAULT_MMAP_THRESHOLD
686#if HAVE_MMAP
687#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
688#else   /* HAVE_MMAP */
689#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
690#endif  /* HAVE_MMAP */
691#endif  /* DEFAULT_MMAP_THRESHOLD */
692#ifndef MAX_RELEASE_CHECK_RATE
693#if HAVE_MMAP
694#define MAX_RELEASE_CHECK_RATE 4095
695#else
696#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
697#endif /* HAVE_MMAP */
698#endif /* MAX_RELEASE_CHECK_RATE */
699#ifndef USE_BUILTIN_FFS
700#define USE_BUILTIN_FFS 0
701#endif  /* USE_BUILTIN_FFS */
702#ifndef USE_DEV_RANDOM
703#define USE_DEV_RANDOM 0
704#endif  /* USE_DEV_RANDOM */
705#ifndef NO_MALLINFO
706#define NO_MALLINFO 0
707#endif  /* NO_MALLINFO */
708#ifndef MALLINFO_FIELD_TYPE
709#define MALLINFO_FIELD_TYPE size_t
710#endif  /* MALLINFO_FIELD_TYPE */
711#ifndef NO_MALLOC_STATS
712#define NO_MALLOC_STATS 0
713#endif  /* NO_MALLOC_STATS */
714#ifndef NO_SEGMENT_TRAVERSAL
715#define NO_SEGMENT_TRAVERSAL 0
716#endif /* NO_SEGMENT_TRAVERSAL */
717
718/*
719  mallopt tuning options.  SVID/XPG defines four standard parameter
720  numbers for mallopt, normally defined in malloc.h.  None of these
721  are used in this malloc, so setting them has no effect. But this
722  malloc does support the following options.
723*/
724
725#define M_TRIM_THRESHOLD     (-1)
726#define M_GRANULARITY        (-2)
727#define M_MMAP_THRESHOLD     (-3)
728
729/* ------------------------ Mallinfo declarations ------------------------ */
730
731#if !NO_MALLINFO
732/*
733  This version of malloc supports the standard SVID/XPG mallinfo
734  routine that returns a struct containing usage properties and
735  statistics. It should work on any system that has a
736  /usr/include/malloc.h defining struct mallinfo.  The main
737  declaration needed is the mallinfo struct that is returned (by-copy)
738  by mallinfo().  The malloinfo struct contains a bunch of fields that
739  are not even meaningful in this version of malloc.  These fields are
740  are instead filled by mallinfo() with other numbers that might be of
741  interest.
742
743  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
744  /usr/include/malloc.h file that includes a declaration of struct
745  mallinfo.  If so, it is included; else a compliant version is
746  declared below.  These must be precisely the same for mallinfo() to
747  work.  The original SVID version of this struct, defined on most
748  systems with mallinfo, declares all fields as ints. But some others
749  define as unsigned long. If your system defines the fields using a
750  type of different width than listed here, you MUST #include your
751  system version and #define HAVE_USR_INCLUDE_MALLOC_H.
752*/
753
754/* #define HAVE_USR_INCLUDE_MALLOC_H */
755
756#ifdef HAVE_USR_INCLUDE_MALLOC_H
757#include "/usr/include/malloc.h"
758#else /* HAVE_USR_INCLUDE_MALLOC_H */
759#ifndef STRUCT_MALLINFO_DECLARED
760/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */
761#define _STRUCT_MALLINFO
762#define STRUCT_MALLINFO_DECLARED 1
763struct mallinfo {
764  MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */
765  MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */
766  MALLINFO_FIELD_TYPE smblks;   /* always 0 */
767  MALLINFO_FIELD_TYPE hblks;    /* always 0 */
768  MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */
769  MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */
770  MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */
771  MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
772  MALLINFO_FIELD_TYPE fordblks; /* total free space */
773  MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
774};
775#endif /* STRUCT_MALLINFO_DECLARED */
776#endif /* HAVE_USR_INCLUDE_MALLOC_H */
777#endif /* NO_MALLINFO */
778
779/*
780  Try to persuade compilers to inline. The most critical functions for
781  inlining are defined as macros, so these aren't used for them.
782*/
783
784#ifndef FORCEINLINE
785  #if defined(__GNUC__)
786#define FORCEINLINE __inline __attribute__ ((always_inline))
787  #elif defined(_MSC_VER)
788    #define FORCEINLINE __forceinline
789  #endif
790#endif
791#ifndef NOINLINE
792  #if defined(__GNUC__)
793    #define NOINLINE __attribute__ ((noinline))
794  #elif defined(_MSC_VER)
795    #define NOINLINE __declspec(noinline)
796  #else
797    #define NOINLINE
798  #endif
799#endif
800
801#ifdef __cplusplus
802extern "C" {
803#ifndef FORCEINLINE
804 #define FORCEINLINE inline
805#endif
806#endif /* __cplusplus */
807#ifndef FORCEINLINE
808 #define FORCEINLINE
809#endif
810
811#if !ONLY_MSPACES
812
813/* ------------------- Declarations of public routines ------------------- */
814
815#ifndef USE_DL_PREFIX
816#define dlcalloc               calloc
817#define dlfree                 free
818#define dlmalloc               malloc
819#define dlmemalign             memalign
820#define dlposix_memalign       posix_memalign
821#define dlrealloc              realloc
822#define dlrealloc_in_place     realloc_in_place
823#define dlvalloc               valloc
824#define dlpvalloc              pvalloc
825#define dlmallinfo             mallinfo
826#define dlmallopt              mallopt
827#define dlmalloc_trim          malloc_trim
828#define dlmalloc_stats         malloc_stats
829#define dlmalloc_usable_size   malloc_usable_size
830#define dlmalloc_footprint     malloc_footprint
831#define dlmalloc_max_footprint malloc_max_footprint
832#define dlmalloc_footprint_limit malloc_footprint_limit
833#define dlmalloc_set_footprint_limit malloc_set_footprint_limit
834#define dlmalloc_inspect_all   malloc_inspect_all
835#define dlindependent_calloc   independent_calloc
836#define dlindependent_comalloc independent_comalloc
837#define dlbulk_free            bulk_free
838#endif /* USE_DL_PREFIX */
839
840/*
841  malloc(size_t n)
842  Returns a pointer to a newly allocated chunk of at least n bytes, or
843  null if no space is available, in which case errno is set to ENOMEM
844  on ANSI C systems.
845
846  If n is zero, malloc returns a minimum-sized chunk. (The minimum
847  size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
848  systems.)  Note that size_t is an unsigned type, so calls with
849  arguments that would be negative if signed are interpreted as
850  requests for huge amounts of space, which will often fail. The
851  maximum supported value of n differs across systems, but is in all
852  cases less than the maximum representable value of a size_t.
853*/
854DLMALLOC_EXPORT void* dlmalloc(size_t);
855
856/*
857  free(void* p)
858  Releases the chunk of memory pointed to by p, that had been previously
859  allocated using malloc or a related routine such as realloc.
860  It has no effect if p is null. If p was not malloced or already
861  freed, free(p) will by default cause the current program to abort.
862*/
863DLMALLOC_EXPORT void  dlfree(void*);
864
865/*
866  calloc(size_t n_elements, size_t element_size);
867  Returns a pointer to n_elements * element_size bytes, with all locations
868  set to zero.
869*/
870DLMALLOC_EXPORT void* dlcalloc(size_t, size_t);
871
872/*
873  realloc(void* p, size_t n)
874  Returns a pointer to a chunk of size n that contains the same data
875  as does chunk p up to the minimum of (n, p's size) bytes, or null
876  if no space is available.
877
878  The returned pointer may or may not be the same as p. The algorithm
879  prefers extending p in most cases when possible, otherwise it
880  employs the equivalent of a malloc-copy-free sequence.
881
882  If p is null, realloc is equivalent to malloc.
883
884  If space is not available, realloc returns null, errno is set (if on
885  ANSI) and p is NOT freed.
886
887  if n is for fewer bytes than already held by p, the newly unused
888  space is lopped off and freed if possible.  realloc with a size
889  argument of zero (re)allocates a minimum-sized chunk.
890
891  The old unix realloc convention of allowing the last-free'd chunk
892  to be used as an argument to realloc is not supported.
893*/
894DLMALLOC_EXPORT void* dlrealloc(void*, size_t);
895
896/*
897  realloc_in_place(void* p, size_t n)
898  Resizes the space allocated for p to size n, only if this can be
899  done without moving p (i.e., only if there is adjacent space
900  available if n is greater than p's current allocated size, or n is
901  less than or equal to p's size). This may be used instead of plain
902  realloc if an alternative allocation strategy is needed upon failure
903  to expand space; for example, reallocation of a buffer that must be
904  memory-aligned or cleared. You can use realloc_in_place to trigger
905  these alternatives only when needed.
906
907  Returns p if successful; otherwise null.
908*/
909DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t);
910
911/*
912  memalign(size_t alignment, size_t n);
913  Returns a pointer to a newly allocated chunk of n bytes, aligned
914  in accord with the alignment argument.
915
916  The alignment argument should be a power of two. If the argument is
917  not a power of two, the nearest greater power is used.
918  8-byte alignment is guaranteed by normal malloc calls, so don't
919  bother calling memalign with an argument of 8 or less.
920
921  Overreliance on memalign is a sure way to fragment space.
922*/
923DLMALLOC_EXPORT void* dlmemalign(size_t, size_t);
924
925/*
926  int posix_memalign(void** pp, size_t alignment, size_t n);
927  Allocates a chunk of n bytes, aligned in accord with the alignment
928  argument. Differs from memalign only in that it (1) assigns the
929  allocated memory to *pp rather than returning it, (2) fails and
930  returns EINVAL if the alignment is not a power of two (3) fails and
931  returns ENOMEM if memory cannot be allocated.
932*/
933DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t);
934
935/*
936  valloc(size_t n);
937  Equivalent to memalign(pagesize, n), where pagesize is the page
938  size of the system. If the pagesize is unknown, 4096 is used.
939*/
940DLMALLOC_EXPORT void* dlvalloc(size_t);
941
942/*
943  mallopt(int parameter_number, int parameter_value)
944  Sets tunable parameters The format is to provide a
945  (parameter-number, parameter-value) pair.  mallopt then sets the
946  corresponding parameter to the argument value if it can (i.e., so
947  long as the value is meaningful), and returns 1 if successful else
948  0.  To workaround the fact that mallopt is specified to use int,
949  not size_t parameters, the value -1 is specially treated as the
950  maximum unsigned size_t value.
951
952  SVID/XPG/ANSI defines four standard param numbers for mallopt,
953  normally defined in malloc.h.  None of these are use in this malloc,
954  so setting them has no effect. But this malloc also supports other
955  options in mallopt. See below for details.  Briefly, supported
956  parameters are as follows (listed defaults are for "typical"
957  configurations).
958
959  Symbol            param #  default    allowed param values
960  M_TRIM_THRESHOLD     -1   2*1024*1024   any   (-1 disables)
961  M_GRANULARITY        -2     page size   any power of 2 >= page size
962  M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support)
963*/
964DLMALLOC_EXPORT int dlmallopt(int, int);
965
966/*
967  malloc_footprint();
968  Returns the number of bytes obtained from the system.  The total
969  number of bytes allocated by malloc, realloc etc., is less than this
970  value. Unlike mallinfo, this function returns only a precomputed
971  result, so can be called frequently to monitor memory consumption.
972  Even if locks are otherwise defined, this function does not use them,
973  so results might not be up to date.
974*/
975DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
976
977/*
978  malloc_max_footprint();
979  Returns the maximum number of bytes obtained from the system. This
980  value will be greater than current footprint if deallocated space
981  has been reclaimed by the system. The peak number of bytes allocated
982  by malloc, realloc etc., is less than this value. Unlike mallinfo,
983  this function returns only a precomputed result, so can be called
984  frequently to monitor memory consumption.  Even if locks are
985  otherwise defined, this function does not use them, so results might
986  not be up to date.
987*/
988DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
989
990/*
991  malloc_footprint_limit();
992  Returns the number of bytes that the heap is allowed to obtain from
993  the system, returning the last value returned by
994  malloc_set_footprint_limit, or the maximum size_t value if
995  never set. The returned value reflects a permission. There is no
996  guarantee that this number of bytes can actually be obtained from
997  the system.
998*/
999DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
1000
1001/*
1002  malloc_set_footprint_limit();
1003  Sets the maximum number of bytes to obtain from the system, causing
1004  failure returns from malloc and related functions upon attempts to
1005  exceed this value. The argument value may be subject to page
1006  rounding to an enforceable limit; this actual value is returned.
1007  Using an argument of the maximum possible size_t effectively
1008  disables checks. If the argument is less than or equal to the
1009  current malloc_footprint, then all future allocations that require
1010  additional system memory will fail. However, invocation cannot
1011  retroactively deallocate existing used memory.
1012*/
1013DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
1014
1015#if MALLOC_INSPECT_ALL
1016/*
1017  malloc_inspect_all(void(*handler)(void *start,
1018                                    void *end,
1019                                    size_t used_bytes,
1020                                    void* callback_arg),
1021                      void* arg);
1022  Traverses the heap and calls the given handler for each managed
1023  region, skipping all bytes that are (or may be) used for bookkeeping
1024  purposes.  Traversal does not include include chunks that have been
1025  directly memory mapped. Each reported region begins at the start
1026  address, and continues up to but not including the end address.  The
1027  first used_bytes of the region contain allocated data. If
1028  used_bytes is zero, the region is unallocated. The handler is
1029  invoked with the given callback argument. If locks are defined, they
1030  are held during the entire traversal. It is a bad idea to invoke
1031  other malloc functions from within the handler.
1032
1033  For example, to count the number of in-use chunks with size greater
1034  than 1000, you could write:
1035  static int count = 0;
1036  void count_chunks(void* start, void* end, size_t used, void* arg) {
1037    if (used >= 1000) ++count;
1038  }
1039  then:
1040    malloc_inspect_all(count_chunks, NULL);
1041
1042  malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
1043*/
1044DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*),
1045                           void* arg);
1046
1047#endif /* MALLOC_INSPECT_ALL */
1048
1049#if !NO_MALLINFO
1050/*
1051  mallinfo()
1052  Returns (by copy) a struct containing various summary statistics:
1053
1054  arena:     current total non-mmapped bytes allocated from system
1055  ordblks:   the number of free chunks
1056  smblks:    always zero.
1057  hblks:     current number of mmapped regions
1058  hblkhd:    total bytes held in mmapped regions
1059  usmblks:   the maximum total allocated space. This will be greater
1060                than current total if trimming has occurred.
1061  fsmblks:   always zero
1062  uordblks:  current total allocated space (normal or mmapped)
1063  fordblks:  total free space
1064  keepcost:  the maximum number of bytes that could ideally be released
1065               back to system via malloc_trim. ("ideally" means that
1066               it ignores page restrictions etc.)
1067
1068  Because these fields are ints, but internal bookkeeping may
1069  be kept as longs, the reported values may wrap around zero and
1070  thus be inaccurate.
1071*/
1072DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
1073#endif /* NO_MALLINFO */
1074
1075/*
1076  independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
1077
1078  independent_calloc is similar to calloc, but instead of returning a
1079  single cleared space, it returns an array of pointers to n_elements
1080  independent elements that can hold contents of size elem_size, each
1081  of which starts out cleared, and can be independently freed,
1082  realloc'ed etc. The elements are guaranteed to be adjacently
1083  allocated (this is not guaranteed to occur with multiple callocs or
1084  mallocs), which may also improve cache locality in some
1085  applications.
1086
1087  The "chunks" argument is optional (i.e., may be null, which is
1088  probably the most typical usage). If it is null, the returned array
1089  is itself dynamically allocated and should also be freed when it is
1090  no longer needed. Otherwise, the chunks array must be of at least
1091  n_elements in length. It is filled in with the pointers to the
1092  chunks.
1093
1094  In either case, independent_calloc returns this pointer array, or
1095  null if the allocation failed.  If n_elements is zero and "chunks"
1096  is null, it returns a chunk representing an array with zero elements
1097  (which should be freed if not wanted).
1098
1099  Each element must be freed when it is no longer needed. This can be
1100  done all at once using bulk_free.
1101
1102  independent_calloc simplifies and speeds up implementations of many
1103  kinds of pools.  It may also be useful when constructing large data
1104  structures that initially have a fixed number of fixed-sized nodes,
1105  but the number is not known at compile time, and some of the nodes
1106  may later need to be freed. For example:
1107
1108  struct Node { int item; struct Node* next; };
1109
1110  struct Node* build_list() {
1111    struct Node** pool;
1112    int n = read_number_of_nodes_needed();
1113    if (n <= 0) return 0;
1114    pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1115    if (pool == 0) die();
1116    // organize into a linked list...
1117    struct Node* first = pool[0];
1118    for (i = 0; i < n-1; ++i)
1119      pool[i]->next = pool[i+1];
1120    free(pool);     // Can now free the array (or not, if it is needed later)
1121    return first;
1122  }
1123*/
1124DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**);
1125
1126/*
1127  independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
1128
1129  independent_comalloc allocates, all at once, a set of n_elements
1130  chunks with sizes indicated in the "sizes" array.    It returns
1131  an array of pointers to these elements, each of which can be
1132  independently freed, realloc'ed etc. The elements are guaranteed to
1133  be adjacently allocated (this is not guaranteed to occur with
1134  multiple callocs or mallocs), which may also improve cache locality
1135  in some applications.
1136
1137  The "chunks" argument is optional (i.e., may be null). If it is null
1138  the returned array is itself dynamically allocated and should also
1139  be freed when it is no longer needed. Otherwise, the chunks array
1140  must be of at least n_elements in length. It is filled in with the
1141  pointers to the chunks.
1142
1143  In either case, independent_comalloc returns this pointer array, or
1144  null if the allocation failed.  If n_elements is zero and chunks is
1145  null, it returns a chunk representing an array with zero elements
1146  (which should be freed if not wanted).
1147
1148  Each element must be freed when it is no longer needed. This can be
1149  done all at once using bulk_free.
1150
1151  independent_comallac differs from independent_calloc in that each
1152  element may have a different size, and also that it does not
1153  automatically clear elements.
1154
1155  independent_comalloc can be used to speed up allocation in cases
1156  where several structs or objects must always be allocated at the
1157  same time.  For example:
1158
1159  struct Head { ... }
1160  struct Foot { ... }
1161
1162  void send_message(char* msg) {
1163    int msglen = strlen(msg);
1164    size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1165    void* chunks[3];
1166    if (independent_comalloc(3, sizes, chunks) == 0)
1167      die();
1168    struct Head* head = (struct Head*)(chunks[0]);
1169    char*        body = (char*)(chunks[1]);
1170    struct Foot* foot = (struct Foot*)(chunks[2]);
1171    // ...
1172  }
1173
1174  In general though, independent_comalloc is worth using only for
1175  larger values of n_elements. For small values, you probably won't
1176  detect enough difference from series of malloc calls to bother.
1177
1178  Overuse of independent_comalloc can increase overall memory usage,
1179  since it cannot reuse existing noncontiguous small chunks that
1180  might be available for some of the elements.
1181*/
1182DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**);
1183
1184/*
1185  bulk_free(void* array[], size_t n_elements)
1186  Frees and clears (sets to null) each non-null pointer in the given
1187  array.  This is likely to be faster than freeing them one-by-one.
1188  If footers are used, pointers that have been allocated in different
1189  mspaces are not freed or cleared, and the count of all such pointers
1190  is returned.  For large arrays of pointers with poor locality, it
1191  may be worthwhile to sort this array before calling bulk_free.
1192*/
1193DLMALLOC_EXPORT size_t  dlbulk_free(void**, size_t n_elements);
1194
1195/*
1196  pvalloc(size_t n);
1197  Equivalent to valloc(minimum-page-that-holds(n)), that is,
1198  round up n to nearest pagesize.
1199 */
1200DLMALLOC_EXPORT void*  dlpvalloc(size_t);
1201
1202/*
1203  malloc_trim(size_t pad);
1204
1205  If possible, gives memory back to the system (via negative arguments
1206  to sbrk) if there is unused memory at the `high' end of the malloc
1207  pool or in unused MMAP segments. You can call this after freeing
1208  large blocks of memory to potentially reduce the system-level memory
1209  requirements of a program. However, it cannot guarantee to reduce
1210  memory. Under some allocation patterns, some large free blocks of
1211  memory will be locked between two used chunks, so they cannot be
1212  given back to the system.
1213
1214  The `pad' argument to malloc_trim represents the amount of free
1215  trailing space to leave untrimmed. If this argument is zero, only
1216  the minimum amount of memory to maintain internal data structures
1217  will be left. Non-zero arguments can be supplied to maintain enough
1218  trailing space to service future expected allocations without having
1219  to re-obtain memory from the system.
1220
1221  Malloc_trim returns 1 if it actually released any memory, else 0.
1222*/
1223DLMALLOC_EXPORT int  dlmalloc_trim(size_t);
1224
1225/*
1226  malloc_stats();
1227  Prints on stderr the amount of space obtained from the system (both
1228  via sbrk and mmap), the maximum amount (which may be more than
1229  current if malloc_trim and/or munmap got called), and the current
1230  number of bytes allocated via malloc (or realloc, etc) but not yet
1231  freed. Note that this is the number of bytes allocated, not the
1232  number requested. It will be larger than the number requested
1233  because of alignment and bookkeeping overhead. Because it includes
1234  alignment wastage as being in use, this figure may be greater than
1235  zero even when no user-level chunks are allocated.
1236
1237  The reported current and maximum system memory can be inaccurate if
1238  a program makes other calls to system memory allocation functions
1239  (normally sbrk) outside of malloc.
1240
1241  malloc_stats prints only the most commonly interesting statistics.
1242  More information can be obtained by calling mallinfo.
1243*/
1244DLMALLOC_EXPORT void  dlmalloc_stats(void);
1245
1246/*
1247  malloc_usable_size(void* p);
1248
1249  Returns the number of bytes you can actually use in
1250  an allocated chunk, which may be more than you requested (although
1251  often not) due to alignment and minimum size constraints.
1252  You can use this many bytes without worrying about
1253  overwriting other allocated objects. This is not a particularly great
1254  programming practice. malloc_usable_size can be more useful in
1255  debugging and assertions, for example:
1256
1257  p = malloc(n);
1258  assert(malloc_usable_size(p) >= 256);
1259*/
1260/* BEGIN android-changed: added const */
1261size_t dlmalloc_usable_size(const void*);
1262/* END android-change */
1263
1264#endif /* ONLY_MSPACES */
1265
1266#if MSPACES
1267
1268/*
1269  mspace is an opaque type representing an independent
1270  region of space that supports mspace_malloc, etc.
1271*/
1272typedef void* mspace;
1273
1274/*
1275  create_mspace creates and returns a new independent space with the
1276  given initial capacity, or, if 0, the default granularity size.  It
1277  returns null if there is no system memory available to create the
1278  space.  If argument locked is non-zero, the space uses a separate
1279  lock to control access. The capacity of the space will grow
1280  dynamically as needed to service mspace_malloc requests.  You can
1281  control the sizes of incremental increases of this space by
1282  compiling with a different DEFAULT_GRANULARITY or dynamically
1283  setting with mallopt(M_GRANULARITY, value).
1284*/
1285DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
1286
1287/*
1288  destroy_mspace destroys the given space, and attempts to return all
1289  of its memory back to the system, returning the total number of
1290  bytes freed. After destruction, the results of access to all memory
1291  used by the space become undefined.
1292*/
1293DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
1294
1295/*
1296  create_mspace_with_base uses the memory supplied as the initial base
1297  of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1298  space is used for bookkeeping, so the capacity must be at least this
1299  large. (Otherwise 0 is returned.) When this initial space is
1300  exhausted, additional memory will be obtained from the system.
1301  Destroying this space will deallocate all additionally allocated
1302  space (if possible) but not the initial base.
1303*/
1304DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1305
1306/*
1307  mspace_track_large_chunks controls whether requests for large chunks
1308  are allocated in their own untracked mmapped regions, separate from
1309  others in this mspace. By default large chunks are not tracked,
1310  which reduces fragmentation. However, such chunks are not
1311  necessarily released to the system upon destroy_mspace.  Enabling
1312  tracking by setting to true may increase fragmentation, but avoids
1313  leakage when relying on destroy_mspace to release all memory
1314  allocated using this space.  The function returns the previous
1315  setting.
1316*/
1317DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
1318
1319
1320/*
1321  mspace_malloc behaves as malloc, but operates within
1322  the given space.
1323*/
1324DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes);
1325
1326/*
1327  mspace_free behaves as free, but operates within
1328  the given space.
1329
1330  If compiled with FOOTERS==1, mspace_free is not actually needed.
1331  free may be called instead of mspace_free because freed chunks from
1332  any space are handled by their originating spaces.
1333*/
1334DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem);
1335
1336/*
1337  mspace_realloc behaves as realloc, but operates within
1338  the given space.
1339
1340  If compiled with FOOTERS==1, mspace_realloc is not actually
1341  needed.  realloc may be called instead of mspace_realloc because
1342  realloced chunks from any space are handled by their originating
1343  spaces.
1344*/
1345DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1346
1347/*
1348  mspace_calloc behaves as calloc, but operates within
1349  the given space.
1350*/
1351DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1352
1353/*
1354  mspace_memalign behaves as memalign, but operates within
1355  the given space.
1356*/
1357DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1358
1359/*
1360  mspace_independent_calloc behaves as independent_calloc, but
1361  operates within the given space.
1362*/
1363DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements,
1364                                 size_t elem_size, void* chunks[]);
1365
1366/*
1367  mspace_independent_comalloc behaves as independent_comalloc, but
1368  operates within the given space.
1369*/
1370DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1371                                   size_t sizes[], void* chunks[]);
1372
1373/*
1374  mspace_footprint() returns the number of bytes obtained from the
1375  system for this space.
1376*/
1377DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
1378
1379/*
1380  mspace_max_footprint() returns the peak number of bytes obtained from the
1381  system for this space.
1382*/
1383DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
1384
1385
1386#if !NO_MALLINFO
1387/*
1388  mspace_mallinfo behaves as mallinfo, but reports properties of
1389  the given space.
1390*/
1391DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
1392#endif /* NO_MALLINFO */
1393
1394/*
1395  malloc_usable_size(void* p) behaves the same as malloc_usable_size;
1396*/
1397DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem);
1398
1399/*
1400  mspace_malloc_stats behaves as malloc_stats, but reports
1401  properties of the given space.
1402*/
1403DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
1404
1405/*
1406  mspace_trim behaves as malloc_trim, but
1407  operates within the given space.
1408*/
1409DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
1410
1411/*
1412  An alias for mallopt.
1413*/
1414DLMALLOC_EXPORT int mspace_mallopt(int, int);
1415
1416#endif /* MSPACES */
1417
1418#ifdef __cplusplus
1419}  /* end of extern "C" */
1420#endif /* __cplusplus */
1421
1422/*
1423  ========================================================================
1424  To make a fully customizable malloc.h header file, cut everything
1425  above this line, put into file malloc.h, edit to suit, and #include it
1426  on the next line, as well as in programs that use this malloc.
1427  ========================================================================
1428*/
1429
1430/* #include "malloc.h" */
1431
1432/*------------------------------ internal #includes ---------------------- */
1433
1434#ifdef _MSC_VER
1435#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1436#endif /* _MSC_VER */
1437#if !NO_MALLOC_STATS
1438#include <stdio.h>       /* for printing in malloc_stats */
1439#endif /* NO_MALLOC_STATS */
1440#ifndef LACKS_ERRNO_H
1441#include <errno.h>       /* for MALLOC_FAILURE_ACTION */
1442#endif /* LACKS_ERRNO_H */
1443#ifdef DEBUG
1444#if ABORT_ON_ASSERT_FAILURE
1445#undef assert
1446#define assert(x) if(!(x)) ABORT
1447#else /* ABORT_ON_ASSERT_FAILURE */
1448#include <assert.h>
1449#endif /* ABORT_ON_ASSERT_FAILURE */
1450#else  /* DEBUG */
1451#ifndef assert
1452#define assert(x)
1453#endif
1454#define DEBUG 0
1455#endif /* DEBUG */
1456#if !defined(WIN32) && !defined(LACKS_TIME_H)
1457#include <time.h>        /* for magic initialization */
1458#endif /* WIN32 */
1459#ifndef LACKS_STDLIB_H
1460#include <stdlib.h>      /* for abort() */
1461#endif /* LACKS_STDLIB_H */
1462#ifndef LACKS_STRING_H
1463#include <string.h>      /* for memset etc */
1464#endif  /* LACKS_STRING_H */
1465#if USE_BUILTIN_FFS
1466#ifndef LACKS_STRINGS_H
1467#include <strings.h>     /* for ffs */
1468#endif /* LACKS_STRINGS_H */
1469#endif /* USE_BUILTIN_FFS */
1470#if HAVE_MMAP
1471#ifndef LACKS_SYS_MMAN_H
1472/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
1473#if (defined(linux) && !defined(__USE_GNU))
1474#define __USE_GNU 1
1475#include <sys/mman.h>    /* for mmap */
1476#undef __USE_GNU
1477#else
1478#include <sys/mman.h>    /* for mmap */
1479#endif /* linux */
1480#endif /* LACKS_SYS_MMAN_H */
1481#ifndef LACKS_FCNTL_H
1482#include <fcntl.h>
1483#endif /* LACKS_FCNTL_H */
1484#endif /* HAVE_MMAP */
1485#ifndef LACKS_UNISTD_H
1486#include <unistd.h>     /* for sbrk, sysconf */
1487#else /* LACKS_UNISTD_H */
1488#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1489extern void*     sbrk(ptrdiff_t);
1490#endif /* FreeBSD etc */
1491#endif /* LACKS_UNISTD_H */
1492
1493/* Declarations for locking */
1494#if USE_LOCKS
1495#ifndef WIN32
1496#if defined (__SVR4) && defined (__sun)  /* solaris */
1497#include <thread.h>
1498#elif !defined(LACKS_SCHED_H)
1499#include <sched.h>
1500#endif /* solaris or LACKS_SCHED_H */
1501#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
1502#include <pthread.h>
1503#endif /* USE_RECURSIVE_LOCKS ... */
1504#elif defined(_MSC_VER)
1505#ifndef _M_AMD64
1506/* These are already defined on AMD64 builds */
1507#ifdef __cplusplus
1508extern "C" {
1509#endif /* __cplusplus */
1510LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
1511LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
1512#ifdef __cplusplus
1513}
1514#endif /* __cplusplus */
1515#endif /* _M_AMD64 */
1516#pragma intrinsic (_InterlockedCompareExchange)
1517#pragma intrinsic (_InterlockedExchange)
1518#define interlockedcompareexchange _InterlockedCompareExchange
1519#define interlockedexchange _InterlockedExchange
1520#elif defined(WIN32) && defined(__GNUC__)
1521#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
1522#define interlockedexchange __sync_lock_test_and_set
1523#endif /* Win32 */
1524#else /* USE_LOCKS */
1525#endif /* USE_LOCKS */
1526
1527#ifndef LOCK_AT_FORK
1528#define LOCK_AT_FORK 0
1529#endif
1530
1531/* Declarations for bit scanning on win32 */
1532#if defined(_MSC_VER) && _MSC_VER>=1300
1533#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
1534#ifdef __cplusplus
1535extern "C" {
1536#endif /* __cplusplus */
1537unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
1538unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
1539#ifdef __cplusplus
1540}
1541#endif /* __cplusplus */
1542
1543#define BitScanForward _BitScanForward
1544#define BitScanReverse _BitScanReverse
1545#pragma intrinsic(_BitScanForward)
1546#pragma intrinsic(_BitScanReverse)
1547#endif /* BitScanForward */
1548#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
1549
1550#ifndef WIN32
1551#ifndef malloc_getpagesize
1552#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
1553#    ifndef _SC_PAGE_SIZE
1554#      define _SC_PAGE_SIZE _SC_PAGESIZE
1555#    endif
1556#  endif
1557#  ifdef _SC_PAGE_SIZE
1558#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1559#  else
1560#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1561       extern size_t getpagesize();
1562#      define malloc_getpagesize getpagesize()
1563#    else
1564#      ifdef WIN32 /* use supplied emulation of getpagesize */
1565#        define malloc_getpagesize getpagesize()
1566#      else
1567#        ifndef LACKS_SYS_PARAM_H
1568#          include <sys/param.h>
1569#        endif
1570#        ifdef EXEC_PAGESIZE
1571#          define malloc_getpagesize EXEC_PAGESIZE
1572#        else
1573#          ifdef NBPG
1574#            ifndef CLSIZE
1575#              define malloc_getpagesize NBPG
1576#            else
1577#              define malloc_getpagesize (NBPG * CLSIZE)
1578#            endif
1579#          else
1580#            ifdef NBPC
1581#              define malloc_getpagesize NBPC
1582#            else
1583#              ifdef PAGESIZE
1584#                define malloc_getpagesize PAGESIZE
1585#              else /* just guess */
1586#                define malloc_getpagesize ((size_t)4096U)
1587#              endif
1588#            endif
1589#          endif
1590#        endif
1591#      endif
1592#    endif
1593#  endif
1594#endif
1595#endif
1596
1597/* ------------------- size_t and alignment properties -------------------- */
1598
1599/* The byte and bit size of a size_t */
1600#define SIZE_T_SIZE         (sizeof(size_t))
1601#define SIZE_T_BITSIZE      (sizeof(size_t) << 3)
1602
1603/* Some constants coerced to size_t */
1604/* Annoying but necessary to avoid errors on some platforms */
1605#define SIZE_T_ZERO         ((size_t)0)
1606#define SIZE_T_ONE          ((size_t)1)
1607#define SIZE_T_TWO          ((size_t)2)
1608#define SIZE_T_FOUR         ((size_t)4)
1609#define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1)
1610#define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2)
1611#define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1612#define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U)
1613
1614/* The bit mask value corresponding to MALLOC_ALIGNMENT */
1615#define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE)
1616
1617/* True if address a has acceptable alignment */
1618#define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1619
1620/* the number of bytes to offset an address to align it */
1621#define align_offset(A)\
1622 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1623  ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1624
1625/* -------------------------- MMAP preliminaries ------------------------- */
1626
1627/*
1628   If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1629   checks to fail so compiler optimizer can delete code rather than
1630   using so many "#if"s.
1631*/
1632
1633
1634/* MORECORE and MMAP must return MFAIL on failure */
1635#define MFAIL                ((void*)(MAX_SIZE_T))
1636#define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */
1637
1638#if HAVE_MMAP
1639
1640#ifndef WIN32
1641#define MUNMAP_DEFAULT(a, s)  munmap((a), (s))
1642#define MMAP_PROT            (PROT_READ|PROT_WRITE)
1643#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1644#define MAP_ANONYMOUS        MAP_ANON
1645#endif /* MAP_ANON */
1646#ifdef MAP_ANONYMOUS
1647#define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS)
1648#define MMAP_DEFAULT(s)       mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1649#else /* MAP_ANONYMOUS */
1650/*
1651   Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1652   is unlikely to be needed, but is supplied just in case.
1653*/
1654#define MMAP_FLAGS           (MAP_PRIVATE)
1655static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1656#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
1657           (dev_zero_fd = open("/dev/zero", O_RDWR), \
1658            mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1659            mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1660#endif /* MAP_ANONYMOUS */
1661
1662#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
1663
1664#else /* WIN32 */
1665
1666/* Win32 MMAP via VirtualAlloc */
1667static FORCEINLINE void* win32mmap(size_t size) {
1668  void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
1669  return (ptr != 0)? ptr: MFAIL;
1670}
1671
1672/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
1673static FORCEINLINE void* win32direct_mmap(size_t size) {
1674  void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1675                           PAGE_READWRITE);
1676  return (ptr != 0)? ptr: MFAIL;
1677}
1678
1679/* This function supports releasing coalesed segments */
1680static FORCEINLINE int win32munmap(void* ptr, size_t size) {
1681  MEMORY_BASIC_INFORMATION minfo;
1682  char* cptr = (char*)ptr;
1683  while (size) {
1684    if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1685      return -1;
1686    if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1687        minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1688      return -1;
1689    if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1690      return -1;
1691    cptr += minfo.RegionSize;
1692    size -= minfo.RegionSize;
1693  }
1694  return 0;
1695}
1696
1697#define MMAP_DEFAULT(s)             win32mmap(s)
1698#define MUNMAP_DEFAULT(a, s)        win32munmap((a), (s))
1699#define DIRECT_MMAP_DEFAULT(s)      win32direct_mmap(s)
1700#endif /* WIN32 */
1701#endif /* HAVE_MMAP */
1702
1703#if HAVE_MREMAP
1704#ifndef WIN32
1705#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1706#endif /* WIN32 */
1707#endif /* HAVE_MREMAP */
1708
1709/**
1710 * Define CALL_MORECORE
1711 */
1712#if HAVE_MORECORE
1713    #ifdef MORECORE
1714        #define CALL_MORECORE(S)    MORECORE(S)
1715    #else  /* MORECORE */
1716        #define CALL_MORECORE(S)    MORECORE_DEFAULT(S)
1717    #endif /* MORECORE */
1718#else  /* HAVE_MORECORE */
1719    #define CALL_MORECORE(S)        MFAIL
1720#endif /* HAVE_MORECORE */
1721
1722/**
1723 * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
1724 */
1725#if HAVE_MMAP
1726    #define USE_MMAP_BIT            (SIZE_T_ONE)
1727
1728    #ifdef MMAP
1729        #define CALL_MMAP(s)        MMAP(s)
1730    #else /* MMAP */
1731        #define CALL_MMAP(s)        MMAP_DEFAULT(s)
1732    #endif /* MMAP */
1733    #ifdef MUNMAP
1734        #define CALL_MUNMAP(a, s)   MUNMAP((a), (s))
1735    #else /* MUNMAP */
1736        #define CALL_MUNMAP(a, s)   MUNMAP_DEFAULT((a), (s))
1737    #endif /* MUNMAP */
1738    #ifdef DIRECT_MMAP
1739        #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1740    #else /* DIRECT_MMAP */
1741        #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
1742    #endif /* DIRECT_MMAP */
1743#else  /* HAVE_MMAP */
1744    #define USE_MMAP_BIT            (SIZE_T_ZERO)
1745
1746    #define MMAP(s)                 MFAIL
1747    #define MUNMAP(a, s)            (-1)
1748    #define DIRECT_MMAP(s)          MFAIL
1749    #define CALL_DIRECT_MMAP(s)     DIRECT_MMAP(s)
1750    #define CALL_MMAP(s)            MMAP(s)
1751    #define CALL_MUNMAP(a, s)       MUNMAP((a), (s))
1752#endif /* HAVE_MMAP */
1753
1754/**
1755 * Define CALL_MREMAP
1756 */
1757#if HAVE_MMAP && HAVE_MREMAP
1758    #ifdef MREMAP
1759        #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
1760    #else /* MREMAP */
1761        #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
1762    #endif /* MREMAP */
1763#else  /* HAVE_MMAP && HAVE_MREMAP */
1764    #define CALL_MREMAP(addr, osz, nsz, mv)     MFAIL
1765#endif /* HAVE_MMAP && HAVE_MREMAP */
1766
1767/* mstate bit set if continguous morecore disabled or failed */
1768#define USE_NONCONTIGUOUS_BIT (4U)
1769
1770/* segment bit set in create_mspace_with_base */
1771#define EXTERN_BIT            (8U)
1772
1773
1774/* --------------------------- Lock preliminaries ------------------------ */
1775
1776/*
1777  When locks are defined, there is one global lock, plus
1778  one per-mspace lock.
1779
1780  The global lock_ensures that mparams.magic and other unique
1781  mparams values are initialized only once. It also protects
1782  sequences of calls to MORECORE.  In many cases sys_alloc requires
1783  two calls, that should not be interleaved with calls by other
1784  threads.  This does not protect against direct calls to MORECORE
1785  by other threads not using this lock, so there is still code to
1786  cope the best we can on interference.
1787
1788  Per-mspace locks surround calls to malloc, free, etc.
1789  By default, locks are simple non-reentrant mutexes.
1790
1791  Because lock-protected regions generally have bounded times, it is
1792  OK to use the supplied simple spinlocks. Spinlocks are likely to
1793  improve performance for lightly contended applications, but worsen
1794  performance under heavy contention.
1795
1796  If USE_LOCKS is > 1, the definitions of lock routines here are
1797  bypassed, in which case you will need to define the type MLOCK_T,
1798  and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK
1799  and TRY_LOCK.  You must also declare a
1800    static MLOCK_T malloc_global_mutex = { initialization values };.
1801
1802*/
1803
1804#if !USE_LOCKS
1805#define USE_LOCK_BIT               (0U)
1806#define INITIAL_LOCK(l)            (0)
1807#define DESTROY_LOCK(l)            (0)
1808#define ACQUIRE_MALLOC_GLOBAL_LOCK()
1809#define RELEASE_MALLOC_GLOBAL_LOCK()
1810
1811#else
1812#if USE_LOCKS > 1
1813/* -----------------------  User-defined locks ------------------------ */
1814/* Define your own lock implementation here */
1815/* #define INITIAL_LOCK(lk)  ... */
1816/* #define DESTROY_LOCK(lk)  ... */
1817/* #define ACQUIRE_LOCK(lk)  ... */
1818/* #define RELEASE_LOCK(lk)  ... */
1819/* #define TRY_LOCK(lk) ... */
1820/* static MLOCK_T malloc_global_mutex = ... */
1821
1822#elif USE_SPIN_LOCKS
1823
1824/* First, define CAS_LOCK and CLEAR_LOCK on ints */
1825/* Note CAS_LOCK defined to return 0 on success */
1826
1827#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
1828#define CAS_LOCK(sl)     __sync_lock_test_and_set(sl, 1)
1829#define CLEAR_LOCK(sl)   __sync_lock_release(sl)
1830
1831#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
1832/* Custom spin locks for older gcc on x86 */
1833static FORCEINLINE int x86_cas_lock(int *sl) {
1834  int ret;
1835  int val = 1;
1836  int cmp = 0;
1837  __asm__ __volatile__  ("lock; cmpxchgl %1, %2"
1838                         : "=a" (ret)
1839                         : "r" (val), "m" (*(sl)), "0"(cmp)
1840                         : "memory", "cc");
1841  return ret;
1842}
1843
1844static FORCEINLINE void x86_clear_lock(int* sl) {
1845  assert(*sl != 0);
1846  int prev = 0;
1847  int ret;
1848  __asm__ __volatile__ ("lock; xchgl %0, %1"
1849                        : "=r" (ret)
1850                        : "m" (*(sl)), "0"(prev)
1851                        : "memory");
1852}
1853
1854#define CAS_LOCK(sl)     x86_cas_lock(sl)
1855#define CLEAR_LOCK(sl)   x86_clear_lock(sl)
1856
1857#else /* Win32 MSC */
1858#define CAS_LOCK(sl)     interlockedexchange(sl, (LONG)1)
1859#define CLEAR_LOCK(sl)   interlockedexchange (sl, (LONG)0)
1860
1861#endif /* ... gcc spins locks ... */
1862
1863/* How to yield for a spin lock */
1864#define SPINS_PER_YIELD       63
1865#if defined(_MSC_VER)
1866#define SLEEP_EX_DURATION     50 /* delay for yield/sleep */
1867#define SPIN_LOCK_YIELD  SleepEx(SLEEP_EX_DURATION, FALSE)
1868#elif defined (__SVR4) && defined (__sun) /* solaris */
1869#define SPIN_LOCK_YIELD   thr_yield();
1870#elif !defined(LACKS_SCHED_H)
1871#define SPIN_LOCK_YIELD   sched_yield();
1872#else
1873#define SPIN_LOCK_YIELD
1874#endif /* ... yield ... */
1875
1876#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
1877/* Plain spin locks use single word (embedded in malloc_states) */
1878static int spin_acquire_lock(int *sl) {
1879  int spins = 0;
1880  while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) {
1881    if ((++spins & SPINS_PER_YIELD) == 0) {
1882      SPIN_LOCK_YIELD;
1883    }
1884  }
1885  return 0;
1886}
1887
1888#define MLOCK_T               int
1889#define TRY_LOCK(sl)          !CAS_LOCK(sl)
1890#define RELEASE_LOCK(sl)      CLEAR_LOCK(sl)
1891#define ACQUIRE_LOCK(sl)      (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
1892#define INITIAL_LOCK(sl)      (*sl = 0)
1893#define DESTROY_LOCK(sl)      (0)
1894static MLOCK_T malloc_global_mutex = 0;
1895
1896#else /* USE_RECURSIVE_LOCKS */
1897/* types for lock owners */
1898#ifdef WIN32
1899#define THREAD_ID_T           DWORD
1900#define CURRENT_THREAD        GetCurrentThreadId()
1901#define EQ_OWNER(X,Y)         ((X) == (Y))
1902#else
1903/*
1904  Note: the following assume that pthread_t is a type that can be
1905  initialized to (casted) zero. If this is not the case, you will need to
1906  somehow redefine these or not use spin locks.
1907*/
1908#define THREAD_ID_T           pthread_t
1909#define CURRENT_THREAD        pthread_self()
1910#define EQ_OWNER(X,Y)         pthread_equal(X, Y)
1911#endif
1912
1913struct malloc_recursive_lock {
1914  int sl;
1915  unsigned int c;
1916  THREAD_ID_T threadid;
1917};
1918
1919#define MLOCK_T  struct malloc_recursive_lock
1920static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0};
1921
1922static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) {
1923  assert(lk->sl != 0);
1924  if (--lk->c == 0) {
1925    CLEAR_LOCK(&lk->sl);
1926  }
1927}
1928
1929static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) {
1930  THREAD_ID_T mythreadid = CURRENT_THREAD;
1931  int spins = 0;
1932  for (;;) {
1933    if (*((volatile int *)(&lk->sl)) == 0) {
1934      if (!CAS_LOCK(&lk->sl)) {
1935        lk->threadid = mythreadid;
1936        lk->c = 1;
1937        return 0;
1938      }
1939    }
1940    else if (EQ_OWNER(lk->threadid, mythreadid)) {
1941      ++lk->c;
1942      return 0;
1943    }
1944    if ((++spins & SPINS_PER_YIELD) == 0) {
1945      SPIN_LOCK_YIELD;
1946    }
1947  }
1948}
1949
1950static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) {
1951  THREAD_ID_T mythreadid = CURRENT_THREAD;
1952  if (*((volatile int *)(&lk->sl)) == 0) {
1953    if (!CAS_LOCK(&lk->sl)) {
1954      lk->threadid = mythreadid;
1955      lk->c = 1;
1956      return 1;
1957    }
1958  }
1959  else if (EQ_OWNER(lk->threadid, mythreadid)) {
1960    ++lk->c;
1961    return 1;
1962  }
1963  return 0;
1964}
1965
1966#define RELEASE_LOCK(lk)      recursive_release_lock(lk)
1967#define TRY_LOCK(lk)          recursive_try_lock(lk)
1968#define ACQUIRE_LOCK(lk)      recursive_acquire_lock(lk)
1969#define INITIAL_LOCK(lk)      ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
1970#define DESTROY_LOCK(lk)      (0)
1971#endif /* USE_RECURSIVE_LOCKS */
1972
1973#elif defined(WIN32) /* Win32 critical sections */
1974#define MLOCK_T               CRITICAL_SECTION
1975#define ACQUIRE_LOCK(lk)      (EnterCriticalSection(lk), 0)
1976#define RELEASE_LOCK(lk)      LeaveCriticalSection(lk)
1977#define TRY_LOCK(lk)          TryEnterCriticalSection(lk)
1978#define INITIAL_LOCK(lk)      (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
1979#define DESTROY_LOCK(lk)      (DeleteCriticalSection(lk), 0)
1980#define NEED_GLOBAL_LOCK_INIT
1981
1982static MLOCK_T malloc_global_mutex;
1983static volatile LONG malloc_global_mutex_status;
1984
1985/* Use spin loop to initialize global lock */
1986static void init_malloc_global_mutex() {
1987  for (;;) {
1988    long stat = malloc_global_mutex_status;
1989    if (stat > 0)
1990      return;
1991    /* transition to < 0 while initializing, then to > 0) */
1992    if (stat == 0 &&
1993        interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) {
1994      InitializeCriticalSection(&malloc_global_mutex);
1995      interlockedexchange(&malloc_global_mutex_status, (LONG)1);
1996      return;
1997    }
1998    SleepEx(0, FALSE);
1999  }
2000}
2001
2002#else /* pthreads-based locks */
2003#define MLOCK_T               pthread_mutex_t
2004#define ACQUIRE_LOCK(lk)      pthread_mutex_lock(lk)
2005#define RELEASE_LOCK(lk)      pthread_mutex_unlock(lk)
2006#define TRY_LOCK(lk)          (!pthread_mutex_trylock(lk))
2007#define INITIAL_LOCK(lk)      pthread_init_lock(lk)
2008#define DESTROY_LOCK(lk)      pthread_mutex_destroy(lk)
2009
2010#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
2011/* Cope with old-style linux recursive lock initialization by adding */
2012/* skipped internal declaration from pthread.h */
2013extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
2014                                              int __kind));
2015#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
2016#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
2017#endif /* USE_RECURSIVE_LOCKS ... */
2018
2019static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
2020
2021static int pthread_init_lock (MLOCK_T *lk) {
2022  pthread_mutexattr_t attr;
2023  if (pthread_mutexattr_init(&attr)) return 1;
2024#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
2025  if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
2026#endif
2027  if (pthread_mutex_init(lk, &attr)) return 1;
2028  if (pthread_mutexattr_destroy(&attr)) return 1;
2029  return 0;
2030}
2031
2032#endif /* ... lock types ... */
2033
2034/* Common code for all lock types */
2035#define USE_LOCK_BIT               (2U)
2036
2037#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
2038#define ACQUIRE_MALLOC_GLOBAL_LOCK()  ACQUIRE_LOCK(&malloc_global_mutex);
2039#endif
2040
2041#ifndef RELEASE_MALLOC_GLOBAL_LOCK
2042#define RELEASE_MALLOC_GLOBAL_LOCK()  RELEASE_LOCK(&malloc_global_mutex);
2043#endif
2044
2045#endif /* USE_LOCKS */
2046
2047/* -----------------------  Chunk representations ------------------------ */
2048
2049/*
2050  (The following includes lightly edited explanations by Colin Plumb.)
2051
2052  The malloc_chunk declaration below is misleading (but accurate and
2053  necessary).  It declares a "view" into memory allowing access to
2054  necessary fields at known offsets from a given base.
2055
2056  Chunks of memory are maintained using a `boundary tag' method as
2057  originally described by Knuth.  (See the paper by Paul Wilson
2058  ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
2059  techniques.)  Sizes of free chunks are stored both in the front of
2060  each chunk and at the end.  This makes consolidating fragmented
2061  chunks into bigger chunks fast.  The head fields also hold bits
2062  representing whether chunks are free or in use.
2063
2064  Here are some pictures to make it clearer.  They are "exploded" to
2065  show that the state of a chunk can be thought of as extending from
2066  the high 31 bits of the head field of its header through the
2067  prev_foot and PINUSE_BIT bit of the following chunk header.
2068
2069  A chunk that's in use looks like:
2070
2071   chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2072           | Size of previous chunk (if P = 0)                             |
2073           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2074         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2075         | Size of this chunk                                         1| +-+
2076   mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2077         |                                                               |
2078         +-                                                             -+
2079         |                                                               |
2080         +-                                                             -+
2081         |                                                               :
2082         +-      size - sizeof(size_t) available payload bytes          -+
2083         :                                                               |
2084 chunk-> +-                                                             -+
2085         |                                                               |
2086         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2087       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
2088       | Size of next chunk (may or may not be in use)               | +-+
2089 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2090
2091    And if it's free, it looks like this:
2092
2093   chunk-> +-                                                             -+
2094           | User payload (must be in use, or we would have merged!)       |
2095           +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2096         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2097         | Size of this chunk                                         0| +-+
2098   mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2099         | Next pointer                                                  |
2100         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2101         | Prev pointer                                                  |
2102         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2103         |                                                               :
2104         +-      size - sizeof(struct chunk) unused bytes               -+
2105         :                                                               |
2106 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2107         | Size of this chunk                                            |
2108         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2109       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
2110       | Size of next chunk (must be in use, or we would have merged)| +-+
2111 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2112       |                                                               :
2113       +- User payload                                                -+
2114       :                                                               |
2115       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2116                                                                     |0|
2117                                                                     +-+
2118  Note that since we always merge adjacent free chunks, the chunks
2119  adjacent to a free chunk must be in use.
2120
2121  Given a pointer to a chunk (which can be derived trivially from the
2122  payload pointer) we can, in O(1) time, find out whether the adjacent
2123  chunks are free, and if so, unlink them from the lists that they
2124  are on and merge them with the current chunk.
2125
2126  Chunks always begin on even word boundaries, so the mem portion
2127  (which is returned to the user) is also on an even word boundary, and
2128  thus at least double-word aligned.
2129
2130  The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
2131  chunk size (which is always a multiple of two words), is an in-use
2132  bit for the *previous* chunk.  If that bit is *clear*, then the
2133  word before the current chunk size contains the previous chunk
2134  size, and can be used to find the front of the previous chunk.
2135  The very first chunk allocated always has this bit set, preventing
2136  access to non-existent (or non-owned) memory. If pinuse is set for
2137  any given chunk, then you CANNOT determine the size of the
2138  previous chunk, and might even get a memory addressing fault when
2139  trying to do so.
2140
2141  The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
2142  the chunk size redundantly records whether the current chunk is
2143  inuse (unless the chunk is mmapped). This redundancy enables usage
2144  checks within free and realloc, and reduces indirection when freeing
2145  and consolidating chunks.
2146
2147  Each freshly allocated chunk must have both cinuse and pinuse set.
2148  That is, each allocated chunk borders either a previously allocated
2149  and still in-use chunk, or the base of its memory arena. This is
2150  ensured by making all allocations from the `lowest' part of any
2151  found chunk.  Further, no free chunk physically borders another one,
2152  so each free chunk is known to be preceded and followed by either
2153  inuse chunks or the ends of memory.
2154
2155  Note that the `foot' of the current chunk is actually represented
2156  as the prev_foot of the NEXT chunk. This makes it easier to
2157  deal with alignments etc but can be very confusing when trying
2158  to extend or adapt this code.
2159
2160  The exceptions to all this are
2161
2162     1. The special chunk `top' is the top-most available chunk (i.e.,
2163        the one bordering the end of available memory). It is treated
2164        specially.  Top is never included in any bin, is used only if
2165        no other chunk is available, and is released back to the
2166        system if it is very large (see M_TRIM_THRESHOLD).  In effect,
2167        the top chunk is treated as larger (and thus less well
2168        fitting) than any other available chunk.  The top chunk
2169        doesn't update its trailing size field since there is no next
2170        contiguous chunk that would have to index off it. However,
2171        space is still allocated for it (TOP_FOOT_SIZE) to enable
2172        separation or merging when space is extended.
2173
2174     3. Chunks allocated via mmap, have both cinuse and pinuse bits
2175        cleared in their head fields.  Because they are allocated
2176        one-by-one, each must carry its own prev_foot field, which is
2177        also used to hold the offset this chunk has within its mmapped
2178        region, which is needed to preserve alignment. Each mmapped
2179        chunk is trailed by the first two fields of a fake next-chunk
2180        for sake of usage checks.
2181
2182*/
2183
2184struct malloc_chunk {
2185  size_t               prev_foot;  /* Size of previous chunk (if free).  */
2186  size_t               head;       /* Size and inuse bits. */
2187  struct malloc_chunk* fd;         /* double links -- used only if free. */
2188  struct malloc_chunk* bk;
2189};
2190
2191typedef struct malloc_chunk  mchunk;
2192typedef struct malloc_chunk* mchunkptr;
2193typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */
2194typedef unsigned int bindex_t;         /* Described below */
2195typedef unsigned int binmap_t;         /* Described below */
2196typedef unsigned int flag_t;           /* The type of various bit flag sets */
2197
2198/* ------------------- Chunks sizes and alignments ----------------------- */
2199
2200#define MCHUNK_SIZE         (sizeof(mchunk))
2201
2202#if FOOTERS
2203#define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES)
2204#else /* FOOTERS */
2205#define CHUNK_OVERHEAD      (SIZE_T_SIZE)
2206#endif /* FOOTERS */
2207
2208/* MMapped chunks need a second word of overhead ... */
2209#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2210/* ... and additional padding for fake next-chunk at foot */
2211#define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES)
2212
2213/* The smallest size we can malloc is an aligned minimal chunk */
2214#define MIN_CHUNK_SIZE\
2215  ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2216
2217/* conversion from malloc headers to user pointers, and back */
2218#define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES))
2219#define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
2220/* chunk associated with aligned address A */
2221#define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A)))
2222
2223/* Bounds on request (not chunk) sizes. */
2224#define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2)
2225#define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
2226
2227/* pad request bytes into a usable size */
2228#define pad_request(req) \
2229   (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2230
2231/* pad request, checking for minimum (but not maximum) */
2232#define request2size(req) \
2233  (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
2234
2235
2236/* ------------------ Operations on head and foot fields ----------------- */
2237
2238/*
2239  The head field of a chunk is or'ed with PINUSE_BIT when previous
2240  adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
2241  use, unless mmapped, in which case both bits are cleared.
2242
2243  FLAG4_BIT is not used by this malloc, but might be useful in extensions.
2244*/
2245
2246#define PINUSE_BIT          (SIZE_T_ONE)
2247#define CINUSE_BIT          (SIZE_T_TWO)
2248#define FLAG4_BIT           (SIZE_T_FOUR)
2249#define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT)
2250#define FLAG_BITS           (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
2251
2252/* Head value for fenceposts */
2253#define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE)
2254
2255/* extraction of fields from head words */
2256#define cinuse(p)           ((p)->head & CINUSE_BIT)
2257#define pinuse(p)           ((p)->head & PINUSE_BIT)
2258#define flag4inuse(p)       ((p)->head & FLAG4_BIT)
2259#define is_inuse(p)         (((p)->head & INUSE_BITS) != PINUSE_BIT)
2260#define is_mmapped(p)       (((p)->head & INUSE_BITS) == 0)
2261
2262#define chunksize(p)        ((p)->head & ~(FLAG_BITS))
2263
2264#define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT)
2265#define set_flag4(p)        ((p)->head |= FLAG4_BIT)
2266#define clear_flag4(p)      ((p)->head &= ~FLAG4_BIT)
2267
2268/* Treat space at ptr +/- offset as a chunk */
2269#define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
2270#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
2271
2272/* Ptr to next or previous physical malloc_chunk. */
2273#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
2274#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
2275
2276/* extract next chunk's pinuse bit */
2277#define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT)
2278
2279/* Get/set size at footer */
2280#define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot)
2281#define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
2282
2283/* Set size, pinuse bit, and foot */
2284#define set_size_and_pinuse_of_free_chunk(p, s)\
2285  ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
2286
2287/* Set size, pinuse bit, foot, and clear next pinuse */
2288#define set_free_with_pinuse(p, s, n)\
2289  (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
2290
2291/* Get the internal overhead associated with chunk p */
2292#define overhead_for(p)\
2293 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
2294
2295/* Return true if malloced space is not necessarily cleared */
2296#if MMAP_CLEARS
2297#define calloc_must_clear(p) (!is_mmapped(p))
2298#else /* MMAP_CLEARS */
2299#define calloc_must_clear(p) (1)
2300#endif /* MMAP_CLEARS */
2301
2302/* ---------------------- Overlaid data structures ----------------------- */
2303
2304/*
2305  When chunks are not in use, they are treated as nodes of either
2306  lists or trees.
2307
2308  "Small"  chunks are stored in circular doubly-linked lists, and look
2309  like this:
2310
2311    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2312            |             Size of previous chunk                            |
2313            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2314    `head:' |             Size of chunk, in bytes                         |P|
2315      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2316            |             Forward pointer to next chunk in list             |
2317            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2318            |             Back pointer to previous chunk in list            |
2319            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2320            |             Unused space (may be 0 bytes long)                .
2321            .                                                               .
2322            .                                                               |
2323nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2324    `foot:' |             Size of chunk, in bytes                           |
2325            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2326
2327  Larger chunks are kept in a form of bitwise digital trees (aka
2328  tries) keyed on chunksizes.  Because malloc_tree_chunks are only for
2329  free chunks greater than 256 bytes, their size doesn't impose any
2330  constraints on user chunk sizes.  Each node looks like:
2331
2332    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2333            |             Size of previous chunk                            |
2334            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2335    `head:' |             Size of chunk, in bytes                         |P|
2336      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2337            |             Forward pointer to next chunk of same size        |
2338            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2339            |             Back pointer to previous chunk of same size       |
2340            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2341            |             Pointer to left child (child[0])                  |
2342            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2343            |             Pointer to right child (child[1])                 |
2344            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2345            |             Pointer to parent                                 |
2346            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2347            |             bin index of this chunk                           |
2348            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2349            |             Unused space                                      .
2350            .                                                               |
2351nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2352    `foot:' |             Size of chunk, in bytes                           |
2353            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2354
2355  Each tree holding treenodes is a tree of unique chunk sizes.  Chunks
2356  of the same size are arranged in a circularly-linked list, with only
2357  the oldest chunk (the next to be used, in our FIFO ordering)
2358  actually in the tree.  (Tree members are distinguished by a non-null
2359  parent pointer.)  If a chunk with the same size an an existing node
2360  is inserted, it is linked off the existing node using pointers that
2361  work in the same way as fd/bk pointers of small chunks.
2362
2363  Each tree contains a power of 2 sized range of chunk sizes (the
2364  smallest is 0x100 <= x < 0x180), which is is divided in half at each
2365  tree level, with the chunks in the smaller half of the range (0x100
2366  <= x < 0x140 for the top nose) in the left subtree and the larger
2367  half (0x140 <= x < 0x180) in the right subtree.  This is, of course,
2368  done by inspecting individual bits.
2369
2370  Using these rules, each node's left subtree contains all smaller
2371  sizes than its right subtree.  However, the node at the root of each
2372  subtree has no particular ordering relationship to either.  (The
2373  dividing line between the subtree sizes is based on trie relation.)
2374  If we remove the last chunk of a given size from the interior of the
2375  tree, we need to replace it with a leaf node.  The tree ordering
2376  rules permit a node to be replaced by any leaf below it.
2377
2378  The smallest chunk in a tree (a common operation in a best-fit
2379  allocator) can be found by walking a path to the leftmost leaf in
2380  the tree.  Unlike a usual binary tree, where we follow left child
2381  pointers until we reach a null, here we follow the right child
2382  pointer any time the left one is null, until we reach a leaf with
2383  both child pointers null. The smallest chunk in the tree will be
2384  somewhere along that path.
2385
2386  The worst case number of steps to add, find, or remove a node is
2387  bounded by the number of bits differentiating chunks within
2388  bins. Under current bin calculations, this ranges from 6 up to 21
2389  (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
2390  is of course much better.
2391*/
2392
2393struct malloc_tree_chunk {
2394  /* The first four fields must be compatible with malloc_chunk */
2395  size_t                    prev_foot;
2396  size_t                    head;
2397  struct malloc_tree_chunk* fd;
2398  struct malloc_tree_chunk* bk;
2399
2400  struct malloc_tree_chunk* child[2];
2401  struct malloc_tree_chunk* parent;
2402  bindex_t                  index;
2403};
2404
2405typedef struct malloc_tree_chunk  tchunk;
2406typedef struct malloc_tree_chunk* tchunkptr;
2407typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
2408
2409/* A little helper macro for trees */
2410#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
2411
2412/* ----------------------------- Segments -------------------------------- */
2413
2414/*
2415  Each malloc space may include non-contiguous segments, held in a
2416  list headed by an embedded malloc_segment record representing the
2417  top-most space. Segments also include flags holding properties of
2418  the space. Large chunks that are directly allocated by mmap are not
2419  included in this list. They are instead independently created and
2420  destroyed without otherwise keeping track of them.
2421
2422  Segment management mainly comes into play for spaces allocated by
2423  MMAP.  Any call to MMAP might or might not return memory that is
2424  adjacent to an existing segment.  MORECORE normally contiguously
2425  extends the current space, so this space is almost always adjacent,
2426  which is simpler and faster to deal with. (This is why MORECORE is
2427  used preferentially to MMAP when both are available -- see
2428  sys_alloc.)  When allocating using MMAP, we don't use any of the
2429  hinting mechanisms (inconsistently) supported in various
2430  implementations of unix mmap, or distinguish reserving from
2431  committing memory. Instead, we just ask for space, and exploit
2432  contiguity when we get it.  It is probably possible to do
2433  better than this on some systems, but no general scheme seems
2434  to be significantly better.
2435
2436  Management entails a simpler variant of the consolidation scheme
2437  used for chunks to reduce fragmentation -- new adjacent memory is
2438  normally prepended or appended to an existing segment. However,
2439  there are limitations compared to chunk consolidation that mostly
2440  reflect the fact that segment processing is relatively infrequent
2441  (occurring only when getting memory from system) and that we
2442  don't expect to have huge numbers of segments:
2443
2444  * Segments are not indexed, so traversal requires linear scans.  (It
2445    would be possible to index these, but is not worth the extra
2446    overhead and complexity for most programs on most platforms.)
2447  * New segments are only appended to old ones when holding top-most
2448    memory; if they cannot be prepended to others, they are held in
2449    different segments.
2450
2451  Except for the top-most segment of an mstate, each segment record
2452  is kept at the tail of its segment. Segments are added by pushing
2453  segment records onto the list headed by &mstate.seg for the
2454  containing mstate.
2455
2456  Segment flags control allocation/merge/deallocation policies:
2457  * If EXTERN_BIT set, then we did not allocate this segment,
2458    and so should not try to deallocate or merge with others.
2459    (This currently holds only for the initial segment passed
2460    into create_mspace_with_base.)
2461  * If USE_MMAP_BIT set, the segment may be merged with
2462    other surrounding mmapped segments and trimmed/de-allocated
2463    using munmap.
2464  * If neither bit is set, then the segment was obtained using
2465    MORECORE so can be merged with surrounding MORECORE'd segments
2466    and deallocated/trimmed using MORECORE with negative arguments.
2467*/
2468
2469struct malloc_segment {
2470  char*        base;             /* base address */
2471  size_t       size;             /* allocated size */
2472  struct malloc_segment* next;   /* ptr to next segment */
2473  flag_t       sflags;           /* mmap and extern flag */
2474};
2475
2476#define is_mmapped_segment(S)  ((S)->sflags & USE_MMAP_BIT)
2477#define is_extern_segment(S)   ((S)->sflags & EXTERN_BIT)
2478
2479typedef struct malloc_segment  msegment;
2480typedef struct malloc_segment* msegmentptr;
2481
2482/* ---------------------------- malloc_state ----------------------------- */
2483
2484/*
2485   A malloc_state holds all of the bookkeeping for a space.
2486   The main fields are:
2487
2488  Top
2489    The topmost chunk of the currently active segment. Its size is
2490    cached in topsize.  The actual size of topmost space is
2491    topsize+TOP_FOOT_SIZE, which includes space reserved for adding
2492    fenceposts and segment records if necessary when getting more
2493    space from the system.  The size at which to autotrim top is
2494    cached from mparams in trim_check, except that it is disabled if
2495    an autotrim fails.
2496
2497  Designated victim (dv)
2498    This is the preferred chunk for servicing small requests that
2499    don't have exact fits.  It is normally the chunk split off most
2500    recently to service another small request.  Its size is cached in
2501    dvsize. The link fields of this chunk are not maintained since it
2502    is not kept in a bin.
2503
2504  SmallBins
2505    An array of bin headers for free chunks.  These bins hold chunks
2506    with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
2507    chunks of all the same size, spaced 8 bytes apart.  To simplify
2508    use in double-linked lists, each bin header acts as a malloc_chunk
2509    pointing to the real first node, if it exists (else pointing to
2510    itself).  This avoids special-casing for headers.  But to avoid
2511    waste, we allocate only the fd/bk pointers of bins, and then use
2512    repositioning tricks to treat these as the fields of a chunk.
2513
2514  TreeBins
2515    Treebins are pointers to the roots of trees holding a range of
2516    sizes. There are 2 equally spaced treebins for each power of two
2517    from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
2518    larger.
2519
2520  Bin maps
2521    There is one bit map for small bins ("smallmap") and one for
2522    treebins ("treemap).  Each bin sets its bit when non-empty, and
2523    clears the bit when empty.  Bit operations are then used to avoid
2524    bin-by-bin searching -- nearly all "search" is done without ever
2525    looking at bins that won't be selected.  The bit maps
2526    conservatively use 32 bits per map word, even if on 64bit system.
2527    For a good description of some of the bit-based techniques used
2528    here, see Henry S. Warren Jr's book "Hacker's Delight" (and
2529    supplement at http://hackersdelight.org/). Many of these are
2530    intended to reduce the branchiness of paths through malloc etc, as
2531    well as to reduce the number of memory locations read or written.
2532
2533  Segments
2534    A list of segments headed by an embedded malloc_segment record
2535    representing the initial space.
2536
2537  Address check support
2538    The least_addr field is the least address ever obtained from
2539    MORECORE or MMAP. Attempted frees and reallocs of any address less
2540    than this are trapped (unless INSECURE is defined).
2541
2542  Magic tag
2543    A cross-check field that should always hold same value as mparams.magic.
2544
2545  Max allowed footprint
2546    The maximum allowed bytes to allocate from system (zero means no limit)
2547
2548  Flags
2549    Bits recording whether to use MMAP, locks, or contiguous MORECORE
2550
2551  Statistics
2552    Each space keeps track of current and maximum system memory
2553    obtained via MORECORE or MMAP.
2554
2555  Trim support
2556    Fields holding the amount of unused topmost memory that should trigger
2557    trimming, and a counter to force periodic scanning to release unused
2558    non-topmost segments.
2559
2560  Locking
2561    If USE_LOCKS is defined, the "mutex" lock is acquired and released
2562    around every public call using this mspace.
2563
2564  Extension support
2565    A void* pointer and a size_t field that can be used to help implement
2566    extensions to this malloc.
2567*/
2568
2569/* Bin types, widths and sizes */
2570#define NSMALLBINS        (32U)
2571#define NTREEBINS         (32U)
2572#define SMALLBIN_SHIFT    (3U)
2573#define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT)
2574#define TREEBIN_SHIFT     (8U)
2575#define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT)
2576#define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE)
2577#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2578
2579struct malloc_state {
2580  binmap_t   smallmap;
2581  binmap_t   treemap;
2582  size_t     dvsize;
2583  size_t     topsize;
2584  char*      least_addr;
2585  mchunkptr  dv;
2586  mchunkptr  top;
2587  size_t     trim_check;
2588  size_t     release_checks;
2589  size_t     magic;
2590  mchunkptr  smallbins[(NSMALLBINS+1)*2];
2591  tbinptr    treebins[NTREEBINS];
2592  size_t     footprint;
2593  size_t     max_footprint;
2594  size_t     footprint_limit; /* zero means no limit */
2595  flag_t     mflags;
2596#if USE_LOCKS
2597  MLOCK_T    mutex;     /* locate lock among fields that rarely change */
2598#endif /* USE_LOCKS */
2599  msegment   seg;
2600  void*      extp;      /* Unused but available for extensions */
2601  size_t     exts;
2602};
2603
2604typedef struct malloc_state*    mstate;
2605
2606/* ------------- Global malloc_state and malloc_params ------------------- */
2607
2608/*
2609  malloc_params holds global properties, including those that can be
2610  dynamically set using mallopt. There is a single instance, mparams,
2611  initialized in init_mparams. Note that the non-zeroness of "magic"
2612  also serves as an initialization flag.
2613*/
2614
2615struct malloc_params {
2616  size_t magic;
2617  size_t page_size;
2618  size_t granularity;
2619  size_t mmap_threshold;
2620  size_t trim_threshold;
2621  flag_t default_mflags;
2622};
2623
2624static struct malloc_params mparams;
2625
2626/* Ensure mparams initialized */
2627#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
2628
2629#if !ONLY_MSPACES
2630
2631/* The global malloc_state used for all non-"mspace" calls */
2632static struct malloc_state _gm_;
2633#define gm                 (&_gm_)
2634#define is_global(M)       ((M) == &_gm_)
2635
2636#endif /* !ONLY_MSPACES */
2637
2638#define is_initialized(M)  ((M)->top != 0)
2639
2640/* -------------------------- system alloc setup ------------------------- */
2641
2642/* Operations on mflags */
2643
2644#define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT)
2645#define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT)
2646#if USE_LOCKS
2647#define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT)
2648#else
2649#define disable_lock(M)
2650#endif
2651
2652#define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT)
2653#define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT)
2654#if HAVE_MMAP
2655#define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT)
2656#else
2657#define disable_mmap(M)
2658#endif
2659
2660#define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT)
2661#define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT)
2662
2663#define set_lock(M,L)\
2664 ((M)->mflags = (L)?\
2665  ((M)->mflags | USE_LOCK_BIT) :\
2666  ((M)->mflags & ~USE_LOCK_BIT))
2667
2668/* page-align a size */
2669#define page_align(S)\
2670 (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
2671
2672/* granularity-align a size */
2673#define granularity_align(S)\
2674  (((S) + (mparams.granularity - SIZE_T_ONE))\
2675   & ~(mparams.granularity - SIZE_T_ONE))
2676
2677
2678/* For mmap, use granularity alignment on windows, else page-align */
2679#ifdef WIN32
2680#define mmap_align(S) granularity_align(S)
2681#else
2682#define mmap_align(S) page_align(S)
2683#endif
2684
2685/* For sys_alloc, enough padding to ensure can malloc request on success */
2686#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
2687
2688#define is_page_aligned(S)\
2689   (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2690#define is_granularity_aligned(S)\
2691   (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2692
2693/*  True if segment S holds address A */
2694#define segment_holds(S, A)\
2695  ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2696
2697/* Return segment holding given address */
2698static msegmentptr segment_holding(mstate m, char* addr) {
2699  msegmentptr sp = &m->seg;
2700  for (;;) {
2701    if (addr >= sp->base && addr < sp->base + sp->size)
2702      return sp;
2703    if ((sp = sp->next) == 0)
2704      return 0;
2705  }
2706}
2707
2708/* Return true if segment contains a segment link */
2709static int has_segment_link(mstate m, msegmentptr ss) {
2710  msegmentptr sp = &m->seg;
2711  for (;;) {
2712    if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2713      return 1;
2714    if ((sp = sp->next) == 0)
2715      return 0;
2716  }
2717}
2718
2719#ifndef MORECORE_CANNOT_TRIM
2720#define should_trim(M,s)  ((s) > (M)->trim_check)
2721#else  /* MORECORE_CANNOT_TRIM */
2722#define should_trim(M,s)  (0)
2723#endif /* MORECORE_CANNOT_TRIM */
2724
2725/*
2726  TOP_FOOT_SIZE is padding at the end of a segment, including space
2727  that may be needed to place segment records and fenceposts when new
2728  noncontiguous segments are added.
2729*/
2730#define TOP_FOOT_SIZE\
2731  (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2732
2733
2734/* -------------------------------  Hooks -------------------------------- */
2735
2736/*
2737  PREACTION should be defined to return 0 on success, and nonzero on
2738  failure. If you are not using locking, you can redefine these to do
2739  anything you like.
2740*/
2741
2742#if USE_LOCKS
2743#define PREACTION(M)  ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2744#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2745#else /* USE_LOCKS */
2746
2747#ifndef PREACTION
2748#define PREACTION(M) (0)
2749#endif  /* PREACTION */
2750
2751#ifndef POSTACTION
2752#define POSTACTION(M)
2753#endif  /* POSTACTION */
2754
2755#endif /* USE_LOCKS */
2756
2757/*
2758  CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2759  USAGE_ERROR_ACTION is triggered on detected bad frees and
2760  reallocs. The argument p is an address that might have triggered the
2761  fault. It is ignored by the two predefined actions, but might be
2762  useful in custom actions that try to help diagnose errors.
2763*/
2764
2765#if PROCEED_ON_ERROR
2766
2767/* A count of the number of corruption errors causing resets */
2768int malloc_corruption_error_count;
2769
2770/* default corruption action */
2771static void reset_on_error(mstate m);
2772
2773#define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m)
2774#define USAGE_ERROR_ACTION(m, p)
2775
2776#else /* PROCEED_ON_ERROR */
2777
2778#ifndef CORRUPTION_ERROR_ACTION
2779#define CORRUPTION_ERROR_ACTION(m) ABORT
2780#endif /* CORRUPTION_ERROR_ACTION */
2781
2782#ifndef USAGE_ERROR_ACTION
2783#define USAGE_ERROR_ACTION(m,p) ABORT
2784#endif /* USAGE_ERROR_ACTION */
2785
2786#endif /* PROCEED_ON_ERROR */
2787
2788
2789/* -------------------------- Debugging setup ---------------------------- */
2790
2791#if ! DEBUG
2792
2793#define check_free_chunk(M,P)
2794#define check_inuse_chunk(M,P)
2795#define check_malloced_chunk(M,P,N)
2796#define check_mmapped_chunk(M,P)
2797#define check_malloc_state(M)
2798#define check_top_chunk(M,P)
2799
2800#else /* DEBUG */
2801#define check_free_chunk(M,P)       do_check_free_chunk(M,P)
2802#define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P)
2803#define check_top_chunk(M,P)        do_check_top_chunk(M,P)
2804#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2805#define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P)
2806#define check_malloc_state(M)       do_check_malloc_state(M)
2807
2808static void   do_check_any_chunk(mstate m, mchunkptr p);
2809static void   do_check_top_chunk(mstate m, mchunkptr p);
2810static void   do_check_mmapped_chunk(mstate m, mchunkptr p);
2811static void   do_check_inuse_chunk(mstate m, mchunkptr p);
2812static void   do_check_free_chunk(mstate m, mchunkptr p);
2813static void   do_check_malloced_chunk(mstate m, void* mem, size_t s);
2814static void   do_check_tree(mstate m, tchunkptr t);
2815static void   do_check_treebin(mstate m, bindex_t i);
2816static void   do_check_smallbin(mstate m, bindex_t i);
2817static void   do_check_malloc_state(mstate m);
2818static int    bin_find(mstate m, mchunkptr x);
2819static size_t traverse_and_check(mstate m);
2820#endif /* DEBUG */
2821
2822/* ---------------------------- Indexing Bins ---------------------------- */
2823
2824#define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2825#define small_index(s)      (bindex_t)((s)  >> SMALLBIN_SHIFT)
2826#define small_index2size(i) ((i)  << SMALLBIN_SHIFT)
2827#define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE))
2828
2829/* addressing by index. See above about smallbin repositioning */
2830/* BEGIN android-changed: strict aliasing change: char* cast to void* */
2831#define smallbin_at(M, i)   ((sbinptr)((void*)&((M)->smallbins[(i)<<1])))
2832/* END android-changed */
2833#define treebin_at(M,i)     (&((M)->treebins[i]))
2834
2835/* assign tree index for size S to variable I. Use x86 asm if possible  */
2836#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
2837#define compute_tree_index(S, I)\
2838{\
2839  unsigned int X = S >> TREEBIN_SHIFT;\
2840  if (X == 0)\
2841    I = 0;\
2842  else if (X > 0xFFFF)\
2843    I = NTREEBINS-1;\
2844  else {\
2845    unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
2846    I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2847  }\
2848}
2849
2850#elif defined (__INTEL_COMPILER)
2851#define compute_tree_index(S, I)\
2852{\
2853  size_t X = S >> TREEBIN_SHIFT;\
2854  if (X == 0)\
2855    I = 0;\
2856  else if (X > 0xFFFF)\
2857    I = NTREEBINS-1;\
2858  else {\
2859    unsigned int K = _bit_scan_reverse (X); \
2860    I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2861  }\
2862}
2863
2864#elif defined(_MSC_VER) && _MSC_VER>=1300
2865#define compute_tree_index(S, I)\
2866{\
2867  size_t X = S >> TREEBIN_SHIFT;\
2868  if (X == 0)\
2869    I = 0;\
2870  else if (X > 0xFFFF)\
2871    I = NTREEBINS-1;\
2872  else {\
2873    unsigned int K;\
2874    _BitScanReverse((DWORD *) &K, (DWORD) X);\
2875    I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2876  }\
2877}
2878
2879#else /* GNUC */
2880#define compute_tree_index(S, I)\
2881{\
2882  size_t X = S >> TREEBIN_SHIFT;\
2883  if (X == 0)\
2884    I = 0;\
2885  else if (X > 0xFFFF)\
2886    I = NTREEBINS-1;\
2887  else {\
2888    unsigned int Y = (unsigned int)X;\
2889    unsigned int N = ((Y - 0x100) >> 16) & 8;\
2890    unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2891    N += K;\
2892    N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2893    K = 14 - N + ((Y <<= K) >> 15);\
2894    I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2895  }\
2896}
2897#endif /* GNUC */
2898
2899/* Bit representing maximum resolved size in a treebin at i */
2900#define bit_for_tree_index(i) \
2901   (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2902
2903/* Shift placing maximum resolved bit in a treebin at i as sign bit */
2904#define leftshift_for_tree_index(i) \
2905   ((i == NTREEBINS-1)? 0 : \
2906    ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2907
2908/* The size of the smallest chunk held in bin with index i */
2909#define minsize_for_tree_index(i) \
2910   ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \
2911   (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2912
2913
2914/* ------------------------ Operations on bin maps ----------------------- */
2915
2916/* bit corresponding to given index */
2917#define idx2bit(i)              ((binmap_t)(1) << (i))
2918
2919/* Mark/Clear bits with given index */
2920#define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i))
2921#define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i))
2922#define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i))
2923
2924#define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i))
2925#define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i))
2926#define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i))
2927
2928/* isolate the least set bit of a bitmap */
2929#define least_bit(x)         ((x) & -(x))
2930
2931/* mask with all bits to left of least bit of x on */
2932#define left_bits(x)         ((x<<1) | -(x<<1))
2933
2934/* mask with all bits to left of or equal to least bit of x on */
2935#define same_or_left_bits(x) ((x) | -(x))
2936
2937/* index corresponding to given bit. Use x86 asm if possible */
2938
2939#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
2940#define compute_bit2idx(X, I)\
2941{\
2942  unsigned int J;\
2943  J = __builtin_ctz(X); \
2944  I = (bindex_t)J;\
2945}
2946
2947#elif defined (__INTEL_COMPILER)
2948#define compute_bit2idx(X, I)\
2949{\
2950  unsigned int J;\
2951  J = _bit_scan_forward (X); \
2952  I = (bindex_t)J;\
2953}
2954
2955#elif defined(_MSC_VER) && _MSC_VER>=1300
2956#define compute_bit2idx(X, I)\
2957{\
2958  unsigned int J;\
2959  _BitScanForward((DWORD *) &J, X);\
2960  I = (bindex_t)J;\
2961}
2962
2963#elif USE_BUILTIN_FFS
2964#define compute_bit2idx(X, I) I = ffs(X)-1
2965
2966#else
2967#define compute_bit2idx(X, I)\
2968{\
2969  unsigned int Y = X - 1;\
2970  unsigned int K = Y >> (16-4) & 16;\
2971  unsigned int N = K;        Y >>= K;\
2972  N += K = Y >> (8-3) &  8;  Y >>= K;\
2973  N += K = Y >> (4-2) &  4;  Y >>= K;\
2974  N += K = Y >> (2-1) &  2;  Y >>= K;\
2975  N += K = Y >> (1-0) &  1;  Y >>= K;\
2976  I = (bindex_t)(N + Y);\
2977}
2978#endif /* GNUC */
2979
2980
2981/* ----------------------- Runtime Check Support ------------------------- */
2982
2983/*
2984  For security, the main invariant is that malloc/free/etc never
2985  writes to a static address other than malloc_state, unless static
2986  malloc_state itself has been corrupted, which cannot occur via
2987  malloc (because of these checks). In essence this means that we
2988  believe all pointers, sizes, maps etc held in malloc_state, but
2989  check all of those linked or offsetted from other embedded data
2990  structures.  These checks are interspersed with main code in a way
2991  that tends to minimize their run-time cost.
2992
2993  When FOOTERS is defined, in addition to range checking, we also
2994  verify footer fields of inuse chunks, which can be used guarantee
2995  that the mstate controlling malloc/free is intact.  This is a
2996  streamlined version of the approach described by William Robertson
2997  et al in "Run-time Detection of Heap-based Overflows" LISA'03
2998  http://www.usenix.org/events/lisa03/tech/robertson.html The footer
2999  of an inuse chunk holds the xor of its mstate and a random seed,
3000  that is checked upon calls to free() and realloc().  This is
3001  (probabalistically) unguessable from outside the program, but can be
3002  computed by any code successfully malloc'ing any chunk, so does not
3003  itself provide protection against code that has already broken
3004  security through some other means.  Unlike Robertson et al, we
3005  always dynamically check addresses of all offset chunks (previous,
3006  next, etc). This turns out to be cheaper than relying on hashes.
3007*/
3008
3009#if !INSECURE
3010/* Check if address a is at least as high as any from MORECORE or MMAP */
3011#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
3012/* Check if address of next chunk n is higher than base chunk p */
3013#define ok_next(p, n)    ((char*)(p) < (char*)(n))
3014/* Check if p has inuse status */
3015#define ok_inuse(p)     is_inuse(p)
3016/* Check if p has its pinuse bit on */
3017#define ok_pinuse(p)     pinuse(p)
3018
3019#else /* !INSECURE */
3020#define ok_address(M, a) (1)
3021#define ok_next(b, n)    (1)
3022#define ok_inuse(p)      (1)
3023#define ok_pinuse(p)     (1)
3024#endif /* !INSECURE */
3025
3026#if (FOOTERS && !INSECURE)
3027/* Check if (alleged) mstate m has expected magic field */
3028#define ok_magic(M)      ((M)->magic == mparams.magic)
3029#else  /* (FOOTERS && !INSECURE) */
3030#define ok_magic(M)      (1)
3031#endif /* (FOOTERS && !INSECURE) */
3032
3033/* In gcc, use __builtin_expect to minimize impact of checks */
3034#if !INSECURE
3035#if defined(__GNUC__) && __GNUC__ >= 3
3036#define RTCHECK(e)  __builtin_expect(e, 1)
3037#else /* GNUC */
3038#define RTCHECK(e)  (e)
3039#endif /* GNUC */
3040#else /* !INSECURE */
3041#define RTCHECK(e)  (1)
3042#endif /* !INSECURE */
3043
3044/* macros to set up inuse chunks with or without footers */
3045
3046#if !FOOTERS
3047
3048#define mark_inuse_foot(M,p,s)
3049
3050/* Macros for setting head/foot of non-mmapped chunks */
3051
3052/* Set cinuse bit and pinuse bit of next chunk */
3053#define set_inuse(M,p,s)\
3054  ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
3055  ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
3056
3057/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
3058#define set_inuse_and_pinuse(M,p,s)\
3059  ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3060  ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
3061
3062/* Set size, cinuse and pinuse bit of this chunk */
3063#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
3064  ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
3065
3066#else /* FOOTERS */
3067
3068/* Set foot of inuse chunk to be xor of mstate and seed */
3069#define mark_inuse_foot(M,p,s)\
3070  (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
3071
3072#define get_mstate_for(p)\
3073  ((mstate)(((mchunkptr)((char*)(p) +\
3074    (chunksize(p))))->prev_foot ^ mparams.magic))
3075
3076#define set_inuse(M,p,s)\
3077  ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
3078  (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
3079  mark_inuse_foot(M,p,s))
3080
3081#define set_inuse_and_pinuse(M,p,s)\
3082  ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3083  (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
3084 mark_inuse_foot(M,p,s))
3085
3086#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
3087  ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3088  mark_inuse_foot(M, p, s))
3089
3090#endif /* !FOOTERS */
3091
3092/* ---------------------------- setting mparams -------------------------- */
3093
3094#if LOCK_AT_FORK
3095static void pre_fork(void)         { ACQUIRE_LOCK(&(gm)->mutex); }
3096static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); }
3097static void post_fork_child(void)  { INITIAL_LOCK(&(gm)->mutex); }
3098#endif /* LOCK_AT_FORK */
3099
3100/* Initialize mparams */
3101static int init_mparams(void) {
3102  /* BEGIN android-added: move pthread_atfork outside of lock */
3103  int first_run = 0;
3104  /* END android-added */
3105#ifdef NEED_GLOBAL_LOCK_INIT
3106  if (malloc_global_mutex_status <= 0)
3107    init_malloc_global_mutex();
3108#endif
3109
3110  ACQUIRE_MALLOC_GLOBAL_LOCK();
3111  if (mparams.magic == 0) {
3112    size_t magic;
3113    size_t psize;
3114    size_t gsize;
3115    /* BEGIN android-added: move pthread_atfork outside of lock */
3116    first_run = 1;
3117    /* END android-added */
3118
3119#ifndef WIN32
3120    psize = malloc_getpagesize;
3121    gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
3122#else /* WIN32 */
3123    {
3124      SYSTEM_INFO system_info;
3125      GetSystemInfo(&system_info);
3126      psize = system_info.dwPageSize;
3127      gsize = ((DEFAULT_GRANULARITY != 0)?
3128               DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
3129    }
3130#endif /* WIN32 */
3131
3132    /* Sanity-check configuration:
3133       size_t must be unsigned and as wide as pointer type.
3134       ints must be at least 4 bytes.
3135       alignment must be at least 8.
3136       Alignment, min chunk size, and page size must all be powers of 2.
3137    */
3138    if ((sizeof(size_t) != sizeof(char*)) ||
3139        (MAX_SIZE_T < MIN_CHUNK_SIZE)  ||
3140        (sizeof(int) < 4)  ||
3141        (MALLOC_ALIGNMENT < (size_t)8U) ||
3142        ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
3143        ((MCHUNK_SIZE      & (MCHUNK_SIZE-SIZE_T_ONE))      != 0) ||
3144        ((gsize            & (gsize-SIZE_T_ONE))            != 0) ||
3145        ((psize            & (psize-SIZE_T_ONE))            != 0))
3146      ABORT;
3147    mparams.granularity = gsize;
3148    mparams.page_size = psize;
3149    mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
3150    mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
3151#if MORECORE_CONTIGUOUS
3152    mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
3153#else  /* MORECORE_CONTIGUOUS */
3154    mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
3155#endif /* MORECORE_CONTIGUOUS */
3156
3157#if !ONLY_MSPACES
3158    /* Set up lock for main malloc area */
3159    gm->mflags = mparams.default_mflags;
3160    (void)INITIAL_LOCK(&gm->mutex);
3161#endif
3162    /* BEGIN android-removed: move pthread_atfork outside of lock */
3163#if 0 && LOCK_AT_FORK
3164    pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
3165#endif
3166    /* END android-removed */
3167
3168    {
3169#if USE_DEV_RANDOM
3170      int fd;
3171      unsigned char buf[sizeof(size_t)];
3172      /* Try to use /dev/urandom, else fall back on using time */
3173      if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
3174          read(fd, buf, sizeof(buf)) == sizeof(buf)) {
3175        magic = *((size_t *) buf);
3176        close(fd);
3177      }
3178      else
3179#endif /* USE_DEV_RANDOM */
3180#ifdef WIN32
3181      magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
3182#elif defined(LACKS_TIME_H)
3183      magic = (size_t)&magic ^ (size_t)0x55555555U;
3184#else
3185      magic = (size_t)(time(0) ^ (size_t)0x55555555U);
3186#endif
3187      magic |= (size_t)8U;    /* ensure nonzero */
3188      magic &= ~(size_t)7U;   /* improve chances of fault for bad values */
3189      /* Until memory modes commonly available, use volatile-write */
3190      (*(volatile size_t *)(&(mparams.magic))) = magic;
3191    }
3192  }
3193
3194  RELEASE_MALLOC_GLOBAL_LOCK();
3195  /* BEGIN android-added: move pthread_atfork outside of lock */
3196  if (first_run != 0) {
3197#if LOCK_AT_FORK
3198    pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
3199#endif
3200  }
3201  /* END android-added */
3202  return 1;
3203}
3204
3205/* support for mallopt */
3206static int change_mparam(int param_number, int value) {
3207  size_t val;
3208  ensure_initialization();
3209  val = (value == -1)? MAX_SIZE_T : (size_t)value;
3210  switch(param_number) {
3211  case M_TRIM_THRESHOLD:
3212    mparams.trim_threshold = val;
3213    return 1;
3214  case M_GRANULARITY:
3215    if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
3216      mparams.granularity = val;
3217      return 1;
3218    }
3219    else
3220      return 0;
3221  case M_MMAP_THRESHOLD:
3222    mparams.mmap_threshold = val;
3223    return 1;
3224  default:
3225    return 0;
3226  }
3227}
3228
3229#if DEBUG
3230/* ------------------------- Debugging Support --------------------------- */
3231
3232/* Check properties of any chunk, whether free, inuse, mmapped etc  */
3233static void do_check_any_chunk(mstate m, mchunkptr p) {
3234  assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3235  assert(ok_address(m, p));
3236}
3237
3238/* Check properties of top chunk */
3239static void do_check_top_chunk(mstate m, mchunkptr p) {
3240  msegmentptr sp = segment_holding(m, (char*)p);
3241  size_t  sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
3242  assert(sp != 0);
3243  assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3244  assert(ok_address(m, p));
3245  assert(sz == m->topsize);
3246  assert(sz > 0);
3247  assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
3248  assert(pinuse(p));
3249  assert(!pinuse(chunk_plus_offset(p, sz)));
3250}
3251
3252/* Check properties of (inuse) mmapped chunks */
3253static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
3254  size_t  sz = chunksize(p);
3255  size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
3256  assert(is_mmapped(p));
3257  assert(use_mmap(m));
3258  assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3259  assert(ok_address(m, p));
3260  assert(!is_small(sz));
3261  assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
3262  assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
3263  assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
3264}
3265
3266/* Check properties of inuse chunks */
3267static void do_check_inuse_chunk(mstate m, mchunkptr p) {
3268  do_check_any_chunk(m, p);
3269  assert(is_inuse(p));
3270  assert(next_pinuse(p));
3271  /* If not pinuse and not mmapped, previous chunk has OK offset */
3272  assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
3273  if (is_mmapped(p))
3274    do_check_mmapped_chunk(m, p);
3275}
3276
3277/* Check properties of free chunks */
3278static void do_check_free_chunk(mstate m, mchunkptr p) {
3279  size_t sz = chunksize(p);
3280  mchunkptr next = chunk_plus_offset(p, sz);
3281  do_check_any_chunk(m, p);
3282  assert(!is_inuse(p));
3283  assert(!next_pinuse(p));
3284  assert (!is_mmapped(p));
3285  if (p != m->dv && p != m->top) {
3286    if (sz >= MIN_CHUNK_SIZE) {
3287      assert((sz & CHUNK_ALIGN_MASK) == 0);
3288      assert(is_aligned(chunk2mem(p)));
3289      assert(next->prev_foot == sz);
3290      assert(pinuse(p));
3291      assert (next == m->top || is_inuse(next));
3292      assert(p->fd->bk == p);
3293      assert(p->bk->fd == p);
3294    }
3295    else  /* markers are always of size SIZE_T_SIZE */
3296      assert(sz == SIZE_T_SIZE);
3297  }
3298}
3299
3300/* Check properties of malloced chunks at the point they are malloced */
3301static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
3302  if (mem != 0) {
3303    mchunkptr p = mem2chunk(mem);
3304    size_t sz = p->head & ~INUSE_BITS;
3305    do_check_inuse_chunk(m, p);
3306    assert((sz & CHUNK_ALIGN_MASK) == 0);
3307    assert(sz >= MIN_CHUNK_SIZE);
3308    assert(sz >= s);
3309    /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
3310    assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
3311  }
3312}
3313
3314/* Check a tree and its subtrees.  */
3315static void do_check_tree(mstate m, tchunkptr t) {
3316  tchunkptr head = 0;
3317  tchunkptr u = t;
3318  bindex_t tindex = t->index;
3319  size_t tsize = chunksize(t);
3320  bindex_t idx;
3321  compute_tree_index(tsize, idx);
3322  assert(tindex == idx);
3323  assert(tsize >= MIN_LARGE_SIZE);
3324  assert(tsize >= minsize_for_tree_index(idx));
3325  assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
3326
3327  do { /* traverse through chain of same-sized nodes */
3328    do_check_any_chunk(m, ((mchunkptr)u));
3329    assert(u->index == tindex);
3330    assert(chunksize(u) == tsize);
3331    assert(!is_inuse(u));
3332    assert(!next_pinuse(u));
3333    assert(u->fd->bk == u);
3334    assert(u->bk->fd == u);
3335    if (u->parent == 0) {
3336      assert(u->child[0] == 0);
3337      assert(u->child[1] == 0);
3338    }
3339    else {
3340      assert(head == 0); /* only one node on chain has parent */
3341      head = u;
3342      assert(u->parent != u);
3343      assert (u->parent->child[0] == u ||
3344              u->parent->child[1] == u ||
3345              *((tbinptr*)(u->parent)) == u);
3346      if (u->child[0] != 0) {
3347        assert(u->child[0]->parent == u);
3348        assert(u->child[0] != u);
3349        do_check_tree(m, u->child[0]);
3350      }
3351      if (u->child[1] != 0) {
3352        assert(u->child[1]->parent == u);
3353        assert(u->child[1] != u);
3354        do_check_tree(m, u->child[1]);
3355      }
3356      if (u->child[0] != 0 && u->child[1] != 0) {
3357        assert(chunksize(u->child[0]) < chunksize(u->child[1]));
3358      }
3359    }
3360    u = u->fd;
3361  } while (u != t);
3362  assert(head != 0);
3363}
3364
3365/*  Check all the chunks in a treebin.  */
3366static void do_check_treebin(mstate m, bindex_t i) {
3367  tbinptr* tb = treebin_at(m, i);
3368  tchunkptr t = *tb;
3369  int empty = (m->treemap & (1U << i)) == 0;
3370  if (t == 0)
3371    assert(empty);
3372  if (!empty)
3373    do_check_tree(m, t);
3374}
3375
3376/*  Check all the chunks in a smallbin.  */
3377static void do_check_smallbin(mstate m, bindex_t i) {
3378  sbinptr b = smallbin_at(m, i);
3379  mchunkptr p = b->bk;
3380  unsigned int empty = (m->smallmap & (1U << i)) == 0;
3381  if (p == b)
3382    assert(empty);
3383  if (!empty) {
3384    for (; p != b; p = p->bk) {
3385      size_t size = chunksize(p);
3386      mchunkptr q;
3387      /* each chunk claims to be free */
3388      do_check_free_chunk(m, p);
3389      /* chunk belongs in bin */
3390      assert(small_index(size) == i);
3391      assert(p->bk == b || chunksize(p->bk) == chunksize(p));
3392      /* chunk is followed by an inuse chunk */
3393      q = next_chunk(p);
3394      if (q->head != FENCEPOST_HEAD)
3395        do_check_inuse_chunk(m, q);
3396    }
3397  }
3398}
3399
3400/* Find x in a bin. Used in other check functions. */
3401static int bin_find(mstate m, mchunkptr x) {
3402  size_t size = chunksize(x);
3403  if (is_small(size)) {
3404    bindex_t sidx = small_index(size);
3405    sbinptr b = smallbin_at(m, sidx);
3406    if (smallmap_is_marked(m, sidx)) {
3407      mchunkptr p = b;
3408      do {
3409        if (p == x)
3410          return 1;
3411      } while ((p = p->fd) != b);
3412    }
3413  }
3414  else {
3415    bindex_t tidx;
3416    compute_tree_index(size, tidx);
3417    if (treemap_is_marked(m, tidx)) {
3418      tchunkptr t = *treebin_at(m, tidx);
3419      size_t sizebits = size << leftshift_for_tree_index(tidx);
3420      while (t != 0 && chunksize(t) != size) {
3421        t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3422        sizebits <<= 1;
3423      }
3424      if (t != 0) {
3425        tchunkptr u = t;
3426        do {
3427          if (u == (tchunkptr)x)
3428            return 1;
3429        } while ((u = u->fd) != t);
3430      }
3431    }
3432  }
3433  return 0;
3434}
3435
3436/* Traverse each chunk and check it; return total */
3437static size_t traverse_and_check(mstate m) {
3438  size_t sum = 0;
3439  if (is_initialized(m)) {
3440    msegmentptr s = &m->seg;
3441    sum += m->topsize + TOP_FOOT_SIZE;
3442    while (s != 0) {
3443      mchunkptr q = align_as_chunk(s->base);
3444      mchunkptr lastq = 0;
3445      assert(pinuse(q));
3446      while (segment_holds(s, q) &&
3447             q != m->top && q->head != FENCEPOST_HEAD) {
3448        sum += chunksize(q);
3449        if (is_inuse(q)) {
3450          assert(!bin_find(m, q));
3451          do_check_inuse_chunk(m, q);
3452        }
3453        else {
3454          assert(q == m->dv || bin_find(m, q));
3455          assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
3456          do_check_free_chunk(m, q);
3457        }
3458        lastq = q;
3459        q = next_chunk(q);
3460      }
3461      s = s->next;
3462    }
3463  }
3464  return sum;
3465}
3466
3467
3468/* Check all properties of malloc_state. */
3469static void do_check_malloc_state(mstate m) {
3470  bindex_t i;
3471  size_t total;
3472  /* check bins */
3473  for (i = 0; i < NSMALLBINS; ++i)
3474    do_check_smallbin(m, i);
3475  for (i = 0; i < NTREEBINS; ++i)
3476    do_check_treebin(m, i);
3477
3478  if (m->dvsize != 0) { /* check dv chunk */
3479    do_check_any_chunk(m, m->dv);
3480    assert(m->dvsize == chunksize(m->dv));
3481    assert(m->dvsize >= MIN_CHUNK_SIZE);
3482    assert(bin_find(m, m->dv) == 0);
3483  }
3484
3485  if (m->top != 0) {   /* check top chunk */
3486    do_check_top_chunk(m, m->top);
3487    /*assert(m->topsize == chunksize(m->top)); redundant */
3488    assert(m->topsize > 0);
3489    assert(bin_find(m, m->top) == 0);
3490  }
3491
3492  total = traverse_and_check(m);
3493  assert(total <= m->footprint);
3494  assert(m->footprint <= m->max_footprint);
3495}
3496#endif /* DEBUG */
3497
3498/* ----------------------------- statistics ------------------------------ */
3499
3500#if !NO_MALLINFO
3501static struct mallinfo internal_mallinfo(mstate m) {
3502  struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
3503  ensure_initialization();
3504  if (!PREACTION(m)) {
3505    check_malloc_state(m);
3506    if (is_initialized(m)) {
3507      size_t nfree = SIZE_T_ONE; /* top always free */
3508      size_t mfree = m->topsize + TOP_FOOT_SIZE;
3509      size_t sum = mfree;
3510      msegmentptr s = &m->seg;
3511      while (s != 0) {
3512        mchunkptr q = align_as_chunk(s->base);
3513        while (segment_holds(s, q) &&
3514               q != m->top && q->head != FENCEPOST_HEAD) {
3515          size_t sz = chunksize(q);
3516          sum += sz;
3517          if (!is_inuse(q)) {
3518            mfree += sz;
3519            ++nfree;
3520          }
3521          q = next_chunk(q);
3522        }
3523        s = s->next;
3524      }
3525
3526      nm.arena    = sum;
3527      nm.ordblks  = nfree;
3528      nm.hblkhd   = m->footprint - sum;
3529      /* BEGIN android-changed: usmblks set to footprint from max_footprint */
3530      nm.usmblks  = m->footprint;
3531      /* END android-changed */
3532      nm.uordblks = m->footprint - mfree;
3533      nm.fordblks = mfree;
3534      nm.keepcost = m->topsize;
3535    }
3536
3537    POSTACTION(m);
3538  }
3539  return nm;
3540}
3541#endif /* !NO_MALLINFO */
3542
3543#if !NO_MALLOC_STATS
3544static void internal_malloc_stats(mstate m) {
3545  ensure_initialization();
3546  if (!PREACTION(m)) {
3547    size_t maxfp = 0;
3548    size_t fp = 0;
3549    size_t used = 0;
3550    check_malloc_state(m);
3551    if (is_initialized(m)) {
3552      msegmentptr s = &m->seg;
3553      maxfp = m->max_footprint;
3554      fp = m->footprint;
3555      used = fp - (m->topsize + TOP_FOOT_SIZE);
3556
3557      while (s != 0) {
3558        mchunkptr q = align_as_chunk(s->base);
3559        while (segment_holds(s, q) &&
3560               q != m->top && q->head != FENCEPOST_HEAD) {
3561          if (!is_inuse(q))
3562            used -= chunksize(q);
3563          q = next_chunk(q);
3564        }
3565        s = s->next;
3566      }
3567    }
3568    POSTACTION(m); /* drop lock */
3569    fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
3570    fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp));
3571    fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used));
3572  }
3573}
3574#endif /* NO_MALLOC_STATS */
3575
3576/* ----------------------- Operations on smallbins ----------------------- */
3577
3578/*
3579  Various forms of linking and unlinking are defined as macros.  Even
3580  the ones for trees, which are very long but have very short typical
3581  paths.  This is ugly but reduces reliance on inlining support of
3582  compilers.
3583*/
3584
3585/* Link a free chunk into a smallbin  */
3586#define insert_small_chunk(M, P, S) {\
3587  bindex_t I  = small_index(S);\
3588  mchunkptr B = smallbin_at(M, I);\
3589  mchunkptr F = B;\
3590  assert(S >= MIN_CHUNK_SIZE);\
3591  if (!smallmap_is_marked(M, I))\
3592    mark_smallmap(M, I);\
3593  else if (RTCHECK(ok_address(M, B->fd)))\
3594    F = B->fd;\
3595  else {\
3596    CORRUPTION_ERROR_ACTION(M);\
3597  }\
3598  B->fd = P;\
3599  F->bk = P;\
3600  P->fd = F;\
3601  P->bk = B;\
3602}
3603
3604/* Unlink a chunk from a smallbin  */
3605#define unlink_small_chunk(M, P, S) {\
3606  mchunkptr F = P->fd;\
3607  mchunkptr B = P->bk;\
3608  bindex_t I = small_index(S);\
3609  assert(P != B);\
3610  assert(P != F);\
3611  assert(chunksize(P) == small_index2size(I));\
3612  if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
3613    if (B == F) {\
3614      clear_smallmap(M, I);\
3615    }\
3616    else if (RTCHECK(B == smallbin_at(M,I) ||\
3617                     (ok_address(M, B) && B->fd == P))) {\
3618      F->bk = B;\
3619      B->fd = F;\
3620    }\
3621    else {\
3622      CORRUPTION_ERROR_ACTION(M);\
3623    }\
3624  }\
3625  else {\
3626    CORRUPTION_ERROR_ACTION(M);\
3627  }\
3628}
3629
3630/* Unlink the first chunk from a smallbin */
3631#define unlink_first_small_chunk(M, B, P, I) {\
3632  mchunkptr F = P->fd;\
3633  assert(P != B);\
3634  assert(P != F);\
3635  assert(chunksize(P) == small_index2size(I));\
3636  if (B == F) {\
3637    clear_smallmap(M, I);\
3638  }\
3639  else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
3640    F->bk = B;\
3641    B->fd = F;\
3642  }\
3643  else {\
3644    CORRUPTION_ERROR_ACTION(M);\
3645  }\
3646}
3647
3648/* Replace dv node, binning the old one */
3649/* Used only when dvsize known to be small */
3650#define replace_dv(M, P, S) {\
3651  size_t DVS = M->dvsize;\
3652  assert(is_small(DVS));\
3653  if (DVS != 0) {\
3654    mchunkptr DV = M->dv;\
3655    insert_small_chunk(M, DV, DVS);\
3656  }\
3657  M->dvsize = S;\
3658  M->dv = P;\
3659}
3660
3661/* ------------------------- Operations on trees ------------------------- */
3662
3663/* Insert chunk into tree */
3664#define insert_large_chunk(M, X, S) {\
3665  tbinptr* H;\
3666  bindex_t I;\
3667  compute_tree_index(S, I);\
3668  H = treebin_at(M, I);\
3669  X->index = I;\
3670  X->child[0] = X->child[1] = 0;\
3671  if (!treemap_is_marked(M, I)) {\
3672    mark_treemap(M, I);\
3673    *H = X;\
3674    X->parent = (tchunkptr)H;\
3675    X->fd = X->bk = X;\
3676  }\
3677  else {\
3678    tchunkptr T = *H;\
3679    size_t K = S << leftshift_for_tree_index(I);\
3680    for (;;) {\
3681      if (chunksize(T) != S) {\
3682        tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
3683        K <<= 1;\
3684        if (*C != 0)\
3685          T = *C;\
3686        else if (RTCHECK(ok_address(M, C))) {\
3687          *C = X;\
3688          X->parent = T;\
3689          X->fd = X->bk = X;\
3690          break;\
3691        }\
3692        else {\
3693          CORRUPTION_ERROR_ACTION(M);\
3694          break;\
3695        }\
3696      }\
3697      else {\
3698        tchunkptr F = T->fd;\
3699        if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3700          T->fd = F->bk = X;\
3701          X->fd = F;\
3702          X->bk = T;\
3703          X->parent = 0;\
3704          break;\
3705        }\
3706        else {\
3707          CORRUPTION_ERROR_ACTION(M);\
3708          break;\
3709        }\
3710      }\
3711    }\
3712  }\
3713}
3714
3715/*
3716  Unlink steps:
3717
3718  1. If x is a chained node, unlink it from its same-sized fd/bk links
3719     and choose its bk node as its replacement.
3720  2. If x was the last node of its size, but not a leaf node, it must
3721     be replaced with a leaf node (not merely one with an open left or
3722     right), to make sure that lefts and rights of descendents
3723     correspond properly to bit masks.  We use the rightmost descendent
3724     of x.  We could use any other leaf, but this is easy to locate and
3725     tends to counteract removal of leftmosts elsewhere, and so keeps
3726     paths shorter than minimally guaranteed.  This doesn't loop much
3727     because on average a node in a tree is near the bottom.
3728  3. If x is the base of a chain (i.e., has parent links) relink
3729     x's parent and children to x's replacement (or null if none).
3730*/
3731
3732#define unlink_large_chunk(M, X) {\
3733  tchunkptr XP = X->parent;\
3734  tchunkptr R;\
3735  if (X->bk != X) {\
3736    tchunkptr F = X->fd;\
3737    R = X->bk;\
3738    if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
3739      F->bk = R;\
3740      R->fd = F;\
3741    }\
3742    else {\
3743      CORRUPTION_ERROR_ACTION(M);\
3744    }\
3745  }\
3746  else {\
3747    tchunkptr* RP;\
3748    if (((R = *(RP = &(X->child[1]))) != 0) ||\
3749        ((R = *(RP = &(X->child[0]))) != 0)) {\
3750      tchunkptr* CP;\
3751      while ((*(CP = &(R->child[1])) != 0) ||\
3752             (*(CP = &(R->child[0])) != 0)) {\
3753        R = *(RP = CP);\
3754      }\
3755      if (RTCHECK(ok_address(M, RP)))\
3756        *RP = 0;\
3757      else {\
3758        CORRUPTION_ERROR_ACTION(M);\
3759      }\
3760    }\
3761  }\
3762  if (XP != 0) {\
3763    tbinptr* H = treebin_at(M, X->index);\
3764    if (X == *H) {\
3765      if ((*H = R) == 0) \
3766        clear_treemap(M, X->index);\
3767    }\
3768    else if (RTCHECK(ok_address(M, XP))) {\
3769      if (XP->child[0] == X) \
3770        XP->child[0] = R;\
3771      else \
3772        XP->child[1] = R;\
3773    }\
3774    else\
3775      CORRUPTION_ERROR_ACTION(M);\
3776    if (R != 0) {\
3777      if (RTCHECK(ok_address(M, R))) {\
3778        tchunkptr C0, C1;\
3779        R->parent = XP;\
3780        if ((C0 = X->child[0]) != 0) {\
3781          if (RTCHECK(ok_address(M, C0))) {\
3782            R->child[0] = C0;\
3783            C0->parent = R;\
3784          }\
3785          else\
3786            CORRUPTION_ERROR_ACTION(M);\
3787        }\
3788        if ((C1 = X->child[1]) != 0) {\
3789          if (RTCHECK(ok_address(M, C1))) {\
3790            R->child[1] = C1;\
3791            C1->parent = R;\
3792          }\
3793          else\
3794            CORRUPTION_ERROR_ACTION(M);\
3795        }\
3796      }\
3797      else\
3798        CORRUPTION_ERROR_ACTION(M);\
3799    }\
3800  }\
3801}
3802
3803/* Relays to large vs small bin operations */
3804
3805#define insert_chunk(M, P, S)\
3806  if (is_small(S)) insert_small_chunk(M, P, S)\
3807  else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3808
3809#define unlink_chunk(M, P, S)\
3810  if (is_small(S)) unlink_small_chunk(M, P, S)\
3811  else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3812
3813
3814/* Relays to internal calls to malloc/free from realloc, memalign etc */
3815
3816#if ONLY_MSPACES
3817#define internal_malloc(m, b) mspace_malloc(m, b)
3818#define internal_free(m, mem) mspace_free(m,mem);
3819#else /* ONLY_MSPACES */
3820#if MSPACES
3821#define internal_malloc(m, b)\
3822  ((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
3823#define internal_free(m, mem)\
3824   if (m == gm) dlfree(mem); else mspace_free(m,mem);
3825#else /* MSPACES */
3826#define internal_malloc(m, b) dlmalloc(b)
3827#define internal_free(m, mem) dlfree(mem)
3828#endif /* MSPACES */
3829#endif /* ONLY_MSPACES */
3830
3831/* -----------------------  Direct-mmapping chunks ----------------------- */
3832
3833/*
3834  Directly mmapped chunks are set up with an offset to the start of
3835  the mmapped region stored in the prev_foot field of the chunk. This
3836  allows reconstruction of the required argument to MUNMAP when freed,
3837  and also allows adjustment of the returned chunk to meet alignment
3838  requirements (especially in memalign).
3839*/
3840
3841/* Malloc using mmap */
3842static void* mmap_alloc(mstate m, size_t nb) {
3843  size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3844  if (m->footprint_limit != 0) {
3845    size_t fp = m->footprint + mmsize;
3846    if (fp <= m->footprint || fp > m->footprint_limit)
3847      return 0;
3848  }
3849  if (mmsize > nb) {     /* Check for wrap around 0 */
3850    char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
3851    if (mm != CMFAIL) {
3852      size_t offset = align_offset(chunk2mem(mm));
3853      size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3854      mchunkptr p = (mchunkptr)(mm + offset);
3855      p->prev_foot = offset;
3856      p->head = psize;
3857      mark_inuse_foot(m, p, psize);
3858      chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3859      chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3860
3861      if (m->least_addr == 0 || mm < m->least_addr)
3862        m->least_addr = mm;
3863      if ((m->footprint += mmsize) > m->max_footprint)
3864        m->max_footprint = m->footprint;
3865      assert(is_aligned(chunk2mem(p)));
3866      check_mmapped_chunk(m, p);
3867      return chunk2mem(p);
3868    }
3869  }
3870  return 0;
3871}
3872
3873/* Realloc using mmap */
3874static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) {
3875  size_t oldsize = chunksize(oldp);
3876  (void)flags; /* placate people compiling -Wunused */
3877  if (is_small(nb)) /* Can't shrink mmap regions below small size */
3878    return 0;
3879  /* Keep old chunk if big enough but not too big */
3880  if (oldsize >= nb + SIZE_T_SIZE &&
3881      (oldsize - nb) <= (mparams.granularity << 1))
3882    return oldp;
3883  else {
3884    size_t offset = oldp->prev_foot;
3885    size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3886    size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3887    char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3888                                  oldmmsize, newmmsize, flags);
3889    if (cp != CMFAIL) {
3890      mchunkptr newp = (mchunkptr)(cp + offset);
3891      size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3892      newp->head = psize;
3893      mark_inuse_foot(m, newp, psize);
3894      chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3895      chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3896
3897      if (cp < m->least_addr)
3898        m->least_addr = cp;
3899      if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3900        m->max_footprint = m->footprint;
3901      check_mmapped_chunk(m, newp);
3902      return newp;
3903    }
3904  }
3905  return 0;
3906}
3907
3908
3909/* -------------------------- mspace management -------------------------- */
3910
3911/* Initialize top chunk and its size */
3912static void init_top(mstate m, mchunkptr p, size_t psize) {
3913  /* Ensure alignment */
3914  size_t offset = align_offset(chunk2mem(p));
3915  p = (mchunkptr)((char*)p + offset);
3916  psize -= offset;
3917
3918  m->top = p;
3919  m->topsize = psize;
3920  p->head = psize | PINUSE_BIT;
3921  /* set size of fake trailing chunk holding overhead space only once */
3922  chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3923  m->trim_check = mparams.trim_threshold; /* reset on each update */
3924}
3925
3926/* Initialize bins for a new mstate that is otherwise zeroed out */
3927static void init_bins(mstate m) {
3928  /* Establish circular links for smallbins */
3929  bindex_t i;
3930  for (i = 0; i < NSMALLBINS; ++i) {
3931    sbinptr bin = smallbin_at(m,i);
3932    bin->fd = bin->bk = bin;
3933  }
3934}
3935
3936#if PROCEED_ON_ERROR
3937
3938/* default corruption action */
3939static void reset_on_error(mstate m) {
3940  int i;
3941  ++malloc_corruption_error_count;
3942  /* Reinitialize fields to forget about all memory */
3943  m->smallmap = m->treemap = 0;
3944  m->dvsize = m->topsize = 0;
3945  m->seg.base = 0;
3946  m->seg.size = 0;
3947  m->seg.next = 0;
3948  m->top = m->dv = 0;
3949  for (i = 0; i < NTREEBINS; ++i)
3950    *treebin_at(m, i) = 0;
3951  init_bins(m);
3952}
3953#endif /* PROCEED_ON_ERROR */
3954
3955/* Allocate chunk and prepend remainder with chunk in successor base. */
3956static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3957                           size_t nb) {
3958  mchunkptr p = align_as_chunk(newbase);
3959  mchunkptr oldfirst = align_as_chunk(oldbase);
3960  size_t psize = (char*)oldfirst - (char*)p;
3961  mchunkptr q = chunk_plus_offset(p, nb);
3962  size_t qsize = psize - nb;
3963  set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3964
3965  assert((char*)oldfirst > (char*)q);
3966  assert(pinuse(oldfirst));
3967  assert(qsize >= MIN_CHUNK_SIZE);
3968
3969  /* consolidate remainder with first chunk of old base */
3970  if (oldfirst == m->top) {
3971    size_t tsize = m->topsize += qsize;
3972    m->top = q;
3973    q->head = tsize | PINUSE_BIT;
3974    check_top_chunk(m, q);
3975  }
3976  else if (oldfirst == m->dv) {
3977    size_t dsize = m->dvsize += qsize;
3978    m->dv = q;
3979    set_size_and_pinuse_of_free_chunk(q, dsize);
3980  }
3981  else {
3982    if (!is_inuse(oldfirst)) {
3983      size_t nsize = chunksize(oldfirst);
3984      unlink_chunk(m, oldfirst, nsize);
3985      oldfirst = chunk_plus_offset(oldfirst, nsize);
3986      qsize += nsize;
3987    }
3988    set_free_with_pinuse(q, qsize, oldfirst);
3989    insert_chunk(m, q, qsize);
3990    check_free_chunk(m, q);
3991  }
3992
3993  check_malloced_chunk(m, chunk2mem(p), nb);
3994  return chunk2mem(p);
3995}
3996
3997/* Add a segment to hold a new noncontiguous region */
3998static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3999  /* Determine locations and sizes of segment, fenceposts, old top */
4000  char* old_top = (char*)m->top;
4001  msegmentptr oldsp = segment_holding(m, old_top);
4002  char* old_end = oldsp->base + oldsp->size;
4003  size_t ssize = pad_request(sizeof(struct malloc_segment));
4004  char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
4005  size_t offset = align_offset(chunk2mem(rawsp));
4006  char* asp = rawsp + offset;
4007  char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
4008  mchunkptr sp = (mchunkptr)csp;
4009  msegmentptr ss = (msegmentptr)(chunk2mem(sp));
4010  mchunkptr tnext = chunk_plus_offset(sp, ssize);
4011  mchunkptr p = tnext;
4012  int nfences = 0;
4013
4014  /* reset top to new space */
4015  init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
4016
4017  /* Set up segment record */
4018  assert(is_aligned(ss));
4019  set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
4020  *ss = m->seg; /* Push current record */
4021  m->seg.base = tbase;
4022  m->seg.size = tsize;
4023  m->seg.sflags = mmapped;
4024  m->seg.next = ss;
4025
4026  /* Insert trailing fenceposts */
4027  for (;;) {
4028    mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
4029    p->head = FENCEPOST_HEAD;
4030    ++nfences;
4031    if ((char*)(&(nextp->head)) < old_end)
4032      p = nextp;
4033    else
4034      break;
4035  }
4036  assert(nfences >= 2);
4037
4038  /* Insert the rest of old top into a bin as an ordinary free chunk */
4039  if (csp != old_top) {
4040    mchunkptr q = (mchunkptr)old_top;
4041    size_t psize = csp - old_top;
4042    mchunkptr tn = chunk_plus_offset(q, psize);
4043    set_free_with_pinuse(q, psize, tn);
4044    insert_chunk(m, q, psize);
4045  }
4046
4047  check_top_chunk(m, m->top);
4048}
4049
4050/* -------------------------- System allocation -------------------------- */
4051
4052/* Get memory from system using MORECORE or MMAP */
4053static void* sys_alloc(mstate m, size_t nb) {
4054  char* tbase = CMFAIL;
4055  size_t tsize = 0;
4056  flag_t mmap_flag = 0;
4057  size_t asize; /* allocation size */
4058
4059  ensure_initialization();
4060
4061  /* Directly map large chunks, but only if already initialized */
4062  if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
4063    void* mem = mmap_alloc(m, nb);
4064    if (mem != 0)
4065      return mem;
4066  }
4067
4068  asize = granularity_align(nb + SYS_ALLOC_PADDING);
4069  if (asize <= nb) {
4070    /* BEGIN android-added: set errno */
4071    MALLOC_FAILURE_ACTION;
4072    /* END android-added */
4073    return 0; /* wraparound */
4074  }
4075  if (m->footprint_limit != 0) {
4076    size_t fp = m->footprint + asize;
4077    if (fp <= m->footprint || fp > m->footprint_limit) {
4078      /* BEGIN android-added: set errno */
4079      MALLOC_FAILURE_ACTION;
4080      /* END android-added */
4081      return 0;
4082    }
4083  }
4084
4085  /*
4086    Try getting memory in any of three ways (in most-preferred to
4087    least-preferred order):
4088    1. A call to MORECORE that can normally contiguously extend memory.
4089       (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
4090       or main space is mmapped or a previous contiguous call failed)
4091    2. A call to MMAP new space (disabled if not HAVE_MMAP).
4092       Note that under the default settings, if MORECORE is unable to
4093       fulfill a request, and HAVE_MMAP is true, then mmap is
4094       used as a noncontiguous system allocator. This is a useful backup
4095       strategy for systems with holes in address spaces -- in this case
4096       sbrk cannot contiguously expand the heap, but mmap may be able to
4097       find space.
4098    3. A call to MORECORE that cannot usually contiguously extend memory.
4099       (disabled if not HAVE_MORECORE)
4100
4101   In all cases, we need to request enough bytes from system to ensure
4102   we can malloc nb bytes upon success, so pad with enough space for
4103   top_foot, plus alignment-pad to make sure we don't lose bytes if
4104   not on boundary, and round this up to a granularity unit.
4105  */
4106
4107  if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
4108    char* br = CMFAIL;
4109    size_t ssize = asize; /* sbrk call size */
4110    msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
4111    ACQUIRE_MALLOC_GLOBAL_LOCK();
4112
4113    if (ss == 0) {  /* First time through or recovery */
4114      char* base = (char*)CALL_MORECORE(0);
4115      if (base != CMFAIL) {
4116        size_t fp;
4117        /* Adjust to end on a page boundary */
4118        if (!is_page_aligned(base))
4119          ssize += (page_align((size_t)base) - (size_t)base);
4120        fp = m->footprint + ssize; /* recheck limits */
4121        if (ssize > nb && ssize < HALF_MAX_SIZE_T &&
4122            (m->footprint_limit == 0 ||
4123             (fp > m->footprint && fp <= m->footprint_limit)) &&
4124            (br = (char*)(CALL_MORECORE(ssize))) == base) {
4125          tbase = base;
4126          tsize = ssize;
4127        }
4128      }
4129    }
4130    else {
4131      /* Subtract out existing available top space from MORECORE request. */
4132      ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
4133      /* Use mem here only if it did continuously extend old space */
4134      if (ssize < HALF_MAX_SIZE_T &&
4135          (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) {
4136        tbase = br;
4137        tsize = ssize;
4138      }
4139    }
4140
4141    if (tbase == CMFAIL) {    /* Cope with partial failure */
4142      if (br != CMFAIL) {    /* Try to use/extend the space we did get */
4143        if (ssize < HALF_MAX_SIZE_T &&
4144            ssize < nb + SYS_ALLOC_PADDING) {
4145          size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
4146          if (esize < HALF_MAX_SIZE_T) {
4147            char* end = (char*)CALL_MORECORE(esize);
4148            if (end != CMFAIL)
4149              ssize += esize;
4150            else {            /* Can't use; try to release */
4151              (void) CALL_MORECORE(-ssize);
4152              br = CMFAIL;
4153            }
4154          }
4155        }
4156      }
4157      if (br != CMFAIL) {    /* Use the space we did get */
4158        tbase = br;
4159        tsize = ssize;
4160      }
4161      else
4162        disable_contiguous(m); /* Don't try contiguous path in the future */
4163    }
4164
4165    RELEASE_MALLOC_GLOBAL_LOCK();
4166  }
4167
4168  if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */
4169    char* mp = (char*)(CALL_MMAP(asize));
4170    if (mp != CMFAIL) {
4171      tbase = mp;
4172      tsize = asize;
4173      mmap_flag = USE_MMAP_BIT;
4174    }
4175  }
4176
4177  if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
4178    if (asize < HALF_MAX_SIZE_T) {
4179      char* br = CMFAIL;
4180      char* end = CMFAIL;
4181      ACQUIRE_MALLOC_GLOBAL_LOCK();
4182      br = (char*)(CALL_MORECORE(asize));
4183      end = (char*)(CALL_MORECORE(0));
4184      RELEASE_MALLOC_GLOBAL_LOCK();
4185      if (br != CMFAIL && end != CMFAIL && br < end) {
4186        size_t ssize = end - br;
4187        if (ssize > nb + TOP_FOOT_SIZE) {
4188          tbase = br;
4189          tsize = ssize;
4190        }
4191      }
4192    }
4193  }
4194
4195  if (tbase != CMFAIL) {
4196
4197    if ((m->footprint += tsize) > m->max_footprint)
4198      m->max_footprint = m->footprint;
4199
4200    if (!is_initialized(m)) { /* first-time initialization */
4201      if (m->least_addr == 0 || tbase < m->least_addr)
4202        m->least_addr = tbase;
4203      m->seg.base = tbase;
4204      m->seg.size = tsize;
4205      m->seg.sflags = mmap_flag;
4206      m->magic = mparams.magic;
4207      m->release_checks = MAX_RELEASE_CHECK_RATE;
4208      init_bins(m);
4209#if !ONLY_MSPACES
4210      if (is_global(m))
4211        init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
4212      else
4213#endif
4214      {
4215        /* Offset top by embedded malloc_state */
4216        mchunkptr mn = next_chunk(mem2chunk(m));
4217        init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
4218      }
4219    }
4220
4221    else {
4222      /* Try to merge with an existing segment */
4223      msegmentptr sp = &m->seg;
4224      /* Only consider most recent segment if traversal suppressed */
4225      while (sp != 0 && tbase != sp->base + sp->size)
4226        sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4227      if (sp != 0 &&
4228          !is_extern_segment(sp) &&
4229          (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
4230          segment_holds(sp, m->top)) { /* append */
4231        sp->size += tsize;
4232        init_top(m, m->top, m->topsize + tsize);
4233      }
4234      else {
4235        if (tbase < m->least_addr)
4236          m->least_addr = tbase;
4237        sp = &m->seg;
4238        while (sp != 0 && sp->base != tbase + tsize)
4239          sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4240        if (sp != 0 &&
4241            !is_extern_segment(sp) &&
4242            (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
4243          char* oldbase = sp->base;
4244          sp->base = tbase;
4245          sp->size += tsize;
4246          return prepend_alloc(m, tbase, oldbase, nb);
4247        }
4248        else
4249          add_segment(m, tbase, tsize, mmap_flag);
4250      }
4251    }
4252
4253    if (nb < m->topsize) { /* Allocate from new or extended top space */
4254      size_t rsize = m->topsize -= nb;
4255      mchunkptr p = m->top;
4256      mchunkptr r = m->top = chunk_plus_offset(p, nb);
4257      r->head = rsize | PINUSE_BIT;
4258      set_size_and_pinuse_of_inuse_chunk(m, p, nb);
4259      check_top_chunk(m, m->top);
4260      check_malloced_chunk(m, chunk2mem(p), nb);
4261      return chunk2mem(p);
4262    }
4263  }
4264
4265  MALLOC_FAILURE_ACTION;
4266  return 0;
4267}
4268
4269/* -----------------------  system deallocation -------------------------- */
4270
4271/* Unmap and unlink any mmapped segments that don't contain used chunks */
4272static size_t release_unused_segments(mstate m) {
4273  size_t released = 0;
4274  int nsegs = 0;
4275  msegmentptr pred = &m->seg;
4276  msegmentptr sp = pred->next;
4277  while (sp != 0) {
4278    char* base = sp->base;
4279    size_t size = sp->size;
4280    msegmentptr next = sp->next;
4281    ++nsegs;
4282    if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
4283      mchunkptr p = align_as_chunk(base);
4284      size_t psize = chunksize(p);
4285      /* Can unmap if first chunk holds entire segment and not pinned */
4286      if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
4287        tchunkptr tp = (tchunkptr)p;
4288        assert(segment_holds(sp, (char*)sp));
4289        if (p == m->dv) {
4290          m->dv = 0;
4291          m->dvsize = 0;
4292        }
4293        else {
4294          unlink_large_chunk(m, tp);
4295        }
4296        if (CALL_MUNMAP(base, size) == 0) {
4297          released += size;
4298          m->footprint -= size;
4299          /* unlink obsoleted record */
4300          sp = pred;
4301          sp->next = next;
4302        }
4303        else { /* back out if cannot unmap */
4304          insert_large_chunk(m, tp, psize);
4305        }
4306      }
4307    }
4308    if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
4309      break;
4310    pred = sp;
4311    sp = next;
4312  }
4313  /* Reset check counter */
4314  m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)?
4315                       (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
4316  return released;
4317}
4318
4319static int sys_trim(mstate m, size_t pad) {
4320  size_t released = 0;
4321  ensure_initialization();
4322  if (pad < MAX_REQUEST && is_initialized(m)) {
4323    pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
4324
4325    if (m->topsize > pad) {
4326      /* Shrink top space in granularity-size units, keeping at least one */
4327      size_t unit = mparams.granularity;
4328      size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
4329                      SIZE_T_ONE) * unit;
4330      msegmentptr sp = segment_holding(m, (char*)m->top);
4331
4332      if (!is_extern_segment(sp)) {
4333        if (is_mmapped_segment(sp)) {
4334          if (HAVE_MMAP &&
4335              sp->size >= extra &&
4336              !has_segment_link(m, sp)) { /* can't shrink if pinned */
4337            size_t newsize = sp->size - extra;
4338            (void)newsize; /* placate people compiling -Wunused-variable */
4339            /* Prefer mremap, fall back to munmap */
4340            if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
4341                (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
4342              released = extra;
4343            }
4344          }
4345        }
4346        else if (HAVE_MORECORE) {
4347          if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
4348            extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
4349          ACQUIRE_MALLOC_GLOBAL_LOCK();
4350          {
4351            /* Make sure end of memory is where we last set it. */
4352            char* old_br = (char*)(CALL_MORECORE(0));
4353            if (old_br == sp->base + sp->size) {
4354              char* rel_br = (char*)(CALL_MORECORE(-extra));
4355              char* new_br = (char*)(CALL_MORECORE(0));
4356              if (rel_br != CMFAIL && new_br < old_br)
4357                released = old_br - new_br;
4358            }
4359          }
4360          RELEASE_MALLOC_GLOBAL_LOCK();
4361        }
4362      }
4363
4364      if (released != 0) {
4365        sp->size -= released;
4366        m->footprint -= released;
4367        init_top(m, m->top, m->topsize - released);
4368        check_top_chunk(m, m->top);
4369      }
4370    }
4371
4372    /* Unmap any unused mmapped segments */
4373    if (HAVE_MMAP)
4374      released += release_unused_segments(m);
4375
4376    /* On failure, disable autotrim to avoid repeated failed future calls */
4377    if (released == 0 && m->topsize > m->trim_check)
4378      m->trim_check = MAX_SIZE_T;
4379  }
4380
4381  return (released != 0)? 1 : 0;
4382}
4383
4384/* Consolidate and bin a chunk. Differs from exported versions
4385   of free mainly in that the chunk need not be marked as inuse.
4386*/
4387static void dispose_chunk(mstate m, mchunkptr p, size_t psize) {
4388  mchunkptr next = chunk_plus_offset(p, psize);
4389  if (!pinuse(p)) {
4390    mchunkptr prev;
4391    size_t prevsize = p->prev_foot;
4392    if (is_mmapped(p)) {
4393      psize += prevsize + MMAP_FOOT_PAD;
4394      if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4395        m->footprint -= psize;
4396      return;
4397    }
4398    prev = chunk_minus_offset(p, prevsize);
4399    psize += prevsize;
4400    p = prev;
4401    if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */
4402      if (p != m->dv) {
4403        unlink_chunk(m, p, prevsize);
4404      }
4405      else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4406        m->dvsize = psize;
4407        set_free_with_pinuse(p, psize, next);
4408        return;
4409      }
4410    }
4411    else {
4412      CORRUPTION_ERROR_ACTION(m);
4413      return;
4414    }
4415  }
4416  if (RTCHECK(ok_address(m, next))) {
4417    if (!cinuse(next)) {  /* consolidate forward */
4418      if (next == m->top) {
4419        size_t tsize = m->topsize += psize;
4420        m->top = p;
4421        p->head = tsize | PINUSE_BIT;
4422        if (p == m->dv) {
4423          m->dv = 0;
4424          m->dvsize = 0;
4425        }
4426        return;
4427      }
4428      else if (next == m->dv) {
4429        size_t dsize = m->dvsize += psize;
4430        m->dv = p;
4431        set_size_and_pinuse_of_free_chunk(p, dsize);
4432        return;
4433      }
4434      else {
4435        size_t nsize = chunksize(next);
4436        psize += nsize;
4437        unlink_chunk(m, next, nsize);
4438        set_size_and_pinuse_of_free_chunk(p, psize);
4439        if (p == m->dv) {
4440          m->dvsize = psize;
4441          return;
4442        }
4443      }
4444    }
4445    else {
4446      set_free_with_pinuse(p, psize, next);
4447    }
4448    insert_chunk(m, p, psize);
4449  }
4450  else {
4451    CORRUPTION_ERROR_ACTION(m);
4452  }
4453}
4454
4455/* ---------------------------- malloc --------------------------- */
4456
4457/* allocate a large request from the best fitting chunk in a treebin */
4458static void* tmalloc_large(mstate m, size_t nb) {
4459  tchunkptr v = 0;
4460  size_t rsize = -nb; /* Unsigned negation */
4461  tchunkptr t;
4462  bindex_t idx;
4463  compute_tree_index(nb, idx);
4464  if ((t = *treebin_at(m, idx)) != 0) {
4465    /* Traverse tree for this bin looking for node with size == nb */
4466    size_t sizebits = nb << leftshift_for_tree_index(idx);
4467    tchunkptr rst = 0;  /* The deepest untaken right subtree */
4468    for (;;) {
4469      tchunkptr rt;
4470      size_t trem = chunksize(t) - nb;
4471      if (trem < rsize) {
4472        v = t;
4473        if ((rsize = trem) == 0)
4474          break;
4475      }
4476      rt = t->child[1];
4477      t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
4478      if (rt != 0 && rt != t)
4479        rst = rt;
4480      if (t == 0) {
4481        t = rst; /* set t to least subtree holding sizes > nb */
4482        break;
4483      }
4484      sizebits <<= 1;
4485    }
4486  }
4487  if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
4488    binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
4489    if (leftbits != 0) {
4490      bindex_t i;
4491      binmap_t leastbit = least_bit(leftbits);
4492      compute_bit2idx(leastbit, i);
4493      t = *treebin_at(m, i);
4494    }
4495  }
4496
4497  while (t != 0) { /* find smallest of tree or subtree */
4498    size_t trem = chunksize(t) - nb;
4499    if (trem < rsize) {
4500      rsize = trem;
4501      v = t;
4502    }
4503    t = leftmost_child(t);
4504  }
4505
4506  /*  If dv is a better fit, return 0 so malloc will use it */
4507  if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
4508    if (RTCHECK(ok_address(m, v))) { /* split */
4509      mchunkptr r = chunk_plus_offset(v, nb);
4510      assert(chunksize(v) == rsize + nb);
4511      if (RTCHECK(ok_next(v, r))) {
4512        unlink_large_chunk(m, v);
4513        if (rsize < MIN_CHUNK_SIZE)
4514          set_inuse_and_pinuse(m, v, (rsize + nb));
4515        else {
4516          set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4517          set_size_and_pinuse_of_free_chunk(r, rsize);
4518          insert_chunk(m, r, rsize);
4519        }
4520        return chunk2mem(v);
4521      }
4522    }
4523    CORRUPTION_ERROR_ACTION(m);
4524  }
4525  return 0;
4526}
4527
4528/* allocate a small request from the best fitting chunk in a treebin */
4529static void* tmalloc_small(mstate m, size_t nb) {
4530  tchunkptr t, v;
4531  size_t rsize;
4532  bindex_t i;
4533  binmap_t leastbit = least_bit(m->treemap);
4534  compute_bit2idx(leastbit, i);
4535  v = t = *treebin_at(m, i);
4536  rsize = chunksize(t) - nb;
4537
4538  while ((t = leftmost_child(t)) != 0) {
4539    size_t trem = chunksize(t) - nb;
4540    if (trem < rsize) {
4541      rsize = trem;
4542      v = t;
4543    }
4544  }
4545
4546  if (RTCHECK(ok_address(m, v))) {
4547    mchunkptr r = chunk_plus_offset(v, nb);
4548    assert(chunksize(v) == rsize + nb);
4549    if (RTCHECK(ok_next(v, r))) {
4550      unlink_large_chunk(m, v);
4551      if (rsize < MIN_CHUNK_SIZE)
4552        set_inuse_and_pinuse(m, v, (rsize + nb));
4553      else {
4554        set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4555        set_size_and_pinuse_of_free_chunk(r, rsize);
4556        replace_dv(m, r, rsize);
4557      }
4558      return chunk2mem(v);
4559    }
4560  }
4561
4562  CORRUPTION_ERROR_ACTION(m);
4563  return 0;
4564}
4565
4566#if !ONLY_MSPACES
4567
4568void* dlmalloc(size_t bytes) {
4569  /*
4570     Basic algorithm:
4571     If a small request (< 256 bytes minus per-chunk overhead):
4572       1. If one exists, use a remainderless chunk in associated smallbin.
4573          (Remainderless means that there are too few excess bytes to
4574          represent as a chunk.)
4575       2. If it is big enough, use the dv chunk, which is normally the
4576          chunk adjacent to the one used for the most recent small request.
4577       3. If one exists, split the smallest available chunk in a bin,
4578          saving remainder in dv.
4579       4. If it is big enough, use the top chunk.
4580       5. If available, get memory from system and use it
4581     Otherwise, for a large request:
4582       1. Find the smallest available binned chunk that fits, and use it
4583          if it is better fitting than dv chunk, splitting if necessary.
4584       2. If better fitting than any binned chunk, use the dv chunk.
4585       3. If it is big enough, use the top chunk.
4586       4. If request size >= mmap threshold, try to directly mmap this chunk.
4587       5. If available, get memory from system and use it
4588
4589     The ugly goto's here ensure that postaction occurs along all paths.
4590  */
4591
4592#if USE_LOCKS
4593  ensure_initialization(); /* initialize in sys_alloc if not using locks */
4594#endif
4595
4596  if (!PREACTION(gm)) {
4597    void* mem;
4598    size_t nb;
4599    if (bytes <= MAX_SMALL_REQUEST) {
4600      bindex_t idx;
4601      binmap_t smallbits;
4602      nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4603      idx = small_index(nb);
4604      smallbits = gm->smallmap >> idx;
4605
4606      if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4607        mchunkptr b, p;
4608        idx += ~smallbits & 1;       /* Uses next bin if idx empty */
4609        b = smallbin_at(gm, idx);
4610        p = b->fd;
4611        assert(chunksize(p) == small_index2size(idx));
4612        unlink_first_small_chunk(gm, b, p, idx);
4613        set_inuse_and_pinuse(gm, p, small_index2size(idx));
4614        mem = chunk2mem(p);
4615        check_malloced_chunk(gm, mem, nb);
4616        goto postaction;
4617      }
4618
4619      else if (nb > gm->dvsize) {
4620        if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4621          mchunkptr b, p, r;
4622          size_t rsize;
4623          bindex_t i;
4624          binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4625          binmap_t leastbit = least_bit(leftbits);
4626          compute_bit2idx(leastbit, i);
4627          b = smallbin_at(gm, i);
4628          p = b->fd;
4629          assert(chunksize(p) == small_index2size(i));
4630          unlink_first_small_chunk(gm, b, p, i);
4631          rsize = small_index2size(i) - nb;
4632          /* Fit here cannot be remainderless if 4byte sizes */
4633          if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4634            set_inuse_and_pinuse(gm, p, small_index2size(i));
4635          else {
4636            set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4637            r = chunk_plus_offset(p, nb);
4638            set_size_and_pinuse_of_free_chunk(r, rsize);
4639            replace_dv(gm, r, rsize);
4640          }
4641          mem = chunk2mem(p);
4642          check_malloced_chunk(gm, mem, nb);
4643          goto postaction;
4644        }
4645
4646        else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4647          check_malloced_chunk(gm, mem, nb);
4648          goto postaction;
4649        }
4650      }
4651    }
4652    else if (bytes >= MAX_REQUEST)
4653      nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4654    else {
4655      nb = pad_request(bytes);
4656      if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4657        check_malloced_chunk(gm, mem, nb);
4658        goto postaction;
4659      }
4660    }
4661
4662    if (nb <= gm->dvsize) {
4663      size_t rsize = gm->dvsize - nb;
4664      mchunkptr p = gm->dv;
4665      if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4666        mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4667        gm->dvsize = rsize;
4668        set_size_and_pinuse_of_free_chunk(r, rsize);
4669        set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4670      }
4671      else { /* exhaust dv */
4672        size_t dvs = gm->dvsize;
4673        gm->dvsize = 0;
4674        gm->dv = 0;
4675        set_inuse_and_pinuse(gm, p, dvs);
4676      }
4677      mem = chunk2mem(p);
4678      check_malloced_chunk(gm, mem, nb);
4679      goto postaction;
4680    }
4681
4682    else if (nb < gm->topsize) { /* Split top */
4683      size_t rsize = gm->topsize -= nb;
4684      mchunkptr p = gm->top;
4685      mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4686      r->head = rsize | PINUSE_BIT;
4687      set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4688      mem = chunk2mem(p);
4689      check_top_chunk(gm, gm->top);
4690      check_malloced_chunk(gm, mem, nb);
4691      goto postaction;
4692    }
4693
4694    mem = sys_alloc(gm, nb);
4695
4696  postaction:
4697    POSTACTION(gm);
4698    return mem;
4699  }
4700
4701  return 0;
4702}
4703
4704/* ---------------------------- free --------------------------- */
4705
4706void dlfree(void* mem) {
4707  /*
4708     Consolidate freed chunks with preceeding or succeeding bordering
4709     free chunks, if they exist, and then place in a bin.  Intermixed
4710     with special cases for top, dv, mmapped chunks, and usage errors.
4711  */
4712
4713  if (mem != 0) {
4714    mchunkptr p  = mem2chunk(mem);
4715#if FOOTERS
4716    mstate fm = get_mstate_for(p);
4717    if (!ok_magic(fm)) {
4718      USAGE_ERROR_ACTION(fm, p);
4719      return;
4720    }
4721#else /* FOOTERS */
4722#define fm gm
4723#endif /* FOOTERS */
4724    if (!PREACTION(fm)) {
4725      check_inuse_chunk(fm, p);
4726      if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
4727        size_t psize = chunksize(p);
4728        mchunkptr next = chunk_plus_offset(p, psize);
4729        if (!pinuse(p)) {
4730          size_t prevsize = p->prev_foot;
4731          if (is_mmapped(p)) {
4732            psize += prevsize + MMAP_FOOT_PAD;
4733            if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4734              fm->footprint -= psize;
4735            goto postaction;
4736          }
4737          else {
4738            mchunkptr prev = chunk_minus_offset(p, prevsize);
4739            psize += prevsize;
4740            p = prev;
4741            if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4742              if (p != fm->dv) {
4743                unlink_chunk(fm, p, prevsize);
4744              }
4745              else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4746                fm->dvsize = psize;
4747                set_free_with_pinuse(p, psize, next);
4748                goto postaction;
4749              }
4750            }
4751            else
4752              goto erroraction;
4753          }
4754        }
4755
4756        if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4757          if (!cinuse(next)) {  /* consolidate forward */
4758            if (next == fm->top) {
4759              size_t tsize = fm->topsize += psize;
4760              fm->top = p;
4761              p->head = tsize | PINUSE_BIT;
4762              if (p == fm->dv) {
4763                fm->dv = 0;
4764                fm->dvsize = 0;
4765              }
4766              if (should_trim(fm, tsize))
4767                sys_trim(fm, 0);
4768              goto postaction;
4769            }
4770            else if (next == fm->dv) {
4771              size_t dsize = fm->dvsize += psize;
4772              fm->dv = p;
4773              set_size_and_pinuse_of_free_chunk(p, dsize);
4774              goto postaction;
4775            }
4776            else {
4777              size_t nsize = chunksize(next);
4778              psize += nsize;
4779              unlink_chunk(fm, next, nsize);
4780              set_size_and_pinuse_of_free_chunk(p, psize);
4781              if (p == fm->dv) {
4782                fm->dvsize = psize;
4783                goto postaction;
4784              }
4785            }
4786          }
4787          else
4788            set_free_with_pinuse(p, psize, next);
4789
4790          if (is_small(psize)) {
4791            insert_small_chunk(fm, p, psize);
4792            check_free_chunk(fm, p);
4793          }
4794          else {
4795            tchunkptr tp = (tchunkptr)p;
4796            insert_large_chunk(fm, tp, psize);
4797            check_free_chunk(fm, p);
4798            if (--fm->release_checks == 0)
4799              release_unused_segments(fm);
4800          }
4801          goto postaction;
4802        }
4803      }
4804    erroraction:
4805      USAGE_ERROR_ACTION(fm, p);
4806    postaction:
4807      POSTACTION(fm);
4808    }
4809  }
4810#if !FOOTERS
4811#undef fm
4812#endif /* FOOTERS */
4813}
4814
4815void* dlcalloc(size_t n_elements, size_t elem_size) {
4816  void* mem;
4817  size_t req = 0;
4818  if (n_elements != 0) {
4819    req = n_elements * elem_size;
4820    if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4821        (req / n_elements != elem_size))
4822      req = MAX_SIZE_T; /* force downstream failure on overflow */
4823  }
4824  mem = dlmalloc(req);
4825  if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4826    memset(mem, 0, req);
4827  return mem;
4828}
4829
4830#endif /* !ONLY_MSPACES */
4831
4832/* ------------ Internal support for realloc, memalign, etc -------------- */
4833
4834/* Try to realloc; only in-place unless can_move true */
4835static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
4836                                   int can_move) {
4837  mchunkptr newp = 0;
4838  size_t oldsize = chunksize(p);
4839  mchunkptr next = chunk_plus_offset(p, oldsize);
4840  if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
4841              ok_next(p, next) && ok_pinuse(next))) {
4842    if (is_mmapped(p)) {
4843      newp = mmap_resize(m, p, nb, can_move);
4844    }
4845    else if (oldsize >= nb) {             /* already big enough */
4846      size_t rsize = oldsize - nb;
4847      if (rsize >= MIN_CHUNK_SIZE) {      /* split off remainder */
4848        mchunkptr r = chunk_plus_offset(p, nb);
4849        set_inuse(m, p, nb);
4850        set_inuse(m, r, rsize);
4851        dispose_chunk(m, r, rsize);
4852      }
4853      newp = p;
4854    }
4855    else if (next == m->top) {  /* extend into top */
4856      if (oldsize + m->topsize > nb) {
4857        size_t newsize = oldsize + m->topsize;
4858        size_t newtopsize = newsize - nb;
4859        mchunkptr newtop = chunk_plus_offset(p, nb);
4860        set_inuse(m, p, nb);
4861        newtop->head = newtopsize |PINUSE_BIT;
4862        m->top = newtop;
4863        m->topsize = newtopsize;
4864        newp = p;
4865      }
4866    }
4867    else if (next == m->dv) { /* extend into dv */
4868      size_t dvs = m->dvsize;
4869      if (oldsize + dvs >= nb) {
4870        size_t dsize = oldsize + dvs - nb;
4871        if (dsize >= MIN_CHUNK_SIZE) {
4872          mchunkptr r = chunk_plus_offset(p, nb);
4873          mchunkptr n = chunk_plus_offset(r, dsize);
4874          set_inuse(m, p, nb);
4875          set_size_and_pinuse_of_free_chunk(r, dsize);
4876          clear_pinuse(n);
4877          m->dvsize = dsize;
4878          m->dv = r;
4879        }
4880        else { /* exhaust dv */
4881          size_t newsize = oldsize + dvs;
4882          set_inuse(m, p, newsize);
4883          m->dvsize = 0;
4884          m->dv = 0;
4885        }
4886        newp = p;
4887      }
4888    }
4889    else if (!cinuse(next)) { /* extend into next free chunk */
4890      size_t nextsize = chunksize(next);
4891      if (oldsize + nextsize >= nb) {
4892        size_t rsize = oldsize + nextsize - nb;
4893        unlink_chunk(m, next, nextsize);
4894        if (rsize < MIN_CHUNK_SIZE) {
4895          size_t newsize = oldsize + nextsize;
4896          set_inuse(m, p, newsize);
4897        }
4898        else {
4899          mchunkptr r = chunk_plus_offset(p, nb);
4900          set_inuse(m, p, nb);
4901          set_inuse(m, r, rsize);
4902          dispose_chunk(m, r, rsize);
4903        }
4904        newp = p;
4905      }
4906    }
4907  }
4908  else {
4909    USAGE_ERROR_ACTION(m, chunk2mem(p));
4910  }
4911  return newp;
4912}
4913
4914static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
4915  void* mem = 0;
4916  if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
4917    alignment = MIN_CHUNK_SIZE;
4918  if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
4919    size_t a = MALLOC_ALIGNMENT << 1;
4920    while (a < alignment) a <<= 1;
4921    alignment = a;
4922  }
4923  if (bytes >= MAX_REQUEST - alignment) {
4924    if (m != 0)  { /* Test isn't needed but avoids compiler warning */
4925      MALLOC_FAILURE_ACTION;
4926    }
4927  }
4928  else {
4929    size_t nb = request2size(bytes);
4930    size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
4931    mem = internal_malloc(m, req);
4932    if (mem != 0) {
4933      mchunkptr p = mem2chunk(mem);
4934      if (PREACTION(m))
4935        return 0;
4936      if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */
4937        /*
4938          Find an aligned spot inside chunk.  Since we need to give
4939          back leading space in a chunk of at least MIN_CHUNK_SIZE, if
4940          the first calculation places us at a spot with less than
4941          MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
4942          We've allocated enough total room so that this is always
4943          possible.
4944        */
4945        char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment -
4946                                                       SIZE_T_ONE)) &
4947                                             -alignment));
4948        char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
4949          br : br+alignment;
4950        mchunkptr newp = (mchunkptr)pos;
4951        size_t leadsize = pos - (char*)(p);
4952        size_t newsize = chunksize(p) - leadsize;
4953
4954        if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
4955          newp->prev_foot = p->prev_foot + leadsize;
4956          newp->head = newsize;
4957        }
4958        else { /* Otherwise, give back leader, use the rest */
4959          set_inuse(m, newp, newsize);
4960          set_inuse(m, p, leadsize);
4961          dispose_chunk(m, p, leadsize);
4962        }
4963        p = newp;
4964      }
4965
4966      /* Give back spare room at the end */
4967      if (!is_mmapped(p)) {
4968        size_t size = chunksize(p);
4969        if (size > nb + MIN_CHUNK_SIZE) {
4970          size_t remainder_size = size - nb;
4971          mchunkptr remainder = chunk_plus_offset(p, nb);
4972          set_inuse(m, p, nb);
4973          set_inuse(m, remainder, remainder_size);
4974          dispose_chunk(m, remainder, remainder_size);
4975        }
4976      }
4977
4978      mem = chunk2mem(p);
4979      assert (chunksize(p) >= nb);
4980      assert(((size_t)mem & (alignment - 1)) == 0);
4981      check_inuse_chunk(m, p);
4982      POSTACTION(m);
4983    }
4984  }
4985  return mem;
4986}
4987
4988/*
4989  Common support for independent_X routines, handling
4990    all of the combinations that can result.
4991  The opts arg has:
4992    bit 0 set if all elements are same size (using sizes[0])
4993    bit 1 set if elements should be zeroed
4994*/
4995static void** ialloc(mstate m,
4996                     size_t n_elements,
4997                     size_t* sizes,
4998                     int opts,
4999                     void* chunks[]) {
5000
5001  size_t    element_size;   /* chunksize of each element, if all same */
5002  size_t    contents_size;  /* total size of elements */
5003  size_t    array_size;     /* request size of pointer array */
5004  void*     mem;            /* malloced aggregate space */
5005  mchunkptr p;              /* corresponding chunk */
5006  size_t    remainder_size; /* remaining bytes while splitting */
5007  void**    marray;         /* either "chunks" or malloced ptr array */
5008  mchunkptr array_chunk;    /* chunk for malloced ptr array */
5009  flag_t    was_enabled;    /* to disable mmap */
5010  size_t    size;
5011  size_t    i;
5012
5013  ensure_initialization();
5014  /* compute array length, if needed */
5015  if (chunks != 0) {
5016    if (n_elements == 0)
5017      return chunks; /* nothing to do */
5018    marray = chunks;
5019    array_size = 0;
5020  }
5021  else {
5022    /* if empty req, must still return chunk representing empty array */
5023    if (n_elements == 0)
5024      return (void**)internal_malloc(m, 0);
5025    marray = 0;
5026    array_size = request2size(n_elements * (sizeof(void*)));
5027  }
5028
5029  /* compute total element size */
5030  if (opts & 0x1) { /* all-same-size */
5031    element_size = request2size(*sizes);
5032    contents_size = n_elements * element_size;
5033  }
5034  else { /* add up all the sizes */
5035    element_size = 0;
5036    contents_size = 0;
5037    for (i = 0; i != n_elements; ++i)
5038      contents_size += request2size(sizes[i]);
5039  }
5040
5041  size = contents_size + array_size;
5042
5043  /*
5044     Allocate the aggregate chunk.  First disable direct-mmapping so
5045     malloc won't use it, since we would not be able to later
5046     free/realloc space internal to a segregated mmap region.
5047  */
5048  was_enabled = use_mmap(m);
5049  disable_mmap(m);
5050  mem = internal_malloc(m, size - CHUNK_OVERHEAD);
5051  if (was_enabled)
5052    enable_mmap(m);
5053  if (mem == 0)
5054    return 0;
5055
5056  if (PREACTION(m)) return 0;
5057  p = mem2chunk(mem);
5058  remainder_size = chunksize(p);
5059
5060  assert(!is_mmapped(p));
5061
5062  if (opts & 0x2) {       /* optionally clear the elements */
5063    memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
5064  }
5065
5066  /* If not provided, allocate the pointer array as final part of chunk */
5067  if (marray == 0) {
5068    size_t  array_chunk_size;
5069    array_chunk = chunk_plus_offset(p, contents_size);
5070    array_chunk_size = remainder_size - contents_size;
5071    marray = (void**) (chunk2mem(array_chunk));
5072    set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
5073    remainder_size = contents_size;
5074  }
5075
5076  /* split out elements */
5077  for (i = 0; ; ++i) {
5078    marray[i] = chunk2mem(p);
5079    if (i != n_elements-1) {
5080      if (element_size != 0)
5081        size = element_size;
5082      else
5083        size = request2size(sizes[i]);
5084      remainder_size -= size;
5085      set_size_and_pinuse_of_inuse_chunk(m, p, size);
5086      p = chunk_plus_offset(p, size);
5087    }
5088    else { /* the final element absorbs any overallocation slop */
5089      set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
5090      break;
5091    }
5092  }
5093
5094#if DEBUG
5095  if (marray != chunks) {
5096    /* final element must have exactly exhausted chunk */
5097    if (element_size != 0) {
5098      assert(remainder_size == element_size);
5099    }
5100    else {
5101      assert(remainder_size == request2size(sizes[i]));
5102    }
5103    check_inuse_chunk(m, mem2chunk(marray));
5104  }
5105  for (i = 0; i != n_elements; ++i)
5106    check_inuse_chunk(m, mem2chunk(marray[i]));
5107
5108#endif /* DEBUG */
5109
5110  POSTACTION(m);
5111  return marray;
5112}
5113
5114/* Try to free all pointers in the given array.
5115   Note: this could be made faster, by delaying consolidation,
5116   at the price of disabling some user integrity checks, We
5117   still optimize some consolidations by combining adjacent
5118   chunks before freeing, which will occur often if allocated
5119   with ialloc or the array is sorted.
5120*/
5121static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) {
5122  size_t unfreed = 0;
5123  if (!PREACTION(m)) {
5124    void** a;
5125    void** fence = &(array[nelem]);
5126    for (a = array; a != fence; ++a) {
5127      void* mem = *a;
5128      if (mem != 0) {
5129        mchunkptr p = mem2chunk(mem);
5130        size_t psize = chunksize(p);
5131#if FOOTERS
5132        if (get_mstate_for(p) != m) {
5133          ++unfreed;
5134          continue;
5135        }
5136#endif
5137        check_inuse_chunk(m, p);
5138        *a = 0;
5139        if (RTCHECK(ok_address(m, p) && ok_inuse(p))) {
5140          void ** b = a + 1; /* try to merge with next chunk */
5141          mchunkptr next = next_chunk(p);
5142          if (b != fence && *b == chunk2mem(next)) {
5143            size_t newsize = chunksize(next) + psize;
5144            set_inuse(m, p, newsize);
5145            *b = chunk2mem(p);
5146          }
5147          else
5148            dispose_chunk(m, p, psize);
5149        }
5150        else {
5151          CORRUPTION_ERROR_ACTION(m);
5152          break;
5153        }
5154      }
5155    }
5156    if (should_trim(m, m->topsize))
5157      sys_trim(m, 0);
5158    POSTACTION(m);
5159  }
5160  return unfreed;
5161}
5162
5163/* Traversal */
5164#if MALLOC_INSPECT_ALL
5165static void internal_inspect_all(mstate m,
5166                                 void(*handler)(void *start,
5167                                                void *end,
5168                                                size_t used_bytes,
5169                                                void* callback_arg),
5170                                 void* arg) {
5171  if (is_initialized(m)) {
5172    mchunkptr top = m->top;
5173    msegmentptr s;
5174    for (s = &m->seg; s != 0; s = s->next) {
5175      mchunkptr q = align_as_chunk(s->base);
5176      while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
5177        mchunkptr next = next_chunk(q);
5178        size_t sz = chunksize(q);
5179        size_t used;
5180        void* start;
5181        if (is_inuse(q)) {
5182          used = sz - CHUNK_OVERHEAD; /* must not be mmapped */
5183          start = chunk2mem(q);
5184        }
5185        else {
5186          used = 0;
5187          if (is_small(sz)) {     /* offset by possible bookkeeping */
5188            start = (void*)((char*)q + sizeof(struct malloc_chunk));
5189          }
5190          else {
5191            start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
5192          }
5193        }
5194        if (start < (void*)next)  /* skip if all space is bookkeeping */
5195          handler(start, next, used, arg);
5196        if (q == top)
5197          break;
5198        q = next;
5199      }
5200    }
5201  }
5202}
5203#endif /* MALLOC_INSPECT_ALL */
5204
5205/* ------------------ Exported realloc, memalign, etc -------------------- */
5206
5207#if !ONLY_MSPACES
5208
5209void* dlrealloc(void* oldmem, size_t bytes) {
5210  void* mem = 0;
5211  if (oldmem == 0) {
5212    mem = dlmalloc(bytes);
5213  }
5214  else if (bytes >= MAX_REQUEST) {
5215    MALLOC_FAILURE_ACTION;
5216  }
5217#ifdef REALLOC_ZERO_BYTES_FREES
5218  else if (bytes == 0) {
5219    dlfree(oldmem);
5220  }
5221#endif /* REALLOC_ZERO_BYTES_FREES */
5222  else {
5223    size_t nb = request2size(bytes);
5224    mchunkptr oldp = mem2chunk(oldmem);
5225#if ! FOOTERS
5226    mstate m = gm;
5227#else /* FOOTERS */
5228    mstate m = get_mstate_for(oldp);
5229    if (!ok_magic(m)) {
5230      USAGE_ERROR_ACTION(m, oldmem);
5231      return 0;
5232    }
5233#endif /* FOOTERS */
5234    if (!PREACTION(m)) {
5235      mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
5236      POSTACTION(m);
5237      if (newp != 0) {
5238        check_inuse_chunk(m, newp);
5239        mem = chunk2mem(newp);
5240      }
5241      else {
5242        mem = internal_malloc(m, bytes);
5243        if (mem != 0) {
5244          size_t oc = chunksize(oldp) - overhead_for(oldp);
5245          memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
5246          internal_free(m, oldmem);
5247        }
5248      }
5249    }
5250  }
5251  return mem;
5252}
5253
5254void* dlrealloc_in_place(void* oldmem, size_t bytes) {
5255  void* mem = 0;
5256  if (oldmem != 0) {
5257    if (bytes >= MAX_REQUEST) {
5258      MALLOC_FAILURE_ACTION;
5259    }
5260    else {
5261      size_t nb = request2size(bytes);
5262      mchunkptr oldp = mem2chunk(oldmem);
5263#if ! FOOTERS
5264      mstate m = gm;
5265#else /* FOOTERS */
5266      mstate m = get_mstate_for(oldp);
5267      if (!ok_magic(m)) {
5268        USAGE_ERROR_ACTION(m, oldmem);
5269        return 0;
5270      }
5271#endif /* FOOTERS */
5272      if (!PREACTION(m)) {
5273        mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
5274        POSTACTION(m);
5275        if (newp == oldp) {
5276          check_inuse_chunk(m, newp);
5277          mem = oldmem;
5278        }
5279      }
5280    }
5281  }
5282  return mem;
5283}
5284
5285void* dlmemalign(size_t alignment, size_t bytes) {
5286  if (alignment <= MALLOC_ALIGNMENT) {
5287    return dlmalloc(bytes);
5288  }
5289  return internal_memalign(gm, alignment, bytes);
5290}
5291
5292int dlposix_memalign(void** pp, size_t alignment, size_t bytes) {
5293  void* mem = 0;
5294  if (alignment == MALLOC_ALIGNMENT)
5295    mem = dlmalloc(bytes);
5296  else {
5297    size_t d = alignment / sizeof(void*);
5298    size_t r = alignment % sizeof(void*);
5299    if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0)
5300      return EINVAL;
5301    else if (bytes <= MAX_REQUEST - alignment) {
5302      if (alignment <  MIN_CHUNK_SIZE)
5303        alignment = MIN_CHUNK_SIZE;
5304      mem = internal_memalign(gm, alignment, bytes);
5305    }
5306  }
5307  if (mem == 0)
5308    return ENOMEM;
5309  else {
5310    *pp = mem;
5311    return 0;
5312  }
5313}
5314
5315void* dlvalloc(size_t bytes) {
5316  size_t pagesz;
5317  ensure_initialization();
5318  pagesz = mparams.page_size;
5319  return dlmemalign(pagesz, bytes);
5320}
5321
5322/* BEGIN android-changed: added overflow check */
5323void* dlpvalloc(size_t bytes) {
5324  size_t pagesz;
5325  size_t size;
5326  ensure_initialization();
5327  pagesz = mparams.page_size;
5328  size = (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE);
5329  if (size < bytes) {
5330    return NULL;
5331  }
5332  return dlmemalign(pagesz, size);
5333}
5334/* END android-change */
5335
5336void** dlindependent_calloc(size_t n_elements, size_t elem_size,
5337                            void* chunks[]) {
5338  size_t sz = elem_size; /* serves as 1-element array */
5339  return ialloc(gm, n_elements, &sz, 3, chunks);
5340}
5341
5342void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
5343                              void* chunks[]) {
5344  return ialloc(gm, n_elements, sizes, 0, chunks);
5345}
5346
5347size_t dlbulk_free(void* array[], size_t nelem) {
5348  return internal_bulk_free(gm, array, nelem);
5349}
5350
5351#if MALLOC_INSPECT_ALL
5352void dlmalloc_inspect_all(void(*handler)(void *start,
5353                                         void *end,
5354                                         size_t used_bytes,
5355                                         void* callback_arg),
5356                          void* arg) {
5357  ensure_initialization();
5358  if (!PREACTION(gm)) {
5359    internal_inspect_all(gm, handler, arg);
5360    POSTACTION(gm);
5361  }
5362}
5363#endif /* MALLOC_INSPECT_ALL */
5364
5365int dlmalloc_trim(size_t pad) {
5366  int result = 0;
5367  ensure_initialization();
5368  if (!PREACTION(gm)) {
5369    result = sys_trim(gm, pad);
5370    POSTACTION(gm);
5371  }
5372  return result;
5373}
5374
5375size_t dlmalloc_footprint(void) {
5376  return gm->footprint;
5377}
5378
5379size_t dlmalloc_max_footprint(void) {
5380  return gm->max_footprint;
5381}
5382
5383size_t dlmalloc_footprint_limit(void) {
5384  size_t maf = gm->footprint_limit;
5385  return maf == 0 ? MAX_SIZE_T : maf;
5386}
5387
5388size_t dlmalloc_set_footprint_limit(size_t bytes) {
5389  size_t result;  /* invert sense of 0 */
5390  if (bytes == 0)
5391    result = granularity_align(1); /* Use minimal size */
5392  if (bytes == MAX_SIZE_T)
5393    result = 0;                    /* disable */
5394  else
5395    result = granularity_align(bytes);
5396  return gm->footprint_limit = result;
5397}
5398
5399#if !NO_MALLINFO
5400struct mallinfo dlmallinfo(void) {
5401  return internal_mallinfo(gm);
5402}
5403#endif /* NO_MALLINFO */
5404
5405#if !NO_MALLOC_STATS
5406void dlmalloc_stats() {
5407  internal_malloc_stats(gm);
5408}
5409#endif /* NO_MALLOC_STATS */
5410
5411int dlmallopt(int param_number, int value) {
5412  return change_mparam(param_number, value);
5413}
5414
5415/* BEGIN android-changed: added const */
5416size_t dlmalloc_usable_size(const void* mem) {
5417/* END android-change */
5418  if (mem != 0) {
5419    mchunkptr p = mem2chunk(mem);
5420    if (is_inuse(p))
5421      return chunksize(p) - overhead_for(p);
5422  }
5423  return 0;
5424}
5425
5426#endif /* !ONLY_MSPACES */
5427
5428/* ----------------------------- user mspaces ---------------------------- */
5429
5430#if MSPACES
5431
5432static mstate init_user_mstate(char* tbase, size_t tsize) {
5433  size_t msize = pad_request(sizeof(struct malloc_state));
5434  mchunkptr mn;
5435  mchunkptr msp = align_as_chunk(tbase);
5436  mstate m = (mstate)(chunk2mem(msp));
5437  memset(m, 0, msize);
5438  (void)INITIAL_LOCK(&m->mutex);
5439  msp->head = (msize|INUSE_BITS);
5440  m->seg.base = m->least_addr = tbase;
5441  m->seg.size = m->footprint = m->max_footprint = tsize;
5442  m->magic = mparams.magic;
5443  m->release_checks = MAX_RELEASE_CHECK_RATE;
5444  m->mflags = mparams.default_mflags;
5445  m->extp = 0;
5446  m->exts = 0;
5447  disable_contiguous(m);
5448  init_bins(m);
5449  mn = next_chunk(mem2chunk(m));
5450  init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
5451  check_top_chunk(m, m->top);
5452  return m;
5453}
5454
5455mspace create_mspace(size_t capacity, int locked) {
5456  mstate m = 0;
5457  size_t msize;
5458  ensure_initialization();
5459  msize = pad_request(sizeof(struct malloc_state));
5460  if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5461    size_t rs = ((capacity == 0)? mparams.granularity :
5462                 (capacity + TOP_FOOT_SIZE + msize));
5463    size_t tsize = granularity_align(rs);
5464    char* tbase = (char*)(CALL_MMAP(tsize));
5465    if (tbase != CMFAIL) {
5466      m = init_user_mstate(tbase, tsize);
5467      m->seg.sflags = USE_MMAP_BIT;
5468      set_lock(m, locked);
5469    }
5470  }
5471  return (mspace)m;
5472}
5473
5474mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
5475  mstate m = 0;
5476  size_t msize;
5477  ensure_initialization();
5478  msize = pad_request(sizeof(struct malloc_state));
5479  if (capacity > msize + TOP_FOOT_SIZE &&
5480      capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5481    m = init_user_mstate((char*)base, capacity);
5482    m->seg.sflags = EXTERN_BIT;
5483    set_lock(m, locked);
5484  }
5485  return (mspace)m;
5486}
5487
5488int mspace_track_large_chunks(mspace msp, int enable) {
5489  int ret = 0;
5490  mstate ms = (mstate)msp;
5491  if (!PREACTION(ms)) {
5492    if (!use_mmap(ms)) {
5493      ret = 1;
5494    }
5495    if (!enable) {
5496      enable_mmap(ms);
5497    } else {
5498      disable_mmap(ms);
5499    }
5500    POSTACTION(ms);
5501  }
5502  return ret;
5503}
5504
5505size_t destroy_mspace(mspace msp) {
5506  size_t freed = 0;
5507  mstate ms = (mstate)msp;
5508  if (ok_magic(ms)) {
5509    msegmentptr sp = &ms->seg;
5510    (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */
5511    while (sp != 0) {
5512      char* base = sp->base;
5513      size_t size = sp->size;
5514      flag_t flag = sp->sflags;
5515      (void)base; /* placate people compiling -Wunused-variable */
5516      sp = sp->next;
5517      if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
5518          CALL_MUNMAP(base, size) == 0)
5519        freed += size;
5520    }
5521  }
5522  else {
5523    USAGE_ERROR_ACTION(ms,ms);
5524  }
5525  return freed;
5526}
5527
5528/*
5529  mspace versions of routines are near-clones of the global
5530  versions. This is not so nice but better than the alternatives.
5531*/
5532
5533void* mspace_malloc(mspace msp, size_t bytes) {
5534  mstate ms = (mstate)msp;
5535  if (!ok_magic(ms)) {
5536    USAGE_ERROR_ACTION(ms,ms);
5537    return 0;
5538  }
5539  if (!PREACTION(ms)) {
5540    void* mem;
5541    size_t nb;
5542    if (bytes <= MAX_SMALL_REQUEST) {
5543      bindex_t idx;
5544      binmap_t smallbits;
5545      nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
5546      idx = small_index(nb);
5547      smallbits = ms->smallmap >> idx;
5548
5549      if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
5550        mchunkptr b, p;
5551        idx += ~smallbits & 1;       /* Uses next bin if idx empty */
5552        b = smallbin_at(ms, idx);
5553        p = b->fd;
5554        assert(chunksize(p) == small_index2size(idx));
5555        unlink_first_small_chunk(ms, b, p, idx);
5556        set_inuse_and_pinuse(ms, p, small_index2size(idx));
5557        mem = chunk2mem(p);
5558        check_malloced_chunk(ms, mem, nb);
5559        goto postaction;
5560      }
5561
5562      else if (nb > ms->dvsize) {
5563        if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
5564          mchunkptr b, p, r;
5565          size_t rsize;
5566          bindex_t i;
5567          binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
5568          binmap_t leastbit = least_bit(leftbits);
5569          compute_bit2idx(leastbit, i);
5570          b = smallbin_at(ms, i);
5571          p = b->fd;
5572          assert(chunksize(p) == small_index2size(i));
5573          unlink_first_small_chunk(ms, b, p, i);
5574          rsize = small_index2size(i) - nb;
5575          /* Fit here cannot be remainderless if 4byte sizes */
5576          if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
5577            set_inuse_and_pinuse(ms, p, small_index2size(i));
5578          else {
5579            set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5580            r = chunk_plus_offset(p, nb);
5581            set_size_and_pinuse_of_free_chunk(r, rsize);
5582            replace_dv(ms, r, rsize);
5583          }
5584          mem = chunk2mem(p);
5585          check_malloced_chunk(ms, mem, nb);
5586          goto postaction;
5587        }
5588
5589        else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
5590          check_malloced_chunk(ms, mem, nb);
5591          goto postaction;
5592        }
5593      }
5594    }
5595    else if (bytes >= MAX_REQUEST)
5596      nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
5597    else {
5598      nb = pad_request(bytes);
5599      if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
5600        check_malloced_chunk(ms, mem, nb);
5601        goto postaction;
5602      }
5603    }
5604
5605    if (nb <= ms->dvsize) {
5606      size_t rsize = ms->dvsize - nb;
5607      mchunkptr p = ms->dv;
5608      if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
5609        mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
5610        ms->dvsize = rsize;
5611        set_size_and_pinuse_of_free_chunk(r, rsize);
5612        set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5613      }
5614      else { /* exhaust dv */
5615        size_t dvs = ms->dvsize;
5616        ms->dvsize = 0;
5617        ms->dv = 0;
5618        set_inuse_and_pinuse(ms, p, dvs);
5619      }
5620      mem = chunk2mem(p);
5621      check_malloced_chunk(ms, mem, nb);
5622      goto postaction;
5623    }
5624
5625    else if (nb < ms->topsize) { /* Split top */
5626      size_t rsize = ms->topsize -= nb;
5627      mchunkptr p = ms->top;
5628      mchunkptr r = ms->top = chunk_plus_offset(p, nb);
5629      r->head = rsize | PINUSE_BIT;
5630      set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5631      mem = chunk2mem(p);
5632      check_top_chunk(ms, ms->top);
5633      check_malloced_chunk(ms, mem, nb);
5634      goto postaction;
5635    }
5636
5637    mem = sys_alloc(ms, nb);
5638
5639  postaction:
5640    POSTACTION(ms);
5641    return mem;
5642  }
5643
5644  return 0;
5645}
5646
5647void mspace_free(mspace msp, void* mem) {
5648  if (mem != 0) {
5649    mchunkptr p  = mem2chunk(mem);
5650#if FOOTERS
5651    mstate fm = get_mstate_for(p);
5652    (void)msp; /* placate people compiling -Wunused */
5653#else /* FOOTERS */
5654    mstate fm = (mstate)msp;
5655#endif /* FOOTERS */
5656    if (!ok_magic(fm)) {
5657      USAGE_ERROR_ACTION(fm, p);
5658      return;
5659    }
5660    if (!PREACTION(fm)) {
5661      check_inuse_chunk(fm, p);
5662      if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
5663        size_t psize = chunksize(p);
5664        mchunkptr next = chunk_plus_offset(p, psize);
5665        if (!pinuse(p)) {
5666          size_t prevsize = p->prev_foot;
5667          if (is_mmapped(p)) {
5668            psize += prevsize + MMAP_FOOT_PAD;
5669            if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
5670              fm->footprint -= psize;
5671            goto postaction;
5672          }
5673          else {
5674            mchunkptr prev = chunk_minus_offset(p, prevsize);
5675            psize += prevsize;
5676            p = prev;
5677            if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
5678              if (p != fm->dv) {
5679                unlink_chunk(fm, p, prevsize);
5680              }
5681              else if ((next->head & INUSE_BITS) == INUSE_BITS) {
5682                fm->dvsize = psize;
5683                set_free_with_pinuse(p, psize, next);
5684                goto postaction;
5685              }
5686            }
5687            else
5688              goto erroraction;
5689          }
5690        }
5691
5692        if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
5693          if (!cinuse(next)) {  /* consolidate forward */
5694            if (next == fm->top) {
5695              size_t tsize = fm->topsize += psize;
5696              fm->top = p;
5697              p->head = tsize | PINUSE_BIT;
5698              if (p == fm->dv) {
5699                fm->dv = 0;
5700                fm->dvsize = 0;
5701              }
5702              if (should_trim(fm, tsize))
5703                sys_trim(fm, 0);
5704              goto postaction;
5705            }
5706            else if (next == fm->dv) {
5707              size_t dsize = fm->dvsize += psize;
5708              fm->dv = p;
5709              set_size_and_pinuse_of_free_chunk(p, dsize);
5710              goto postaction;
5711            }
5712            else {
5713              size_t nsize = chunksize(next);
5714              psize += nsize;
5715              unlink_chunk(fm, next, nsize);
5716              set_size_and_pinuse_of_free_chunk(p, psize);
5717              if (p == fm->dv) {
5718                fm->dvsize = psize;
5719                goto postaction;
5720              }
5721            }
5722          }
5723          else
5724            set_free_with_pinuse(p, psize, next);
5725
5726          if (is_small(psize)) {
5727            insert_small_chunk(fm, p, psize);
5728            check_free_chunk(fm, p);
5729          }
5730          else {
5731            tchunkptr tp = (tchunkptr)p;
5732            insert_large_chunk(fm, tp, psize);
5733            check_free_chunk(fm, p);
5734            if (--fm->release_checks == 0)
5735              release_unused_segments(fm);
5736          }
5737          goto postaction;
5738        }
5739      }
5740    erroraction:
5741      USAGE_ERROR_ACTION(fm, p);
5742    postaction:
5743      POSTACTION(fm);
5744    }
5745  }
5746}
5747
5748void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
5749  void* mem;
5750  size_t req = 0;
5751  mstate ms = (mstate)msp;
5752  if (!ok_magic(ms)) {
5753    USAGE_ERROR_ACTION(ms,ms);
5754    return 0;
5755  }
5756  if (n_elements != 0) {
5757    req = n_elements * elem_size;
5758    if (((n_elements | elem_size) & ~(size_t)0xffff) &&
5759        (req / n_elements != elem_size))
5760      req = MAX_SIZE_T; /* force downstream failure on overflow */
5761  }
5762  mem = internal_malloc(ms, req);
5763  if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
5764    memset(mem, 0, req);
5765  return mem;
5766}
5767
5768void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
5769  void* mem = 0;
5770  if (oldmem == 0) {
5771    mem = mspace_malloc(msp, bytes);
5772  }
5773  else if (bytes >= MAX_REQUEST) {
5774    MALLOC_FAILURE_ACTION;
5775  }
5776#ifdef REALLOC_ZERO_BYTES_FREES
5777  else if (bytes == 0) {
5778    mspace_free(msp, oldmem);
5779  }
5780#endif /* REALLOC_ZERO_BYTES_FREES */
5781  else {
5782    size_t nb = request2size(bytes);
5783    mchunkptr oldp = mem2chunk(oldmem);
5784#if ! FOOTERS
5785    mstate m = (mstate)msp;
5786#else /* FOOTERS */
5787    mstate m = get_mstate_for(oldp);
5788    if (!ok_magic(m)) {
5789      USAGE_ERROR_ACTION(m, oldmem);
5790      return 0;
5791    }
5792#endif /* FOOTERS */
5793    if (!PREACTION(m)) {
5794      mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
5795      POSTACTION(m);
5796      if (newp != 0) {
5797        check_inuse_chunk(m, newp);
5798        mem = chunk2mem(newp);
5799      }
5800      else {
5801        mem = mspace_malloc(m, bytes);
5802        if (mem != 0) {
5803          size_t oc = chunksize(oldp) - overhead_for(oldp);
5804          memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
5805          mspace_free(m, oldmem);
5806        }
5807      }
5808    }
5809  }
5810  return mem;
5811}
5812
5813void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) {
5814  void* mem = 0;
5815  if (oldmem != 0) {
5816    if (bytes >= MAX_REQUEST) {
5817      MALLOC_FAILURE_ACTION;
5818    }
5819    else {
5820      size_t nb = request2size(bytes);
5821      mchunkptr oldp = mem2chunk(oldmem);
5822#if ! FOOTERS
5823      mstate m = (mstate)msp;
5824#else /* FOOTERS */
5825      mstate m = get_mstate_for(oldp);
5826      (void)msp; /* placate people compiling -Wunused */
5827      if (!ok_magic(m)) {
5828        USAGE_ERROR_ACTION(m, oldmem);
5829        return 0;
5830      }
5831#endif /* FOOTERS */
5832      if (!PREACTION(m)) {
5833        mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
5834        POSTACTION(m);
5835        if (newp == oldp) {
5836          check_inuse_chunk(m, newp);
5837          mem = oldmem;
5838        }
5839      }
5840    }
5841  }
5842  return mem;
5843}
5844
5845void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
5846  mstate ms = (mstate)msp;
5847  if (!ok_magic(ms)) {
5848    USAGE_ERROR_ACTION(ms,ms);
5849    return 0;
5850  }
5851  if (alignment <= MALLOC_ALIGNMENT)
5852    return mspace_malloc(msp, bytes);
5853  return internal_memalign(ms, alignment, bytes);
5854}
5855
5856void** mspace_independent_calloc(mspace msp, size_t n_elements,
5857                                 size_t elem_size, void* chunks[]) {
5858  size_t sz = elem_size; /* serves as 1-element array */
5859  mstate ms = (mstate)msp;
5860  if (!ok_magic(ms)) {
5861    USAGE_ERROR_ACTION(ms,ms);
5862    return 0;
5863  }
5864  return ialloc(ms, n_elements, &sz, 3, chunks);
5865}
5866
5867void** mspace_independent_comalloc(mspace msp, size_t n_elements,
5868                                   size_t sizes[], void* chunks[]) {
5869  mstate ms = (mstate)msp;
5870  if (!ok_magic(ms)) {
5871    USAGE_ERROR_ACTION(ms,ms);
5872    return 0;
5873  }
5874  return ialloc(ms, n_elements, sizes, 0, chunks);
5875}
5876
5877size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) {
5878  return internal_bulk_free((mstate)msp, array, nelem);
5879}
5880
5881#if MALLOC_INSPECT_ALL
5882void mspace_inspect_all(mspace msp,
5883                        void(*handler)(void *start,
5884                                       void *end,
5885                                       size_t used_bytes,
5886                                       void* callback_arg),
5887                        void* arg) {
5888  mstate ms = (mstate)msp;
5889  if (ok_magic(ms)) {
5890    if (!PREACTION(ms)) {
5891      internal_inspect_all(ms, handler, arg);
5892      POSTACTION(ms);
5893    }
5894  }
5895  else {
5896    USAGE_ERROR_ACTION(ms,ms);
5897  }
5898}
5899#endif /* MALLOC_INSPECT_ALL */
5900
5901int mspace_trim(mspace msp, size_t pad) {
5902  int result = 0;
5903  mstate ms = (mstate)msp;
5904  if (ok_magic(ms)) {
5905    if (!PREACTION(ms)) {
5906      result = sys_trim(ms, pad);
5907      POSTACTION(ms);
5908    }
5909  }
5910  else {
5911    USAGE_ERROR_ACTION(ms,ms);
5912  }
5913  return result;
5914}
5915
5916#if !NO_MALLOC_STATS
5917void mspace_malloc_stats(mspace msp) {
5918  mstate ms = (mstate)msp;
5919  if (ok_magic(ms)) {
5920    internal_malloc_stats(ms);
5921  }
5922  else {
5923    USAGE_ERROR_ACTION(ms,ms);
5924  }
5925}
5926#endif /* NO_MALLOC_STATS */
5927
5928size_t mspace_footprint(mspace msp) {
5929  size_t result = 0;
5930  mstate ms = (mstate)msp;
5931  if (ok_magic(ms)) {
5932    result = ms->footprint;
5933  }
5934  else {
5935    USAGE_ERROR_ACTION(ms,ms);
5936  }
5937  return result;
5938}
5939
5940size_t mspace_max_footprint(mspace msp) {
5941  size_t result = 0;
5942  mstate ms = (mstate)msp;
5943  if (ok_magic(ms)) {
5944    result = ms->max_footprint;
5945  }
5946  else {
5947    USAGE_ERROR_ACTION(ms,ms);
5948  }
5949  return result;
5950}
5951
5952size_t mspace_footprint_limit(mspace msp) {
5953  size_t result = 0;
5954  mstate ms = (mstate)msp;
5955  if (ok_magic(ms)) {
5956    size_t maf = ms->footprint_limit;
5957    result = (maf == 0) ? MAX_SIZE_T : maf;
5958  }
5959  else {
5960    USAGE_ERROR_ACTION(ms,ms);
5961  }
5962  return result;
5963}
5964
5965size_t mspace_set_footprint_limit(mspace msp, size_t bytes) {
5966  size_t result = 0;
5967  mstate ms = (mstate)msp;
5968  if (ok_magic(ms)) {
5969    if (bytes == 0)
5970      result = granularity_align(1); /* Use minimal size */
5971    if (bytes == MAX_SIZE_T)
5972      result = 0;                    /* disable */
5973    else
5974      result = granularity_align(bytes);
5975    ms->footprint_limit = result;
5976  }
5977  else {
5978    USAGE_ERROR_ACTION(ms,ms);
5979  }
5980  return result;
5981}
5982
5983#if !NO_MALLINFO
5984struct mallinfo mspace_mallinfo(mspace msp) {
5985  mstate ms = (mstate)msp;
5986  if (!ok_magic(ms)) {
5987    USAGE_ERROR_ACTION(ms,ms);
5988  }
5989  return internal_mallinfo(ms);
5990}
5991#endif /* NO_MALLINFO */
5992
5993size_t mspace_usable_size(const void* mem) {
5994  if (mem != 0) {
5995    mchunkptr p = mem2chunk(mem);
5996    if (is_inuse(p))
5997      return chunksize(p) - overhead_for(p);
5998  }
5999  return 0;
6000}
6001
6002int mspace_mallopt(int param_number, int value) {
6003  return change_mparam(param_number, value);
6004}
6005
6006#endif /* MSPACES */
6007
6008
6009/* -------------------- Alternative MORECORE functions ------------------- */
6010
6011/*
6012  Guidelines for creating a custom version of MORECORE:
6013
6014  * For best performance, MORECORE should allocate in multiples of pagesize.
6015  * MORECORE may allocate more memory than requested. (Or even less,
6016      but this will usually result in a malloc failure.)
6017  * MORECORE must not allocate memory when given argument zero, but
6018      instead return one past the end address of memory from previous
6019      nonzero call.
6020  * For best performance, consecutive calls to MORECORE with positive
6021      arguments should return increasing addresses, indicating that
6022      space has been contiguously extended.
6023  * Even though consecutive calls to MORECORE need not return contiguous
6024      addresses, it must be OK for malloc'ed chunks to span multiple
6025      regions in those cases where they do happen to be contiguous.
6026  * MORECORE need not handle negative arguments -- it may instead
6027      just return MFAIL when given negative arguments.
6028      Negative arguments are always multiples of pagesize. MORECORE
6029      must not misinterpret negative args as large positive unsigned
6030      args. You can suppress all such calls from even occurring by defining
6031      MORECORE_CANNOT_TRIM,
6032
6033  As an example alternative MORECORE, here is a custom allocator
6034  kindly contributed for pre-OSX macOS.  It uses virtually but not
6035  necessarily physically contiguous non-paged memory (locked in,
6036  present and won't get swapped out).  You can use it by uncommenting
6037  this section, adding some #includes, and setting up the appropriate
6038  defines above:
6039
6040      #define MORECORE osMoreCore
6041
6042  There is also a shutdown routine that should somehow be called for
6043  cleanup upon program exit.
6044
6045  #define MAX_POOL_ENTRIES 100
6046  #define MINIMUM_MORECORE_SIZE  (64 * 1024U)
6047  static int next_os_pool;
6048  void *our_os_pools[MAX_POOL_ENTRIES];
6049
6050  void *osMoreCore(int size)
6051  {
6052    void *ptr = 0;
6053    static void *sbrk_top = 0;
6054
6055    if (size > 0)
6056    {
6057      if (size < MINIMUM_MORECORE_SIZE)
6058         size = MINIMUM_MORECORE_SIZE;
6059      if (CurrentExecutionLevel() == kTaskLevel)
6060         ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
6061      if (ptr == 0)
6062      {
6063        return (void *) MFAIL;
6064      }
6065      // save ptrs so they can be freed during cleanup
6066      our_os_pools[next_os_pool] = ptr;
6067      next_os_pool++;
6068      ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
6069      sbrk_top = (char *) ptr + size;
6070      return ptr;
6071    }
6072    else if (size < 0)
6073    {
6074      // we don't currently support shrink behavior
6075      return (void *) MFAIL;
6076    }
6077    else
6078    {
6079      return sbrk_top;
6080    }
6081  }
6082
6083  // cleanup any allocated memory pools
6084  // called as last thing before shutting down driver
6085
6086  void osCleanupMem(void)
6087  {
6088    void **ptr;
6089
6090    for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
6091      if (*ptr)
6092      {
6093         PoolDeallocate(*ptr);
6094         *ptr = 0;
6095      }
6096  }
6097
6098*/
6099
6100
6101/* -----------------------------------------------------------------------
6102History:
6103    v2.8.6 Wed Aug 29 06:57:58 2012  Doug Lea
6104      * fix bad comparison in dlposix_memalign
6105      * don't reuse adjusted asize in sys_alloc
6106      * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion
6107      * reduce compiler warnings -- thanks to all who reported/suggested these
6108
6109    v2.8.5 Sun May 22 10:26:02 2011  Doug Lea  (dl at gee)
6110      * Always perform unlink checks unless INSECURE
6111      * Add posix_memalign.
6112      * Improve realloc to expand in more cases; expose realloc_in_place.
6113        Thanks to Peter Buhr for the suggestion.
6114      * Add footprint_limit, inspect_all, bulk_free. Thanks
6115        to Barry Hayes and others for the suggestions.
6116      * Internal refactorings to avoid calls while holding locks
6117      * Use non-reentrant locks by default. Thanks to Roland McGrath
6118        for the suggestion.
6119      * Small fixes to mspace_destroy, reset_on_error.
6120      * Various configuration extensions/changes. Thanks
6121         to all who contributed these.
6122
6123    V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu)
6124      * Update Creative Commons URL
6125
6126    V2.8.4 Wed May 27 09:56:23 2009  Doug Lea  (dl at gee)
6127      * Use zeros instead of prev foot for is_mmapped
6128      * Add mspace_track_large_chunks; thanks to Jean Brouwers
6129      * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
6130      * Fix insufficient sys_alloc padding when using 16byte alignment
6131      * Fix bad error check in mspace_footprint
6132      * Adaptations for ptmalloc; thanks to Wolfram Gloger.
6133      * Reentrant spin locks; thanks to Earl Chew and others
6134      * Win32 improvements; thanks to Niall Douglas and Earl Chew
6135      * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
6136      * Extension hook in malloc_state
6137      * Various small adjustments to reduce warnings on some compilers
6138      * Various configuration extensions/changes for more platforms. Thanks
6139         to all who contributed these.
6140
6141    V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee)
6142      * Add max_footprint functions
6143      * Ensure all appropriate literals are size_t
6144      * Fix conditional compilation problem for some #define settings
6145      * Avoid concatenating segments with the one provided
6146        in create_mspace_with_base
6147      * Rename some variables to avoid compiler shadowing warnings
6148      * Use explicit lock initialization.
6149      * Better handling of sbrk interference.
6150      * Simplify and fix segment insertion, trimming and mspace_destroy
6151      * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
6152      * Thanks especially to Dennis Flanagan for help on these.
6153
6154    V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee)
6155      * Fix memalign brace error.
6156
6157    V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee)
6158      * Fix improper #endif nesting in C++
6159      * Add explicit casts needed for C++
6160
6161    V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee)
6162      * Use trees for large bins
6163      * Support mspaces
6164      * Use segments to unify sbrk-based and mmap-based system allocation,
6165        removing need for emulation on most platforms without sbrk.
6166      * Default safety checks
6167      * Optional footer checks. Thanks to William Robertson for the idea.
6168      * Internal code refactoring
6169      * Incorporate suggestions and platform-specific changes.
6170        Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
6171        Aaron Bachmann,  Emery Berger, and others.
6172      * Speed up non-fastbin processing enough to remove fastbins.
6173      * Remove useless cfree() to avoid conflicts with other apps.
6174      * Remove internal memcpy, memset. Compilers handle builtins better.
6175      * Remove some options that no one ever used and rename others.
6176
6177    V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
6178      * Fix malloc_state bitmap array misdeclaration
6179
6180    V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
6181      * Allow tuning of FIRST_SORTED_BIN_SIZE
6182      * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
6183      * Better detection and support for non-contiguousness of MORECORE.
6184        Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
6185      * Bypass most of malloc if no frees. Thanks To Emery Berger.
6186      * Fix freeing of old top non-contiguous chunk im sysmalloc.
6187      * Raised default trim and map thresholds to 256K.
6188      * Fix mmap-related #defines. Thanks to Lubos Lunak.
6189      * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
6190      * Branch-free bin calculation
6191      * Default trim and mmap thresholds now 256K.
6192
6193    V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
6194      * Introduce independent_comalloc and independent_calloc.
6195        Thanks to Michael Pachos for motivation and help.
6196      * Make optional .h file available
6197      * Allow > 2GB requests on 32bit systems.
6198      * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
6199        Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
6200        and Anonymous.
6201      * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
6202        helping test this.)
6203      * memalign: check alignment arg
6204      * realloc: don't try to shift chunks backwards, since this
6205        leads to  more fragmentation in some programs and doesn't
6206        seem to help in any others.
6207      * Collect all cases in malloc requiring system memory into sysmalloc
6208      * Use mmap as backup to sbrk
6209      * Place all internal state in malloc_state
6210      * Introduce fastbins (although similar to 2.5.1)
6211      * Many minor tunings and cosmetic improvements
6212      * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
6213      * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
6214        Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
6215      * Include errno.h to support default failure action.
6216
6217    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
6218      * return null for negative arguments
6219      * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
6220         * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
6221          (e.g. WIN32 platforms)
6222         * Cleanup header file inclusion for WIN32 platforms
6223         * Cleanup code to avoid Microsoft Visual C++ compiler complaints
6224         * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
6225           memory allocation routines
6226         * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
6227         * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
6228           usage of 'assert' in non-WIN32 code
6229         * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
6230           avoid infinite loop
6231      * Always call 'fREe()' rather than 'free()'
6232
6233    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
6234      * Fixed ordering problem with boundary-stamping
6235
6236    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
6237      * Added pvalloc, as recommended by H.J. Liu
6238      * Added 64bit pointer support mainly from Wolfram Gloger
6239      * Added anonymously donated WIN32 sbrk emulation
6240      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
6241      * malloc_extend_top: fix mask error that caused wastage after
6242        foreign sbrks
6243      * Add linux mremap support code from HJ Liu
6244
6245    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
6246      * Integrated most documentation with the code.
6247      * Add support for mmap, with help from
6248        Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
6249      * Use last_remainder in more cases.
6250      * Pack bins using idea from  colin@nyx10.cs.du.edu
6251      * Use ordered bins instead of best-fit threshhold
6252      * Eliminate block-local decls to simplify tracing and debugging.
6253      * Support another case of realloc via move into top
6254      * Fix error occuring when initial sbrk_base not word-aligned.
6255      * Rely on page size for units instead of SBRK_UNIT to
6256        avoid surprises about sbrk alignment conventions.
6257      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
6258        (raymond@es.ele.tue.nl) for the suggestion.
6259      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
6260      * More precautions for cases where other routines call sbrk,
6261        courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
6262      * Added macros etc., allowing use in linux libc from
6263        H.J. Lu (hjl@gnu.ai.mit.edu)
6264      * Inverted this history list
6265
6266    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
6267      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
6268      * Removed all preallocation code since under current scheme
6269        the work required to undo bad preallocations exceeds
6270        the work saved in good cases for most test programs.
6271      * No longer use return list or unconsolidated bins since
6272        no scheme using them consistently outperforms those that don't
6273        given above changes.
6274      * Use best fit for very large chunks to prevent some worst-cases.
6275      * Added some support for debugging
6276
6277    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
6278      * Removed footers when chunks are in use. Thanks to
6279        Paul Wilson (wilson@cs.texas.edu) for the suggestion.
6280
6281    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
6282      * Added malloc_trim, with help from Wolfram Gloger
6283        (wmglo@Dent.MED.Uni-Muenchen.DE).
6284
6285    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
6286
6287    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
6288      * realloc: try to expand in both directions
6289      * malloc: swap order of clean-bin strategy;
6290      * realloc: only conditionally expand backwards
6291      * Try not to scavenge used bins
6292      * Use bin counts as a guide to preallocation
6293      * Occasionally bin return list chunks in first scan
6294      * Add a few optimizations from colin@nyx10.cs.du.edu
6295
6296    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
6297      * faster bin computation & slightly different binning
6298      * merged all consolidations to one part of malloc proper
6299         (eliminating old malloc_find_space & malloc_clean_bin)
6300      * Scan 2 returns chunks (not just 1)
6301      * Propagate failure in realloc if malloc returns 0
6302      * Add stuff to allow compilation on non-ANSI compilers
6303          from kpv@research.att.com
6304
6305    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
6306      * removed potential for odd address access in prev_chunk
6307      * removed dependency on getpagesize.h
6308      * misc cosmetics and a bit more internal documentation
6309      * anticosmetics: mangled names in macros to evade debugger strangeness
6310      * tested on sparc, hp-700, dec-mips, rs6000
6311          with gcc & native cc (hp, dec only) allowing
6312          Detlefs & Zorn comparison study (in SIGPLAN Notices.)
6313
6314    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
6315      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
6316         structure of old version,  but most details differ.)
6317
6318*/
6319