DeclCXX.cpp revision ffe37fdda5b4b4f162a45155c30d9f60ce110c12
1//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the C++ related Decl classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/Basic/IdentifierTable.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// Decl Allocation/Deallocation Method Implementations
28//===----------------------------------------------------------------------===//
29
30CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
31  : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
32    UserDeclaredMoveConstructor(false), UserDeclaredCopyAssignment(false),
33    UserDeclaredMoveAssignment(false), UserDeclaredDestructor(false),
34    Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
35    Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
36    HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
37    HasMutableFields(false), HasTrivialDefaultConstructor(true),
38    HasConstExprNonCopyMoveConstructor(false), HasTrivialCopyConstructor(true),
39    HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true),
40    HasTrivialMoveAssignment(true), HasTrivialDestructor(true),
41    HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
42    UserProvidedDefaultConstructor(false), DeclaredDefaultConstructor(false),
43    DeclaredCopyConstructor(false), DeclaredMoveConstructor(false),
44    DeclaredCopyAssignment(false), DeclaredMoveAssignment(false),
45    DeclaredDestructor(false), NumBases(0), NumVBases(0), Bases(), VBases(),
46    Definition(D), FirstFriend(0) {
47}
48
49CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
50                             SourceLocation StartLoc, SourceLocation IdLoc,
51                             IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
52  : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
53    DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
54    TemplateOrInstantiation() { }
55
56CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
57                                     DeclContext *DC, SourceLocation StartLoc,
58                                     SourceLocation IdLoc, IdentifierInfo *Id,
59                                     CXXRecordDecl* PrevDecl,
60                                     bool DelayTypeCreation) {
61  CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
62                                           Id, PrevDecl);
63
64  // FIXME: DelayTypeCreation seems like such a hack
65  if (!DelayTypeCreation)
66    C.getTypeDeclType(R, PrevDecl);
67  return R;
68}
69
70CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, EmptyShell Empty) {
71  return new (C) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(),
72                               SourceLocation(), 0, 0);
73}
74
75void
76CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
77                        unsigned NumBases) {
78  ASTContext &C = getASTContext();
79
80  // C++ [dcl.init.aggr]p1:
81  //   An aggregate is an array or a class (clause 9) with [...]
82  //   no base classes [...].
83  data().Aggregate = false;
84
85  if (!data().Bases.isOffset() && data().NumBases > 0)
86    C.Deallocate(data().getBases());
87
88  // The set of seen virtual base types.
89  llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
90
91  // The virtual bases of this class.
92  llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases;
93
94  data().Bases = new(C) CXXBaseSpecifier [NumBases];
95  data().NumBases = NumBases;
96  for (unsigned i = 0; i < NumBases; ++i) {
97    data().getBases()[i] = *Bases[i];
98    // Keep track of inherited vbases for this base class.
99    const CXXBaseSpecifier *Base = Bases[i];
100    QualType BaseType = Base->getType();
101    // Skip dependent types; we can't do any checking on them now.
102    if (BaseType->isDependentType())
103      continue;
104    CXXRecordDecl *BaseClassDecl
105      = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
106
107    // C++ [dcl.init.aggr]p1:
108    //   An aggregate is [...] a class with [...] no base classes [...].
109    data().Aggregate = false;
110
111    // C++ [class]p4:
112    //   A POD-struct is an aggregate class...
113    data().PlainOldData = false;
114
115    // A class with a non-empty base class is not empty.
116    // FIXME: Standard ref?
117    if (!BaseClassDecl->isEmpty()) {
118      if (!data().Empty) {
119        // C++0x [class]p7:
120        //   A standard-layout class is a class that:
121        //    [...]
122        //    -- either has no non-static data members in the most derived
123        //       class and at most one base class with non-static data members,
124        //       or has no base classes with non-static data members, and
125        // If this is the second non-empty base, then neither of these two
126        // clauses can be true.
127        data().IsStandardLayout = false;
128      }
129
130      data().Empty = false;
131      data().HasNoNonEmptyBases = false;
132    }
133
134    // C++ [class.virtual]p1:
135    //   A class that declares or inherits a virtual function is called a
136    //   polymorphic class.
137    if (BaseClassDecl->isPolymorphic())
138      data().Polymorphic = true;
139
140    // C++0x [class]p7:
141    //   A standard-layout class is a class that: [...]
142    //    -- has no non-standard-layout base classes
143    if (!BaseClassDecl->isStandardLayout())
144      data().IsStandardLayout = false;
145
146    // Record if this base is the first non-literal field or base.
147    if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
148      data().HasNonLiteralTypeFieldsOrBases = true;
149
150    // Now go through all virtual bases of this base and add them.
151    for (CXXRecordDecl::base_class_iterator VBase =
152          BaseClassDecl->vbases_begin(),
153         E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
154      // Add this base if it's not already in the list.
155      if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
156        VBases.push_back(VBase);
157    }
158
159    if (Base->isVirtual()) {
160      // Add this base if it's not already in the list.
161      if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
162          VBases.push_back(Base);
163
164      // C++0x [meta.unary.prop] is_empty:
165      //    T is a class type, but not a union type, with ... no virtual base
166      //    classes
167      data().Empty = false;
168
169      // C++ [class.ctor]p5:
170      //   A default constructor is trivial [...] if:
171      //    -- its class has [...] no virtual bases
172      data().HasTrivialDefaultConstructor = false;
173
174      // C++0x [class.copy]p13:
175      //   A copy/move constructor for class X is trivial if it is neither
176      //   user-provided nor deleted and if
177      //    -- class X has no virtual functions and no virtual base classes, and
178      data().HasTrivialCopyConstructor = false;
179      data().HasTrivialMoveConstructor = false;
180
181      // C++0x [class.copy]p27:
182      //   A copy/move assignment operator for class X is trivial if it is
183      //   neither user-provided nor deleted and if
184      //    -- class X has no virtual functions and no virtual base classes, and
185      data().HasTrivialCopyAssignment = false;
186      data().HasTrivialMoveAssignment = false;
187
188      // C++0x [class]p7:
189      //   A standard-layout class is a class that: [...]
190      //    -- has [...] no virtual base classes
191      data().IsStandardLayout = false;
192    } else {
193      // C++ [class.ctor]p5:
194      //   A default constructor is trivial [...] if:
195      //    -- all the direct base classes of its class have trivial default
196      //       constructors.
197      if (!BaseClassDecl->hasTrivialDefaultConstructor())
198        data().HasTrivialDefaultConstructor = false;
199
200      // C++0x [class.copy]p13:
201      //   A copy/move constructor for class X is trivial if [...]
202      //    [...]
203      //    -- the constructor selected to copy/move each direct base class
204      //       subobject is trivial, and
205      // FIXME: C++0x: We need to only consider the selected constructor
206      // instead of all of them.
207      if (!BaseClassDecl->hasTrivialCopyConstructor())
208        data().HasTrivialCopyConstructor = false;
209      if (!BaseClassDecl->hasTrivialMoveConstructor())
210        data().HasTrivialMoveConstructor = false;
211
212      // C++0x [class.copy]p27:
213      //   A copy/move assignment operator for class X is trivial if [...]
214      //    [...]
215      //    -- the assignment operator selected to copy/move each direct base
216      //       class subobject is trivial, and
217      // FIXME: C++0x: We need to only consider the selected operator instead
218      // of all of them.
219      if (!BaseClassDecl->hasTrivialCopyAssignment())
220        data().HasTrivialCopyAssignment = false;
221      if (!BaseClassDecl->hasTrivialMoveAssignment())
222        data().HasTrivialMoveAssignment = false;
223    }
224
225    // C++ [class.ctor]p3:
226    //   A destructor is trivial if all the direct base classes of its class
227    //   have trivial destructors.
228    if (!BaseClassDecl->hasTrivialDestructor())
229      data().HasTrivialDestructor = false;
230
231    // Keep track of the presence of mutable fields.
232    if (BaseClassDecl->hasMutableFields())
233      data().HasMutableFields = true;
234  }
235
236  if (VBases.empty())
237    return;
238
239  // Create base specifier for any direct or indirect virtual bases.
240  data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
241  data().NumVBases = VBases.size();
242  for (int I = 0, E = VBases.size(); I != E; ++I) {
243    TypeSourceInfo *VBaseTypeInfo = VBases[I]->getTypeSourceInfo();
244
245    // Skip dependent types; we can't do any checking on them now.
246    if (VBaseTypeInfo->getType()->isDependentType())
247      continue;
248
249    CXXRecordDecl *VBaseClassDecl = cast<CXXRecordDecl>(
250      VBaseTypeInfo->getType()->getAs<RecordType>()->getDecl());
251
252    data().getVBases()[I] =
253      CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
254                       VBaseClassDecl->getTagKind() == TTK_Class,
255                       VBases[I]->getAccessSpecifier(), VBaseTypeInfo,
256                       SourceLocation());
257  }
258}
259
260/// Callback function for CXXRecordDecl::forallBases that acknowledges
261/// that it saw a base class.
262static bool SawBase(const CXXRecordDecl *, void *) {
263  return true;
264}
265
266bool CXXRecordDecl::hasAnyDependentBases() const {
267  if (!isDependentContext())
268    return false;
269
270  return !forallBases(SawBase, 0);
271}
272
273bool CXXRecordDecl::hasConstCopyConstructor() const {
274  return getCopyConstructor(Qualifiers::Const) != 0;
275}
276
277bool CXXRecordDecl::isTriviallyCopyable() const {
278  // C++0x [class]p5:
279  //   A trivially copyable class is a class that:
280  //   -- has no non-trivial copy constructors,
281  if (!hasTrivialCopyConstructor()) return false;
282  //   -- has no non-trivial move constructors,
283  if (!hasTrivialMoveConstructor()) return false;
284  //   -- has no non-trivial copy assignment operators,
285  if (!hasTrivialCopyAssignment()) return false;
286  //   -- has no non-trivial move assignment operators, and
287  if (!hasTrivialMoveAssignment()) return false;
288  //   -- has a trivial destructor.
289  if (!hasTrivialDestructor()) return false;
290
291  return true;
292}
293
294/// \brief Perform a simplistic form of overload resolution that only considers
295/// cv-qualifiers on a single parameter, and return the best overload candidate
296/// (if there is one).
297static CXXMethodDecl *
298GetBestOverloadCandidateSimple(
299  const llvm::SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
300  if (Cands.empty())
301    return 0;
302  if (Cands.size() == 1)
303    return Cands[0].first;
304
305  unsigned Best = 0, N = Cands.size();
306  for (unsigned I = 1; I != N; ++I)
307    if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
308      Best = I;
309
310  for (unsigned I = 1; I != N; ++I)
311    if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
312      return 0;
313
314  return Cands[Best].first;
315}
316
317CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(unsigned TypeQuals) const{
318  ASTContext &Context = getASTContext();
319  QualType ClassType
320    = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
321  DeclarationName ConstructorName
322    = Context.DeclarationNames.getCXXConstructorName(
323                                          Context.getCanonicalType(ClassType));
324  unsigned FoundTQs;
325  llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
326  DeclContext::lookup_const_iterator Con, ConEnd;
327  for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
328       Con != ConEnd; ++Con) {
329    // C++ [class.copy]p2:
330    //   A non-template constructor for class X is a copy constructor if [...]
331    if (isa<FunctionTemplateDecl>(*Con))
332      continue;
333
334    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
335    if (Constructor->isCopyConstructor(FoundTQs)) {
336      if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
337          (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
338        Found.push_back(std::make_pair(
339                                 const_cast<CXXConstructorDecl *>(Constructor),
340                                       Qualifiers::fromCVRMask(FoundTQs)));
341    }
342  }
343
344  return cast_or_null<CXXConstructorDecl>(
345                                        GetBestOverloadCandidateSimple(Found));
346}
347
348CXXConstructorDecl *CXXRecordDecl::getMoveConstructor() const {
349  for (ctor_iterator I = ctor_begin(), E = ctor_end(); I != E; ++I)
350    if (I->isMoveConstructor())
351      return *I;
352
353  return 0;
354}
355
356CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
357  ASTContext &Context = getASTContext();
358  QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
359  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
360
361  llvm::SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
362  DeclContext::lookup_const_iterator Op, OpEnd;
363  for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
364    // C++ [class.copy]p9:
365    //   A user-declared copy assignment operator is a non-static non-template
366    //   member function of class X with exactly one parameter of type X, X&,
367    //   const X&, volatile X& or const volatile X&.
368    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
369    if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
370      continue;
371
372    const FunctionProtoType *FnType
373      = Method->getType()->getAs<FunctionProtoType>();
374    assert(FnType && "Overloaded operator has no prototype.");
375    // Don't assert on this; an invalid decl might have been left in the AST.
376    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
377      continue;
378
379    QualType ArgType = FnType->getArgType(0);
380    Qualifiers Quals;
381    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
382      ArgType = Ref->getPointeeType();
383      // If we have a const argument and we have a reference to a non-const,
384      // this function does not match.
385      if (ArgIsConst && !ArgType.isConstQualified())
386        continue;
387
388      Quals = ArgType.getQualifiers();
389    } else {
390      // By-value copy-assignment operators are treated like const X&
391      // copy-assignment operators.
392      Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
393    }
394
395    if (!Context.hasSameUnqualifiedType(ArgType, Class))
396      continue;
397
398    // Save this copy-assignment operator. It might be "the one".
399    Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
400  }
401
402  // Use a simplistic form of overload resolution to find the candidate.
403  return GetBestOverloadCandidateSimple(Found);
404}
405
406CXXMethodDecl *CXXRecordDecl::getMoveAssignmentOperator() const {
407  for (method_iterator I = method_begin(), E = method_end(); I != E; ++I)
408    if (I->isMoveAssignmentOperator())
409      return *I;
410
411  return 0;
412}
413
414void CXXRecordDecl::markedVirtualFunctionPure() {
415  // C++ [class.abstract]p2:
416  //   A class is abstract if it has at least one pure virtual function.
417  data().Abstract = true;
418}
419
420void CXXRecordDecl::addedMember(Decl *D) {
421  // Ignore friends and invalid declarations.
422  if (D->getFriendObjectKind() || D->isInvalidDecl())
423    return;
424
425  FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
426  if (FunTmpl)
427    D = FunTmpl->getTemplatedDecl();
428
429  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
430    if (Method->isVirtual()) {
431      // C++ [dcl.init.aggr]p1:
432      //   An aggregate is an array or a class with [...] no virtual functions.
433      data().Aggregate = false;
434
435      // C++ [class]p4:
436      //   A POD-struct is an aggregate class...
437      data().PlainOldData = false;
438
439      // Virtual functions make the class non-empty.
440      // FIXME: Standard ref?
441      data().Empty = false;
442
443      // C++ [class.virtual]p1:
444      //   A class that declares or inherits a virtual function is called a
445      //   polymorphic class.
446      data().Polymorphic = true;
447
448      // C++0x [class.ctor]p5
449      //   A default constructor is trivial [...] if:
450      //    -- its class has no virtual functions [...]
451      data().HasTrivialDefaultConstructor = false;
452
453      // C++0x [class.copy]p13:
454      //   A copy/move constructor for class X is trivial if [...]
455      //    -- class X has no virtual functions [...]
456      data().HasTrivialCopyConstructor = false;
457      data().HasTrivialMoveConstructor = false;
458
459      // C++0x [class.copy]p27:
460      //   A copy/move assignment operator for class X is trivial if [...]
461      //    -- class X has no virtual functions [...]
462      data().HasTrivialCopyAssignment = false;
463      data().HasTrivialMoveAssignment = false;
464      // FIXME: Destructor?
465
466      // C++0x [class]p7:
467      //   A standard-layout class is a class that: [...]
468      //    -- has no virtual functions
469      data().IsStandardLayout = false;
470    }
471  }
472
473  if (D->isImplicit()) {
474    // Notify that an implicit member was added after the definition
475    // was completed.
476    if (!isBeingDefined())
477      if (ASTMutationListener *L = getASTMutationListener())
478        L->AddedCXXImplicitMember(data().Definition, D);
479
480    // If this is a special member function, note that it was added and then
481    // return early.
482    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
483      if (Constructor->isDefaultConstructor())
484        data().DeclaredDefaultConstructor = true;
485      else if (Constructor->isCopyConstructor())
486        data().DeclaredCopyConstructor = true;
487      else if (Constructor->isMoveConstructor())
488        data().DeclaredMoveConstructor = true;
489      else
490        goto NotASpecialMember;
491      return;
492    } else if (isa<CXXDestructorDecl>(D)) {
493      data().DeclaredDestructor = true;
494      return;
495    } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
496      if (Method->isCopyAssignmentOperator())
497        data().DeclaredCopyAssignment = true;
498      else if (Method->isMoveAssignmentOperator())
499        data().DeclaredMoveAssignment = true;
500      else
501        goto NotASpecialMember;
502      return;
503    }
504
505NotASpecialMember:;
506    // Any other implicit declarations are handled like normal declarations.
507  }
508
509  // Handle (user-declared) constructors.
510  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
511    // Note that we have a user-declared constructor.
512    data().UserDeclaredConstructor = true;
513
514    // FIXME: Under C++0x, /only/ special member functions may be user-provided.
515    //        This is probably a defect.
516    bool UserProvided = false;
517
518    // C++0x [class.ctor]p5:
519    //   A default constructor is trivial if it is not user-provided [...]
520    if (Constructor->isDefaultConstructor()) {
521      data().DeclaredDefaultConstructor = true;
522      if (Constructor->isUserProvided()) {
523        data().HasTrivialDefaultConstructor = false;
524        data().UserProvidedDefaultConstructor = true;
525        UserProvided = true;
526      }
527    }
528
529    // Note when we have a user-declared copy or move constructor, which will
530    // suppress the implicit declaration of those constructors.
531    if (!FunTmpl) {
532      if (Constructor->isCopyConstructor()) {
533        data().UserDeclaredCopyConstructor = true;
534        data().DeclaredCopyConstructor = true;
535
536        // C++0x [class.copy]p13:
537        //   A copy/move constructor for class X is trivial if it is not
538        //   user-provided [...]
539        if (Constructor->isUserProvided()) {
540          data().HasTrivialCopyConstructor = false;
541          UserProvided = true;
542        }
543      } else if (Constructor->isMoveConstructor()) {
544        data().UserDeclaredMoveConstructor = true;
545        data().DeclaredMoveConstructor = true;
546
547        // C++0x [class.copy]p13:
548        //   A copy/move constructor for class X is trivial if it is not
549        //   user-provided [...]
550        if (Constructor->isUserProvided()) {
551          data().HasTrivialMoveConstructor = false;
552          UserProvided = true;
553        }
554      }
555    }
556    if (Constructor->isConstExpr() &&
557        !Constructor->isCopyOrMoveConstructor()) {
558      // Record if we see any constexpr constructors which are niether copy
559      // nor move constructors.
560      data().HasConstExprNonCopyMoveConstructor = true;
561    }
562
563    // C++ [dcl.init.aggr]p1:
564    //   An aggregate is an array or a class with no user-declared
565    //   constructors [...].
566    // C++0x [dcl.init.aggr]p1:
567    //   An aggregate is an array or a class with no user-provided
568    //   constructors [...].
569    if (!getASTContext().getLangOptions().CPlusPlus0x || UserProvided)
570      data().Aggregate = false;
571
572    // C++ [class]p4:
573    //   A POD-struct is an aggregate class [...]
574    // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
575    // type is technically an aggregate in C++0x since it wouldn't be in 03.
576    data().PlainOldData = false;
577
578    return;
579  }
580
581  // Handle (user-declared) destructors.
582  if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
583    data().DeclaredDestructor = true;
584    data().UserDeclaredDestructor = true;
585
586    // C++ [class]p4:
587    //   A POD-struct is an aggregate class that has [...] no user-defined
588    //   destructor.
589    // This bit is the C++03 POD bit, not the 0x one.
590    data().PlainOldData = false;
591
592    // C++0x [class.dtor]p5:
593    //   A destructor is trivial if it is not user-provided and [...]
594    if (DD->isUserProvided())
595      data().HasTrivialDestructor = false;
596
597    return;
598  }
599
600  // Handle (user-declared) member functions.
601  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
602    if (Method->isCopyAssignmentOperator()) {
603      // C++ [class]p4:
604      //   A POD-struct is an aggregate class that [...] has no user-defined
605      //   copy assignment operator [...].
606      // This is the C++03 bit only.
607      data().PlainOldData = false;
608
609      // This is a copy assignment operator.
610
611      // Suppress the implicit declaration of a copy constructor.
612      data().UserDeclaredCopyAssignment = true;
613      data().DeclaredCopyAssignment = true;
614
615      // C++0x [class.copy]p27:
616      //   A copy/move assignment operator for class X is trivial if it is
617      //   neither user-provided nor deleted [...]
618      if (Method->isUserProvided())
619        data().HasTrivialCopyAssignment = false;
620
621      return;
622    }
623
624    if (Method->isMoveAssignmentOperator()) {
625      // This is an extension in C++03 mode, but we'll keep consistency by
626      // taking a move assignment operator to induce non-POD-ness
627      data().PlainOldData = false;
628
629      // This is a move assignment operator.
630      data().UserDeclaredMoveAssignment = true;
631      data().DeclaredMoveAssignment = true;
632
633      // C++0x [class.copy]p27:
634      //   A copy/move assignment operator for class X is trivial if it is
635      //   neither user-provided nor deleted [...]
636      if (Method->isUserProvided())
637        data().HasTrivialMoveAssignment = false;
638    }
639
640    // Keep the list of conversion functions up-to-date.
641    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
642      // We don't record specializations.
643      if (Conversion->getPrimaryTemplate())
644        return;
645
646      // FIXME: We intentionally don't use the decl's access here because it
647      // hasn't been set yet.  That's really just a misdesign in Sema.
648
649      if (FunTmpl) {
650        if (FunTmpl->getPreviousDeclaration())
651          data().Conversions.replace(FunTmpl->getPreviousDeclaration(),
652                                     FunTmpl);
653        else
654          data().Conversions.addDecl(FunTmpl);
655      } else {
656        if (Conversion->getPreviousDeclaration())
657          data().Conversions.replace(Conversion->getPreviousDeclaration(),
658                                     Conversion);
659        else
660          data().Conversions.addDecl(Conversion);
661      }
662    }
663
664    return;
665  }
666
667  // Handle non-static data members.
668  if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
669    // C++ [dcl.init.aggr]p1:
670    //   An aggregate is an array or a class (clause 9) with [...] no
671    //   private or protected non-static data members (clause 11).
672    //
673    // A POD must be an aggregate.
674    if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
675      data().Aggregate = false;
676      data().PlainOldData = false;
677    }
678
679    // C++0x [class]p7:
680    //   A standard-layout class is a class that:
681    //    [...]
682    //    -- has the same access control for all non-static data members,
683    switch (D->getAccess()) {
684    case AS_private:    data().HasPrivateFields = true;   break;
685    case AS_protected:  data().HasProtectedFields = true; break;
686    case AS_public:     data().HasPublicFields = true;    break;
687    case AS_none:       assert(0 && "Invalid access specifier");
688    };
689    if ((data().HasPrivateFields + data().HasProtectedFields +
690         data().HasPublicFields) > 1)
691      data().IsStandardLayout = false;
692
693    // Keep track of the presence of mutable fields.
694    if (Field->isMutable())
695      data().HasMutableFields = true;
696
697    // C++0x [class]p9:
698    //   A POD struct is a class that is both a trivial class and a
699    //   standard-layout class, and has no non-static data members of type
700    //   non-POD struct, non-POD union (or array of such types).
701    ASTContext &Context = getASTContext();
702    QualType T = Context.getBaseElementType(Field->getType());
703    if (!T->isPODType())
704      data().PlainOldData = false;
705    if (T->isReferenceType()) {
706      data().HasTrivialDefaultConstructor = false;
707
708      // C++0x [class]p7:
709      //   A standard-layout class is a class that:
710      //    -- has no non-static data members of type [...] reference,
711      data().IsStandardLayout = false;
712    }
713
714    // Record if this field is the first non-literal field or base.
715    if (!hasNonLiteralTypeFieldsOrBases() && !T->isLiteralType())
716      data().HasNonLiteralTypeFieldsOrBases = true;
717
718    if (const RecordType *RecordTy = T->getAs<RecordType>()) {
719      CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
720      if (FieldRec->getDefinition()) {
721        // C++0x [class.ctor]p5:
722        //   A defulat constructor is trivial [...] if:
723        //    -- for all the non-static data members of its class that are of
724        //       class type (or array thereof), each such class has a trivial
725        //       default constructor.
726        if (!FieldRec->hasTrivialDefaultConstructor())
727          data().HasTrivialDefaultConstructor = false;
728
729        // C++0x [class.copy]p13:
730        //   A copy/move constructor for class X is trivial if [...]
731        //    [...]
732        //    -- for each non-static data member of X that is of class type (or
733        //       an array thereof), the constructor selected to copy/move that
734        //       member is trivial;
735        // FIXME: C++0x: We don't correctly model 'selected' constructors.
736        if (!FieldRec->hasTrivialCopyConstructor())
737          data().HasTrivialCopyConstructor = false;
738        if (!FieldRec->hasTrivialMoveConstructor())
739          data().HasTrivialMoveConstructor = false;
740
741        // C++0x [class.copy]p27:
742        //   A copy/move assignment operator for class X is trivial if [...]
743        //    [...]
744        //    -- for each non-static data member of X that is of class type (or
745        //       an array thereof), the assignment operator selected to
746        //       copy/move that member is trivial;
747        // FIXME: C++0x: We don't correctly model 'selected' operators.
748        if (!FieldRec->hasTrivialCopyAssignment())
749          data().HasTrivialCopyAssignment = false;
750        if (!FieldRec->hasTrivialMoveAssignment())
751          data().HasTrivialMoveAssignment = false;
752
753        if (!FieldRec->hasTrivialDestructor())
754          data().HasTrivialDestructor = false;
755
756        // C++0x [class]p7:
757        //   A standard-layout class is a class that:
758        //    -- has no non-static data members of type non-standard-layout
759        //       class (or array of such types) [...]
760        if (!FieldRec->isStandardLayout())
761          data().IsStandardLayout = false;
762
763        // C++0x [class]p7:
764        //   A standard-layout class is a class that:
765        //    [...]
766        //    -- has no base classes of the same type as the first non-static
767        //       data member.
768        // We don't want to expend bits in the state of the record decl
769        // tracking whether this is the first non-static data member so we
770        // cheat a bit and use some of the existing state: the empty bit.
771        // Virtual bases and virtual methods make a class non-empty, but they
772        // also make it non-standard-layout so we needn't check here.
773        // A non-empty base class may leave the class standard-layout, but not
774        // if we have arrived here, and have at least on non-static data
775        // member. If IsStandardLayout remains true, then the first non-static
776        // data member must come through here with Empty still true, and Empty
777        // will subsequently be set to false below.
778        if (data().IsStandardLayout && data().Empty) {
779          for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
780                                                        BE = bases_end();
781               BI != BE; ++BI) {
782            if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
783              data().IsStandardLayout = false;
784              break;
785            }
786          }
787        }
788
789        // Keep track of the presence of mutable fields.
790        if (FieldRec->hasMutableFields())
791          data().HasMutableFields = true;
792      }
793    }
794
795    // C++0x [class]p7:
796    //   A standard-layout class is a class that:
797    //    [...]
798    //    -- either has no non-static data members in the most derived
799    //       class and at most one base class with non-static data members,
800    //       or has no base classes with non-static data members, and
801    // At this point we know that we have a non-static data member, so the last
802    // clause holds.
803    if (!data().HasNoNonEmptyBases)
804      data().IsStandardLayout = false;
805
806    // If this is not a zero-length bit-field, then the class is not empty.
807    if (data().Empty) {
808      if (!Field->getBitWidth())
809        data().Empty = false;
810      else if (!Field->getBitWidth()->isTypeDependent() &&
811               !Field->getBitWidth()->isValueDependent()) {
812        llvm::APSInt Bits;
813        if (Field->getBitWidth()->isIntegerConstantExpr(Bits, Context))
814          if (!!Bits)
815            data().Empty = false;
816      }
817    }
818  }
819
820  // Handle using declarations of conversion functions.
821  if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
822    if (Shadow->getDeclName().getNameKind()
823          == DeclarationName::CXXConversionFunctionName)
824      data().Conversions.addDecl(Shadow, Shadow->getAccess());
825}
826
827static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
828  QualType T;
829  if (isa<UsingShadowDecl>(Conv))
830    Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
831  if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
832    T = ConvTemp->getTemplatedDecl()->getResultType();
833  else
834    T = cast<CXXConversionDecl>(Conv)->getConversionType();
835  return Context.getCanonicalType(T);
836}
837
838/// Collect the visible conversions of a base class.
839///
840/// \param Base a base class of the class we're considering
841/// \param InVirtual whether this base class is a virtual base (or a base
842///   of a virtual base)
843/// \param Access the access along the inheritance path to this base
844/// \param ParentHiddenTypes the conversions provided by the inheritors
845///   of this base
846/// \param Output the set to which to add conversions from non-virtual bases
847/// \param VOutput the set to which to add conversions from virtual bases
848/// \param HiddenVBaseCs the set of conversions which were hidden in a
849///   virtual base along some inheritance path
850static void CollectVisibleConversions(ASTContext &Context,
851                                      CXXRecordDecl *Record,
852                                      bool InVirtual,
853                                      AccessSpecifier Access,
854                  const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
855                                      UnresolvedSetImpl &Output,
856                                      UnresolvedSetImpl &VOutput,
857                           llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
858  // The set of types which have conversions in this class or its
859  // subclasses.  As an optimization, we don't copy the derived set
860  // unless it might change.
861  const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
862  llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
863
864  // Collect the direct conversions and figure out which conversions
865  // will be hidden in the subclasses.
866  UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
867  if (!Cs.empty()) {
868    HiddenTypesBuffer = ParentHiddenTypes;
869    HiddenTypes = &HiddenTypesBuffer;
870
871    for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
872      bool Hidden =
873        !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
874
875      // If this conversion is hidden and we're in a virtual base,
876      // remember that it's hidden along some inheritance path.
877      if (Hidden && InVirtual)
878        HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
879
880      // If this conversion isn't hidden, add it to the appropriate output.
881      else if (!Hidden) {
882        AccessSpecifier IAccess
883          = CXXRecordDecl::MergeAccess(Access, I.getAccess());
884
885        if (InVirtual)
886          VOutput.addDecl(I.getDecl(), IAccess);
887        else
888          Output.addDecl(I.getDecl(), IAccess);
889      }
890    }
891  }
892
893  // Collect information recursively from any base classes.
894  for (CXXRecordDecl::base_class_iterator
895         I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
896    const RecordType *RT = I->getType()->getAs<RecordType>();
897    if (!RT) continue;
898
899    AccessSpecifier BaseAccess
900      = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
901    bool BaseInVirtual = InVirtual || I->isVirtual();
902
903    CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
904    CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
905                              *HiddenTypes, Output, VOutput, HiddenVBaseCs);
906  }
907}
908
909/// Collect the visible conversions of a class.
910///
911/// This would be extremely straightforward if it weren't for virtual
912/// bases.  It might be worth special-casing that, really.
913static void CollectVisibleConversions(ASTContext &Context,
914                                      CXXRecordDecl *Record,
915                                      UnresolvedSetImpl &Output) {
916  // The collection of all conversions in virtual bases that we've
917  // found.  These will be added to the output as long as they don't
918  // appear in the hidden-conversions set.
919  UnresolvedSet<8> VBaseCs;
920
921  // The set of conversions in virtual bases that we've determined to
922  // be hidden.
923  llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
924
925  // The set of types hidden by classes derived from this one.
926  llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
927
928  // Go ahead and collect the direct conversions and add them to the
929  // hidden-types set.
930  UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
931  Output.append(Cs.begin(), Cs.end());
932  for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
933    HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
934
935  // Recursively collect conversions from base classes.
936  for (CXXRecordDecl::base_class_iterator
937         I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
938    const RecordType *RT = I->getType()->getAs<RecordType>();
939    if (!RT) continue;
940
941    CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
942                              I->isVirtual(), I->getAccessSpecifier(),
943                              HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
944  }
945
946  // Add any unhidden conversions provided by virtual bases.
947  for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
948         I != E; ++I) {
949    if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
950      Output.addDecl(I.getDecl(), I.getAccess());
951  }
952}
953
954/// getVisibleConversionFunctions - get all conversion functions visible
955/// in current class; including conversion function templates.
956const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
957  // If root class, all conversions are visible.
958  if (bases_begin() == bases_end())
959    return &data().Conversions;
960  // If visible conversion list is already evaluated, return it.
961  if (data().ComputedVisibleConversions)
962    return &data().VisibleConversions;
963  CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
964  data().ComputedVisibleConversions = true;
965  return &data().VisibleConversions;
966}
967
968void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
969  // This operation is O(N) but extremely rare.  Sema only uses it to
970  // remove UsingShadowDecls in a class that were followed by a direct
971  // declaration, e.g.:
972  //   class A : B {
973  //     using B::operator int;
974  //     operator int();
975  //   };
976  // This is uncommon by itself and even more uncommon in conjunction
977  // with sufficiently large numbers of directly-declared conversions
978  // that asymptotic behavior matters.
979
980  UnresolvedSetImpl &Convs = *getConversionFunctions();
981  for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
982    if (Convs[I].getDecl() == ConvDecl) {
983      Convs.erase(I);
984      assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
985             && "conversion was found multiple times in unresolved set");
986      return;
987    }
988  }
989
990  llvm_unreachable("conversion not found in set!");
991}
992
993CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
994  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
995    return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
996
997  return 0;
998}
999
1000MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1001  return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1002}
1003
1004void
1005CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1006                                             TemplateSpecializationKind TSK) {
1007  assert(TemplateOrInstantiation.isNull() &&
1008         "Previous template or instantiation?");
1009  assert(!isa<ClassTemplateSpecializationDecl>(this));
1010  TemplateOrInstantiation
1011    = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1012}
1013
1014TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1015  if (const ClassTemplateSpecializationDecl *Spec
1016        = dyn_cast<ClassTemplateSpecializationDecl>(this))
1017    return Spec->getSpecializationKind();
1018
1019  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1020    return MSInfo->getTemplateSpecializationKind();
1021
1022  return TSK_Undeclared;
1023}
1024
1025void
1026CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1027  if (ClassTemplateSpecializationDecl *Spec
1028      = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1029    Spec->setSpecializationKind(TSK);
1030    return;
1031  }
1032
1033  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1034    MSInfo->setTemplateSpecializationKind(TSK);
1035    return;
1036  }
1037
1038  assert(false && "Not a class template or member class specialization");
1039}
1040
1041CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1042  ASTContext &Context = getASTContext();
1043  QualType ClassType = Context.getTypeDeclType(this);
1044
1045  DeclarationName Name
1046    = Context.DeclarationNames.getCXXDestructorName(
1047                                          Context.getCanonicalType(ClassType));
1048
1049  DeclContext::lookup_const_iterator I, E;
1050  llvm::tie(I, E) = lookup(Name);
1051  if (I == E)
1052    return 0;
1053
1054  CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
1055  return Dtor;
1056}
1057
1058void CXXRecordDecl::completeDefinition() {
1059  completeDefinition(0);
1060}
1061
1062void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1063  RecordDecl::completeDefinition();
1064
1065  // If the class may be abstract (but hasn't been marked as such), check for
1066  // any pure final overriders.
1067  if (mayBeAbstract()) {
1068    CXXFinalOverriderMap MyFinalOverriders;
1069    if (!FinalOverriders) {
1070      getFinalOverriders(MyFinalOverriders);
1071      FinalOverriders = &MyFinalOverriders;
1072    }
1073
1074    bool Done = false;
1075    for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1076                                     MEnd = FinalOverriders->end();
1077         M != MEnd && !Done; ++M) {
1078      for (OverridingMethods::iterator SO = M->second.begin(),
1079                                    SOEnd = M->second.end();
1080           SO != SOEnd && !Done; ++SO) {
1081        assert(SO->second.size() > 0 &&
1082               "All virtual functions have overridding virtual functions");
1083
1084        // C++ [class.abstract]p4:
1085        //   A class is abstract if it contains or inherits at least one
1086        //   pure virtual function for which the final overrider is pure
1087        //   virtual.
1088        if (SO->second.front().Method->isPure()) {
1089          data().Abstract = true;
1090          Done = true;
1091          break;
1092        }
1093      }
1094    }
1095  }
1096
1097  // Set access bits correctly on the directly-declared conversions.
1098  for (UnresolvedSetIterator I = data().Conversions.begin(),
1099                             E = data().Conversions.end();
1100       I != E; ++I)
1101    data().Conversions.setAccess(I, (*I)->getAccess());
1102}
1103
1104bool CXXRecordDecl::mayBeAbstract() const {
1105  if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1106      isDependentContext())
1107    return false;
1108
1109  for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
1110                                             BEnd = bases_end();
1111       B != BEnd; ++B) {
1112    CXXRecordDecl *BaseDecl
1113      = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
1114    if (BaseDecl->isAbstract())
1115      return true;
1116  }
1117
1118  return false;
1119}
1120
1121CXXMethodDecl *
1122CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1123                      SourceLocation StartLoc,
1124                      const DeclarationNameInfo &NameInfo,
1125                      QualType T, TypeSourceInfo *TInfo,
1126                      bool isStatic, StorageClass SCAsWritten, bool isInline,
1127                      SourceLocation EndLocation) {
1128  return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
1129                               isStatic, SCAsWritten, isInline, EndLocation);
1130}
1131
1132bool CXXMethodDecl::isUsualDeallocationFunction() const {
1133  if (getOverloadedOperator() != OO_Delete &&
1134      getOverloadedOperator() != OO_Array_Delete)
1135    return false;
1136
1137  // C++ [basic.stc.dynamic.deallocation]p2:
1138  //   A template instance is never a usual deallocation function,
1139  //   regardless of its signature.
1140  if (getPrimaryTemplate())
1141    return false;
1142
1143  // C++ [basic.stc.dynamic.deallocation]p2:
1144  //   If a class T has a member deallocation function named operator delete
1145  //   with exactly one parameter, then that function is a usual (non-placement)
1146  //   deallocation function. [...]
1147  if (getNumParams() == 1)
1148    return true;
1149
1150  // C++ [basic.stc.dynamic.deallocation]p2:
1151  //   [...] If class T does not declare such an operator delete but does
1152  //   declare a member deallocation function named operator delete with
1153  //   exactly two parameters, the second of which has type std::size_t (18.1),
1154  //   then this function is a usual deallocation function.
1155  ASTContext &Context = getASTContext();
1156  if (getNumParams() != 2 ||
1157      !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1158                                      Context.getSizeType()))
1159    return false;
1160
1161  // This function is a usual deallocation function if there are no
1162  // single-parameter deallocation functions of the same kind.
1163  for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
1164       R.first != R.second; ++R.first) {
1165    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
1166      if (FD->getNumParams() == 1)
1167        return false;
1168  }
1169
1170  return true;
1171}
1172
1173bool CXXMethodDecl::isCopyAssignmentOperator() const {
1174  // C++0x [class.copy]p17:
1175  //  A user-declared copy assignment operator X::operator= is a non-static
1176  //  non-template member function of class X with exactly one parameter of
1177  //  type X, X&, const X&, volatile X& or const volatile X&.
1178  if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1179      /*non-static*/ isStatic() ||
1180      /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate())
1181    return false;
1182
1183  QualType ParamType = getParamDecl(0)->getType();
1184  if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1185    ParamType = Ref->getPointeeType();
1186
1187  ASTContext &Context = getASTContext();
1188  QualType ClassType
1189    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1190  return Context.hasSameUnqualifiedType(ClassType, ParamType);
1191}
1192
1193bool CXXMethodDecl::isMoveAssignmentOperator() const {
1194  // C++0x [class.copy]p19:
1195  //  A user-declared move assignment operator X::operator= is a non-static
1196  //  non-template member function of class X with exactly one parameter of type
1197  //  X&&, const X&&, volatile X&&, or const volatile X&&.
1198  if (getOverloadedOperator() != OO_Equal || isStatic() ||
1199      getPrimaryTemplate() || getDescribedFunctionTemplate())
1200    return false;
1201
1202  QualType ParamType = getParamDecl(0)->getType();
1203  if (!isa<RValueReferenceType>(ParamType))
1204    return false;
1205  ParamType = ParamType->getPointeeType();
1206
1207  ASTContext &Context = getASTContext();
1208  QualType ClassType
1209    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1210  return Context.hasSameUnqualifiedType(ClassType, ParamType);
1211}
1212
1213void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1214  assert(MD->isCanonicalDecl() && "Method is not canonical!");
1215  assert(!MD->getParent()->isDependentContext() &&
1216         "Can't add an overridden method to a class template!");
1217
1218  getASTContext().addOverriddenMethod(this, MD);
1219}
1220
1221CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1222  return getASTContext().overridden_methods_begin(this);
1223}
1224
1225CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1226  return getASTContext().overridden_methods_end(this);
1227}
1228
1229unsigned CXXMethodDecl::size_overridden_methods() const {
1230  return getASTContext().overridden_methods_size(this);
1231}
1232
1233QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1234  // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1235  // If the member function is declared const, the type of this is const X*,
1236  // if the member function is declared volatile, the type of this is
1237  // volatile X*, and if the member function is declared const volatile,
1238  // the type of this is const volatile X*.
1239
1240  assert(isInstance() && "No 'this' for static methods!");
1241
1242  QualType ClassTy = C.getTypeDeclType(getParent());
1243  ClassTy = C.getQualifiedType(ClassTy,
1244                               Qualifiers::fromCVRMask(getTypeQualifiers()));
1245  return C.getPointerType(ClassTy);
1246}
1247
1248bool CXXMethodDecl::hasInlineBody() const {
1249  // If this function is a template instantiation, look at the template from
1250  // which it was instantiated.
1251  const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1252  if (!CheckFn)
1253    CheckFn = this;
1254
1255  const FunctionDecl *fn;
1256  return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1257}
1258
1259CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1260                                       TypeSourceInfo *TInfo, bool IsVirtual,
1261                                       SourceLocation L, Expr *Init,
1262                                       SourceLocation R,
1263                                       SourceLocation EllipsisLoc)
1264  : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1265    LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false),
1266    SourceOrderOrNumArrayIndices(0)
1267{
1268}
1269
1270CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1271                                       FieldDecl *Member,
1272                                       SourceLocation MemberLoc,
1273                                       SourceLocation L, Expr *Init,
1274                                       SourceLocation R)
1275  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1276    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1277    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1278{
1279}
1280
1281CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1282                                       IndirectFieldDecl *Member,
1283                                       SourceLocation MemberLoc,
1284                                       SourceLocation L, Expr *Init,
1285                                       SourceLocation R)
1286  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1287    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1288    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1289{
1290}
1291
1292CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1293                                       SourceLocation D, SourceLocation L,
1294                                       CXXConstructorDecl *Target, Expr *Init,
1295                                       SourceLocation R)
1296  : Initializee(Target), MemberOrEllipsisLocation(D), Init(Init),
1297    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1298    IsWritten(false), SourceOrderOrNumArrayIndices(0)
1299{
1300}
1301
1302CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1303                                       FieldDecl *Member,
1304                                       SourceLocation MemberLoc,
1305                                       SourceLocation L, Expr *Init,
1306                                       SourceLocation R,
1307                                       VarDecl **Indices,
1308                                       unsigned NumIndices)
1309  : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1310    LParenLoc(L), RParenLoc(R), IsVirtual(false),
1311    IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1312{
1313  VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1314  memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1315}
1316
1317CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1318                                               FieldDecl *Member,
1319                                               SourceLocation MemberLoc,
1320                                               SourceLocation L, Expr *Init,
1321                                               SourceLocation R,
1322                                               VarDecl **Indices,
1323                                               unsigned NumIndices) {
1324  void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1325                               sizeof(VarDecl *) * NumIndices,
1326                               llvm::alignOf<CXXCtorInitializer>());
1327  return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1328                                      Indices, NumIndices);
1329}
1330
1331TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1332  if (isBaseInitializer())
1333    return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1334  else
1335    return TypeLoc();
1336}
1337
1338const Type *CXXCtorInitializer::getBaseClass() const {
1339  if (isBaseInitializer())
1340    return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1341  else
1342    return 0;
1343}
1344
1345SourceLocation CXXCtorInitializer::getSourceLocation() const {
1346  if (isAnyMemberInitializer() || isDelegatingInitializer())
1347    return getMemberLocation();
1348
1349  return getBaseClassLoc().getLocalSourceRange().getBegin();
1350}
1351
1352SourceRange CXXCtorInitializer::getSourceRange() const {
1353  return SourceRange(getSourceLocation(), getRParenLoc());
1354}
1355
1356CXXConstructorDecl *
1357CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) {
1358  return new (C) CXXConstructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1359                                    QualType(), 0, false, false, false);
1360}
1361
1362CXXConstructorDecl *
1363CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1364                           SourceLocation StartLoc,
1365                           const DeclarationNameInfo &NameInfo,
1366                           QualType T, TypeSourceInfo *TInfo,
1367                           bool isExplicit,
1368                           bool isInline,
1369                           bool isImplicitlyDeclared) {
1370  assert(NameInfo.getName().getNameKind()
1371         == DeclarationName::CXXConstructorName &&
1372         "Name must refer to a constructor");
1373  return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
1374                                    isExplicit, isInline, isImplicitlyDeclared);
1375}
1376
1377bool CXXConstructorDecl::isDefaultConstructor() const {
1378  // C++ [class.ctor]p5:
1379  //   A default constructor for a class X is a constructor of class
1380  //   X that can be called without an argument.
1381  return (getNumParams() == 0) ||
1382         (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1383}
1384
1385bool
1386CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1387  return isCopyOrMoveConstructor(TypeQuals) &&
1388         getParamDecl(0)->getType()->isLValueReferenceType();
1389}
1390
1391bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1392  return isCopyOrMoveConstructor(TypeQuals) &&
1393    getParamDecl(0)->getType()->isRValueReferenceType();
1394}
1395
1396/// \brief Determine whether this is a copy or move constructor.
1397bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1398  // C++ [class.copy]p2:
1399  //   A non-template constructor for class X is a copy constructor
1400  //   if its first parameter is of type X&, const X&, volatile X& or
1401  //   const volatile X&, and either there are no other parameters
1402  //   or else all other parameters have default arguments (8.3.6).
1403  // C++0x [class.copy]p3:
1404  //   A non-template constructor for class X is a move constructor if its
1405  //   first parameter is of type X&&, const X&&, volatile X&&, or
1406  //   const volatile X&&, and either there are no other parameters or else
1407  //   all other parameters have default arguments.
1408  if ((getNumParams() < 1) ||
1409      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1410      (getPrimaryTemplate() != 0) ||
1411      (getDescribedFunctionTemplate() != 0))
1412    return false;
1413
1414  const ParmVarDecl *Param = getParamDecl(0);
1415
1416  // Do we have a reference type?
1417  const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1418  if (!ParamRefType)
1419    return false;
1420
1421  // Is it a reference to our class type?
1422  ASTContext &Context = getASTContext();
1423
1424  CanQualType PointeeType
1425    = Context.getCanonicalType(ParamRefType->getPointeeType());
1426  CanQualType ClassTy
1427    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1428  if (PointeeType.getUnqualifiedType() != ClassTy)
1429    return false;
1430
1431  // FIXME: other qualifiers?
1432
1433  // We have a copy or move constructor.
1434  TypeQuals = PointeeType.getCVRQualifiers();
1435  return true;
1436}
1437
1438bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1439  // C++ [class.conv.ctor]p1:
1440  //   A constructor declared without the function-specifier explicit
1441  //   that can be called with a single parameter specifies a
1442  //   conversion from the type of its first parameter to the type of
1443  //   its class. Such a constructor is called a converting
1444  //   constructor.
1445  if (isExplicit() && !AllowExplicit)
1446    return false;
1447
1448  return (getNumParams() == 0 &&
1449          getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1450         (getNumParams() == 1) ||
1451         (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
1452}
1453
1454bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1455  if ((getNumParams() < 1) ||
1456      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1457      (getPrimaryTemplate() == 0) ||
1458      (getDescribedFunctionTemplate() != 0))
1459    return false;
1460
1461  const ParmVarDecl *Param = getParamDecl(0);
1462
1463  ASTContext &Context = getASTContext();
1464  CanQualType ParamType = Context.getCanonicalType(Param->getType());
1465
1466  // Is it the same as our our class type?
1467  CanQualType ClassTy
1468    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1469  if (ParamType.getUnqualifiedType() != ClassTy)
1470    return false;
1471
1472  return true;
1473}
1474
1475const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1476  // Hack: we store the inherited constructor in the overridden method table
1477  method_iterator It = begin_overridden_methods();
1478  if (It == end_overridden_methods())
1479    return 0;
1480
1481  return cast<CXXConstructorDecl>(*It);
1482}
1483
1484void
1485CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1486  // Hack: we store the inherited constructor in the overridden method table
1487  assert(size_overridden_methods() == 0 && "Base ctor already set.");
1488  addOverriddenMethod(BaseCtor);
1489}
1490
1491CXXDestructorDecl *
1492CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) {
1493  return new (C) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
1494                                   QualType(), 0, false, false);
1495}
1496
1497CXXDestructorDecl *
1498CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1499                          SourceLocation StartLoc,
1500                          const DeclarationNameInfo &NameInfo,
1501                          QualType T, TypeSourceInfo *TInfo,
1502                          bool isInline,
1503                          bool isImplicitlyDeclared) {
1504  assert(NameInfo.getName().getNameKind()
1505         == DeclarationName::CXXDestructorName &&
1506         "Name must refer to a destructor");
1507  return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
1508                                   isImplicitlyDeclared);
1509}
1510
1511CXXConversionDecl *
1512CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) {
1513  return new (C) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
1514                                   QualType(), 0, false, false,
1515                                   SourceLocation());
1516}
1517
1518CXXConversionDecl *
1519CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1520                          SourceLocation StartLoc,
1521                          const DeclarationNameInfo &NameInfo,
1522                          QualType T, TypeSourceInfo *TInfo,
1523                          bool isInline, bool isExplicit,
1524                          SourceLocation EndLocation) {
1525  assert(NameInfo.getName().getNameKind()
1526         == DeclarationName::CXXConversionFunctionName &&
1527         "Name must refer to a conversion function");
1528  return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
1529                                   isInline, isExplicit, EndLocation);
1530}
1531
1532LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1533                                         DeclContext *DC,
1534                                         SourceLocation ExternLoc,
1535                                         SourceLocation LangLoc,
1536                                         LanguageIDs Lang,
1537                                         SourceLocation RBraceLoc) {
1538  return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
1539}
1540
1541UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1542                                               SourceLocation L,
1543                                               SourceLocation NamespaceLoc,
1544                                           NestedNameSpecifierLoc QualifierLoc,
1545                                               SourceLocation IdentLoc,
1546                                               NamedDecl *Used,
1547                                               DeclContext *CommonAncestor) {
1548  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1549    Used = NS->getOriginalNamespace();
1550  return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1551                                    IdentLoc, Used, CommonAncestor);
1552}
1553
1554NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1555  if (NamespaceAliasDecl *NA =
1556        dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1557    return NA->getNamespace();
1558  return cast_or_null<NamespaceDecl>(NominatedNamespace);
1559}
1560
1561NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
1562                                               SourceLocation UsingLoc,
1563                                               SourceLocation AliasLoc,
1564                                               IdentifierInfo *Alias,
1565                                           NestedNameSpecifierLoc QualifierLoc,
1566                                               SourceLocation IdentLoc,
1567                                               NamedDecl *Namespace) {
1568  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
1569    Namespace = NS->getOriginalNamespace();
1570  return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
1571                                    QualifierLoc, IdentLoc, Namespace);
1572}
1573
1574UsingDecl *UsingShadowDecl::getUsingDecl() const {
1575  const UsingShadowDecl *Shadow = this;
1576  while (const UsingShadowDecl *NextShadow =
1577         dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
1578    Shadow = NextShadow;
1579  return cast<UsingDecl>(Shadow->UsingOrNextShadow);
1580}
1581
1582void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
1583  assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
1584         "declaration already in set");
1585  assert(S->getUsingDecl() == this);
1586
1587  if (FirstUsingShadow)
1588    S->UsingOrNextShadow = FirstUsingShadow;
1589  FirstUsingShadow = S;
1590}
1591
1592void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
1593  assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
1594         "declaration not in set");
1595  assert(S->getUsingDecl() == this);
1596
1597  // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
1598
1599  if (FirstUsingShadow == S) {
1600    FirstUsingShadow = dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow);
1601    S->UsingOrNextShadow = this;
1602    return;
1603  }
1604
1605  UsingShadowDecl *Prev = FirstUsingShadow;
1606  while (Prev->UsingOrNextShadow != S)
1607    Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
1608  Prev->UsingOrNextShadow = S->UsingOrNextShadow;
1609  S->UsingOrNextShadow = this;
1610}
1611
1612UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
1613                             NestedNameSpecifierLoc QualifierLoc,
1614                             const DeclarationNameInfo &NameInfo,
1615                             bool IsTypeNameArg) {
1616  return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
1617}
1618
1619UnresolvedUsingValueDecl *
1620UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
1621                                 SourceLocation UsingLoc,
1622                                 NestedNameSpecifierLoc QualifierLoc,
1623                                 const DeclarationNameInfo &NameInfo) {
1624  return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
1625                                          QualifierLoc, NameInfo);
1626}
1627
1628UnresolvedUsingTypenameDecl *
1629UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
1630                                    SourceLocation UsingLoc,
1631                                    SourceLocation TypenameLoc,
1632                                    NestedNameSpecifierLoc QualifierLoc,
1633                                    SourceLocation TargetNameLoc,
1634                                    DeclarationName TargetName) {
1635  return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
1636                                             QualifierLoc, TargetNameLoc,
1637                                             TargetName.getAsIdentifierInfo());
1638}
1639
1640StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
1641                                           SourceLocation StaticAssertLoc,
1642                                           Expr *AssertExpr,
1643                                           StringLiteral *Message,
1644                                           SourceLocation RParenLoc) {
1645  return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
1646                                  RParenLoc);
1647}
1648
1649static const char *getAccessName(AccessSpecifier AS) {
1650  switch (AS) {
1651    default:
1652    case AS_none:
1653      assert("Invalid access specifier!");
1654      return 0;
1655    case AS_public:
1656      return "public";
1657    case AS_private:
1658      return "private";
1659    case AS_protected:
1660      return "protected";
1661  }
1662}
1663
1664const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
1665                                           AccessSpecifier AS) {
1666  return DB << getAccessName(AS);
1667}
1668