DeclCXX.cpp revision 37b8c9ee7cf2b4d5ce3ccd3be1fcadd18a783a57
1//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the C++ related Decl classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// Decl Allocation/Deallocation Method Implementations
28//===----------------------------------------------------------------------===//
29
30CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
31  : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
32    UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
33    Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
34    Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
35    HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
36    HasTrivialDefaultConstructor(true),
37    HasConstExprNonCopyMoveConstructor(false), HasTrivialCopyConstructor(true),
38    HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true),
39    HasTrivialMoveAssignment(true), HasTrivialDestructor(true),
40    HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
41    NeedsImplicitDefaultConstructor(false), DeclaredDefaultConstructor(false),
42    DeclaredCopyConstructor(false), DeclaredCopyAssignment(false),
43    DeclaredDestructor(false), NumBases(0), NumVBases(0), Bases(), VBases(),
44    Definition(D), FirstFriend(0) {
45}
46
47CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
48                             SourceLocation StartLoc, SourceLocation IdLoc,
49                             IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
50  : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
51    DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
52    TemplateOrInstantiation() { }
53
54CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
55                                     DeclContext *DC, SourceLocation StartLoc,
56                                     SourceLocation IdLoc, IdentifierInfo *Id,
57                                     CXXRecordDecl* PrevDecl,
58                                     bool DelayTypeCreation) {
59  CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
60                                           Id, PrevDecl);
61
62  // FIXME: DelayTypeCreation seems like such a hack
63  if (!DelayTypeCreation)
64    C.getTypeDeclType(R, PrevDecl);
65  return R;
66}
67
68CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, EmptyShell Empty) {
69  return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(),
70                               SourceLocation(), 0, 0);
71}
72
73void
74CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
75                        unsigned NumBases) {
76  ASTContext &C = getASTContext();
77
78  // C++ [dcl.init.aggr]p1:
79  //   An aggregate is an array or a class (clause 9) with [...]
80  //   no base classes [...].
81  data().Aggregate = false;
82
83  if (!data().Bases.isOffset() && data().NumBases > 0)
84    C.Deallocate(data().getBases());
85
86  // The set of seen virtual base types.
87  llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
88
89  // The virtual bases of this class.
90  llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases;
91
92  data().Bases = new(C) CXXBaseSpecifier [NumBases];
93  data().NumBases = NumBases;
94  for (unsigned i = 0; i < NumBases; ++i) {
95    data().getBases()[i] = *Bases[i];
96    // Keep track of inherited vbases for this base class.
97    const CXXBaseSpecifier *Base = Bases[i];
98    QualType BaseType = Base->getType();
99    // Skip dependent types; we can't do any checking on them now.
100    if (BaseType->isDependentType())
101      continue;
102    CXXRecordDecl *BaseClassDecl
103      = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
104
105    // C++ [dcl.init.aggr]p1:
106    //   An aggregate is [...] a class with [...] no base classes [...].
107    data().Aggregate = false;
108
109    // C++ [class]p4:
110    //   A POD-struct is an aggregate class...
111    data().PlainOldData = false;
112
113    // A class with a non-empty base class is not empty.
114    // FIXME: Standard ref?
115    if (!BaseClassDecl->isEmpty()) {
116      if (!data().Empty) {
117        // C++0x [class]p7:
118        //   A standard-layout class is a class that:
119        //    [...]
120        //    -- either has no non-static data members in the most derived
121        //       class and at most one base class with non-static data members,
122        //       or has no base classes with non-static data members, and
123        // If this is the second non-empty base, then neither of these two
124        // clauses can be true.
125        data().IsStandardLayout = false;
126      }
127
128      data().Empty = false;
129      data().HasNoNonEmptyBases = false;
130    }
131
132    // C++ [class.virtual]p1:
133    //   A class that declares or inherits a virtual function is called a
134    //   polymorphic class.
135    if (BaseClassDecl->isPolymorphic())
136      data().Polymorphic = true;
137
138    // C++0x [class]p7:
139    //   A standard-layout class is a class that: [...]
140    //    -- has no non-standard-layout base classes
141    if (!BaseClassDecl->isStandardLayout())
142      data().IsStandardLayout = false;
143
144    // Record if this base is the first non-literal field or base.
145    if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
146      data().HasNonLiteralTypeFieldsOrBases = true;
147
148    // Now go through all virtual bases of this base and add them.
149    for (CXXRecordDecl::base_class_iterator VBase =
150          BaseClassDecl->vbases_begin(),
151         E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
152      // Add this base if it's not already in the list.
153      if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
154        VBases.push_back(VBase);
155    }
156
157    if (Base->isVirtual()) {
158      // Add this base if it's not already in the list.
159      if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
160          VBases.push_back(Base);
161
162      // C++0x [meta.unary.prop] is_empty:
163      //    T is a class type, but not a union type, with ... no virtual base
164      //    classes
165      data().Empty = false;
166
167      // C++ [class.ctor]p5:
168      //   A default constructor is trivial [...] if:
169      //    -- its class has [...] no virtual bases
170      data().HasTrivialDefaultConstructor = false;
171
172      // C++0x [class.copy]p13:
173      //   A copy/move constructor for class X is trivial if it is neither
174      //   user-provided nor deleted and if
175      //    -- class X has no virtual functions and no virtual base classes, and
176      data().HasTrivialCopyConstructor = false;
177      data().HasTrivialMoveConstructor = false;
178
179      // C++0x [class.copy]p27:
180      //   A copy/move assignment operator for class X is trivial if it is
181      //   neither user-provided nor deleted and if
182      //    -- class X has no virtual functions and no virtual base classes, and
183      data().HasTrivialCopyAssignment = false;
184      data().HasTrivialMoveAssignment = false;
185
186      // C++0x [class]p7:
187      //   A standard-layout class is a class that: [...]
188      //    -- has [...] no virtual base classes
189      data().IsStandardLayout = false;
190    } else {
191      // C++ [class.ctor]p5:
192      //   A default constructor is trivial [...] if:
193      //    -- all the direct base classes of its class have trivial default
194      //       constructors.
195      if (!BaseClassDecl->hasTrivialDefaultConstructor())
196        data().HasTrivialDefaultConstructor = false;
197
198      // C++0x [class.copy]p13:
199      //   A copy/move constructor for class X is trivial if [...]
200      //    [...]
201      //    -- the constructor selected to copy/move each direct base class
202      //       subobject is trivial, and
203      // FIXME: C++0x: We need to only consider the selected constructor
204      // instead of all of them.
205      if (!BaseClassDecl->hasTrivialCopyConstructor())
206        data().HasTrivialCopyConstructor = false;
207      if (!BaseClassDecl->hasTrivialMoveConstructor())
208        data().HasTrivialMoveConstructor = false;
209
210      // C++0x [class.copy]p27:
211      //   A copy/move assignment operator for class X is trivial if [...]
212      //    [...]
213      //    -- the assignment operator selected to copy/move each direct base
214      //       class subobject is trivial, and
215      // FIXME: C++0x: We need to only consider the selected operator instead
216      // of all of them.
217      if (!BaseClassDecl->hasTrivialCopyAssignment())
218        data().HasTrivialCopyAssignment = false;
219      if (!BaseClassDecl->hasTrivialMoveAssignment())
220        data().HasTrivialMoveAssignment = false;
221    }
222
223    // C++ [class.ctor]p3:
224    //   A destructor is trivial if all the direct base classes of its class
225    //   have trivial destructors.
226    if (!BaseClassDecl->hasTrivialDestructor())
227      data().HasTrivialDestructor = false;
228  }
229
230  if (VBases.empty())
231    return;
232
233  // Create base specifier for any direct or indirect virtual bases.
234  data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
235  data().NumVBases = VBases.size();
236  for (int I = 0, E = VBases.size(); I != E; ++I) {
237    TypeSourceInfo *VBaseTypeInfo = VBases[I]->getTypeSourceInfo();
238
239    // Skip dependent types; we can't do any checking on them now.
240    if (VBaseTypeInfo->getType()->isDependentType())
241      continue;
242
243    CXXRecordDecl *VBaseClassDecl = cast<CXXRecordDecl>(
244      VBaseTypeInfo->getType()->getAs<RecordType>()->getDecl());
245
246    data().getVBases()[I] =
247      CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
248                       VBaseClassDecl->getTagKind() == TTK_Class,
249                       VBases[I]->getAccessSpecifier(), VBaseTypeInfo,
250                       SourceLocation());
251  }
252}
253
254/// Callback function for CXXRecordDecl::forallBases that acknowledges
255/// that it saw a base class.
256static bool SawBase(const CXXRecordDecl *, void *) {
257  return true;
258}
259
260bool CXXRecordDecl::hasAnyDependentBases() const {
261  if (!isDependentContext())
262    return false;
263
264  return !forallBases(SawBase, 0);
265}
266
267bool CXXRecordDecl::hasConstCopyConstructor(const ASTContext &Context) const {
268  return getCopyConstructor(Context, Qualifiers::Const) != 0;
269}
270
271bool CXXRecordDecl::isTriviallyCopyable() const {
272  // C++0x [class]p5:
273  //   A trivially copyable class is a class that:
274  //   -- has no non-trivial copy constructors,
275  if (!hasTrivialCopyConstructor()) return false;
276  //   -- has no non-trivial move constructors,
277  if (!hasTrivialMoveConstructor()) return false;
278  //   -- has no non-trivial copy assignment operators,
279  if (!hasTrivialCopyAssignment()) return false;
280  //   -- has no non-trivial move assignment operators, and
281  if (!hasTrivialMoveAssignment()) return false;
282  //   -- has a trivial destructor.
283  if (!hasTrivialDestructor()) return false;
284
285  return true;
286}
287
288/// \brief Perform a simplistic form of overload resolution that only considers
289/// cv-qualifiers on a single parameter, and return the best overload candidate
290/// (if there is one).
291static CXXMethodDecl *
292GetBestOverloadCandidateSimple(
293  const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
294  if (Cands.empty())
295    return 0;
296  if (Cands.size() == 1)
297    return Cands[0].first;
298
299  unsigned Best = 0, N = Cands.size();
300  for (unsigned I = 1; I != N; ++I)
301    if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
302      Best = I;
303
304  for (unsigned I = 1; I != N; ++I)
305    if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
306      return 0;
307
308  return Cands[Best].first;
309}
310
311CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(const ASTContext &Context,
312                                                      unsigned TypeQuals) const{
313  QualType ClassType
314    = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
315  DeclarationName ConstructorName
316    = Context.DeclarationNames.getCXXConstructorName(
317                                          Context.getCanonicalType(ClassType));
318  unsigned FoundTQs;
319  llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
320  DeclContext::lookup_const_iterator Con, ConEnd;
321  for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
322       Con != ConEnd; ++Con) {
323    // C++ [class.copy]p2:
324    //   A non-template constructor for class X is a copy constructor if [...]
325    if (isa<FunctionTemplateDecl>(*Con))
326      continue;
327
328    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
329    if (Constructor->isCopyConstructor(FoundTQs)) {
330      if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
331          (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
332        Found.push_back(std::make_pair(
333                                 const_cast<CXXConstructorDecl *>(Constructor),
334                                       Qualifiers::fromCVRMask(FoundTQs)));
335    }
336  }
337
338  return cast_or_null<CXXConstructorDecl>(
339                                        GetBestOverloadCandidateSimple(Found));
340}
341
342CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
343  ASTContext &Context = getASTContext();
344  QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
345  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
346
347  llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
348  DeclContext::lookup_const_iterator Op, OpEnd;
349  for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
350    // C++ [class.copy]p9:
351    //   A user-declared copy assignment operator is a non-static non-template
352    //   member function of class X with exactly one parameter of type X, X&,
353    //   const X&, volatile X& or const volatile X&.
354    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
355    if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
356      continue;
357
358    const FunctionProtoType *FnType
359      = Method->getType()->getAs<FunctionProtoType>();
360    assert(FnType && "Overloaded operator has no prototype.");
361    // Don't assert on this; an invalid decl might have been left in the AST.
362    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
363      continue;
364
365    QualType ArgType = FnType->getArgType(0);
366    Qualifiers Quals;
367    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
368      ArgType = Ref->getPointeeType();
369      // If we have a const argument and we have a reference to a non-const,
370      // this function does not match.
371      if (ArgIsConst && !ArgType.isConstQualified())
372        continue;
373
374      Quals = ArgType.getQualifiers();
375    } else {
376      // By-value copy-assignment operators are treated like const X&
377      // copy-assignment operators.
378      Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
379    }
380
381    if (!Context.hasSameUnqualifiedType(ArgType, Class))
382      continue;
383
384    // Save this copy-assignment operator. It might be "the one".
385    Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
386  }
387
388  // Use a simplistic form of overload resolution to find the candidate.
389  return GetBestOverloadCandidateSimple(Found);
390}
391
392void CXXRecordDecl::markedVirtualFunctionPure() {
393  // C++ [class.abstract]p2:
394  //   A class is abstract if it has at least one pure virtual function.
395  data().Abstract = true;
396}
397
398void CXXRecordDecl::addedMember(Decl *D) {
399  // Ignore friends and invalid declarations.
400  if (D->getFriendObjectKind() || D->isInvalidDecl())
401    return;
402
403  FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
404  if (FunTmpl)
405    D = FunTmpl->getTemplatedDecl();
406
407  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
408    if (Method->isVirtual()) {
409      // C++ [dcl.init.aggr]p1:
410      //   An aggregate is an array or a class with [...] no virtual functions.
411      data().Aggregate = false;
412
413      // C++ [class]p4:
414      //   A POD-struct is an aggregate class...
415      data().PlainOldData = false;
416
417      // Virtual functions make the class non-empty.
418      // FIXME: Standard ref?
419      data().Empty = false;
420
421      // C++ [class.virtual]p1:
422      //   A class that declares or inherits a virtual function is called a
423      //   polymorphic class.
424      data().Polymorphic = true;
425
426      // C++0x [class.ctor]p5
427      //   A default constructor is trivial [...] if:
428      //    -- its class has no virtual functions [...]
429      data().HasTrivialDefaultConstructor = false;
430
431      // C++0x [class.copy]p13:
432      //   A copy/move constructor for class X is trivial if [...]
433      //    -- class X has no virtual functions [...]
434      data().HasTrivialCopyConstructor = false;
435      data().HasTrivialMoveConstructor = false;
436
437      // C++0x [class.copy]p27:
438      //   A copy/move assignment operator for class X is trivial if [...]
439      //    -- class X has no virtual functions [...]
440      data().HasTrivialCopyAssignment = false;
441      data().HasTrivialMoveAssignment = false;
442      // FIXME: Destructor?
443
444      // C++0x [class]p7:
445      //   A standard-layout class is a class that: [...]
446      //    -- has no virtual functions
447      data().IsStandardLayout = false;
448    }
449  }
450
451  if (D->isImplicit()) {
452    // Notify that an implicit member was added after the definition
453    // was completed.
454    if (!isBeingDefined())
455      if (ASTMutationListener *L = getASTMutationListener())
456        L->AddedCXXImplicitMember(data().Definition, D);
457
458    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
459      // If this is the implicit default constructor, note that we have now
460      // declared it.
461      if (Constructor->isDefaultConstructor()) {
462        data().DeclaredDefaultConstructor = true;
463        data().NeedsImplicitDefaultConstructor = true;
464      }
465      // If this is the implicit copy constructor, note that we have now
466      // declared it.
467      else if (Constructor->isCopyConstructor())
468        data().DeclaredCopyConstructor = true;
469      return;
470    }
471
472    if (isa<CXXDestructorDecl>(D)) {
473      data().DeclaredDestructor = true;
474      return;
475    }
476
477    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
478      // If this is the implicit copy constructor, note that we have now
479      // declared it.
480      // FIXME: Move constructors
481      if (Method->getOverloadedOperator() == OO_Equal)
482        data().DeclaredCopyAssignment = true;
483      return;
484    }
485
486    // Any other implicit declarations are handled like normal declarations.
487  }
488
489  // Handle (user-declared) constructors.
490  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
491    // Note that we have a user-declared constructor.
492    data().UserDeclaredConstructor = true;
493
494    // Note that we have no need of an implicitly-declared default constructor.
495    data().NeedsImplicitDefaultConstructor = true;
496
497    // FIXME: Under C++0x, /only/ special member functions may be user-provided.
498    //        This is probably a defect.
499    bool UserProvided = false;
500
501    // C++0x [class.ctor]p5:
502    //   A default constructor is trivial if it is not user-provided [...]
503    if (Constructor->isDefaultConstructor()) {
504      data().DeclaredDefaultConstructor = true;
505      if (Constructor->isUserProvided()) {
506        data().HasTrivialDefaultConstructor = false;
507        UserProvided = true;
508      }
509    }
510
511    // Note when we have a user-declared copy or move constructor, which will
512    // suppress the implicit declaration of those constructors.
513    if (!FunTmpl) {
514      if (Constructor->isCopyConstructor()) {
515        data().UserDeclaredCopyConstructor = true;
516        data().DeclaredCopyConstructor = true;
517
518        // C++0x [class.copy]p13:
519        //   A copy/move constructor for class X is trivial if it is not
520        //   user-provided [...]
521        if (Constructor->isUserProvided()) {
522          data().HasTrivialCopyConstructor = false;
523          UserProvided = true;
524        }
525      } else if (Constructor->isMoveConstructor()) {
526        // C++0x [class.copy]p13:
527        //   A copy/move constructor for class X is trivial if it is not
528        //   user-provided [...]
529        if (Constructor->isUserProvided()) {
530          data().HasTrivialMoveConstructor = false;
531          UserProvided = true;
532        }
533      }
534    }
535    if (Constructor->isConstExpr() &&
536        !Constructor->isCopyOrMoveConstructor()) {
537      // Record if we see any constexpr constructors which are niether copy
538      // nor move constructors.
539      data().HasConstExprNonCopyMoveConstructor = true;
540    }
541
542    // C++ [dcl.init.aggr]p1:
543    //   An aggregate is an array or a class with no user-declared
544    //   constructors [...].
545    // C++0x [dcl.init.aggr]p1:
546    //   An aggregate is an array or a class with no user-provided
547    //   constructors [...].
548    if (!getASTContext().getLangOptions().CPlusPlus0x || UserProvided)
549      data().Aggregate = false;
550
551    // C++ [class]p4:
552    //   A POD-struct is an aggregate class [...]
553    // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
554    // type is technically an aggregate in C++0x since it wouldn't be in 03.
555    data().PlainOldData = false;
556
557    return;
558  }
559
560  // Handle (user-declared) destructors.
561  if (isa<CXXDestructorDecl>(D)) {
562    data().DeclaredDestructor = true;
563    data().UserDeclaredDestructor = true;
564
565    // C++ [class]p4:
566    //   A POD-struct is an aggregate class that has [...] no user-defined
567    //   destructor.
568    data().PlainOldData = false;
569
570    // C++ [class.dtor]p3:
571    //   A destructor is trivial if it is an implicitly-declared destructor and
572    //   [...].
573    //
574    // FIXME: C++0x: don't do this for "= default" destructors
575    data().HasTrivialDestructor = false;
576
577    return;
578  }
579
580  // Handle (user-declared) member functions.
581  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
582    if (Method->getOverloadedOperator() == OO_Equal) {
583      // We're interested specifically in copy assignment operators.
584      const FunctionProtoType *FnType
585        = Method->getType()->getAs<FunctionProtoType>();
586      assert(FnType && "Overloaded operator has no proto function type.");
587      assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
588
589      // Copy assignment operators must be non-templates.
590      if (Method->getPrimaryTemplate() || FunTmpl)
591        return;
592
593      ASTContext &Context = getASTContext();
594      QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
595                                             const_cast<CXXRecordDecl*>(this)));
596
597      bool isRValueRefArg = false;
598      QualType ArgType = FnType->getArgType(0);
599      if (const LValueReferenceType *Ref =
600          ArgType->getAs<LValueReferenceType>()) {
601        ArgType = Ref->getPointeeType();
602      } else if (const RValueReferenceType *Ref =
603               ArgType->getAs<RValueReferenceType>()) {
604        ArgType = Ref->getPointeeType();
605        isRValueRefArg = true;
606      }
607      if (!Context.hasSameUnqualifiedType(ClassType, ArgType))
608        return;
609
610      // C++ [class]p4:
611      //   A POD-struct is an aggregate class that [...] has no user-defined
612      //   copy assignment operator [...].
613      // FIXME: This should be probably determined dynamically in terms of
614      // other more precise attributes to correctly model how it is specified
615      // in C++0x. Setting it here happens to do the right thing.
616      data().PlainOldData = false;
617
618      if (!isRValueRefArg) {
619        // This is a copy assignment operator.
620
621        // Suppress the implicit declaration of a copy constructor.
622        data().UserDeclaredCopyAssignment = true;
623        data().DeclaredCopyAssignment = true;
624
625        // C++0x [class.copy]p27:
626        //   A copy/move assignment operator for class X is trivial if it is
627        //   neither user-provided nor deleted [...]
628        // FIXME: C++0x: don't do this for "= default" copy operators.
629        data().HasTrivialCopyAssignment = false;
630      } else {
631        // This is a move assignment operator.
632
633        // C++0x [class.copy]p27:
634        //   A copy/move assignment operator for class X is trivial if it is
635        //   neither user-provided nor deleted [...]
636        // FIXME: C++0x: don't do this for "= default" copy operators.
637        data().HasTrivialMoveAssignment = false;
638      }
639    }
640
641    // Keep the list of conversion functions up-to-date.
642    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
643      // We don't record specializations.
644      if (Conversion->getPrimaryTemplate())
645        return;
646
647      // FIXME: We intentionally don't use the decl's access here because it
648      // hasn't been set yet.  That's really just a misdesign in Sema.
649
650      if (FunTmpl) {
651        if (FunTmpl->getPreviousDeclaration())
652          data().Conversions.replace(FunTmpl->getPreviousDeclaration(),
653                                     FunTmpl);
654        else
655          data().Conversions.addDecl(FunTmpl);
656      } else {
657        if (Conversion->getPreviousDeclaration())
658          data().Conversions.replace(Conversion->getPreviousDeclaration(),
659                                     Conversion);
660        else
661          data().Conversions.addDecl(Conversion);
662      }
663    }
664
665    return;
666  }
667
668  // Handle non-static data members.
669  if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
670    // C++ [dcl.init.aggr]p1:
671    //   An aggregate is an array or a class (clause 9) with [...] no
672    //   private or protected non-static data members (clause 11).
673    //
674    // A POD must be an aggregate.
675    if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
676      data().Aggregate = false;
677      data().PlainOldData = false;
678    }
679
680    // C++0x [class]p7:
681    //   A standard-layout class is a class that:
682    //    [...]
683    //    -- has the same access control for all non-static data members,
684    switch (D->getAccess()) {
685    case AS_private:    data().HasPrivateFields = true;   break;
686    case AS_protected:  data().HasProtectedFields = true; break;
687    case AS_public:     data().HasPublicFields = true;    break;
688    case AS_none:       assert(0 && "Invalid access specifier");
689    };
690    if ((data().HasPrivateFields + data().HasProtectedFields +
691         data().HasPublicFields) > 1)
692      data().IsStandardLayout = false;
693
694    // C++0x [class]p9:
695    //   A POD struct is a class that is both a trivial class and a
696    //   standard-layout class, and has no non-static data members of type
697    //   non-POD struct, non-POD union (or array of such types).
698    ASTContext &Context = getASTContext();
699    QualType T = Context.getBaseElementType(Field->getType());
700    if (!T->isPODType())
701      data().PlainOldData = false;
702    if (T->isReferenceType()) {
703      data().HasTrivialDefaultConstructor = false;
704
705      // C++0x [class]p7:
706      //   A standard-layout class is a class that:
707      //    -- has no non-static data members of type [...] reference,
708      data().IsStandardLayout = false;
709    }
710
711    // Record if this field is the first non-literal field or base.
712    if (!hasNonLiteralTypeFieldsOrBases() && !T->isLiteralType())
713      data().HasNonLiteralTypeFieldsOrBases = true;
714
715    if (const RecordType *RecordTy = T->getAs<RecordType>()) {
716      CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
717      if (FieldRec->getDefinition()) {
718        // C++0x [class.ctor]p5:
719        //   A defulat constructor is trivial [...] if:
720        //    -- for all the non-static data members of its class that are of
721        //       class type (or array thereof), each such class has a trivial
722        //       default constructor.
723        if (!FieldRec->hasTrivialDefaultConstructor())
724          data().HasTrivialDefaultConstructor = false;
725
726        // C++0x [class.copy]p13:
727        //   A copy/move constructor for class X is trivial if [...]
728        //    [...]
729        //    -- for each non-static data member of X that is of class type (or
730        //       an array thereof), the constructor selected to copy/move that
731        //       member is trivial;
732        // FIXME: C++0x: We don't correctly model 'selected' constructors.
733        if (!FieldRec->hasTrivialCopyConstructor())
734          data().HasTrivialCopyConstructor = false;
735        if (!FieldRec->hasTrivialMoveConstructor())
736          data().HasTrivialMoveConstructor = false;
737
738        // C++0x [class.copy]p27:
739        //   A copy/move assignment operator for class X is trivial if [...]
740        //    [...]
741        //    -- for each non-static data member of X that is of class type (or
742        //       an array thereof), the assignment operator selected to
743        //       copy/move that member is trivial;
744        // FIXME: C++0x: We don't correctly model 'selected' operators.
745        if (!FieldRec->hasTrivialCopyAssignment())
746          data().HasTrivialCopyAssignment = false;
747        if (!FieldRec->hasTrivialMoveAssignment())
748          data().HasTrivialMoveAssignment = false;
749
750        if (!FieldRec->hasTrivialDestructor())
751          data().HasTrivialDestructor = false;
752
753        // C++0x [class]p7:
754        //   A standard-layout class is a class that:
755        //    -- has no non-static data members of type non-standard-layout
756        //       class (or array of such types) [...]
757        if (!FieldRec->isStandardLayout())
758          data().IsStandardLayout = false;
759
760        // C++0x [class]p7:
761        //   A standard-layout class is a class that:
762        //    [...]
763        //    -- has no base classes of the same type as the first non-static
764        //       data member.
765        // We don't want to expend bits in the state of the record decl
766        // tracking whether this is the first non-static data member so we
767        // cheat a bit and use some of the existing state: the empty bit.
768        // Virtual bases and virtual methods make a class non-empty, but they
769        // also make it non-standard-layout so we needn't check here.
770        // A non-empty base class may leave the class standard-layout, but not
771        // if we have arrived here, and have at least on non-static data
772        // member. If IsStandardLayout remains true, then the first non-static
773        // data member must come through here with Empty still true, and Empty
774        // will subsequently be set to false below.
775        if (data().IsStandardLayout && data().Empty) {
776          for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
777                                                        BE = bases_end();
778               BI != BE; ++BI) {
779            if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
780              data().IsStandardLayout = false;
781              break;
782            }
783          }
784        }
785      }
786    }
787
788    // C++0x [class]p7:
789    //   A standard-layout class is a class that:
790    //    [...]
791    //    -- either has no non-static data members in the most derived
792    //       class and at most one base class with non-static data members,
793    //       or has no base classes with non-static data members, and
794    // At this point we know that we have a non-static data member, so the last
795    // clause holds.
796    if (!data().HasNoNonEmptyBases)
797      data().IsStandardLayout = false;
798
799    // If this is not a zero-length bit-field, then the class is not empty.
800    if (data().Empty) {
801      if (!Field->getBitWidth())
802        data().Empty = false;
803      else if (!Field->getBitWidth()->isTypeDependent() &&
804               !Field->getBitWidth()->isValueDependent()) {
805        llvm::APSInt Bits;
806        if (Field->getBitWidth()->isIntegerConstantExpr(Bits, Context))
807          if (!!Bits)
808            data().Empty = false;
809      }
810    }
811  }
812
813  // Handle using declarations of conversion functions.
814  if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
815    if (Shadow->getDeclName().getNameKind()
816          == DeclarationName::CXXConversionFunctionName)
817      data().Conversions.addDecl(Shadow, Shadow->getAccess());
818}
819
820static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
821  QualType T;
822  if (isa<UsingShadowDecl>(Conv))
823    Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
824  if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
825    T = ConvTemp->getTemplatedDecl()->getResultType();
826  else
827    T = cast<CXXConversionDecl>(Conv)->getConversionType();
828  return Context.getCanonicalType(T);
829}
830
831/// Collect the visible conversions of a base class.
832///
833/// \param Base a base class of the class we're considering
834/// \param InVirtual whether this base class is a virtual base (or a base
835///   of a virtual base)
836/// \param Access the access along the inheritance path to this base
837/// \param ParentHiddenTypes the conversions provided by the inheritors
838///   of this base
839/// \param Output the set to which to add conversions from non-virtual bases
840/// \param VOutput the set to which to add conversions from virtual bases
841/// \param HiddenVBaseCs the set of conversions which were hidden in a
842///   virtual base along some inheritance path
843static void CollectVisibleConversions(ASTContext &Context,
844                                      CXXRecordDecl *Record,
845                                      bool InVirtual,
846                                      AccessSpecifier Access,
847                  const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
848                                      UnresolvedSetImpl &Output,
849                                      UnresolvedSetImpl &VOutput,
850                           llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
851  // The set of types which have conversions in this class or its
852  // subclasses.  As an optimization, we don't copy the derived set
853  // unless it might change.
854  const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
855  llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
856
857  // Collect the direct conversions and figure out which conversions
858  // will be hidden in the subclasses.
859  UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
860  if (!Cs.empty()) {
861    HiddenTypesBuffer = ParentHiddenTypes;
862    HiddenTypes = &HiddenTypesBuffer;
863
864    for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
865      bool Hidden =
866        !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
867
868      // If this conversion is hidden and we're in a virtual base,
869      // remember that it's hidden along some inheritance path.
870      if (Hidden && InVirtual)
871        HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
872
873      // If this conversion isn't hidden, add it to the appropriate output.
874      else if (!Hidden) {
875        AccessSpecifier IAccess
876          = CXXRecordDecl::MergeAccess(Access, I.getAccess());
877
878        if (InVirtual)
879          VOutput.addDecl(I.getDecl(), IAccess);
880        else
881          Output.addDecl(I.getDecl(), IAccess);
882      }
883    }
884  }
885
886  // Collect information recursively from any base classes.
887  for (CXXRecordDecl::base_class_iterator
888         I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
889    const RecordType *RT = I->getType()->getAs<RecordType>();
890    if (!RT) continue;
891
892    AccessSpecifier BaseAccess
893      = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
894    bool BaseInVirtual = InVirtual || I->isVirtual();
895
896    CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
897    CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
898                              *HiddenTypes, Output, VOutput, HiddenVBaseCs);
899  }
900}
901
902/// Collect the visible conversions of a class.
903///
904/// This would be extremely straightforward if it weren't for virtual
905/// bases.  It might be worth special-casing that, really.
906static void CollectVisibleConversions(ASTContext &Context,
907                                      CXXRecordDecl *Record,
908                                      UnresolvedSetImpl &Output) {
909  // The collection of all conversions in virtual bases that we've
910  // found.  These will be added to the output as long as they don't
911  // appear in the hidden-conversions set.
912  UnresolvedSet<8> VBaseCs;
913
914  // The set of conversions in virtual bases that we've determined to
915  // be hidden.
916  llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
917
918  // The set of types hidden by classes derived from this one.
919  llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
920
921  // Go ahead and collect the direct conversions and add them to the
922  // hidden-types set.
923  UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
924  Output.append(Cs.begin(), Cs.end());
925  for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
926    HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
927
928  // Recursively collect conversions from base classes.
929  for (CXXRecordDecl::base_class_iterator
930         I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
931    const RecordType *RT = I->getType()->getAs<RecordType>();
932    if (!RT) continue;
933
934    CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
935                              I->isVirtual(), I->getAccessSpecifier(),
936                              HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
937  }
938
939  // Add any unhidden conversions provided by virtual bases.
940  for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
941         I != E; ++I) {
942    if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
943      Output.addDecl(I.getDecl(), I.getAccess());
944  }
945}
946
947/// getVisibleConversionFunctions - get all conversion functions visible
948/// in current class; including conversion function templates.
949const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
950  // If root class, all conversions are visible.
951  if (bases_begin() == bases_end())
952    return &data().Conversions;
953  // If visible conversion list is already evaluated, return it.
954  if (data().ComputedVisibleConversions)
955    return &data().VisibleConversions;
956  CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
957  data().ComputedVisibleConversions = true;
958  return &data().VisibleConversions;
959}
960
961void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
962  // This operation is O(N) but extremely rare.  Sema only uses it to
963  // remove UsingShadowDecls in a class that were followed by a direct
964  // declaration, e.g.:
965  //   class A : B {
966  //     using B::operator int;
967  //     operator int();
968  //   };
969  // This is uncommon by itself and even more uncommon in conjunction
970  // with sufficiently large numbers of directly-declared conversions
971  // that asymptotic behavior matters.
972
973  UnresolvedSetImpl &Convs = *getConversionFunctions();
974  for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
975    if (Convs[I].getDecl() == ConvDecl) {
976      Convs.erase(I);
977      assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
978             && "conversion was found multiple times in unresolved set");
979      return;
980    }
981  }
982
983  llvm_unreachable("conversion not found in set!");
984}
985
986CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
987  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
988    return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
989
990  return 0;
991}
992
993MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
994  return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
995}
996
997void
998CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
999                                             TemplateSpecializationKind TSK) {
1000  assert(TemplateOrInstantiation.isNull() &&
1001         "Previous template or instantiation?");
1002  assert(!isa<ClassTemplateSpecializationDecl>(this));
1003  TemplateOrInstantiation
1004    = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1005}
1006
1007TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1008  if (const ClassTemplateSpecializationDecl *Spec
1009        = dyn_cast<ClassTemplateSpecializationDecl>(this))
1010    return Spec->getSpecializationKind();
1011
1012  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1013    return MSInfo->getTemplateSpecializationKind();
1014
1015  return TSK_Undeclared;
1016}
1017
1018void
1019CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1020  if (ClassTemplateSpecializationDecl *Spec
1021      = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1022    Spec->setSpecializationKind(TSK);
1023    return;
1024  }
1025
1026  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1027    MSInfo->setTemplateSpecializationKind(TSK);
1028    return;
1029  }
1030
1031  assert(false && "Not a class template or member class specialization");
1032}
1033
1034CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1035  ASTContext &Context = getASTContext();
1036  QualType ClassType = Context.getTypeDeclType(this);
1037
1038  DeclarationName Name
1039    = Context.DeclarationNames.getCXXDestructorName(
1040                                          Context.getCanonicalType(ClassType));
1041
1042  DeclContext::lookup_const_iterator I, E;
1043  llvm::tie(I, E) = lookup(Name);
1044  if (I == E)
1045    return 0;
1046
1047  CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
1048  return Dtor;
1049}
1050
1051void CXXRecordDecl::completeDefinition() {
1052  completeDefinition(0);
1053}
1054
1055void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1056  RecordDecl::completeDefinition();
1057
1058  // If the class may be abstract (but hasn't been marked as such), check for
1059  // any pure final overriders.
1060  if (mayBeAbstract()) {
1061    CXXFinalOverriderMap MyFinalOverriders;
1062    if (!FinalOverriders) {
1063      getFinalOverriders(MyFinalOverriders);
1064      FinalOverriders = &MyFinalOverriders;
1065    }
1066
1067    bool Done = false;
1068    for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1069                                     MEnd = FinalOverriders->end();
1070         M != MEnd && !Done; ++M) {
1071      for (OverridingMethods::iterator SO = M->second.begin(),
1072                                    SOEnd = M->second.end();
1073           SO != SOEnd && !Done; ++SO) {
1074        assert(SO->second.size() > 0 &&
1075               "All virtual functions have overridding virtual functions");
1076
1077        // C++ [class.abstract]p4:
1078        //   A class is abstract if it contains or inherits at least one
1079        //   pure virtual function for which the final overrider is pure
1080        //   virtual.
1081        if (SO->second.front().Method->isPure()) {
1082          data().Abstract = true;
1083          Done = true;
1084          break;
1085        }
1086      }
1087    }
1088  }
1089
1090  // Set access bits correctly on the directly-declared conversions.
1091  for (UnresolvedSetIterator I = data().Conversions.begin(),
1092                             E = data().Conversions.end();
1093       I != E; ++I)
1094    data().Conversions.setAccess(I, (*I)->getAccess());
1095}
1096
1097bool CXXRecordDecl::mayBeAbstract() const {
1098  if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1099      isDependentContext())
1100    return false;
1101
1102  for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
1103                                             BEnd = bases_end();
1104       B != BEnd; ++B) {
1105    CXXRecordDecl *BaseDecl
1106      = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
1107    if (BaseDecl->isAbstract())
1108      return true;
1109  }
1110
1111  return false;
1112}
1113
1114CXXMethodDecl *
1115CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1116                      SourceLocation StartLoc,
1117                      const DeclarationNameInfo &NameInfo,
1118                      QualType T, TypeSourceInfo *TInfo,
1119                      bool isStatic, StorageClass SCAsWritten, bool isInline,
1120                      SourceLocation EndLocation) {
1121  return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
1122                               isStatic, SCAsWritten, isInline, EndLocation);
1123}
1124
1125bool CXXMethodDecl::isUsualDeallocationFunction() const {
1126  if (getOverloadedOperator() != OO_Delete &&
1127      getOverloadedOperator() != OO_Array_Delete)
1128    return false;
1129
1130  // C++ [basic.stc.dynamic.deallocation]p2:
1131  //   A template instance is never a usual deallocation function,
1132  //   regardless of its signature.
1133  if (getPrimaryTemplate())
1134    return false;
1135
1136  // C++ [basic.stc.dynamic.deallocation]p2:
1137  //   If a class T has a member deallocation function named operator delete
1138  //   with exactly one parameter, then that function is a usual (non-placement)
1139  //   deallocation function. [...]
1140  if (getNumParams() == 1)
1141    return true;
1142
1143  // C++ [basic.stc.dynamic.deallocation]p2:
1144  //   [...] If class T does not declare such an operator delete but does
1145  //   declare a member deallocation function named operator delete with
1146  //   exactly two parameters, the second of which has type std::size_t (18.1),
1147  //   then this function is a usual deallocation function.
1148  ASTContext &Context = getASTContext();
1149  if (getNumParams() != 2 ||
1150      !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1151                                      Context.getSizeType()))
1152    return false;
1153
1154  // This function is a usual deallocation function if there are no
1155  // single-parameter deallocation functions of the same kind.
1156  for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
1157       R.first != R.second; ++R.first) {
1158    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
1159      if (FD->getNumParams() == 1)
1160        return false;
1161  }
1162
1163  return true;
1164}
1165
1166bool CXXMethodDecl::isCopyAssignmentOperator() const {
1167  // C++0x [class.copy]p19:
1168  //  A user-declared copy assignment operator X::operator= is a non-static
1169  //  non-template member function of class X with exactly one parameter of
1170  //  type X, X&, const X&, volatile X& or const volatile X&.
1171  if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1172      /*non-static*/ isStatic() ||
1173      /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1174      /*exactly one parameter*/getNumParams() != 1)
1175    return false;
1176
1177  QualType ParamType = getParamDecl(0)->getType();
1178  if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1179    ParamType = Ref->getPointeeType();
1180
1181  ASTContext &Context = getASTContext();
1182  QualType ClassType
1183    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1184  return Context.hasSameUnqualifiedType(ClassType, ParamType);
1185}
1186
1187void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1188  assert(MD->isCanonicalDecl() && "Method is not canonical!");
1189  assert(!MD->getParent()->isDependentContext() &&
1190         "Can't add an overridden method to a class template!");
1191
1192  getASTContext().addOverriddenMethod(this, MD);
1193}
1194
1195CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1196  return getASTContext().overridden_methods_begin(this);
1197}
1198
1199CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1200  return getASTContext().overridden_methods_end(this);
1201}
1202
1203unsigned CXXMethodDecl::size_overridden_methods() const {
1204  return getASTContext().overridden_methods_size(this);
1205}
1206
1207QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1208  // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1209  // If the member function is declared const, the type of this is const X*,
1210  // if the member function is declared volatile, the type of this is
1211  // volatile X*, and if the member function is declared const volatile,
1212  // the type of this is const volatile X*.
1213
1214  assert(isInstance() && "No 'this' for static methods!");
1215
1216  QualType ClassTy = C.getTypeDeclType(getParent());
1217  ClassTy = C.getQualifiedType(ClassTy,
1218                               Qualifiers::fromCVRMask(getTypeQualifiers()));
1219  return C.getPointerType(ClassTy);
1220}
1221
1222bool CXXMethodDecl::hasInlineBody() const {
1223  // If this function is a template instantiation, look at the template from
1224  // which it was instantiated.
1225  const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1226  if (!CheckFn)
1227    CheckFn = this;
1228
1229  const FunctionDecl *fn;
1230  return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1231}
1232
1233CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1234                                       TypeSourceInfo *TInfo, bool IsVirtual,
1235                                       SourceLocation L, Expr *Init,
1236                                       SourceLocation R,
1237                                       SourceLocation EllipsisLoc)
1238  : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1239    LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false),
1240    SourceOrderOrNumArrayIndices(0)
1241{
1242}
1243
1244CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1245                                       FieldDecl *Member,
1246                                       SourceLocation MemberLoc,
1247                                       SourceLocation L, Expr *Init,
1248                                       SourceLocation R)
1249  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1250    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1251    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1252{
1253}
1254
1255CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1256                                       IndirectFieldDecl *Member,
1257                                       SourceLocation MemberLoc,
1258                                       SourceLocation L, Expr *Init,
1259                                       SourceLocation R)
1260  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1261    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1262    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1263{
1264}
1265
1266CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1267                                       SourceLocation D, SourceLocation L,
1268                                       CXXConstructorDecl *Target, Expr *Init,
1269                                       SourceLocation R)
1270  : Initializee(Target), MemberOrEllipsisLocation(D), Init(Init),
1271    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1272    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1273{
1274}
1275
1276CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1277                                       FieldDecl *Member,
1278                                       SourceLocation MemberLoc,
1279                                       SourceLocation L, Expr *Init,
1280                                       SourceLocation R,
1281                                       VarDecl **Indices,
1282                                       unsigned NumIndices)
1283  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1284    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1285    IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1286{
1287  VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1288  memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1289}
1290
1291CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1292                                               FieldDecl *Member,
1293                                               SourceLocation MemberLoc,
1294                                               SourceLocation L, Expr *Init,
1295                                               SourceLocation R,
1296                                               VarDecl **Indices,
1297                                               unsigned NumIndices) {
1298  void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1299                               sizeof(VarDecl *) * NumIndices,
1300                               llvm::alignOf<CXXCtorInitializer>());
1301  return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1302                                      Indices, NumIndices);
1303}
1304
1305TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1306  if (isBaseInitializer())
1307    return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1308  else
1309    return TypeLoc();
1310}
1311
1312const Type *CXXCtorInitializer::getBaseClass() const {
1313  if (isBaseInitializer())
1314    return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1315  else
1316    return 0;
1317}
1318
1319SourceLocation CXXCtorInitializer::getSourceLocation() const {
1320  if (isAnyMemberInitializer() || isDelegatingInitializer())
1321    return getMemberLocation();
1322
1323  return getBaseClassLoc().getLocalSourceRange().getBegin();
1324}
1325
1326SourceRange CXXCtorInitializer::getSourceRange() const {
1327  return SourceRange(getSourceLocation(), getRParenLoc());
1328}
1329
1330CXXConstructorDecl *
1331CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) {
1332  return new (C) CXXConstructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1333                                    QualType(), 0, false, false, false);
1334}
1335
1336CXXConstructorDecl *
1337CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1338                           SourceLocation StartLoc,
1339                           const DeclarationNameInfo &NameInfo,
1340                           QualType T, TypeSourceInfo *TInfo,
1341                           bool isExplicit,
1342                           bool isInline,
1343                           bool isImplicitlyDeclared) {
1344  assert(NameInfo.getName().getNameKind()
1345         == DeclarationName::CXXConstructorName &&
1346         "Name must refer to a constructor");
1347  return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
1348                                    isExplicit, isInline, isImplicitlyDeclared);
1349}
1350
1351bool CXXConstructorDecl::isDefaultConstructor() const {
1352  // C++ [class.ctor]p5:
1353  //   A default constructor for a class X is a constructor of class
1354  //   X that can be called without an argument.
1355  return (getNumParams() == 0) ||
1356         (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1357}
1358
1359bool
1360CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1361  return isCopyOrMoveConstructor(TypeQuals) &&
1362         getParamDecl(0)->getType()->isLValueReferenceType();
1363}
1364
1365bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1366  return isCopyOrMoveConstructor(TypeQuals) &&
1367    getParamDecl(0)->getType()->isRValueReferenceType();
1368}
1369
1370/// \brief Determine whether this is a copy or move constructor.
1371bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1372  // C++ [class.copy]p2:
1373  //   A non-template constructor for class X is a copy constructor
1374  //   if its first parameter is of type X&, const X&, volatile X& or
1375  //   const volatile X&, and either there are no other parameters
1376  //   or else all other parameters have default arguments (8.3.6).
1377  // C++0x [class.copy]p3:
1378  //   A non-template constructor for class X is a move constructor if its
1379  //   first parameter is of type X&&, const X&&, volatile X&&, or
1380  //   const volatile X&&, and either there are no other parameters or else
1381  //   all other parameters have default arguments.
1382  if ((getNumParams() < 1) ||
1383      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1384      (getPrimaryTemplate() != 0) ||
1385      (getDescribedFunctionTemplate() != 0))
1386    return false;
1387
1388  const ParmVarDecl *Param = getParamDecl(0);
1389
1390  // Do we have a reference type?
1391  const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1392  if (!ParamRefType)
1393    return false;
1394
1395  // Is it a reference to our class type?
1396  ASTContext &Context = getASTContext();
1397
1398  CanQualType PointeeType
1399    = Context.getCanonicalType(ParamRefType->getPointeeType());
1400  CanQualType ClassTy
1401    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1402  if (PointeeType.getUnqualifiedType() != ClassTy)
1403    return false;
1404
1405  // FIXME: other qualifiers?
1406
1407  // We have a copy or move constructor.
1408  TypeQuals = PointeeType.getCVRQualifiers();
1409  return true;
1410}
1411
1412bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1413  // C++ [class.conv.ctor]p1:
1414  //   A constructor declared without the function-specifier explicit
1415  //   that can be called with a single parameter specifies a
1416  //   conversion from the type of its first parameter to the type of
1417  //   its class. Such a constructor is called a converting
1418  //   constructor.
1419  if (isExplicit() && !AllowExplicit)
1420    return false;
1421
1422  return (getNumParams() == 0 &&
1423          getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1424         (getNumParams() == 1) ||
1425         (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
1426}
1427
1428bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1429  if ((getNumParams() < 1) ||
1430      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1431      (getPrimaryTemplate() == 0) ||
1432      (getDescribedFunctionTemplate() != 0))
1433    return false;
1434
1435  const ParmVarDecl *Param = getParamDecl(0);
1436
1437  ASTContext &Context = getASTContext();
1438  CanQualType ParamType = Context.getCanonicalType(Param->getType());
1439
1440  // Is it the same as our our class type?
1441  CanQualType ClassTy
1442    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1443  if (ParamType.getUnqualifiedType() != ClassTy)
1444    return false;
1445
1446  return true;
1447}
1448
1449const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1450  // Hack: we store the inherited constructor in the overridden method table
1451  method_iterator It = begin_overridden_methods();
1452  if (It == end_overridden_methods())
1453    return 0;
1454
1455  return cast<CXXConstructorDecl>(*It);
1456}
1457
1458void
1459CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1460  // Hack: we store the inherited constructor in the overridden method table
1461  assert(size_overridden_methods() == 0 && "Base ctor already set.");
1462  addOverriddenMethod(BaseCtor);
1463}
1464
1465CXXDestructorDecl *
1466CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) {
1467  return new (C) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1468                                   QualType(), 0, false, false);
1469}
1470
1471CXXDestructorDecl *
1472CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1473                          SourceLocation StartLoc,
1474                          const DeclarationNameInfo &NameInfo,
1475                          QualType T, TypeSourceInfo *TInfo,
1476                          bool isInline,
1477                          bool isImplicitlyDeclared) {
1478  assert(NameInfo.getName().getNameKind()
1479         == DeclarationName::CXXDestructorName &&
1480         "Name must refer to a destructor");
1481  return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
1482                                   isImplicitlyDeclared);
1483}
1484
1485CXXConversionDecl *
1486CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) {
1487  return new (C) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
1488                                   QualType(), 0, false, false,
1489                                   SourceLocation());
1490}
1491
1492CXXConversionDecl *
1493CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1494                          SourceLocation StartLoc,
1495                          const DeclarationNameInfo &NameInfo,
1496                          QualType T, TypeSourceInfo *TInfo,
1497                          bool isInline, bool isExplicit,
1498                          SourceLocation EndLocation) {
1499  assert(NameInfo.getName().getNameKind()
1500         == DeclarationName::CXXConversionFunctionName &&
1501         "Name must refer to a conversion function");
1502  return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
1503                                   isInline, isExplicit, EndLocation);
1504}
1505
1506LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1507                                         DeclContext *DC,
1508                                         SourceLocation ExternLoc,
1509                                         SourceLocation LangLoc,
1510                                         LanguageIDs Lang,
1511                                         SourceLocation RBraceLoc) {
1512  return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
1513}
1514
1515UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1516                                               SourceLocation L,
1517                                               SourceLocation NamespaceLoc,
1518                                           NestedNameSpecifierLoc QualifierLoc,
1519                                               SourceLocation IdentLoc,
1520                                               NamedDecl *Used,
1521                                               DeclContext *CommonAncestor) {
1522  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1523    Used = NS->getOriginalNamespace();
1524  return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1525                                    IdentLoc, Used, CommonAncestor);
1526}
1527
1528NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1529  if (NamespaceAliasDecl *NA =
1530        dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1531    return NA->getNamespace();
1532  return cast_or_null<NamespaceDecl>(NominatedNamespace);
1533}
1534
1535NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
1536                                               SourceLocation UsingLoc,
1537                                               SourceLocation AliasLoc,
1538                                               IdentifierInfo *Alias,
1539                                           NestedNameSpecifierLoc QualifierLoc,
1540                                               SourceLocation IdentLoc,
1541                                               NamedDecl *Namespace) {
1542  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
1543    Namespace = NS->getOriginalNamespace();
1544  return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
1545                                    QualifierLoc, IdentLoc, Namespace);
1546}
1547
1548UsingDecl *UsingShadowDecl::getUsingDecl() const {
1549  const UsingShadowDecl *Shadow = this;
1550  while (const UsingShadowDecl *NextShadow =
1551         dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
1552    Shadow = NextShadow;
1553  return cast<UsingDecl>(Shadow->UsingOrNextShadow);
1554}
1555
1556void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
1557  assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
1558         "declaration already in set");
1559  assert(S->getUsingDecl() == this);
1560
1561  if (FirstUsingShadow)
1562    S->UsingOrNextShadow = FirstUsingShadow;
1563  FirstUsingShadow = S;
1564}
1565
1566void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
1567  assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
1568         "declaration not in set");
1569  assert(S->getUsingDecl() == this);
1570
1571  // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
1572
1573  if (FirstUsingShadow == S) {
1574    FirstUsingShadow = dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow);
1575    S->UsingOrNextShadow = this;
1576    return;
1577  }
1578
1579  UsingShadowDecl *Prev = FirstUsingShadow;
1580  while (Prev->UsingOrNextShadow != S)
1581    Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
1582  Prev->UsingOrNextShadow = S->UsingOrNextShadow;
1583  S->UsingOrNextShadow = this;
1584}
1585
1586UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
1587                             NestedNameSpecifierLoc QualifierLoc,
1588                             const DeclarationNameInfo &NameInfo,
1589                             bool IsTypeNameArg) {
1590  return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
1591}
1592
1593UnresolvedUsingValueDecl *
1594UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
1595                                 SourceLocation UsingLoc,
1596                                 NestedNameSpecifierLoc QualifierLoc,
1597                                 const DeclarationNameInfo &NameInfo) {
1598  return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
1599                                          QualifierLoc, NameInfo);
1600}
1601
1602UnresolvedUsingTypenameDecl *
1603UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
1604                                    SourceLocation UsingLoc,
1605                                    SourceLocation TypenameLoc,
1606                                    NestedNameSpecifierLoc QualifierLoc,
1607                                    SourceLocation TargetNameLoc,
1608                                    DeclarationName TargetName) {
1609  return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
1610                                             QualifierLoc, TargetNameLoc,
1611                                             TargetName.getAsIdentifierInfo());
1612}
1613
1614StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
1615                                           SourceLocation StaticAssertLoc,
1616                                           Expr *AssertExpr,
1617                                           StringLiteral *Message,
1618                                           SourceLocation RParenLoc) {
1619  return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
1620                                  RParenLoc);
1621}
1622
1623static const char *getAccessName(AccessSpecifier AS) {
1624  switch (AS) {
1625    default:
1626    case AS_none:
1627      assert("Invalid access specifier!");
1628      return 0;
1629    case AS_public:
1630      return "public";
1631    case AS_private:
1632      return "private";
1633    case AS_protected:
1634      return "protected";
1635  }
1636}
1637
1638const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
1639                                           AccessSpecifier AS) {
1640  return DB << getAccessName(AS);
1641}
1642