Amd.h revision 7faaa9f3f0df9d23790277834d426c3d992ac3ba
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
6/*
7
8NOTE: this routine has been adapted from the CSparse library:
9
10Copyright (c) 2006, Timothy A. Davis.
11http://www.cise.ufl.edu/research/sparse/CSparse
12
13CSparse is free software; you can redistribute it and/or
14modify it under the terms of the GNU Lesser General Public
15License as published by the Free Software Foundation; either
16version 2.1 of the License, or (at your option) any later version.
17
18CSparse is distributed in the hope that it will be useful,
19but WITHOUT ANY WARRANTY; without even the implied warranty of
20MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21Lesser General Public License for more details.
22
23You should have received a copy of the GNU Lesser General Public
24License along with this Module; if not, write to the Free Software
25Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
26
27*/
28
29#include "../Core/util/NonMPL2.h"
30
31#ifndef EIGEN_SPARSE_AMD_H
32#define EIGEN_SPARSE_AMD_H
33
34namespace Eigen {
35
36namespace internal {
37
38template<typename T> inline T amd_flip(const T& i) { return -i-2; }
39template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; }
40template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; }
41template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); }
42
43/* clear w */
44template<typename Index>
45static int cs_wclear (Index mark, Index lemax, Index *w, Index n)
46{
47  Index k;
48  if(mark < 2 || (mark + lemax < 0))
49  {
50    for(k = 0; k < n; k++)
51      if(w[k] != 0)
52        w[k] = 1;
53    mark = 2;
54  }
55  return (mark);     /* at this point, w[0..n-1] < mark holds */
56}
57
58/* depth-first search and postorder of a tree rooted at node j */
59template<typename Index>
60Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack)
61{
62  int i, p, top = 0;
63  if(!head || !next || !post || !stack) return (-1);    /* check inputs */
64  stack[0] = j;                 /* place j on the stack */
65  while (top >= 0)                /* while (stack is not empty) */
66  {
67    p = stack[top];           /* p = top of stack */
68    i = head[p];              /* i = youngest child of p */
69    if(i == -1)
70    {
71      top--;                 /* p has no unordered children left */
72      post[k++] = p;        /* node p is the kth postordered node */
73    }
74    else
75    {
76      head[p] = next[i];   /* remove i from children of p */
77      stack[++top] = i;     /* start dfs on child node i */
78    }
79  }
80  return k;
81}
82
83
84/** \internal
85  * \ingroup OrderingMethods_Module
86  * Approximate minimum degree ordering algorithm.
87  * \returns the permutation P reducing the fill-in of the input matrix \a C
88  * The input matrix \a C must be a selfadjoint compressed column major SparseMatrix object. Both the upper and lower parts have to be stored, but the diagonal entries are optional.
89  * On exit the values of C are destroyed */
90template<typename Scalar, typename Index>
91void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, PermutationMatrix<Dynamic,Dynamic,Index>& perm)
92{
93  using std::sqrt;
94
95  int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
96      k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
97      ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t;
98  unsigned int h;
99
100  Index n = C.cols();
101  dense = std::max<Index> (16, Index(10 * sqrt(double(n))));   /* find dense threshold */
102  dense = std::min<Index> (n-2, dense);
103
104  Index cnz = C.nonZeros();
105  perm.resize(n+1);
106  t = cnz + cnz/5 + 2*n;                 /* add elbow room to C */
107  C.resizeNonZeros(t);
108
109  Index* W       = new Index[8*(n+1)]; /* get workspace */
110  Index* len     = W;
111  Index* nv      = W +   (n+1);
112  Index* next    = W + 2*(n+1);
113  Index* head    = W + 3*(n+1);
114  Index* elen    = W + 4*(n+1);
115  Index* degree  = W + 5*(n+1);
116  Index* w       = W + 6*(n+1);
117  Index* hhead   = W + 7*(n+1);
118  Index* last    = perm.indices().data();                              /* use P as workspace for last */
119
120  /* --- Initialize quotient graph ---------------------------------------- */
121  Index* Cp = C.outerIndexPtr();
122  Index* Ci = C.innerIndexPtr();
123  for(k = 0; k < n; k++)
124    len[k] = Cp[k+1] - Cp[k];
125  len[n] = 0;
126  nzmax = t;
127
128  for(i = 0; i <= n; i++)
129  {
130    head[i]   = -1;                     // degree list i is empty
131    last[i]   = -1;
132    next[i]   = -1;
133    hhead[i]  = -1;                     // hash list i is empty
134    nv[i]     = 1;                      // node i is just one node
135    w[i]      = 1;                      // node i is alive
136    elen[i]   = 0;                      // Ek of node i is empty
137    degree[i] = len[i];                 // degree of node i
138  }
139  mark = internal::cs_wclear<Index>(0, 0, w, n);         /* clear w */
140  elen[n] = -2;                         /* n is a dead element */
141  Cp[n] = -1;                           /* n is a root of assembly tree */
142  w[n] = 0;                             /* n is a dead element */
143
144  /* --- Initialize degree lists ------------------------------------------ */
145  for(i = 0; i < n; i++)
146  {
147    d = degree[i];
148    if(d == 0)                         /* node i is empty */
149    {
150      elen[i] = -2;                 /* element i is dead */
151      nel++;
152      Cp[i] = -1;                   /* i is a root of assembly tree */
153      w[i] = 0;
154    }
155    else if(d > dense)                 /* node i is dense */
156    {
157      nv[i] = 0;                    /* absorb i into element n */
158      elen[i] = -1;                 /* node i is dead */
159      nel++;
160      Cp[i] = amd_flip (n);
161      nv[n]++;
162    }
163    else
164    {
165      if(head[d] != -1) last[head[d]] = i;
166      next[i] = head[d];           /* put node i in degree list d */
167      head[d] = i;
168    }
169  }
170
171  while (nel < n)                         /* while (selecting pivots) do */
172  {
173    /* --- Select node of minimum approximate degree -------------------- */
174    for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {}
175    if(next[k] != -1) last[next[k]] = -1;
176    head[mindeg] = next[k];          /* remove k from degree list */
177    elenk = elen[k];                  /* elenk = |Ek| */
178    nvk = nv[k];                      /* # of nodes k represents */
179    nel += nvk;                        /* nv[k] nodes of A eliminated */
180
181    /* --- Garbage collection ------------------------------------------- */
182    if(elenk > 0 && cnz + mindeg >= nzmax)
183    {
184      for(j = 0; j < n; j++)
185      {
186        if((p = Cp[j]) >= 0)      /* j is a live node or element */
187        {
188          Cp[j] = Ci[p];          /* save first entry of object */
189          Ci[p] = amd_flip (j);    /* first entry is now amd_flip(j) */
190        }
191      }
192      for(q = 0, p = 0; p < cnz; ) /* scan all of memory */
193      {
194        if((j = amd_flip (Ci[p++])) >= 0)  /* found object j */
195        {
196          Ci[q] = Cp[j];       /* restore first entry of object */
197          Cp[j] = q++;          /* new pointer to object j */
198          for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
199        }
200      }
201      cnz = q;                       /* Ci[cnz...nzmax-1] now free */
202    }
203
204    /* --- Construct new element ---------------------------------------- */
205    dk = 0;
206    nv[k] = -nvk;                     /* flag k as in Lk */
207    p = Cp[k];
208    pk1 = (elenk == 0) ? p : cnz;      /* do in place if elen[k] == 0 */
209    pk2 = pk1;
210    for(k1 = 1; k1 <= elenk + 1; k1++)
211    {
212      if(k1 > elenk)
213      {
214        e = k;                     /* search the nodes in k */
215        pj = p;                    /* list of nodes starts at Ci[pj]*/
216        ln = len[k] - elenk;      /* length of list of nodes in k */
217      }
218      else
219      {
220        e = Ci[p++];              /* search the nodes in e */
221        pj = Cp[e];
222        ln = len[e];              /* length of list of nodes in e */
223      }
224      for(k2 = 1; k2 <= ln; k2++)
225      {
226        i = Ci[pj++];
227        if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */
228        dk += nvi;                 /* degree[Lk] += size of node i */
229        nv[i] = -nvi;             /* negate nv[i] to denote i in Lk*/
230        Ci[pk2++] = i;            /* place i in Lk */
231        if(next[i] != -1) last[next[i]] = last[i];
232        if(last[i] != -1)         /* remove i from degree list */
233        {
234          next[last[i]] = next[i];
235        }
236        else
237        {
238          head[degree[i]] = next[i];
239        }
240      }
241      if(e != k)
242      {
243        Cp[e] = amd_flip (k);      /* absorb e into k */
244        w[e] = 0;                 /* e is now a dead element */
245      }
246    }
247    if(elenk != 0) cnz = pk2;         /* Ci[cnz...nzmax] is free */
248    degree[k] = dk;                   /* external degree of k - |Lk\i| */
249    Cp[k] = pk1;                      /* element k is in Ci[pk1..pk2-1] */
250    len[k] = pk2 - pk1;
251    elen[k] = -2;                     /* k is now an element */
252
253    /* --- Find set differences ----------------------------------------- */
254    mark = internal::cs_wclear<Index>(mark, lemax, w, n);  /* clear w if necessary */
255    for(pk = pk1; pk < pk2; pk++)    /* scan 1: find |Le\Lk| */
256    {
257      i = Ci[pk];
258      if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */
259      nvi = -nv[i];                      /* nv[i] was negated */
260      wnvi = mark - nvi;
261      for(p = Cp[i]; p <= Cp[i] + eln - 1; p++)  /* scan Ei */
262      {
263        e = Ci[p];
264        if(w[e] >= mark)
265        {
266          w[e] -= nvi;          /* decrement |Le\Lk| */
267        }
268        else if(w[e] != 0)        /* ensure e is a live element */
269        {
270          w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */
271        }
272      }
273    }
274
275    /* --- Degree update ------------------------------------------------ */
276    for(pk = pk1; pk < pk2; pk++)    /* scan2: degree update */
277    {
278      i = Ci[pk];                   /* consider node i in Lk */
279      p1 = Cp[i];
280      p2 = p1 + elen[i] - 1;
281      pn = p1;
282      for(h = 0, d = 0, p = p1; p <= p2; p++)    /* scan Ei */
283      {
284        e = Ci[p];
285        if(w[e] != 0)             /* e is an unabsorbed element */
286        {
287          dext = w[e] - mark;   /* dext = |Le\Lk| */
288          if(dext > 0)
289          {
290            d += dext;         /* sum up the set differences */
291            Ci[pn++] = e;     /* keep e in Ei */
292            h += e;            /* compute the hash of node i */
293          }
294          else
295          {
296            Cp[e] = amd_flip (k);  /* aggressive absorb. e->k */
297            w[e] = 0;             /* e is a dead element */
298          }
299        }
300      }
301      elen[i] = pn - p1 + 1;        /* elen[i] = |Ei| */
302      p3 = pn;
303      p4 = p1 + len[i];
304      for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */
305      {
306        j = Ci[p];
307        if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */
308        d += nvj;                  /* degree(i) += |j| */
309        Ci[pn++] = j;             /* place j in node list of i */
310        h += j;                    /* compute hash for node i */
311      }
312      if(d == 0)                     /* check for mass elimination */
313      {
314        Cp[i] = amd_flip (k);      /* absorb i into k */
315        nvi = -nv[i];
316        dk -= nvi;                 /* |Lk| -= |i| */
317        nvk += nvi;                /* |k| += nv[i] */
318        nel += nvi;
319        nv[i] = 0;
320        elen[i] = -1;             /* node i is dead */
321      }
322      else
323      {
324        degree[i] = std::min<Index> (degree[i], d);   /* update degree(i) */
325        Ci[pn] = Ci[p3];         /* move first node to end */
326        Ci[p3] = Ci[p1];         /* move 1st el. to end of Ei */
327        Ci[p1] = k;               /* add k as 1st element in of Ei */
328        len[i] = pn - p1 + 1;     /* new len of adj. list of node i */
329        h %= n;                    /* finalize hash of i */
330        next[i] = hhead[h];      /* place i in hash bucket */
331        hhead[h] = i;
332        last[i] = h;              /* save hash of i in last[i] */
333      }
334    }                                   /* scan2 is done */
335    degree[k] = dk;                   /* finalize |Lk| */
336    lemax = std::max<Index>(lemax, dk);
337    mark = internal::cs_wclear<Index>(mark+lemax, lemax, w, n);    /* clear w */
338
339    /* --- Supernode detection ------------------------------------------ */
340    for(pk = pk1; pk < pk2; pk++)
341    {
342      i = Ci[pk];
343      if(nv[i] >= 0) continue;         /* skip if i is dead */
344      h = last[i];                      /* scan hash bucket of node i */
345      i = hhead[h];
346      hhead[h] = -1;                    /* hash bucket will be empty */
347      for(; i != -1 && next[i] != -1; i = next[i], mark++)
348      {
349        ln = len[i];
350        eln = elen[i];
351        for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
352        jlast = i;
353        for(j = next[i]; j != -1; ) /* compare i with all j */
354        {
355          ok = (len[j] == ln) && (elen[j] == eln);
356          for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
357          {
358            if(w[Ci[p]] != mark) ok = 0;    /* compare i and j*/
359          }
360          if(ok)                     /* i and j are identical */
361          {
362            Cp[j] = amd_flip (i);  /* absorb j into i */
363            nv[i] += nv[j];
364            nv[j] = 0;
365            elen[j] = -1;         /* node j is dead */
366            j = next[j];          /* delete j from hash bucket */
367            next[jlast] = j;
368          }
369          else
370          {
371            jlast = j;             /* j and i are different */
372            j = next[j];
373          }
374        }
375      }
376    }
377
378    /* --- Finalize new element------------------------------------------ */
379    for(p = pk1, pk = pk1; pk < pk2; pk++)   /* finalize Lk */
380    {
381      i = Ci[pk];
382      if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */
383      nv[i] = nvi;                      /* restore nv[i] */
384      d = degree[i] + dk - nvi;         /* compute external degree(i) */
385      d = std::min<Index> (d, n - nel - nvi);
386      if(head[d] != -1) last[head[d]] = i;
387      next[i] = head[d];               /* put i back in degree list */
388      last[i] = -1;
389      head[d] = i;
390      mindeg = std::min<Index> (mindeg, d);       /* find new minimum degree */
391      degree[i] = d;
392      Ci[p++] = i;                      /* place i in Lk */
393    }
394    nv[k] = nvk;                      /* # nodes absorbed into k */
395    if((len[k] = p-pk1) == 0)         /* length of adj list of element k*/
396    {
397      Cp[k] = -1;                   /* k is a root of the tree */
398      w[k] = 0;                     /* k is now a dead element */
399    }
400    if(elenk != 0) cnz = p;           /* free unused space in Lk */
401  }
402
403  /* --- Postordering ----------------------------------------------------- */
404  for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */
405  for(j = 0; j <= n; j++) head[j] = -1;
406  for(j = n; j >= 0; j--)              /* place unordered nodes in lists */
407  {
408    if(nv[j] > 0) continue;          /* skip if j is an element */
409    next[j] = head[Cp[j]];          /* place j in list of its parent */
410    head[Cp[j]] = j;
411  }
412  for(e = n; e >= 0; e--)              /* place elements in lists */
413  {
414    if(nv[e] <= 0) continue;         /* skip unless e is an element */
415    if(Cp[e] != -1)
416    {
417      next[e] = head[Cp[e]];      /* place e in list of its parent */
418      head[Cp[e]] = e;
419    }
420  }
421  for(k = 0, i = 0; i <= n; i++)       /* postorder the assembly tree */
422  {
423    if(Cp[i] == -1) k = internal::cs_tdfs<Index>(i, k, head, next, perm.indices().data(), w);
424  }
425
426  perm.indices().conservativeResize(n);
427
428  delete[] W;
429}
430
431} // namespace internal
432
433} // end namespace Eigen
434
435#endif // EIGEN_SPARSE_AMD_H
436