suitesparse.h revision 1d2624a10e2c559f8ba9ef89eaa30832c0a83a96
1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// A simple C++ interface to the SuiteSparse and CHOLMOD libraries.
32
33#ifndef CERES_INTERNAL_SUITESPARSE_H_
34#define CERES_INTERNAL_SUITESPARSE_H_
35
36
37#ifndef CERES_NO_SUITESPARSE
38
39#include <cstring>
40#include <string>
41#include <vector>
42
43#include "ceres/internal/port.h"
44#include "cholmod.h"
45#include "glog/logging.h"
46
47// Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
48// if SuiteSparse was compiled with Metis support. This makes
49// calling and linking into cholmod_camd problematic even though it
50// has nothing to do with Metis. This has been fixed reliably in
51// 4.2.0.
52//
53// The fix was actually committed in 4.1.0, but there is
54// some confusion about a silent update to the tar ball, so we are
55// being conservative and choosing the next minor version where
56// things are stable.
57#if (SUITESPARSE_VERSION < 4002)
58#define CERES_NO_CAMD
59#endif
60
61namespace ceres {
62namespace internal {
63
64class CompressedRowSparseMatrix;
65class TripletSparseMatrix;
66
67// The raw CHOLMOD and SuiteSparseQR libraries have a slightly
68// cumbersome c like calling format. This object abstracts it away and
69// provides the user with a simpler interface. The methods here cannot
70// be static as a cholmod_common object serves as a global variable
71// for all cholmod function calls.
72class SuiteSparse {
73 public:
74  SuiteSparse();
75  ~SuiteSparse();
76
77  // Functions for building cholmod_sparse objects from sparse
78  // matrices stored in triplet form. The matrix A is not
79  // modifed. Called owns the result.
80  cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A);
81
82  // This function works like CreateSparseMatrix, except that the
83  // return value corresponds to A' rather than A.
84  cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A);
85
86  // Create a cholmod_sparse wrapper around the contents of A. This is
87  // a shallow object, which refers to the contents of A and does not
88  // use the SuiteSparse machinery to allocate memory.
89  cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
90
91  // Given a vector x, build a cholmod_dense vector of size out_size
92  // with the first in_size entries copied from x. If x is NULL, then
93  // an all zeros vector is returned. Caller owns the result.
94  cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size);
95
96  // The matrix A is scaled using the matrix whose diagonal is the
97  // vector scale. mode describes how scaling is applied. Possible
98  // values are CHOLMOD_ROW for row scaling - diag(scale) * A,
99  // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM
100  // for symmetric scaling which scales both the rows and the columns
101  // - diag(scale) * A * diag(scale).
102  void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) {
103     cholmod_scale(scale, mode, A, &cc_);
104  }
105
106  // Create and return a matrix m = A * A'. Caller owns the
107  // result. The matrix A is not modified.
108  cholmod_sparse* AATranspose(cholmod_sparse* A) {
109    cholmod_sparse*m =  cholmod_aat(A, NULL, A->nrow, 1, &cc_);
110    m->stype = 1;  // Pay attention to the upper triangular part.
111    return m;
112  }
113
114  // y = alpha * A * x + beta * y. Only y is modified.
115  void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta,
116                           cholmod_dense* x, cholmod_dense* y) {
117    double alpha_[2] = {alpha, 0};
118    double beta_[2] = {beta, 0};
119    cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_);
120  }
121
122  // Find an ordering of A or AA' (if A is unsymmetric) that minimizes
123  // the fill-in in the Cholesky factorization of the corresponding
124  // matrix. This is done by using the AMD algorithm.
125  //
126  // Using this ordering, the symbolic Cholesky factorization of A (or
127  // AA') is computed and returned.
128  //
129  // A is not modified, only the pattern of non-zeros of A is used,
130  // the actual numerical values in A are of no consequence.
131  //
132  // Caller owns the result.
133  cholmod_factor* AnalyzeCholesky(cholmod_sparse* A);
134
135  cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A,
136                                       const vector<int>& row_blocks,
137                                       const vector<int>& col_blocks);
138
139  // If A is symmetric, then compute the symbolic Cholesky
140  // factorization of A(ordering, ordering). If A is unsymmetric, then
141  // compute the symbolic factorization of
142  // A(ordering,:) A(ordering,:)'.
143  //
144  // A is not modified, only the pattern of non-zeros of A is used,
145  // the actual numerical values in A are of no consequence.
146  //
147  // Caller owns the result.
148  cholmod_factor* AnalyzeCholeskyWithUserOrdering(cholmod_sparse* A,
149                                                  const vector<int>& ordering);
150
151  // Perform a symbolic factorization of A without re-ordering A. No
152  // postordering of the elimination tree is performed. This ensures
153  // that the symbolic factor does not introduce an extra permutation
154  // on the matrix. See the documentation for CHOLMOD for more details.
155  cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A);
156
157  // Use the symbolic factorization in L, to find the numerical
158  // factorization for the matrix A or AA^T. Return true if
159  // successful, false otherwise. L contains the numeric factorization
160  // on return.
161  bool Cholesky(cholmod_sparse* A, cholmod_factor* L);
162
163  // Given a Cholesky factorization of a matrix A = LL^T, solve the
164  // linear system Ax = b, and return the result. If the Solve fails
165  // NULL is returned. Caller owns the result.
166  cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b);
167
168  // Combine the calls to Cholesky and Solve into a single call. If
169  // the cholesky factorization or the solve fails, return
170  // NULL. Caller owns the result.
171  cholmod_dense* SolveCholesky(cholmod_sparse* A,
172                               cholmod_factor* L,
173                               cholmod_dense* b);
174
175  // By virtue of the modeling layer in Ceres being block oriented,
176  // all the matrices used by Ceres are also block oriented. When
177  // doing sparse direct factorization of these matrices the
178  // fill-reducing ordering algorithms (in particular AMD) can either
179  // be run on the block or the scalar form of these matrices. The two
180  // SuiteSparse::AnalyzeCholesky methods allows the the client to
181  // compute the symbolic factorization of a matrix by either using
182  // AMD on the matrix or a user provided ordering of the rows.
183  //
184  // But since the underlying matrices are block oriented, it is worth
185  // running AMD on just the block structre of these matrices and then
186  // lifting these block orderings to a full scalar ordering. This
187  // preserves the block structure of the permuted matrix, and exposes
188  // more of the super-nodal structure of the matrix to the numerical
189  // factorization routines.
190  //
191  // Find the block oriented AMD ordering of a matrix A, whose row and
192  // column blocks are given by row_blocks, and col_blocks
193  // respectively. The matrix may or may not be symmetric. The entries
194  // of col_blocks do not need to sum to the number of columns in
195  // A. If this is the case, only the first sum(col_blocks) are used
196  // to compute the ordering.
197  bool BlockAMDOrdering(const cholmod_sparse* A,
198                        const vector<int>& row_blocks,
199                        const vector<int>& col_blocks,
200                        vector<int>* ordering);
201
202  // Find a fill reducing approximate minimum degree
203  // ordering. ordering is expected to be large enough to hold the
204  // ordering.
205  void ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering);
206
207
208  // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled
209  // if SuiteSparse was compiled with Metis support. This makes
210  // calling and linking into cholmod_camd problematic even though it
211  // has nothing to do with Metis. This has been fixed reliably in
212  // 4.2.0.
213  //
214  // The fix was actually committed in 4.1.0, but there is
215  // some confusion about a silent update to the tar ball, so we are
216  // being conservative and choosing the next minor version where
217  // things are stable.
218  static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {
219    return (SUITESPARSE_VERSION>4001);
220  }
221
222  // Find a fill reducing approximate minimum degree
223  // ordering. constraints is an array which associates with each
224  // column of the matrix an elimination group. i.e., all columns in
225  // group 0 are eliminated first, all columns in group 1 are
226  // eliminated next etc. This function finds a fill reducing ordering
227  // that obeys these constraints.
228  //
229  // Calling ApproximateMinimumDegreeOrdering is equivalent to calling
230  // ConstrainedApproximateMinimumDegreeOrdering with a constraint
231  // array that puts all columns in the same elimination group.
232  //
233  // If CERES_NO_CAMD is defined then calling this function will
234  // result in a crash.
235  void ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
236                                                   int* constraints,
237                                                   int* ordering);
238
239  void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); }
240  void Free(cholmod_dense* m)  { cholmod_free_dense(&m, &cc_);  }
241  void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); }
242
243  void Print(cholmod_sparse* m, const string& name) {
244    cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_);
245  }
246
247  void Print(cholmod_dense* m, const string& name) {
248    cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_);
249  }
250
251  void Print(cholmod_triplet* m, const string& name) {
252    cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_);
253  }
254
255  cholmod_common* mutable_cc() { return &cc_; }
256
257 private:
258  cholmod_common cc_;
259};
260
261}  // namespace internal
262}  // namespace ceres
263
264#endif  // CERES_NO_SUITESPARSE
265
266#endif  // CERES_INTERNAL_SUITESPARSE_H_
267