sensors_qemu.c revision 8a94683196406b83b14218d1beef66067f126a16
1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* this implements a sensors hardware library for the Android emulator.
18 * the following code should be built as a shared library that will be
19 * placed into /system/lib/hw/sensors.goldfish.so
20 *
21 * it will be loaded by the code in hardware/libhardware/hardware.c
22 * which is itself called from com_android_server_SensorService.cpp
23 */
24
25
26/* we connect with the emulator through the "sensors" qemud service
27 */
28#define  SENSORS_SERVICE_NAME "sensors"
29
30#define LOG_TAG "QemuSensors"
31
32#include <unistd.h>
33#include <fcntl.h>
34#include <errno.h>
35#include <string.h>
36#include <cutils/log.h>
37#include <cutils/native_handle.h>
38#include <cutils/sockets.h>
39#include <hardware/sensors.h>
40
41#if 0
42#define  D(...)  ALOGD(__VA_ARGS__)
43#else
44#define  D(...)  ((void)0)
45#endif
46
47#define  E(...)  ALOGE(__VA_ARGS__)
48
49#include <hardware/qemud.h>
50
51/** SENSOR IDS AND NAMES
52 **/
53
54#define MAX_NUM_SENSORS 5
55
56#define SUPPORTED_SENSORS  ((1<<MAX_NUM_SENSORS)-1)
57
58#define  ID_BASE           SENSORS_HANDLE_BASE
59#define  ID_ACCELERATION   (ID_BASE+0)
60#define  ID_MAGNETIC_FIELD (ID_BASE+1)
61#define  ID_ORIENTATION    (ID_BASE+2)
62#define  ID_TEMPERATURE    (ID_BASE+3)
63#define  ID_PROXIMITY      (ID_BASE+4)
64
65#define  SENSORS_ACCELERATION   (1 << ID_ACCELERATION)
66#define  SENSORS_MAGNETIC_FIELD  (1 << ID_MAGNETIC_FIELD)
67#define  SENSORS_ORIENTATION     (1 << ID_ORIENTATION)
68#define  SENSORS_TEMPERATURE     (1 << ID_TEMPERATURE)
69#define  SENSORS_PROXIMITY       (1 << ID_PROXIMITY)
70
71#define  ID_CHECK(x)  ((unsigned)((x)-ID_BASE) < MAX_NUM_SENSORS)
72
73#define  SENSORS_LIST  \
74    SENSOR_(ACCELERATION,"acceleration") \
75    SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
76    SENSOR_(ORIENTATION,"orientation") \
77    SENSOR_(TEMPERATURE,"temperature") \
78    SENSOR_(PROXIMITY,"proximity") \
79
80static const struct {
81    const char*  name;
82    int          id; } _sensorIds[MAX_NUM_SENSORS] =
83{
84#define SENSOR_(x,y)  { y, ID_##x },
85    SENSORS_LIST
86#undef  SENSOR_
87};
88
89static const char*
90_sensorIdToName( int  id )
91{
92    int  nn;
93    for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
94        if (id == _sensorIds[nn].id)
95            return _sensorIds[nn].name;
96    return "<UNKNOWN>";
97}
98
99static int
100_sensorIdFromName( const char*  name )
101{
102    int  nn;
103
104    if (name == NULL)
105        return -1;
106
107    for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
108        if (!strcmp(name, _sensorIds[nn].name))
109            return _sensorIds[nn].id;
110
111    return -1;
112}
113
114/** SENSORS POLL DEVICE
115 **
116 ** This one is used to read sensor data from the hardware.
117 ** We implement this by simply reading the data from the
118 ** emulator through the QEMUD channel.
119 **/
120
121typedef struct SensorPoll {
122    struct sensors_poll_device_t  device;
123    sensors_event_t               sensors[MAX_NUM_SENSORS];
124    int                           events_fd;
125    uint32_t                      pendingSensors;
126    int64_t                       timeStart;
127    int64_t                       timeOffset;
128    int                           fd;
129    uint32_t                      active_sensors;
130} SensorPoll;
131
132/* this must return a file descriptor that will be used to read
133 * the sensors data (it is passed to data__data_open() below
134 */
135static native_handle_t*
136control__open_data_source(struct sensors_poll_device_t *dev)
137{
138    SensorPoll*  ctl = (void*)dev;
139    native_handle_t* handle;
140
141    if (ctl->fd < 0) {
142        ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
143    }
144    D("%s: fd=%d", __FUNCTION__, ctl->fd);
145    handle = native_handle_create(1, 0);
146    handle->data[0] = dup(ctl->fd);
147    return handle;
148}
149
150static int
151control__activate(struct sensors_poll_device_t *dev,
152                  int handle,
153                  int enabled)
154{
155    SensorPoll*     ctl = (void*)dev;
156    uint32_t        mask, sensors, active, new_sensors, changed;
157    char            command[128];
158    int             ret;
159
160    D("%s: handle=%s (%d) fd=%d enabled=%d", __FUNCTION__,
161        _sensorIdToName(handle), handle, ctl->fd, enabled);
162
163    if (!ID_CHECK(handle)) {
164        E("%s: bad handle ID", __FUNCTION__);
165        return -1;
166    }
167
168    mask    = (1<<handle);
169    sensors = enabled ? mask : 0;
170
171    active      = ctl->active_sensors;
172    new_sensors = (active & ~mask) | (sensors & mask);
173    changed     = active ^ new_sensors;
174
175    if (!changed)
176        return 0;
177
178    snprintf(command, sizeof command, "set:%s:%d",
179                _sensorIdToName(handle), enabled != 0);
180
181    if (ctl->fd < 0) {
182        ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
183    }
184
185    ret = qemud_channel_send(ctl->fd, command, -1);
186    if (ret < 0) {
187        E("%s: when sending command errno=%d: %s", __FUNCTION__, errno, strerror(errno));
188        return -1;
189    }
190    ctl->active_sensors = new_sensors;
191
192    return 0;
193}
194
195static int
196control__set_delay(struct sensors_poll_device_t *dev, int32_t ms)
197{
198    SensorPoll*     ctl = (void*)dev;
199    char            command[128];
200
201    D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
202
203    snprintf(command, sizeof command, "set-delay:%d", ms);
204
205    return qemud_channel_send(ctl->fd, command, -1);
206}
207
208static int
209control__close(struct hw_device_t *dev)
210{
211    SensorPoll*  ctl = (void*)dev;
212    close(ctl->fd);
213    free(ctl);
214    return 0;
215}
216
217/* return the current time in nanoseconds */
218static int64_t
219data__now_ns(void)
220{
221    struct timespec  ts;
222
223    clock_gettime(CLOCK_MONOTONIC, &ts);
224
225    return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
226}
227
228static int
229data__data_open(struct sensors_poll_device_t *dev, native_handle_t* handle)
230{
231    SensorPoll*  data = (void*)dev;
232    int i;
233    D("%s: dev=%p fd=%d", __FUNCTION__, dev, handle->data[0]);
234    memset(&data->sensors, 0, sizeof(data->sensors));
235
236    data->pendingSensors = 0;
237    data->timeStart      = 0;
238    data->timeOffset     = 0;
239
240    data->events_fd = dup(handle->data[0]);
241    D("%s: dev=%p fd=%d (was %d)", __FUNCTION__, dev, data->events_fd, handle->data[0]);
242    native_handle_close(handle);
243    native_handle_delete(handle);
244    return 0;
245}
246
247static int
248data__data_close(struct sensors_poll_device_t *dev)
249{
250    SensorPoll*  data = (void*)dev;
251    D("%s: dev=%p", __FUNCTION__, dev);
252    if (data->events_fd >= 0) {
253        close(data->events_fd);
254        data->events_fd = -1;
255    }
256    return 0;
257}
258
259static int
260pick_sensor(SensorPoll*       data,
261            sensors_event_t*  values)
262{
263    uint32_t mask = SUPPORTED_SENSORS;
264    while (mask) {
265        uint32_t i = 31 - __builtin_clz(mask);
266        mask &= ~(1<<i);
267        if (data->pendingSensors & (1<<i)) {
268            data->pendingSensors &= ~(1<<i);
269            *values = data->sensors[i];
270            values->sensor = i;
271            values->version = sizeof(*values);
272
273            D("%s: %d [%f, %f, %f]", __FUNCTION__,
274                    i,
275                    values->data[0],
276                    values->data[1],
277                    values->data[2]);
278            return i;
279        }
280    }
281    ALOGE("No sensor to return!!! pendingSensors=%08x", data->pendingSensors);
282    // we may end-up in a busy loop, slow things down, just in case.
283    usleep(100000);
284    return -EINVAL;
285}
286
287static int
288data__poll(struct sensors_poll_device_t *dev, sensors_event_t* values)
289{
290    SensorPoll*  data = (void*)dev;
291    int fd = data->events_fd;
292
293    D("%s: data=%p", __FUNCTION__, dev);
294
295    // there are pending sensors, returns them now...
296    if (data->pendingSensors) {
297        return pick_sensor(data, values);
298    }
299
300    // wait until we get a complete event for an enabled sensor
301    uint32_t new_sensors = 0;
302
303    while (1) {
304        /* read the next event */
305        char     buff[256];
306        int      len = qemud_channel_recv(data->events_fd, buff, sizeof buff-1);
307        float    params[3];
308        int64_t  event_time;
309
310        if (len < 0) {
311            E("%s: len=%d, errno=%d: %s", __FUNCTION__, len, errno, strerror(errno));
312            return -errno;
313        }
314
315        buff[len] = 0;
316
317        /* "wake" is sent from the emulator to exit this loop. */
318        if (!strcmp((const char*)data, "wake")) {
319            return 0x7FFFFFFF;
320        }
321
322        /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
323        if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2) == 3) {
324            new_sensors |= SENSORS_ACCELERATION;
325            data->sensors[ID_ACCELERATION].acceleration.x = params[0];
326            data->sensors[ID_ACCELERATION].acceleration.y = params[1];
327            data->sensors[ID_ACCELERATION].acceleration.z = params[2];
328            continue;
329        }
330
331        /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation changes */
332        if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2) == 3) {
333            new_sensors |= SENSORS_ORIENTATION;
334            data->sensors[ID_ORIENTATION].orientation.azimuth = params[0];
335            data->sensors[ID_ORIENTATION].orientation.pitch   = params[1];
336            data->sensors[ID_ORIENTATION].orientation.roll    = params[2];
337            data->sensors[ID_ORIENTATION].orientation.status  = SENSOR_STATUS_ACCURACY_HIGH;
338            continue;
339        }
340
341        /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic field */
342        if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2) == 3) {
343            new_sensors |= SENSORS_MAGNETIC_FIELD;
344            data->sensors[ID_MAGNETIC_FIELD].magnetic.x = params[0];
345            data->sensors[ID_MAGNETIC_FIELD].magnetic.y = params[1];
346            data->sensors[ID_MAGNETIC_FIELD].magnetic.z = params[2];
347            data->sensors[ID_MAGNETIC_FIELD].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
348            continue;
349        }
350
351        /* "temperature:<celsius>" */
352        if (sscanf(buff, "temperature:%g", params+0) == 1) {
353            new_sensors |= SENSORS_TEMPERATURE;
354            data->sensors[ID_TEMPERATURE].temperature = params[0];
355            continue;
356        }
357
358        /* "proximity:<value>" */
359        if (sscanf(buff, "proximity:%g", params+0) == 1) {
360            new_sensors |= SENSORS_PROXIMITY;
361            data->sensors[ID_PROXIMITY].distance = params[0];
362            continue;
363        }
364
365        /* "sync:<time>" is sent after a series of sensor events.
366         * where 'time' is expressed in micro-seconds and corresponds
367         * to the VM time when the real poll occured.
368         */
369        if (sscanf(buff, "sync:%lld", &event_time) == 1) {
370            if (new_sensors) {
371                data->pendingSensors = new_sensors;
372                int64_t t = event_time * 1000LL;  /* convert to nano-seconds */
373
374                /* use the time at the first sync: as the base for later
375                 * time values */
376                if (data->timeStart == 0) {
377                    data->timeStart  = data__now_ns();
378                    data->timeOffset = data->timeStart - t;
379                }
380                t += data->timeOffset;
381
382                while (new_sensors) {
383                    uint32_t i = 31 - __builtin_clz(new_sensors);
384                    new_sensors &= ~(1<<i);
385                    data->sensors[i].timestamp = t;
386                }
387                return pick_sensor(data, values);
388            } else {
389                D("huh ? sync without any sensor data ?");
390            }
391            continue;
392        }
393        D("huh ? unsupported command");
394    }
395    return -1;
396}
397
398static int
399data__close(struct hw_device_t *dev)
400{
401    SensorPoll* data = (SensorPoll*)dev;
402    if (data) {
403        if (data->events_fd >= 0) {
404            //ALOGD("(device close) about to close fd=%d", data->events_fd);
405            close(data->events_fd);
406        }
407        free(data);
408    }
409    return 0;
410}
411
412/** SENSORS POLL DEVICE FUNCTIONS **/
413
414static int poll__close(struct hw_device_t* dev)
415{
416    SensorPoll*  ctl = (void*)dev;
417    close(ctl->fd);
418    if (ctl->fd >= 0) {
419        close(ctl->fd);
420    }
421    if (ctl->events_fd >= 0) {
422        close(ctl->events_fd);
423    }
424    free(ctl);
425    return 0;
426}
427
428static int poll__poll(struct sensors_poll_device_t *dev,
429            sensors_event_t* data, int count)
430{
431    SensorPoll*  datadev = (void*)dev;
432    int ret;
433    int i;
434    D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
435
436    for (i = 0; i < count; i++)  {
437        ret = data__poll(dev, data);
438        data++;
439        if (ret > MAX_NUM_SENSORS || ret < 0) {
440           return i;
441        }
442        if (!datadev->pendingSensors) {
443           return i + 1;
444        }
445    }
446    return count;
447}
448
449static int poll__activate(struct sensors_poll_device_t *dev,
450            int handle, int enabled)
451{
452    int ret;
453    native_handle_t* hdl;
454    SensorPoll*  ctl = (void*)dev;
455    D("%s: dev=%p handle=%x enable=%d ", __FUNCTION__, dev, handle, enabled);
456    if (ctl->fd < 0) {
457        D("%s: OPEN CTRL and DATA ", __FUNCTION__);
458        hdl = control__open_data_source(dev);
459        ret = data__data_open(dev,hdl);
460    }
461    ret = control__activate(dev, handle, enabled);
462    return ret;
463}
464
465static int poll__setDelay(struct sensors_poll_device_t *dev,
466            int handle, int64_t ns)
467{
468    // TODO
469    return 0;
470}
471
472/** MODULE REGISTRATION SUPPORT
473 **
474 ** This is required so that hardware/libhardware/hardware.c
475 ** will dlopen() this library appropriately.
476 **/
477
478/*
479 * the following is the list of all supported sensors.
480 * this table is used to build sSensorList declared below
481 * according to which hardware sensors are reported as
482 * available from the emulator (see get_sensors_list below)
483 *
484 * note: numerical values for maxRange/resolution/power were
485 *       taken from the reference AK8976A implementation
486 */
487static const struct sensor_t sSensorListInit[] = {
488        { .name       = "Goldfish 3-axis Accelerometer",
489          .vendor     = "The Android Open Source Project",
490          .version    = 1,
491          .handle     = ID_ACCELERATION,
492          .type       = SENSOR_TYPE_ACCELEROMETER,
493          .maxRange   = 2.8f,
494          .resolution = 1.0f/4032.0f,
495          .power      = 3.0f,
496          .reserved   = {}
497        },
498
499        { .name       = "Goldfish 3-axis Magnetic field sensor",
500          .vendor     = "The Android Open Source Project",
501          .version    = 1,
502          .handle     = ID_MAGNETIC_FIELD,
503          .type       = SENSOR_TYPE_MAGNETIC_FIELD,
504          .maxRange   = 2000.0f,
505          .resolution = 1.0f,
506          .power      = 6.7f,
507          .reserved   = {}
508        },
509
510        { .name       = "Goldfish Orientation sensor",
511          .vendor     = "The Android Open Source Project",
512          .version    = 1,
513          .handle     = ID_ORIENTATION,
514          .type       = SENSOR_TYPE_ORIENTATION,
515          .maxRange   = 360.0f,
516          .resolution = 1.0f,
517          .power      = 9.7f,
518          .reserved   = {}
519        },
520
521        { .name       = "Goldfish Temperature sensor",
522          .vendor     = "The Android Open Source Project",
523          .version    = 1,
524          .handle     = ID_TEMPERATURE,
525          .type       = SENSOR_TYPE_TEMPERATURE,
526          .maxRange   = 80.0f,
527          .resolution = 1.0f,
528          .power      = 0.0f,
529          .reserved   = {}
530        },
531
532        { .name       = "Goldfish Proximity sensor",
533          .vendor     = "The Android Open Source Project",
534          .version    = 1,
535          .handle     = ID_PROXIMITY,
536          .type       = SENSOR_TYPE_PROXIMITY,
537          .maxRange   = 1.0f,
538          .resolution = 1.0f,
539          .power      = 20.0f,
540          .reserved   = {}
541        },
542};
543
544static struct sensor_t  sSensorList[MAX_NUM_SENSORS];
545
546static int sensors__get_sensors_list(struct sensors_module_t* module,
547        struct sensor_t const** list)
548{
549    int  fd = qemud_channel_open(SENSORS_SERVICE_NAME);
550    char buffer[12];
551    int  mask, nn, count;
552
553    int  ret;
554    if (fd < 0) {
555        E("%s: no qemud connection", __FUNCTION__);
556        return 0;
557    }
558    ret = qemud_channel_send(fd, "list-sensors", -1);
559    if (ret < 0) {
560        E("%s: could not query sensor list: %s", __FUNCTION__,
561          strerror(errno));
562        close(fd);
563        return 0;
564    }
565    ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
566    if (ret < 0) {
567        E("%s: could not receive sensor list: %s", __FUNCTION__,
568          strerror(errno));
569        close(fd);
570        return 0;
571    }
572    buffer[ret] = 0;
573    close(fd);
574
575    /* the result is a integer used as a mask for available sensors */
576    mask  = atoi(buffer);
577    count = 0;
578    for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
579        if (((1 << nn) & mask) == 0)
580            continue;
581
582        sSensorList[count++] = sSensorListInit[nn];
583    }
584    D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
585    *list = sSensorList;
586    return count;
587}
588
589
590static int
591open_sensors(const struct hw_module_t* module,
592             const char*               name,
593             struct hw_device_t*      *device)
594{
595    int  status = -EINVAL;
596
597    D("%s: name=%s", __FUNCTION__, name);
598
599    if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
600        SensorPoll *dev = malloc(sizeof(*dev));
601
602        memset(dev, 0, sizeof(*dev));
603
604        dev->device.common.tag     = HARDWARE_DEVICE_TAG;
605        dev->device.common.version = 0;
606        dev->device.common.module  = (struct hw_module_t*) module;
607        dev->device.common.close   = poll__close;
608        dev->device.poll           = poll__poll;
609        dev->device.activate       = poll__activate;
610        dev->device.setDelay       = poll__setDelay;
611        dev->events_fd             = -1;
612        dev->fd                    = -1;
613
614        *device = &dev->device.common;
615        status  = 0;
616    }
617    return status;
618}
619
620
621static struct hw_module_methods_t sensors_module_methods = {
622    .open = open_sensors
623};
624
625struct sensors_module_t HAL_MODULE_INFO_SYM = {
626    .common = {
627        .tag = HARDWARE_MODULE_TAG,
628        .version_major = 1,
629        .version_minor = 0,
630        .id = SENSORS_HARDWARE_MODULE_ID,
631        .name = "Goldfish SENSORS Module",
632        .author = "The Android Open Source Project",
633        .methods = &sensors_module_methods,
634    },
635    .get_sensors_list = sensors__get_sensors_list
636};
637