Quaternion.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_QUATERNION_H
12#define EIGEN_QUATERNION_H
13namespace Eigen {
14
15
16/***************************************************************************
17* Definition of QuaternionBase<Derived>
18* The implementation is at the end of the file
19***************************************************************************/
20
21namespace internal {
22template<typename Other,
23         int OtherRows=Other::RowsAtCompileTime,
24         int OtherCols=Other::ColsAtCompileTime>
25struct quaternionbase_assign_impl;
26}
27
28/** \geometry_module \ingroup Geometry_Module
29  * \class QuaternionBase
30  * \brief Base class for quaternion expressions
31  * \tparam Derived derived type (CRTP)
32  * \sa class Quaternion
33  */
34template<class Derived>
35class QuaternionBase : public RotationBase<Derived, 3>
36{
37  typedef RotationBase<Derived, 3> Base;
38public:
39  using Base::operator*;
40  using Base::derived;
41
42  typedef typename internal::traits<Derived>::Scalar Scalar;
43  typedef typename NumTraits<Scalar>::Real RealScalar;
44  typedef typename internal::traits<Derived>::Coefficients Coefficients;
45  enum {
46    Flags = Eigen::internal::traits<Derived>::Flags
47  };
48
49 // typedef typename Matrix<Scalar,4,1> Coefficients;
50  /** the type of a 3D vector */
51  typedef Matrix<Scalar,3,1> Vector3;
52  /** the equivalent rotation matrix type */
53  typedef Matrix<Scalar,3,3> Matrix3;
54  /** the equivalent angle-axis type */
55  typedef AngleAxis<Scalar> AngleAxisType;
56
57
58
59  /** \returns the \c x coefficient */
60  inline Scalar x() const { return this->derived().coeffs().coeff(0); }
61  /** \returns the \c y coefficient */
62  inline Scalar y() const { return this->derived().coeffs().coeff(1); }
63  /** \returns the \c z coefficient */
64  inline Scalar z() const { return this->derived().coeffs().coeff(2); }
65  /** \returns the \c w coefficient */
66  inline Scalar w() const { return this->derived().coeffs().coeff(3); }
67
68  /** \returns a reference to the \c x coefficient */
69  inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
70  /** \returns a reference to the \c y coefficient */
71  inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
72  /** \returns a reference to the \c z coefficient */
73  inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
74  /** \returns a reference to the \c w coefficient */
75  inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
76
77  /** \returns a read-only vector expression of the imaginary part (x,y,z) */
78  inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
79
80  /** \returns a vector expression of the imaginary part (x,y,z) */
81  inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
82
83  /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
84  inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
85
86  /** \returns a vector expression of the coefficients (x,y,z,w) */
87  inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
88
89  EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
90  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
91
92// disabled this copy operator as it is giving very strange compilation errors when compiling
93// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
94// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
95// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
96//  Derived& operator=(const QuaternionBase& other)
97//  { return operator=<Derived>(other); }
98
99  Derived& operator=(const AngleAxisType& aa);
100  template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
101
102  /** \returns a quaternion representing an identity rotation
103    * \sa MatrixBase::Identity()
104    */
105  static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
106
107  /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
108    */
109  inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
110
111  /** \returns the squared norm of the quaternion's coefficients
112    * \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
113    */
114  inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
115
116  /** \returns the norm of the quaternion's coefficients
117    * \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
118    */
119  inline Scalar norm() const { return coeffs().norm(); }
120
121  /** Normalizes the quaternion \c *this
122    * \sa normalized(), MatrixBase::normalize() */
123  inline void normalize() { coeffs().normalize(); }
124  /** \returns a normalized copy of \c *this
125    * \sa normalize(), MatrixBase::normalized() */
126  inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
127
128    /** \returns the dot product of \c *this and \a other
129    * Geometrically speaking, the dot product of two unit quaternions
130    * corresponds to the cosine of half the angle between the two rotations.
131    * \sa angularDistance()
132    */
133  template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
134
135  template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
136
137  /** \returns an equivalent 3x3 rotation matrix */
138  Matrix3 toRotationMatrix() const;
139
140  /** \returns the quaternion which transform \a a into \a b through a rotation */
141  template<typename Derived1, typename Derived2>
142  Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
143
144  template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
145  template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
146
147  /** \returns the quaternion describing the inverse rotation */
148  Quaternion<Scalar> inverse() const;
149
150  /** \returns the conjugated quaternion */
151  Quaternion<Scalar> conjugate() const;
152
153  /** \returns an interpolation for a constant motion between \a other and \c *this
154    * \a t in [0;1]
155    * see http://en.wikipedia.org/wiki/Slerp
156    */
157  template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
158
159  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
160    * determined by \a prec.
161    *
162    * \sa MatrixBase::isApprox() */
163  template<class OtherDerived>
164  bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
165  { return coeffs().isApprox(other.coeffs(), prec); }
166
167	/** return the result vector of \a v through the rotation*/
168  EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
169
170  /** \returns \c *this with scalar type casted to \a NewScalarType
171    *
172    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
173    * then this function smartly returns a const reference to \c *this.
174    */
175  template<typename NewScalarType>
176  inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
177  {
178    return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
179  }
180
181#ifdef EIGEN_QUATERNIONBASE_PLUGIN
182# include EIGEN_QUATERNIONBASE_PLUGIN
183#endif
184};
185
186/***************************************************************************
187* Definition/implementation of Quaternion<Scalar>
188***************************************************************************/
189
190/** \geometry_module \ingroup Geometry_Module
191  *
192  * \class Quaternion
193  *
194  * \brief The quaternion class used to represent 3D orientations and rotations
195  *
196  * \param _Scalar the scalar type, i.e., the type of the coefficients
197  *
198  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
199  * orientations and rotations of objects in three dimensions. Compared to other representations
200  * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
201  * \li \b compact storage (4 scalars)
202  * \li \b efficient to compose (28 flops),
203  * \li \b stable spherical interpolation
204  *
205  * The following two typedefs are provided for convenience:
206  * \li \c Quaternionf for \c float
207  * \li \c Quaterniond for \c double
208  *
209  * \sa  class AngleAxis, class Transform
210  */
211
212namespace internal {
213template<typename _Scalar,int _Options>
214struct traits<Quaternion<_Scalar,_Options> >
215{
216  typedef Quaternion<_Scalar,_Options> PlainObject;
217  typedef _Scalar Scalar;
218  typedef Matrix<_Scalar,4,1,_Options> Coefficients;
219  enum{
220    IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
221    Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
222  };
223};
224}
225
226template<typename _Scalar, int _Options>
227class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
228{
229  typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
230  enum { IsAligned = internal::traits<Quaternion>::IsAligned };
231
232public:
233  typedef _Scalar Scalar;
234
235  EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
236  using Base::operator*=;
237
238  typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
239  typedef typename Base::AngleAxisType AngleAxisType;
240
241  /** Default constructor leaving the quaternion uninitialized. */
242  inline Quaternion() {}
243
244  /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
245    * its four coefficients \a w, \a x, \a y and \a z.
246    *
247    * \warning Note the order of the arguments: the real \a w coefficient first,
248    * while internally the coefficients are stored in the following order:
249    * [\c x, \c y, \c z, \c w]
250    */
251  inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}
252
253  /** Constructs and initialize a quaternion from the array data */
254  inline Quaternion(const Scalar* data) : m_coeffs(data) {}
255
256  /** Copy constructor */
257  template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
258
259  /** Constructs and initializes a quaternion from the angle-axis \a aa */
260  explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
261
262  /** Constructs and initializes a quaternion from either:
263    *  - a rotation matrix expression,
264    *  - a 4D vector expression representing quaternion coefficients.
265    */
266  template<typename Derived>
267  explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
268
269  /** Explicit copy constructor with scalar conversion */
270  template<typename OtherScalar, int OtherOptions>
271  explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
272  { m_coeffs = other.coeffs().template cast<Scalar>(); }
273
274  template<typename Derived1, typename Derived2>
275  static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
276
277  inline Coefficients& coeffs() { return m_coeffs;}
278  inline const Coefficients& coeffs() const { return m_coeffs;}
279
280  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
281
282protected:
283  Coefficients m_coeffs;
284
285#ifndef EIGEN_PARSED_BY_DOXYGEN
286    static EIGEN_STRONG_INLINE void _check_template_params()
287    {
288      EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
289        INVALID_MATRIX_TEMPLATE_PARAMETERS)
290    }
291#endif
292};
293
294/** \ingroup Geometry_Module
295  * single precision quaternion type */
296typedef Quaternion<float> Quaternionf;
297/** \ingroup Geometry_Module
298  * double precision quaternion type */
299typedef Quaternion<double> Quaterniond;
300
301/***************************************************************************
302* Specialization of Map<Quaternion<Scalar>>
303***************************************************************************/
304
305namespace internal {
306  template<typename _Scalar, int _Options>
307  struct traits<Map<Quaternion<_Scalar>, _Options> >:
308  traits<Quaternion<_Scalar, _Options> >
309  {
310    typedef _Scalar Scalar;
311    typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
312
313    typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
314    enum {
315      IsAligned = TraitsBase::IsAligned,
316
317      Flags = TraitsBase::Flags
318    };
319  };
320}
321
322namespace internal {
323  template<typename _Scalar, int _Options>
324  struct traits<Map<const Quaternion<_Scalar>, _Options> >:
325  traits<Quaternion<_Scalar> >
326  {
327    typedef _Scalar Scalar;
328    typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
329
330    typedef traits<Quaternion<_Scalar, _Options> > TraitsBase;
331    enum {
332      IsAligned = TraitsBase::IsAligned,
333      Flags = TraitsBase::Flags & ~LvalueBit
334    };
335  };
336}
337
338/** \brief Quaternion expression mapping a constant memory buffer
339  *
340  * \param _Scalar the type of the Quaternion coefficients
341  * \param _Options see class Map
342  *
343  * This is a specialization of class Map for Quaternion. This class allows to view
344  * a 4 scalar memory buffer as an Eigen's Quaternion object.
345  *
346  * \sa class Map, class Quaternion, class QuaternionBase
347  */
348template<typename _Scalar, int _Options>
349class Map<const Quaternion<_Scalar>, _Options >
350  : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
351{
352    typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
353
354  public:
355    typedef _Scalar Scalar;
356    typedef typename internal::traits<Map>::Coefficients Coefficients;
357    EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
358    using Base::operator*=;
359
360    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
361      *
362      * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
363      * \code *coeffs == {x, y, z, w} \endcode
364      *
365      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
366    EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
367
368    inline const Coefficients& coeffs() const { return m_coeffs;}
369
370  protected:
371    const Coefficients m_coeffs;
372};
373
374/** \brief Expression of a quaternion from a memory buffer
375  *
376  * \param _Scalar the type of the Quaternion coefficients
377  * \param _Options see class Map
378  *
379  * This is a specialization of class Map for Quaternion. This class allows to view
380  * a 4 scalar memory buffer as an Eigen's  Quaternion object.
381  *
382  * \sa class Map, class Quaternion, class QuaternionBase
383  */
384template<typename _Scalar, int _Options>
385class Map<Quaternion<_Scalar>, _Options >
386  : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
387{
388    typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
389
390  public:
391    typedef _Scalar Scalar;
392    typedef typename internal::traits<Map>::Coefficients Coefficients;
393    EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
394    using Base::operator*=;
395
396    /** Constructs a Mapped Quaternion object from the pointer \a coeffs
397      *
398      * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
399      * \code *coeffs == {x, y, z, w} \endcode
400      *
401      * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
402    EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
403
404    inline Coefficients& coeffs() { return m_coeffs; }
405    inline const Coefficients& coeffs() const { return m_coeffs; }
406
407  protected:
408    Coefficients m_coeffs;
409};
410
411/** \ingroup Geometry_Module
412  * Map an unaligned array of single precision scalar as a quaternion */
413typedef Map<Quaternion<float>, 0>         QuaternionMapf;
414/** \ingroup Geometry_Module
415  * Map an unaligned array of double precision scalar as a quaternion */
416typedef Map<Quaternion<double>, 0>        QuaternionMapd;
417/** \ingroup Geometry_Module
418  * Map a 16-bits aligned array of double precision scalars as a quaternion */
419typedef Map<Quaternion<float>, Aligned>   QuaternionMapAlignedf;
420/** \ingroup Geometry_Module
421  * Map a 16-bits aligned array of double precision scalars as a quaternion */
422typedef Map<Quaternion<double>, Aligned>  QuaternionMapAlignedd;
423
424/***************************************************************************
425* Implementation of QuaternionBase methods
426***************************************************************************/
427
428// Generic Quaternion * Quaternion product
429// This product can be specialized for a given architecture via the Arch template argument.
430namespace internal {
431template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
432{
433  static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
434    return Quaternion<Scalar>
435    (
436      a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
437      a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
438      a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
439      a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
440    );
441  }
442};
443}
444
445/** \returns the concatenation of two rotations as a quaternion-quaternion product */
446template <class Derived>
447template <class OtherDerived>
448EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
449QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
450{
451  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
452   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
453  return internal::quat_product<Architecture::Target, Derived, OtherDerived,
454                         typename internal::traits<Derived>::Scalar,
455                         internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
456}
457
458/** \sa operator*(Quaternion) */
459template <class Derived>
460template <class OtherDerived>
461EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
462{
463  derived() = derived() * other.derived();
464  return derived();
465}
466
467/** Rotation of a vector by a quaternion.
468  * \remarks If the quaternion is used to rotate several points (>1)
469  * then it is much more efficient to first convert it to a 3x3 Matrix.
470  * Comparison of the operation cost for n transformations:
471  *   - Quaternion2:    30n
472  *   - Via a Matrix3: 24 + 15n
473  */
474template <class Derived>
475EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
476QuaternionBase<Derived>::_transformVector(Vector3 v) const
477{
478    // Note that this algorithm comes from the optimization by hand
479    // of the conversion to a Matrix followed by a Matrix/Vector product.
480    // It appears to be much faster than the common algorithm found
481    // in the litterature (30 versus 39 flops). It also requires two
482    // Vector3 as temporaries.
483    Vector3 uv = this->vec().cross(v);
484    uv += uv;
485    return v + this->w() * uv + this->vec().cross(uv);
486}
487
488template<class Derived>
489EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
490{
491  coeffs() = other.coeffs();
492  return derived();
493}
494
495template<class Derived>
496template<class OtherDerived>
497EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
498{
499  coeffs() = other.coeffs();
500  return derived();
501}
502
503/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
504  */
505template<class Derived>
506EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
507{
508  Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
509  this->w() = internal::cos(ha);
510  this->vec() = internal::sin(ha) * aa.axis();
511  return derived();
512}
513
514/** Set \c *this from the expression \a xpr:
515  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
516  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
517  *     and \a xpr is converted to a quaternion
518  */
519
520template<class Derived>
521template<class MatrixDerived>
522inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
523{
524  EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
525   YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
526  internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
527  return derived();
528}
529
530/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
531  * be normalized, otherwise the result is undefined.
532  */
533template<class Derived>
534inline typename QuaternionBase<Derived>::Matrix3
535QuaternionBase<Derived>::toRotationMatrix(void) const
536{
537  // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
538  // if not inlined then the cost of the return by value is huge ~ +35%,
539  // however, not inlining this function is an order of magnitude slower, so
540  // it has to be inlined, and so the return by value is not an issue
541  Matrix3 res;
542
543  const Scalar tx  = Scalar(2)*this->x();
544  const Scalar ty  = Scalar(2)*this->y();
545  const Scalar tz  = Scalar(2)*this->z();
546  const Scalar twx = tx*this->w();
547  const Scalar twy = ty*this->w();
548  const Scalar twz = tz*this->w();
549  const Scalar txx = tx*this->x();
550  const Scalar txy = ty*this->x();
551  const Scalar txz = tz*this->x();
552  const Scalar tyy = ty*this->y();
553  const Scalar tyz = tz*this->y();
554  const Scalar tzz = tz*this->z();
555
556  res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
557  res.coeffRef(0,1) = txy-twz;
558  res.coeffRef(0,2) = txz+twy;
559  res.coeffRef(1,0) = txy+twz;
560  res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
561  res.coeffRef(1,2) = tyz-twx;
562  res.coeffRef(2,0) = txz-twy;
563  res.coeffRef(2,1) = tyz+twx;
564  res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
565
566  return res;
567}
568
569/** Sets \c *this to be a quaternion representing a rotation between
570  * the two arbitrary vectors \a a and \a b. In other words, the built
571  * rotation represent a rotation sending the line of direction \a a
572  * to the line of direction \a b, both lines passing through the origin.
573  *
574  * \returns a reference to \c *this.
575  *
576  * Note that the two input vectors do \b not have to be normalized, and
577  * do not need to have the same norm.
578  */
579template<class Derived>
580template<typename Derived1, typename Derived2>
581inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
582{
583  using std::max;
584  Vector3 v0 = a.normalized();
585  Vector3 v1 = b.normalized();
586  Scalar c = v1.dot(v0);
587
588  // if dot == -1, vectors are nearly opposites
589  // => accuraletly compute the rotation axis by computing the
590  //    intersection of the two planes. This is done by solving:
591  //       x^T v0 = 0
592  //       x^T v1 = 0
593  //    under the constraint:
594  //       ||x|| = 1
595  //    which yields a singular value problem
596  if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
597  {
598    c = max<Scalar>(c,-1);
599    Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
600    JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
601    Vector3 axis = svd.matrixV().col(2);
602
603    Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
604    this->w() = internal::sqrt(w2);
605    this->vec() = axis * internal::sqrt(Scalar(1) - w2);
606    return derived();
607  }
608  Vector3 axis = v0.cross(v1);
609  Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2));
610  Scalar invs = Scalar(1)/s;
611  this->vec() = axis * invs;
612  this->w() = s * Scalar(0.5);
613
614  return derived();
615}
616
617
618/** Returns a quaternion representing a rotation between
619  * the two arbitrary vectors \a a and \a b. In other words, the built
620  * rotation represent a rotation sending the line of direction \a a
621  * to the line of direction \a b, both lines passing through the origin.
622  *
623  * \returns resulting quaternion
624  *
625  * Note that the two input vectors do \b not have to be normalized, and
626  * do not need to have the same norm.
627  */
628template<typename Scalar, int Options>
629template<typename Derived1, typename Derived2>
630Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
631{
632    Quaternion quat;
633    quat.setFromTwoVectors(a, b);
634    return quat;
635}
636
637
638/** \returns the multiplicative inverse of \c *this
639  * Note that in most cases, i.e., if you simply want the opposite rotation,
640  * and/or the quaternion is normalized, then it is enough to use the conjugate.
641  *
642  * \sa QuaternionBase::conjugate()
643  */
644template <class Derived>
645inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
646{
647  // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ??
648  Scalar n2 = this->squaredNorm();
649  if (n2 > 0)
650    return Quaternion<Scalar>(conjugate().coeffs() / n2);
651  else
652  {
653    // return an invalid result to flag the error
654    return Quaternion<Scalar>(Coefficients::Zero());
655  }
656}
657
658/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
659  * if the quaternion is normalized.
660  * The conjugate of a quaternion represents the opposite rotation.
661  *
662  * \sa Quaternion2::inverse()
663  */
664template <class Derived>
665inline Quaternion<typename internal::traits<Derived>::Scalar>
666QuaternionBase<Derived>::conjugate() const
667{
668  return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
669}
670
671/** \returns the angle (in radian) between two rotations
672  * \sa dot()
673  */
674template <class Derived>
675template <class OtherDerived>
676inline typename internal::traits<Derived>::Scalar
677QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
678{
679  using std::acos;
680  double d = internal::abs(this->dot(other));
681  if (d>=1.0)
682    return Scalar(0);
683  return static_cast<Scalar>(2 * acos(d));
684}
685
686/** \returns the spherical linear interpolation between the two quaternions
687  * \c *this and \a other at the parameter \a t
688  */
689template <class Derived>
690template <class OtherDerived>
691Quaternion<typename internal::traits<Derived>::Scalar>
692QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
693{
694  using std::acos;
695  static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
696  Scalar d = this->dot(other);
697  Scalar absD = internal::abs(d);
698
699  Scalar scale0;
700  Scalar scale1;
701
702  if(absD>=one)
703  {
704    scale0 = Scalar(1) - t;
705    scale1 = t;
706  }
707  else
708  {
709    // theta is the angle between the 2 quaternions
710    Scalar theta = acos(absD);
711    Scalar sinTheta = internal::sin(theta);
712
713    scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta;
714    scale1 = internal::sin( ( t * theta) ) / sinTheta;
715  }
716  if(d<0) scale1 = -scale1;
717
718  return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
719}
720
721namespace internal {
722
723// set from a rotation matrix
724template<typename Other>
725struct quaternionbase_assign_impl<Other,3,3>
726{
727  typedef typename Other::Scalar Scalar;
728  typedef DenseIndex Index;
729  template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
730  {
731    // This algorithm comes from  "Quaternion Calculus and Fast Animation",
732    // Ken Shoemake, 1987 SIGGRAPH course notes
733    Scalar t = mat.trace();
734    if (t > Scalar(0))
735    {
736      t = sqrt(t + Scalar(1.0));
737      q.w() = Scalar(0.5)*t;
738      t = Scalar(0.5)/t;
739      q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
740      q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
741      q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
742    }
743    else
744    {
745      DenseIndex i = 0;
746      if (mat.coeff(1,1) > mat.coeff(0,0))
747        i = 1;
748      if (mat.coeff(2,2) > mat.coeff(i,i))
749        i = 2;
750      DenseIndex j = (i+1)%3;
751      DenseIndex k = (j+1)%3;
752
753      t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
754      q.coeffs().coeffRef(i) = Scalar(0.5) * t;
755      t = Scalar(0.5)/t;
756      q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
757      q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
758      q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
759    }
760  }
761};
762
763// set from a vector of coefficients assumed to be a quaternion
764template<typename Other>
765struct quaternionbase_assign_impl<Other,4,1>
766{
767  typedef typename Other::Scalar Scalar;
768  template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
769  {
770    q.coeffs() = vec;
771  }
772};
773
774} // end namespace internal
775
776} // end namespace Eigen
777
778#endif // EIGEN_QUATERNION_H
779