DWARFExpression.cpp revision 4fdf7602bedd8be648f3c549074cf13d90a05f03
1//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include "lldb/Expression/DWARFExpression.h" 11 12#include <vector> 13 14#include "lldb/Core/dwarf.h" 15#include "lldb/Core/Log.h" 16#include "lldb/Core/StreamString.h" 17#include "lldb/Core/Scalar.h" 18#include "lldb/Core/Value.h" 19#include "lldb/Core/VMRange.h" 20 21#include "lldb/Expression/ClangExpressionDeclMap.h" 22#include "lldb/Expression/ClangExpressionVariable.h" 23 24#include "lldb/Host/Endian.h" 25 26#include "lldb/lldb-private-log.h" 27 28#include "lldb/Symbol/ClangASTType.h" 29#include "lldb/Symbol/ClangASTContext.h" 30#include "lldb/Symbol/Type.h" 31 32#include "lldb/Target/ExecutionContext.h" 33#include "lldb/Target/Process.h" 34#include "lldb/Target/RegisterContext.h" 35#include "lldb/Target/StackFrame.h" 36 37using namespace lldb; 38using namespace lldb_private; 39 40const char * 41DW_OP_value_to_name (uint32_t val) 42{ 43 static char invalid[100]; 44 switch (val) { 45 case 0x03: return "DW_OP_addr"; 46 case 0x06: return "DW_OP_deref"; 47 case 0x08: return "DW_OP_const1u"; 48 case 0x09: return "DW_OP_const1s"; 49 case 0x0a: return "DW_OP_const2u"; 50 case 0x0b: return "DW_OP_const2s"; 51 case 0x0c: return "DW_OP_const4u"; 52 case 0x0d: return "DW_OP_const4s"; 53 case 0x0e: return "DW_OP_const8u"; 54 case 0x0f: return "DW_OP_const8s"; 55 case 0x10: return "DW_OP_constu"; 56 case 0x11: return "DW_OP_consts"; 57 case 0x12: return "DW_OP_dup"; 58 case 0x13: return "DW_OP_drop"; 59 case 0x14: return "DW_OP_over"; 60 case 0x15: return "DW_OP_pick"; 61 case 0x16: return "DW_OP_swap"; 62 case 0x17: return "DW_OP_rot"; 63 case 0x18: return "DW_OP_xderef"; 64 case 0x19: return "DW_OP_abs"; 65 case 0x1a: return "DW_OP_and"; 66 case 0x1b: return "DW_OP_div"; 67 case 0x1c: return "DW_OP_minus"; 68 case 0x1d: return "DW_OP_mod"; 69 case 0x1e: return "DW_OP_mul"; 70 case 0x1f: return "DW_OP_neg"; 71 case 0x20: return "DW_OP_not"; 72 case 0x21: return "DW_OP_or"; 73 case 0x22: return "DW_OP_plus"; 74 case 0x23: return "DW_OP_plus_uconst"; 75 case 0x24: return "DW_OP_shl"; 76 case 0x25: return "DW_OP_shr"; 77 case 0x26: return "DW_OP_shra"; 78 case 0x27: return "DW_OP_xor"; 79 case 0x2f: return "DW_OP_skip"; 80 case 0x28: return "DW_OP_bra"; 81 case 0x29: return "DW_OP_eq"; 82 case 0x2a: return "DW_OP_ge"; 83 case 0x2b: return "DW_OP_gt"; 84 case 0x2c: return "DW_OP_le"; 85 case 0x2d: return "DW_OP_lt"; 86 case 0x2e: return "DW_OP_ne"; 87 case 0x30: return "DW_OP_lit0"; 88 case 0x31: return "DW_OP_lit1"; 89 case 0x32: return "DW_OP_lit2"; 90 case 0x33: return "DW_OP_lit3"; 91 case 0x34: return "DW_OP_lit4"; 92 case 0x35: return "DW_OP_lit5"; 93 case 0x36: return "DW_OP_lit6"; 94 case 0x37: return "DW_OP_lit7"; 95 case 0x38: return "DW_OP_lit8"; 96 case 0x39: return "DW_OP_lit9"; 97 case 0x3a: return "DW_OP_lit10"; 98 case 0x3b: return "DW_OP_lit11"; 99 case 0x3c: return "DW_OP_lit12"; 100 case 0x3d: return "DW_OP_lit13"; 101 case 0x3e: return "DW_OP_lit14"; 102 case 0x3f: return "DW_OP_lit15"; 103 case 0x40: return "DW_OP_lit16"; 104 case 0x41: return "DW_OP_lit17"; 105 case 0x42: return "DW_OP_lit18"; 106 case 0x43: return "DW_OP_lit19"; 107 case 0x44: return "DW_OP_lit20"; 108 case 0x45: return "DW_OP_lit21"; 109 case 0x46: return "DW_OP_lit22"; 110 case 0x47: return "DW_OP_lit23"; 111 case 0x48: return "DW_OP_lit24"; 112 case 0x49: return "DW_OP_lit25"; 113 case 0x4a: return "DW_OP_lit26"; 114 case 0x4b: return "DW_OP_lit27"; 115 case 0x4c: return "DW_OP_lit28"; 116 case 0x4d: return "DW_OP_lit29"; 117 case 0x4e: return "DW_OP_lit30"; 118 case 0x4f: return "DW_OP_lit31"; 119 case 0x50: return "DW_OP_reg0"; 120 case 0x51: return "DW_OP_reg1"; 121 case 0x52: return "DW_OP_reg2"; 122 case 0x53: return "DW_OP_reg3"; 123 case 0x54: return "DW_OP_reg4"; 124 case 0x55: return "DW_OP_reg5"; 125 case 0x56: return "DW_OP_reg6"; 126 case 0x57: return "DW_OP_reg7"; 127 case 0x58: return "DW_OP_reg8"; 128 case 0x59: return "DW_OP_reg9"; 129 case 0x5a: return "DW_OP_reg10"; 130 case 0x5b: return "DW_OP_reg11"; 131 case 0x5c: return "DW_OP_reg12"; 132 case 0x5d: return "DW_OP_reg13"; 133 case 0x5e: return "DW_OP_reg14"; 134 case 0x5f: return "DW_OP_reg15"; 135 case 0x60: return "DW_OP_reg16"; 136 case 0x61: return "DW_OP_reg17"; 137 case 0x62: return "DW_OP_reg18"; 138 case 0x63: return "DW_OP_reg19"; 139 case 0x64: return "DW_OP_reg20"; 140 case 0x65: return "DW_OP_reg21"; 141 case 0x66: return "DW_OP_reg22"; 142 case 0x67: return "DW_OP_reg23"; 143 case 0x68: return "DW_OP_reg24"; 144 case 0x69: return "DW_OP_reg25"; 145 case 0x6a: return "DW_OP_reg26"; 146 case 0x6b: return "DW_OP_reg27"; 147 case 0x6c: return "DW_OP_reg28"; 148 case 0x6d: return "DW_OP_reg29"; 149 case 0x6e: return "DW_OP_reg30"; 150 case 0x6f: return "DW_OP_reg31"; 151 case 0x70: return "DW_OP_breg0"; 152 case 0x71: return "DW_OP_breg1"; 153 case 0x72: return "DW_OP_breg2"; 154 case 0x73: return "DW_OP_breg3"; 155 case 0x74: return "DW_OP_breg4"; 156 case 0x75: return "DW_OP_breg5"; 157 case 0x76: return "DW_OP_breg6"; 158 case 0x77: return "DW_OP_breg7"; 159 case 0x78: return "DW_OP_breg8"; 160 case 0x79: return "DW_OP_breg9"; 161 case 0x7a: return "DW_OP_breg10"; 162 case 0x7b: return "DW_OP_breg11"; 163 case 0x7c: return "DW_OP_breg12"; 164 case 0x7d: return "DW_OP_breg13"; 165 case 0x7e: return "DW_OP_breg14"; 166 case 0x7f: return "DW_OP_breg15"; 167 case 0x80: return "DW_OP_breg16"; 168 case 0x81: return "DW_OP_breg17"; 169 case 0x82: return "DW_OP_breg18"; 170 case 0x83: return "DW_OP_breg19"; 171 case 0x84: return "DW_OP_breg20"; 172 case 0x85: return "DW_OP_breg21"; 173 case 0x86: return "DW_OP_breg22"; 174 case 0x87: return "DW_OP_breg23"; 175 case 0x88: return "DW_OP_breg24"; 176 case 0x89: return "DW_OP_breg25"; 177 case 0x8a: return "DW_OP_breg26"; 178 case 0x8b: return "DW_OP_breg27"; 179 case 0x8c: return "DW_OP_breg28"; 180 case 0x8d: return "DW_OP_breg29"; 181 case 0x8e: return "DW_OP_breg30"; 182 case 0x8f: return "DW_OP_breg31"; 183 case 0x90: return "DW_OP_regx"; 184 case 0x91: return "DW_OP_fbreg"; 185 case 0x92: return "DW_OP_bregx"; 186 case 0x93: return "DW_OP_piece"; 187 case 0x94: return "DW_OP_deref_size"; 188 case 0x95: return "DW_OP_xderef_size"; 189 case 0x96: return "DW_OP_nop"; 190 case 0x97: return "DW_OP_push_object_address"; 191 case 0x98: return "DW_OP_call2"; 192 case 0x99: return "DW_OP_call4"; 193 case 0x9a: return "DW_OP_call_ref"; 194 case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 195 case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 196 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 197 case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 198 case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 199 case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 200 case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 201 case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 202 case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 203 case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 204 case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 205 case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 206 case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 207 default: 208 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 209 return invalid; 210 } 211} 212 213 214//---------------------------------------------------------------------- 215// DWARFExpression constructor 216//---------------------------------------------------------------------- 217DWARFExpression::DWARFExpression() : 218 m_data(), 219 m_reg_kind (eRegisterKindDWARF), 220 m_loclist_slide (LLDB_INVALID_ADDRESS) 221{ 222} 223 224DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 225 m_data(rhs.m_data), 226 m_reg_kind (rhs.m_reg_kind), 227 m_loclist_slide(rhs.m_loclist_slide) 228{ 229} 230 231 232DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length) : 233 m_data(data, data_offset, data_length), 234 m_reg_kind (eRegisterKindDWARF), 235 m_loclist_slide(LLDB_INVALID_ADDRESS) 236{ 237} 238 239//---------------------------------------------------------------------- 240// Destructor 241//---------------------------------------------------------------------- 242DWARFExpression::~DWARFExpression() 243{ 244} 245 246 247bool 248DWARFExpression::IsValid() const 249{ 250 return m_data.GetByteSize() > 0; 251} 252 253void 254DWARFExpression::SetOpcodeData (const DataExtractor& data) 255{ 256 m_data = data; 257} 258 259void 260DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) 261{ 262 m_data.SetData(data, data_offset, data_length); 263} 264 265void 266DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level) const 267{ 268 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 269 return; 270 const uint32_t start_offset = offset; 271 const uint32_t end_offset = offset + length; 272 while (m_data.ValidOffset(offset) && offset < end_offset) 273 { 274 const uint32_t op_offset = offset; 275 const uint8_t op = m_data.GetU8(&offset); 276 277 switch (level) 278 { 279 default: 280 break; 281 282 case lldb::eDescriptionLevelBrief: 283 if (offset > start_offset) 284 s->PutChar(' '); 285 break; 286 287 case lldb::eDescriptionLevelFull: 288 case lldb::eDescriptionLevelVerbose: 289 if (offset > start_offset) 290 s->EOL(); 291 s->Indent(); 292 if (level == lldb::eDescriptionLevelFull) 293 break; 294 // Fall through for verbose and print offset and DW_OP prefix.. 295 s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 296 break; 297 } 298 299 switch (op) 300 { 301 case DW_OP_addr: *s << "addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 302 case DW_OP_deref: *s << "deref"; break; // 0x06 303 case DW_OP_const1u: s->Printf("const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 304 case DW_OP_const1s: s->Printf("const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 305 case DW_OP_const2u: s->Printf("const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 306 case DW_OP_const2s: s->Printf("const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 307 case DW_OP_const4u: s->Printf("const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 308 case DW_OP_const4s: s->Printf("const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 309 case DW_OP_const8u: s->Printf("const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 310 case DW_OP_const8s: s->Printf("const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 311 case DW_OP_constu: s->Printf("constu(0x%x) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 312 case DW_OP_consts: s->Printf("consts(0x%x) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 313 case DW_OP_dup: s->PutCString("dup"); break; // 0x12 314 case DW_OP_drop: s->PutCString("drop"); break; // 0x13 315 case DW_OP_over: s->PutCString("over"); break; // 0x14 316 case DW_OP_pick: s->Printf("pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 317 case DW_OP_swap: s->PutCString("swap"); break; // 0x16 318 case DW_OP_rot: s->PutCString("rot"); break; // 0x17 319 case DW_OP_xderef: s->PutCString("xderef"); break; // 0x18 320 case DW_OP_abs: s->PutCString("abs"); break; // 0x19 321 case DW_OP_and: s->PutCString("and"); break; // 0x1a 322 case DW_OP_div: s->PutCString("div"); break; // 0x1b 323 case DW_OP_minus: s->PutCString("minus"); break; // 0x1c 324 case DW_OP_mod: s->PutCString("mod"); break; // 0x1d 325 case DW_OP_mul: s->PutCString("mul"); break; // 0x1e 326 case DW_OP_neg: s->PutCString("neg"); break; // 0x1f 327 case DW_OP_not: s->PutCString("not"); break; // 0x20 328 case DW_OP_or: s->PutCString("or"); break; // 0x21 329 case DW_OP_plus: s->PutCString("plus"); break; // 0x22 330 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 331 s->Printf("plus_uconst(0x%x) ", m_data.GetULEB128(&offset)); 332 break; 333 334 case DW_OP_shl: s->PutCString("shl"); break; // 0x24 335 case DW_OP_shr: s->PutCString("shr"); break; // 0x25 336 case DW_OP_shra: s->PutCString("shra"); break; // 0x26 337 case DW_OP_xor: s->PutCString("xor"); break; // 0x27 338 case DW_OP_skip: s->Printf("skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 339 case DW_OP_bra: s->Printf("bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 340 case DW_OP_eq: s->PutCString("eq"); break; // 0x29 341 case DW_OP_ge: s->PutCString("ge"); break; // 0x2a 342 case DW_OP_gt: s->PutCString("gt"); break; // 0x2b 343 case DW_OP_le: s->PutCString("le"); break; // 0x2c 344 case DW_OP_lt: s->PutCString("lt"); break; // 0x2d 345 case DW_OP_ne: s->PutCString("ne"); break; // 0x2e 346 347 case DW_OP_lit0: // 0x30 348 case DW_OP_lit1: // 0x31 349 case DW_OP_lit2: // 0x32 350 case DW_OP_lit3: // 0x33 351 case DW_OP_lit4: // 0x34 352 case DW_OP_lit5: // 0x35 353 case DW_OP_lit6: // 0x36 354 case DW_OP_lit7: // 0x37 355 case DW_OP_lit8: // 0x38 356 case DW_OP_lit9: // 0x39 357 case DW_OP_lit10: // 0x3A 358 case DW_OP_lit11: // 0x3B 359 case DW_OP_lit12: // 0x3C 360 case DW_OP_lit13: // 0x3D 361 case DW_OP_lit14: // 0x3E 362 case DW_OP_lit15: // 0x3F 363 case DW_OP_lit16: // 0x40 364 case DW_OP_lit17: // 0x41 365 case DW_OP_lit18: // 0x42 366 case DW_OP_lit19: // 0x43 367 case DW_OP_lit20: // 0x44 368 case DW_OP_lit21: // 0x45 369 case DW_OP_lit22: // 0x46 370 case DW_OP_lit23: // 0x47 371 case DW_OP_lit24: // 0x48 372 case DW_OP_lit25: // 0x49 373 case DW_OP_lit26: // 0x4A 374 case DW_OP_lit27: // 0x4B 375 case DW_OP_lit28: // 0x4C 376 case DW_OP_lit29: // 0x4D 377 case DW_OP_lit30: // 0x4E 378 case DW_OP_lit31: s->Printf("lit%i", op - DW_OP_lit0); break; // 0x4f 379 380 case DW_OP_reg0: // 0x50 381 case DW_OP_reg1: // 0x51 382 case DW_OP_reg2: // 0x52 383 case DW_OP_reg3: // 0x53 384 case DW_OP_reg4: // 0x54 385 case DW_OP_reg5: // 0x55 386 case DW_OP_reg6: // 0x56 387 case DW_OP_reg7: // 0x57 388 case DW_OP_reg8: // 0x58 389 case DW_OP_reg9: // 0x59 390 case DW_OP_reg10: // 0x5A 391 case DW_OP_reg11: // 0x5B 392 case DW_OP_reg12: // 0x5C 393 case DW_OP_reg13: // 0x5D 394 case DW_OP_reg14: // 0x5E 395 case DW_OP_reg15: // 0x5F 396 case DW_OP_reg16: // 0x60 397 case DW_OP_reg17: // 0x61 398 case DW_OP_reg18: // 0x62 399 case DW_OP_reg19: // 0x63 400 case DW_OP_reg20: // 0x64 401 case DW_OP_reg21: // 0x65 402 case DW_OP_reg22: // 0x66 403 case DW_OP_reg23: // 0x67 404 case DW_OP_reg24: // 0x68 405 case DW_OP_reg25: // 0x69 406 case DW_OP_reg26: // 0x6A 407 case DW_OP_reg27: // 0x6B 408 case DW_OP_reg28: // 0x6C 409 case DW_OP_reg29: // 0x6D 410 case DW_OP_reg30: // 0x6E 411 case DW_OP_reg31: s->Printf("reg%i", op - DW_OP_reg0); break; // 0x6f 412 413 case DW_OP_breg0: 414 case DW_OP_breg1: 415 case DW_OP_breg2: 416 case DW_OP_breg3: 417 case DW_OP_breg4: 418 case DW_OP_breg5: 419 case DW_OP_breg6: 420 case DW_OP_breg7: 421 case DW_OP_breg8: 422 case DW_OP_breg9: 423 case DW_OP_breg10: 424 case DW_OP_breg11: 425 case DW_OP_breg12: 426 case DW_OP_breg13: 427 case DW_OP_breg14: 428 case DW_OP_breg15: 429 case DW_OP_breg16: 430 case DW_OP_breg17: 431 case DW_OP_breg18: 432 case DW_OP_breg19: 433 case DW_OP_breg20: 434 case DW_OP_breg21: 435 case DW_OP_breg22: 436 case DW_OP_breg23: 437 case DW_OP_breg24: 438 case DW_OP_breg25: 439 case DW_OP_breg26: 440 case DW_OP_breg27: 441 case DW_OP_breg28: 442 case DW_OP_breg29: 443 case DW_OP_breg30: 444 case DW_OP_breg31: s->Printf("breg%i(0x%x)", op - DW_OP_breg0, m_data.GetULEB128(&offset)); break; 445 446 case DW_OP_regx: // 0x90 1 ULEB128 register 447 s->Printf("regx(0x%x)", m_data.GetULEB128(&offset)); 448 break; 449 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 450 s->Printf("fbreg(0x%x)",m_data.GetSLEB128(&offset)); 451 break; 452 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 453 s->Printf("bregx(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetSLEB128(&offset)); 454 break; 455 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 456 s->Printf("piece(0x%x)", m_data.GetULEB128(&offset)); 457 break; 458 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 459 s->Printf("deref_size(0x%2.2x)", m_data.GetU8(&offset)); 460 break; 461 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 462 s->Printf("xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 463 break; 464 case DW_OP_nop: s->PutCString("nop"); break; // 0x96 465 case DW_OP_push_object_address: s->PutCString("push_object_address"); break; // 0x97 DWARF3 466 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 467 s->Printf("call2(0x%4.4x)", m_data.GetU16(&offset)); 468 break; 469 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 470 s->Printf("call4(0x%8.8x)", m_data.GetU32(&offset)); 471 break; 472 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 473 s->Printf("call_ref(0x%8.8llx)", m_data.GetAddress(&offset)); 474 break; 475// case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 476// case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 477// case DW_OP_bit_piece: // 0x9d DWARF3 2 478// s->Printf("bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 479// break; 480// case DW_OP_lo_user: s->PutCString("lo_user"); break; // 0xe0 481// case DW_OP_hi_user: s->PutCString("hi_user"); break; // 0xff 482 case DW_OP_APPLE_extern: 483 s->Printf("extern(%u)", m_data.GetULEB128(&offset)); 484 break; 485 case DW_OP_APPLE_array_ref: 486 s->PutCString("array_ref"); 487 break; 488 case DW_OP_APPLE_uninit: 489 s->PutCString("uninit"); // 0xF0 490 break; 491 case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 492 s->PutCString("assign"); 493 break; 494 case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 495 s->PutCString("address_of"); 496 break; 497 case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 498 s->PutCString("value_of"); 499 break; 500 case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 501 s->PutCString("deref_type"); 502 break; 503 case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 504 s->Printf("expr_local(%u)", m_data.GetULEB128(&offset)); 505 break; 506 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 507 { 508 uint8_t float_length = m_data.GetU8(&offset); 509 s->Printf("constf(<%u> ", float_length); 510 m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 511 s->PutChar(')'); 512 // Consume the float data 513 m_data.GetData(&offset, float_length); 514 } 515 break; 516 case DW_OP_APPLE_scalar_cast: 517 s->Printf("scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 518 break; 519 case DW_OP_APPLE_clang_cast: 520 { 521 clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 522 s->Printf("clang_cast(%p)", clang_type); 523 } 524 break; 525 case DW_OP_APPLE_clear: 526 s->PutCString("clear"); 527 break; 528 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 529 s->PutCString("error"); 530 break; 531 } 532 } 533} 534 535void 536DWARFExpression::SetLocationListSlide (addr_t slide) 537{ 538 m_loclist_slide = slide; 539} 540 541int 542DWARFExpression::GetRegisterKind () 543{ 544 return m_reg_kind; 545} 546 547void 548DWARFExpression::SetRegisterKind (int reg_kind) 549{ 550 m_reg_kind = reg_kind; 551} 552 553bool 554DWARFExpression::IsLocationList() const 555{ 556 return m_loclist_slide != LLDB_INVALID_ADDRESS; 557} 558 559void 560DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr) const 561{ 562 if (IsLocationList()) 563 { 564 // We have a location list 565 uint32_t offset = 0; 566 uint32_t count = 0; 567 addr_t curr_base_addr = location_list_base_addr; 568 while (m_data.ValidOffset(offset)) 569 { 570 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 571 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 572 if (begin_addr_offset < end_addr_offset) 573 { 574 if (count > 0) 575 s->PutCString(", "); 576 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 577 addr_range.Dump(s, 0, 8); 578 s->PutChar('{'); 579 uint32_t location_length = m_data.GetU16(&offset); 580 DumpLocation (s, offset, location_length, level); 581 s->PutChar('}'); 582 offset += location_length; 583 } 584 else if (begin_addr_offset == 0 && end_addr_offset == 0) 585 { 586 // The end of the location list is marked by both the start and end offset being zero 587 break; 588 } 589 else 590 { 591 if (m_data.GetAddressByteSize() == 4 && begin_addr_offset == 0xFFFFFFFFull || 592 m_data.GetAddressByteSize() == 8 && begin_addr_offset == 0xFFFFFFFFFFFFFFFFull) 593 { 594 curr_base_addr = end_addr_offset + location_list_base_addr; 595 // We have a new base address 596 if (count > 0) 597 s->PutCString(", "); 598 *s << "base_addr = " << end_addr_offset; 599 } 600 } 601 602 count++; 603 } 604 } 605 else 606 { 607 // We have a normal location that contains DW_OP location opcodes 608 DumpLocation (s, 0, m_data.GetByteSize(), level); 609 } 610} 611 612static bool 613ReadRegisterValueAsScalar 614( 615 RegisterContext *reg_context, 616 uint32_t reg_kind, 617 uint32_t reg_num, 618 Error *error_ptr, 619 Value &value 620) 621{ 622 if (reg_context == NULL) 623 { 624 if (error_ptr) 625 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 626 } 627 else 628 { 629 uint32_t native_reg = reg_context->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 630 if (native_reg == LLDB_INVALID_REGNUM) 631 { 632 if (error_ptr) 633 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 634 } 635 else 636 { 637 value.SetValueType (Value::eValueTypeScalar); 638 value.SetContext (Value::eContextTypeRegisterInfo, const_cast<RegisterInfo *>(reg_context->GetRegisterInfoAtIndex(native_reg))); 639 640 if (reg_context->ReadRegisterValue (native_reg, value.GetScalar())) 641 return true; 642 643 if (error_ptr) 644 error_ptr->SetErrorStringWithFormat("Failed to read register %u.\n", native_reg); 645 } 646 } 647 return false; 648} 649 650//bool 651//DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 652//{ 653// return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 654//} 655// 656//bool 657//DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 658//{ 659// if (load_addr == LLDB_INVALID_ADDRESS) 660// return false; 661// 662// if (IsLocationList()) 663// { 664// uint32_t offset = 0; 665// 666// addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 667// 668// if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 669// return false; 670// 671// while (m_data.ValidOffset(offset)) 672// { 673// // We need to figure out what the value is for the location. 674// addr_t lo_pc = m_data.GetAddress(&offset); 675// addr_t hi_pc = m_data.GetAddress(&offset); 676// if (lo_pc == 0 && hi_pc == 0) 677// break; 678// else 679// { 680// lo_pc += loc_list_base_addr; 681// hi_pc += loc_list_base_addr; 682// 683// if (lo_pc <= load_addr && load_addr < hi_pc) 684// return true; 685// 686// offset += m_data.GetU16(&offset); 687// } 688// } 689// } 690// return false; 691//} 692 693bool 694DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 695{ 696 if (addr == LLDB_INVALID_ADDRESS) 697 return false; 698 699 if (IsLocationList()) 700 { 701 uint32_t offset = 0; 702 703 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 704 return false; 705 706 while (m_data.ValidOffset(offset)) 707 { 708 // We need to figure out what the value is for the location. 709 addr_t lo_pc = m_data.GetAddress(&offset); 710 addr_t hi_pc = m_data.GetAddress(&offset); 711 if (lo_pc == 0 && hi_pc == 0) 712 break; 713 else 714 { 715 lo_pc += loclist_base_addr - m_loclist_slide; 716 hi_pc += loclist_base_addr - m_loclist_slide; 717 718 if (lo_pc <= addr && addr < hi_pc) 719 return true; 720 721 offset += m_data.GetU16(&offset); 722 } 723 } 724 } 725 return false; 726} 727 728bool 729DWARFExpression::Evaluate 730( 731 ExecutionContextScope *exe_scope, 732 clang::ASTContext *ast_context, 733 ClangExpressionVariableList *expr_locals, 734 ClangExpressionDeclMap *decl_map, 735 lldb::addr_t loclist_base_load_addr, 736 const Value* initial_value_ptr, 737 Value& result, 738 Error *error_ptr 739) const 740{ 741 ExecutionContext exe_ctx (exe_scope); 742 return Evaluate(&exe_ctx, ast_context, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 743} 744 745bool 746DWARFExpression::Evaluate 747( 748 ExecutionContext *exe_ctx, 749 clang::ASTContext *ast_context, 750 ClangExpressionVariableList *expr_locals, 751 ClangExpressionDeclMap *decl_map, 752 RegisterContext *reg_ctx, 753 lldb::addr_t loclist_base_load_addr, 754 const Value* initial_value_ptr, 755 Value& result, 756 Error *error_ptr 757) const 758{ 759 if (IsLocationList()) 760 { 761 uint32_t offset = 0; 762 addr_t pc; 763 if (reg_ctx) 764 pc = reg_ctx->GetPC(); 765 else 766 pc = exe_ctx->frame->GetRegisterContext()->GetPC(); 767 768 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 769 { 770 if (pc == LLDB_INVALID_ADDRESS) 771 { 772 if (error_ptr) 773 error_ptr->SetErrorString("Invalid PC in frame."); 774 return false; 775 } 776 777 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 778 779 while (m_data.ValidOffset(offset)) 780 { 781 // We need to figure out what the value is for the location. 782 addr_t lo_pc = m_data.GetAddress(&offset); 783 addr_t hi_pc = m_data.GetAddress(&offset); 784 if (lo_pc == 0 && hi_pc == 0) 785 { 786 break; 787 } 788 else 789 { 790 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 791 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 792 793 uint16_t length = m_data.GetU16(&offset); 794 795 if (length > 0 && lo_pc <= pc && pc < hi_pc) 796 { 797 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 798 } 799 offset += length; 800 } 801 } 802 } 803 if (error_ptr) 804 error_ptr->SetErrorStringWithFormat("Out of scope."); 805 return false; 806 } 807 808 // Not a location list, just a single expression. 809 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 810} 811 812 813 814bool 815DWARFExpression::Evaluate 816( 817 ExecutionContext *exe_ctx, 818 clang::ASTContext *ast_context, 819 ClangExpressionVariableList *expr_locals, 820 ClangExpressionDeclMap *decl_map, 821 RegisterContext *reg_ctx, 822 const DataExtractor& opcodes, 823 const uint32_t opcodes_offset, 824 const uint32_t opcodes_length, 825 const uint32_t reg_kind, 826 const Value* initial_value_ptr, 827 Value& result, 828 Error *error_ptr 829) 830{ 831 std::vector<Value> stack; 832 833 if (reg_ctx == NULL && exe_ctx && exe_ctx->frame) 834 reg_ctx = exe_ctx->frame->GetRegisterContext().get(); 835 836 if (initial_value_ptr) 837 stack.push_back(*initial_value_ptr); 838 839 uint32_t offset = opcodes_offset; 840 const uint32_t end_offset = opcodes_offset + opcodes_length; 841 Value tmp; 842 uint32_t reg_num; 843 844 // Make sure all of the data is available in opcodes. 845 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 846 { 847 if (error_ptr) 848 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer."); 849 return false; 850 } 851 LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 852 853 854 while (opcodes.ValidOffset(offset) && offset < end_offset) 855 { 856 const uint32_t op_offset = offset; 857 const uint8_t op = opcodes.GetU8(&offset); 858 859 if (log) 860 { 861 size_t count = stack.size(); 862 log->Printf("Stack before operation has %d values:", count); 863 for (size_t i=0; i<count; ++i) 864 { 865 StreamString new_value; 866 new_value.Printf("[%zu]", i); 867 stack[i].Dump(&new_value); 868 log->Printf(" %s", new_value.GetData()); 869 } 870 log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op)); 871 } 872 switch (op) 873 { 874 //---------------------------------------------------------------------- 875 // The DW_OP_addr operation has a single operand that encodes a machine 876 // address and whose size is the size of an address on the target machine. 877 //---------------------------------------------------------------------- 878 case DW_OP_addr: 879 stack.push_back(opcodes.GetAddress(&offset)); 880 stack.back().SetValueType (Value::eValueTypeFileAddress); 881 break; 882 883 //---------------------------------------------------------------------- 884 // The DW_OP_addr_sect_offset4 is used for any location expressions in 885 // shared libraries that have a location like: 886 // DW_OP_addr(0x1000) 887 // If this address resides in a shared library, then this virtual 888 // address won't make sense when it is evaluated in the context of a 889 // running process where shared libraries have been slid. To account for 890 // this, this new address type where we can store the section pointer 891 // and a 4 byte offset. 892 //---------------------------------------------------------------------- 893// case DW_OP_addr_sect_offset4: 894// { 895// result_type = eResultTypeFileAddress; 896// lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 897// lldb::addr_t sect_offset = opcodes.GetU32(&offset); 898// 899// Address so_addr (sect, sect_offset); 900// lldb::addr_t load_addr = so_addr.GetLoadAddress(); 901// if (load_addr != LLDB_INVALID_ADDRESS) 902// { 903// // We successfully resolve a file address to a load 904// // address. 905// stack.push_back(load_addr); 906// break; 907// } 908// else 909// { 910// // We were able 911// if (error_ptr) 912// error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 913// return false; 914// } 915// } 916// break; 917 918 //---------------------------------------------------------------------- 919 // OPCODE: DW_OP_deref 920 // OPERANDS: none 921 // DESCRIPTION: Pops the top stack entry and treats it as an address. 922 // The value retrieved from that address is pushed. The size of the 923 // data retrieved from the dereferenced address is the size of an 924 // address on the target machine. 925 //---------------------------------------------------------------------- 926 case DW_OP_deref: 927 { 928 Value::ValueType value_type = stack.back().GetValueType(); 929 switch (value_type) 930 { 931 case Value::eValueTypeHostAddress: 932 { 933 void *src = (void *)stack.back().GetScalar().ULongLong(); 934 intptr_t ptr; 935 ::memcpy (&ptr, src, sizeof(void *)); 936 stack.back().GetScalar() = ptr; 937 stack.back().ClearContext(); 938 } 939 break; 940 case Value::eValueTypeLoadAddress: 941 if (exe_ctx) 942 { 943 if (exe_ctx->process) 944 { 945 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 946 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 947 uint32_t addr_size = exe_ctx->process->GetAddressByteSize(); 948 Error error; 949 if (exe_ctx->process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) 950 { 951 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), exe_ctx->process->GetByteOrder(), addr_size); 952 uint32_t addr_data_offset = 0; 953 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 954 stack.back().ClearContext(); 955 } 956 else 957 { 958 if (error_ptr) 959 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 960 pointer_addr, 961 error.AsCString()); 962 return false; 963 } 964 } 965 else 966 { 967 if (error_ptr) 968 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 969 return false; 970 } 971 } 972 else 973 { 974 if (error_ptr) 975 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 976 return false; 977 } 978 break; 979 980 default: 981 break; 982 } 983 984 } 985 break; 986 987 //---------------------------------------------------------------------- 988 // OPCODE: DW_OP_deref_size 989 // OPERANDS: 1 990 // 1 - uint8_t that specifies the size of the data to dereference. 991 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 992 // stack entry and treats it as an address. The value retrieved from that 993 // address is pushed. In the DW_OP_deref_size operation, however, the 994 // size in bytes of the data retrieved from the dereferenced address is 995 // specified by the single operand. This operand is a 1-byte unsigned 996 // integral constant whose value may not be larger than the size of an 997 // address on the target machine. The data retrieved is zero extended 998 // to the size of an address on the target machine before being pushed 999 // on the expression stack. 1000 //---------------------------------------------------------------------- 1001 case DW_OP_deref_size: 1002 { 1003 uint8_t size = opcodes.GetU8(&offset); 1004 Value::ValueType value_type = stack.back().GetValueType(); 1005 switch (value_type) 1006 { 1007 case Value::eValueTypeHostAddress: 1008 { 1009 void *src = (void *)stack.back().GetScalar().ULongLong(); 1010 intptr_t ptr; 1011 ::memcpy (&ptr, src, sizeof(void *)); 1012 // I can't decide whether the size operand should apply to the bytes in their 1013 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1014 // but I'll opt for assuming big endian regardless. 1015 switch (size) 1016 { 1017 case 1: ptr = ptr & 0xff; break; 1018 case 2: ptr = ptr & 0xffff; break; 1019 case 3: ptr = ptr & 0xffffff; break; 1020 case 4: ptr = ptr & 0xffffffff; break; 1021 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1022 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1023 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1024 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1025 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1026 default: break; 1027 } 1028 stack.back().GetScalar() = ptr; 1029 stack.back().ClearContext(); 1030 } 1031 break; 1032 case Value::eValueTypeLoadAddress: 1033 if (exe_ctx) 1034 { 1035 if (exe_ctx->process) 1036 { 1037 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1038 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1039 Error error; 1040 if (exe_ctx->process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1041 { 1042 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), exe_ctx->process->GetByteOrder(), size); 1043 uint32_t addr_data_offset = 0; 1044 switch (size) 1045 { 1046 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1047 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1048 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1049 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1050 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1051 } 1052 stack.back().ClearContext(); 1053 } 1054 else 1055 { 1056 if (error_ptr) 1057 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", 1058 pointer_addr, 1059 error.AsCString()); 1060 return false; 1061 } 1062 } 1063 else 1064 { 1065 if (error_ptr) 1066 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1067 return false; 1068 } 1069 } 1070 else 1071 { 1072 if (error_ptr) 1073 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1074 return false; 1075 } 1076 break; 1077 1078 default: 1079 break; 1080 } 1081 1082 } 1083 break; 1084 1085 //---------------------------------------------------------------------- 1086 // OPCODE: DW_OP_xderef_size 1087 // OPERANDS: 1 1088 // 1 - uint8_t that specifies the size of the data to dereference. 1089 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1090 // the top of the stack is treated as an address. The second stack 1091 // entry is treated as an "address space identifier" for those 1092 // architectures that support multiple address spaces. The top two 1093 // stack elements are popped, a data item is retrieved through an 1094 // implementation-defined address calculation and pushed as the new 1095 // stack top. In the DW_OP_xderef_size operation, however, the size in 1096 // bytes of the data retrieved from the dereferenced address is 1097 // specified by the single operand. This operand is a 1-byte unsigned 1098 // integral constant whose value may not be larger than the size of an 1099 // address on the target machine. The data retrieved is zero extended 1100 // to the size of an address on the target machine before being pushed 1101 // on the expression stack. 1102 //---------------------------------------------------------------------- 1103 case DW_OP_xderef_size: 1104 if (error_ptr) 1105 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1106 return false; 1107 //---------------------------------------------------------------------- 1108 // OPCODE: DW_OP_xderef 1109 // OPERANDS: none 1110 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1111 // the top of the stack is treated as an address. The second stack entry 1112 // is treated as an "address space identifier" for those architectures 1113 // that support multiple address spaces. The top two stack elements are 1114 // popped, a data item is retrieved through an implementation-defined 1115 // address calculation and pushed as the new stack top. The size of the 1116 // data retrieved from the dereferenced address is the size of an address 1117 // on the target machine. 1118 //---------------------------------------------------------------------- 1119 case DW_OP_xderef: 1120 if (error_ptr) 1121 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1122 return false; 1123 1124 //---------------------------------------------------------------------- 1125 // All DW_OP_constXXX opcodes have a single operand as noted below: 1126 // 1127 // Opcode Operand 1 1128 // --------------- ---------------------------------------------------- 1129 // DW_OP_const1u 1-byte unsigned integer constant 1130 // DW_OP_const1s 1-byte signed integer constant 1131 // DW_OP_const2u 2-byte unsigned integer constant 1132 // DW_OP_const2s 2-byte signed integer constant 1133 // DW_OP_const4u 4-byte unsigned integer constant 1134 // DW_OP_const4s 4-byte signed integer constant 1135 // DW_OP_const8u 8-byte unsigned integer constant 1136 // DW_OP_const8s 8-byte signed integer constant 1137 // DW_OP_constu unsigned LEB128 integer constant 1138 // DW_OP_consts signed LEB128 integer constant 1139 //---------------------------------------------------------------------- 1140 case DW_OP_const1u : stack.push_back(( uint8_t)opcodes.GetU8(&offset)); break; 1141 case DW_OP_const1s : stack.push_back(( int8_t)opcodes.GetU8(&offset)); break; 1142 case DW_OP_const2u : stack.push_back((uint16_t)opcodes.GetU16(&offset)); break; 1143 case DW_OP_const2s : stack.push_back(( int16_t)opcodes.GetU16(&offset)); break; 1144 case DW_OP_const4u : stack.push_back((uint32_t)opcodes.GetU32(&offset)); break; 1145 case DW_OP_const4s : stack.push_back(( int32_t)opcodes.GetU32(&offset)); break; 1146 case DW_OP_const8u : stack.push_back((uint64_t)opcodes.GetU64(&offset)); break; 1147 case DW_OP_const8s : stack.push_back(( int64_t)opcodes.GetU64(&offset)); break; 1148 case DW_OP_constu : stack.push_back(opcodes.GetULEB128(&offset)); break; 1149 case DW_OP_consts : stack.push_back(opcodes.GetSLEB128(&offset)); break; 1150 1151 //---------------------------------------------------------------------- 1152 // OPCODE: DW_OP_dup 1153 // OPERANDS: none 1154 // DESCRIPTION: duplicates the value at the top of the stack 1155 //---------------------------------------------------------------------- 1156 case DW_OP_dup: 1157 if (stack.empty()) 1158 { 1159 if (error_ptr) 1160 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1161 return false; 1162 } 1163 else 1164 stack.push_back(stack.back()); 1165 break; 1166 1167 //---------------------------------------------------------------------- 1168 // OPCODE: DW_OP_drop 1169 // OPERANDS: none 1170 // DESCRIPTION: pops the value at the top of the stack 1171 //---------------------------------------------------------------------- 1172 case DW_OP_drop: 1173 if (stack.empty()) 1174 { 1175 if (error_ptr) 1176 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1177 return false; 1178 } 1179 else 1180 stack.pop_back(); 1181 break; 1182 1183 //---------------------------------------------------------------------- 1184 // OPCODE: DW_OP_over 1185 // OPERANDS: none 1186 // DESCRIPTION: Duplicates the entry currently second in the stack at 1187 // the top of the stack. 1188 //---------------------------------------------------------------------- 1189 case DW_OP_over: 1190 if (stack.size() < 2) 1191 { 1192 if (error_ptr) 1193 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1194 return false; 1195 } 1196 else 1197 stack.push_back(stack[stack.size() - 2]); 1198 break; 1199 1200 1201 //---------------------------------------------------------------------- 1202 // OPCODE: DW_OP_pick 1203 // OPERANDS: uint8_t index into the current stack 1204 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1205 // inclusive) is pushed on the stack 1206 //---------------------------------------------------------------------- 1207 case DW_OP_pick: 1208 { 1209 uint8_t pick_idx = opcodes.GetU8(&offset); 1210 if (pick_idx < stack.size()) 1211 stack.push_back(stack[pick_idx]); 1212 else 1213 { 1214 if (error_ptr) 1215 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1216 return false; 1217 } 1218 } 1219 break; 1220 1221 //---------------------------------------------------------------------- 1222 // OPCODE: DW_OP_swap 1223 // OPERANDS: none 1224 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1225 // of the stack becomes the second stack entry, and the second entry 1226 // becomes the top of the stack 1227 //---------------------------------------------------------------------- 1228 case DW_OP_swap: 1229 if (stack.size() < 2) 1230 { 1231 if (error_ptr) 1232 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1233 return false; 1234 } 1235 else 1236 { 1237 tmp = stack.back(); 1238 stack.back() = stack[stack.size() - 2]; 1239 stack[stack.size() - 2] = tmp; 1240 } 1241 break; 1242 1243 //---------------------------------------------------------------------- 1244 // OPCODE: DW_OP_rot 1245 // OPERANDS: none 1246 // DESCRIPTION: Rotates the first three stack entries. The entry at 1247 // the top of the stack becomes the third stack entry, the second 1248 // entry becomes the top of the stack, and the third entry becomes 1249 // the second entry. 1250 //---------------------------------------------------------------------- 1251 case DW_OP_rot: 1252 if (stack.size() < 3) 1253 { 1254 if (error_ptr) 1255 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1256 return false; 1257 } 1258 else 1259 { 1260 size_t last_idx = stack.size() - 1; 1261 Value old_top = stack[last_idx]; 1262 stack[last_idx] = stack[last_idx - 1]; 1263 stack[last_idx - 1] = stack[last_idx - 2]; 1264 stack[last_idx - 2] = old_top; 1265 } 1266 break; 1267 1268 //---------------------------------------------------------------------- 1269 // OPCODE: DW_OP_abs 1270 // OPERANDS: none 1271 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1272 // value and pushes its absolute value. If the absolute value can not be 1273 // represented, the result is undefined. 1274 //---------------------------------------------------------------------- 1275 case DW_OP_abs: 1276 if (stack.empty()) 1277 { 1278 if (error_ptr) 1279 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1280 return false; 1281 } 1282 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false) 1283 { 1284 if (error_ptr) 1285 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1286 return false; 1287 } 1288 break; 1289 1290 //---------------------------------------------------------------------- 1291 // OPCODE: DW_OP_and 1292 // OPERANDS: none 1293 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1294 // operation on the two, and pushes the result. 1295 //---------------------------------------------------------------------- 1296 case DW_OP_and: 1297 if (stack.size() < 2) 1298 { 1299 if (error_ptr) 1300 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1301 return false; 1302 } 1303 else 1304 { 1305 tmp = stack.back(); 1306 stack.pop_back(); 1307 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context); 1308 } 1309 break; 1310 1311 //---------------------------------------------------------------------- 1312 // OPCODE: DW_OP_div 1313 // OPERANDS: none 1314 // DESCRIPTION: pops the top two stack values, divides the former second 1315 // entry by the former top of the stack using signed division, and 1316 // pushes the result. 1317 //---------------------------------------------------------------------- 1318 case DW_OP_div: 1319 if (stack.size() < 2) 1320 { 1321 if (error_ptr) 1322 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1323 return false; 1324 } 1325 else 1326 { 1327 tmp = stack.back(); 1328 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero()) 1329 { 1330 if (error_ptr) 1331 error_ptr->SetErrorString("Divide by zero."); 1332 return false; 1333 } 1334 else 1335 { 1336 stack.pop_back(); 1337 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context); 1338 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1339 { 1340 if (error_ptr) 1341 error_ptr->SetErrorString("Divide failed."); 1342 return false; 1343 } 1344 } 1345 } 1346 break; 1347 1348 //---------------------------------------------------------------------- 1349 // OPCODE: DW_OP_minus 1350 // OPERANDS: none 1351 // DESCRIPTION: pops the top two stack values, subtracts the former top 1352 // of the stack from the former second entry, and pushes the result. 1353 //---------------------------------------------------------------------- 1354 case DW_OP_minus: 1355 if (stack.size() < 2) 1356 { 1357 if (error_ptr) 1358 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1359 return false; 1360 } 1361 else 1362 { 1363 tmp = stack.back(); 1364 stack.pop_back(); 1365 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context); 1366 } 1367 break; 1368 1369 //---------------------------------------------------------------------- 1370 // OPCODE: DW_OP_mod 1371 // OPERANDS: none 1372 // DESCRIPTION: pops the top two stack values and pushes the result of 1373 // the calculation: former second stack entry modulo the former top of 1374 // the stack. 1375 //---------------------------------------------------------------------- 1376 case DW_OP_mod: 1377 if (stack.size() < 2) 1378 { 1379 if (error_ptr) 1380 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1381 return false; 1382 } 1383 else 1384 { 1385 tmp = stack.back(); 1386 stack.pop_back(); 1387 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context); 1388 } 1389 break; 1390 1391 1392 //---------------------------------------------------------------------- 1393 // OPCODE: DW_OP_mul 1394 // OPERANDS: none 1395 // DESCRIPTION: pops the top two stack entries, multiplies them 1396 // together, and pushes the result. 1397 //---------------------------------------------------------------------- 1398 case DW_OP_mul: 1399 if (stack.size() < 2) 1400 { 1401 if (error_ptr) 1402 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1403 return false; 1404 } 1405 else 1406 { 1407 tmp = stack.back(); 1408 stack.pop_back(); 1409 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context); 1410 } 1411 break; 1412 1413 //---------------------------------------------------------------------- 1414 // OPCODE: DW_OP_neg 1415 // OPERANDS: none 1416 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1417 //---------------------------------------------------------------------- 1418 case DW_OP_neg: 1419 if (stack.empty()) 1420 { 1421 if (error_ptr) 1422 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1423 return false; 1424 } 1425 else 1426 { 1427 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false) 1428 { 1429 if (error_ptr) 1430 error_ptr->SetErrorString("Unary negate failed."); 1431 return false; 1432 } 1433 } 1434 break; 1435 1436 //---------------------------------------------------------------------- 1437 // OPCODE: DW_OP_not 1438 // OPERANDS: none 1439 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1440 // complement 1441 //---------------------------------------------------------------------- 1442 case DW_OP_not: 1443 if (stack.empty()) 1444 { 1445 if (error_ptr) 1446 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1447 return false; 1448 } 1449 else 1450 { 1451 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false) 1452 { 1453 if (error_ptr) 1454 error_ptr->SetErrorString("Logical NOT failed."); 1455 return false; 1456 } 1457 } 1458 break; 1459 1460 //---------------------------------------------------------------------- 1461 // OPCODE: DW_OP_or 1462 // OPERANDS: none 1463 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1464 // operation on the two, and pushes the result. 1465 //---------------------------------------------------------------------- 1466 case DW_OP_or: 1467 if (stack.size() < 2) 1468 { 1469 if (error_ptr) 1470 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 1471 return false; 1472 } 1473 else 1474 { 1475 tmp = stack.back(); 1476 stack.pop_back(); 1477 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context); 1478 } 1479 break; 1480 1481 //---------------------------------------------------------------------- 1482 // OPCODE: DW_OP_plus 1483 // OPERANDS: none 1484 // DESCRIPTION: pops the top two stack entries, adds them together, and 1485 // pushes the result. 1486 //---------------------------------------------------------------------- 1487 case DW_OP_plus: 1488 if (stack.size() < 2) 1489 { 1490 if (error_ptr) 1491 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 1492 return false; 1493 } 1494 else 1495 { 1496 tmp = stack.back(); 1497 stack.pop_back(); 1498 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context); 1499 } 1500 break; 1501 1502 //---------------------------------------------------------------------- 1503 // OPCODE: DW_OP_plus_uconst 1504 // OPERANDS: none 1505 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1506 // constant operand and pushes the result. 1507 //---------------------------------------------------------------------- 1508 case DW_OP_plus_uconst: 1509 if (stack.empty()) 1510 { 1511 if (error_ptr) 1512 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 1513 return false; 1514 } 1515 else 1516 { 1517 uint32_t uconst_value = opcodes.GetULEB128(&offset); 1518 // Implicit conversion from a UINT to a Scalar... 1519 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value; 1520 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1521 { 1522 if (error_ptr) 1523 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 1524 return false; 1525 } 1526 } 1527 break; 1528 1529 //---------------------------------------------------------------------- 1530 // OPCODE: DW_OP_shl 1531 // OPERANDS: none 1532 // DESCRIPTION: pops the top two stack entries, shifts the former 1533 // second entry left by the number of bits specified by the former top 1534 // of the stack, and pushes the result. 1535 //---------------------------------------------------------------------- 1536 case DW_OP_shl: 1537 if (stack.size() < 2) 1538 { 1539 if (error_ptr) 1540 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 1541 return false; 1542 } 1543 else 1544 { 1545 tmp = stack.back(); 1546 stack.pop_back(); 1547 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context); 1548 } 1549 break; 1550 1551 //---------------------------------------------------------------------- 1552 // OPCODE: DW_OP_shr 1553 // OPERANDS: none 1554 // DESCRIPTION: pops the top two stack entries, shifts the former second 1555 // entry right logically (filling with zero bits) by the number of bits 1556 // specified by the former top of the stack, and pushes the result. 1557 //---------------------------------------------------------------------- 1558 case DW_OP_shr: 1559 if (stack.size() < 2) 1560 { 1561 if (error_ptr) 1562 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 1563 return false; 1564 } 1565 else 1566 { 1567 tmp = stack.back(); 1568 stack.pop_back(); 1569 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false) 1570 { 1571 if (error_ptr) 1572 error_ptr->SetErrorString("DW_OP_shr failed."); 1573 return false; 1574 } 1575 } 1576 break; 1577 1578 //---------------------------------------------------------------------- 1579 // OPCODE: DW_OP_shra 1580 // OPERANDS: none 1581 // DESCRIPTION: pops the top two stack entries, shifts the former second 1582 // entry right arithmetically (divide the magnitude by 2, keep the same 1583 // sign for the result) by the number of bits specified by the former 1584 // top of the stack, and pushes the result. 1585 //---------------------------------------------------------------------- 1586 case DW_OP_shra: 1587 if (stack.size() < 2) 1588 { 1589 if (error_ptr) 1590 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 1591 return false; 1592 } 1593 else 1594 { 1595 tmp = stack.back(); 1596 stack.pop_back(); 1597 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context); 1598 } 1599 break; 1600 1601 //---------------------------------------------------------------------- 1602 // OPCODE: DW_OP_xor 1603 // OPERANDS: none 1604 // DESCRIPTION: pops the top two stack entries, performs the bitwise 1605 // exclusive-or operation on the two, and pushes the result. 1606 //---------------------------------------------------------------------- 1607 case DW_OP_xor: 1608 if (stack.size() < 2) 1609 { 1610 if (error_ptr) 1611 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 1612 return false; 1613 } 1614 else 1615 { 1616 tmp = stack.back(); 1617 stack.pop_back(); 1618 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context); 1619 } 1620 break; 1621 1622 1623 //---------------------------------------------------------------------- 1624 // OPCODE: DW_OP_skip 1625 // OPERANDS: int16_t 1626 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 1627 // signed integer constant. The 2-byte constant is the number of bytes 1628 // of the DWARF expression to skip forward or backward from the current 1629 // operation, beginning after the 2-byte constant. 1630 //---------------------------------------------------------------------- 1631 case DW_OP_skip: 1632 { 1633 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 1634 uint32_t new_offset = offset + skip_offset; 1635 if (new_offset >= opcodes_offset && new_offset < end_offset) 1636 offset = new_offset; 1637 else 1638 { 1639 if (error_ptr) 1640 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 1641 return false; 1642 } 1643 } 1644 break; 1645 1646 //---------------------------------------------------------------------- 1647 // OPCODE: DW_OP_bra 1648 // OPERANDS: int16_t 1649 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 1650 // signed integer constant. This operation pops the top of stack. If 1651 // the value popped is not the constant 0, the 2-byte constant operand 1652 // is the number of bytes of the DWARF expression to skip forward or 1653 // backward from the current operation, beginning after the 2-byte 1654 // constant. 1655 //---------------------------------------------------------------------- 1656 case DW_OP_bra: 1657 { 1658 tmp = stack.back(); 1659 stack.pop_back(); 1660 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 1661 Scalar zero(0); 1662 if (tmp.ResolveValue(exe_ctx, ast_context) != zero) 1663 { 1664 uint32_t new_offset = offset + bra_offset; 1665 if (new_offset >= opcodes_offset && new_offset < end_offset) 1666 offset = new_offset; 1667 else 1668 { 1669 if (error_ptr) 1670 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 1671 return false; 1672 } 1673 } 1674 } 1675 break; 1676 1677 //---------------------------------------------------------------------- 1678 // OPCODE: DW_OP_eq 1679 // OPERANDS: none 1680 // DESCRIPTION: pops the top two stack values, compares using the 1681 // equals (==) operator. 1682 // STACK RESULT: push the constant value 1 onto the stack if the result 1683 // of the operation is true or the constant value 0 if the result of the 1684 // operation is false. 1685 //---------------------------------------------------------------------- 1686 case DW_OP_eq: 1687 if (stack.size() < 2) 1688 { 1689 if (error_ptr) 1690 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 1691 return false; 1692 } 1693 else 1694 { 1695 tmp = stack.back(); 1696 stack.pop_back(); 1697 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context); 1698 } 1699 break; 1700 1701 //---------------------------------------------------------------------- 1702 // OPCODE: DW_OP_ge 1703 // OPERANDS: none 1704 // DESCRIPTION: pops the top two stack values, compares using the 1705 // greater than or equal to (>=) operator. 1706 // STACK RESULT: push the constant value 1 onto the stack if the result 1707 // of the operation is true or the constant value 0 if the result of the 1708 // operation is false. 1709 //---------------------------------------------------------------------- 1710 case DW_OP_ge: 1711 if (stack.size() < 2) 1712 { 1713 if (error_ptr) 1714 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 1715 return false; 1716 } 1717 else 1718 { 1719 tmp = stack.back(); 1720 stack.pop_back(); 1721 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context); 1722 } 1723 break; 1724 1725 //---------------------------------------------------------------------- 1726 // OPCODE: DW_OP_gt 1727 // OPERANDS: none 1728 // DESCRIPTION: pops the top two stack values, compares using the 1729 // greater than (>) operator. 1730 // STACK RESULT: push the constant value 1 onto the stack if the result 1731 // of the operation is true or the constant value 0 if the result of the 1732 // operation is false. 1733 //---------------------------------------------------------------------- 1734 case DW_OP_gt: 1735 if (stack.size() < 2) 1736 { 1737 if (error_ptr) 1738 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 1739 return false; 1740 } 1741 else 1742 { 1743 tmp = stack.back(); 1744 stack.pop_back(); 1745 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context); 1746 } 1747 break; 1748 1749 //---------------------------------------------------------------------- 1750 // OPCODE: DW_OP_le 1751 // OPERANDS: none 1752 // DESCRIPTION: pops the top two stack values, compares using the 1753 // less than or equal to (<=) operator. 1754 // STACK RESULT: push the constant value 1 onto the stack if the result 1755 // of the operation is true or the constant value 0 if the result of the 1756 // operation is false. 1757 //---------------------------------------------------------------------- 1758 case DW_OP_le: 1759 if (stack.size() < 2) 1760 { 1761 if (error_ptr) 1762 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 1763 return false; 1764 } 1765 else 1766 { 1767 tmp = stack.back(); 1768 stack.pop_back(); 1769 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context); 1770 } 1771 break; 1772 1773 //---------------------------------------------------------------------- 1774 // OPCODE: DW_OP_lt 1775 // OPERANDS: none 1776 // DESCRIPTION: pops the top two stack values, compares using the 1777 // less than (<) operator. 1778 // STACK RESULT: push the constant value 1 onto the stack if the result 1779 // of the operation is true or the constant value 0 if the result of the 1780 // operation is false. 1781 //---------------------------------------------------------------------- 1782 case DW_OP_lt: 1783 if (stack.size() < 2) 1784 { 1785 if (error_ptr) 1786 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 1787 return false; 1788 } 1789 else 1790 { 1791 tmp = stack.back(); 1792 stack.pop_back(); 1793 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context); 1794 } 1795 break; 1796 1797 //---------------------------------------------------------------------- 1798 // OPCODE: DW_OP_ne 1799 // OPERANDS: none 1800 // DESCRIPTION: pops the top two stack values, compares using the 1801 // not equal (!=) operator. 1802 // STACK RESULT: push the constant value 1 onto the stack if the result 1803 // of the operation is true or the constant value 0 if the result of the 1804 // operation is false. 1805 //---------------------------------------------------------------------- 1806 case DW_OP_ne: 1807 if (stack.size() < 2) 1808 { 1809 if (error_ptr) 1810 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 1811 return false; 1812 } 1813 else 1814 { 1815 tmp = stack.back(); 1816 stack.pop_back(); 1817 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context); 1818 } 1819 break; 1820 1821 //---------------------------------------------------------------------- 1822 // OPCODE: DW_OP_litn 1823 // OPERANDS: none 1824 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 1825 // STACK RESULT: push the unsigned literal constant value onto the top 1826 // of the stack. 1827 //---------------------------------------------------------------------- 1828 case DW_OP_lit0: 1829 case DW_OP_lit1: 1830 case DW_OP_lit2: 1831 case DW_OP_lit3: 1832 case DW_OP_lit4: 1833 case DW_OP_lit5: 1834 case DW_OP_lit6: 1835 case DW_OP_lit7: 1836 case DW_OP_lit8: 1837 case DW_OP_lit9: 1838 case DW_OP_lit10: 1839 case DW_OP_lit11: 1840 case DW_OP_lit12: 1841 case DW_OP_lit13: 1842 case DW_OP_lit14: 1843 case DW_OP_lit15: 1844 case DW_OP_lit16: 1845 case DW_OP_lit17: 1846 case DW_OP_lit18: 1847 case DW_OP_lit19: 1848 case DW_OP_lit20: 1849 case DW_OP_lit21: 1850 case DW_OP_lit22: 1851 case DW_OP_lit23: 1852 case DW_OP_lit24: 1853 case DW_OP_lit25: 1854 case DW_OP_lit26: 1855 case DW_OP_lit27: 1856 case DW_OP_lit28: 1857 case DW_OP_lit29: 1858 case DW_OP_lit30: 1859 case DW_OP_lit31: 1860 stack.push_back(op - DW_OP_lit0); 1861 break; 1862 1863 //---------------------------------------------------------------------- 1864 // OPCODE: DW_OP_regN 1865 // OPERANDS: none 1866 // DESCRIPTION: Push the value in register n on the top of the stack. 1867 //---------------------------------------------------------------------- 1868 case DW_OP_reg0: 1869 case DW_OP_reg1: 1870 case DW_OP_reg2: 1871 case DW_OP_reg3: 1872 case DW_OP_reg4: 1873 case DW_OP_reg5: 1874 case DW_OP_reg6: 1875 case DW_OP_reg7: 1876 case DW_OP_reg8: 1877 case DW_OP_reg9: 1878 case DW_OP_reg10: 1879 case DW_OP_reg11: 1880 case DW_OP_reg12: 1881 case DW_OP_reg13: 1882 case DW_OP_reg14: 1883 case DW_OP_reg15: 1884 case DW_OP_reg16: 1885 case DW_OP_reg17: 1886 case DW_OP_reg18: 1887 case DW_OP_reg19: 1888 case DW_OP_reg20: 1889 case DW_OP_reg21: 1890 case DW_OP_reg22: 1891 case DW_OP_reg23: 1892 case DW_OP_reg24: 1893 case DW_OP_reg25: 1894 case DW_OP_reg26: 1895 case DW_OP_reg27: 1896 case DW_OP_reg28: 1897 case DW_OP_reg29: 1898 case DW_OP_reg30: 1899 case DW_OP_reg31: 1900 { 1901 reg_num = op - DW_OP_reg0; 1902 1903 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 1904 stack.push_back(tmp); 1905 else 1906 return false; 1907 } 1908 break; 1909 //---------------------------------------------------------------------- 1910 // OPCODE: DW_OP_regx 1911 // OPERANDS: 1912 // ULEB128 literal operand that encodes the register. 1913 // DESCRIPTION: Push the value in register on the top of the stack. 1914 //---------------------------------------------------------------------- 1915 case DW_OP_regx: 1916 { 1917 reg_num = opcodes.GetULEB128(&offset); 1918 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 1919 stack.push_back(tmp); 1920 else 1921 return false; 1922 } 1923 break; 1924 1925 //---------------------------------------------------------------------- 1926 // OPCODE: DW_OP_bregN 1927 // OPERANDS: 1928 // SLEB128 offset from register N 1929 // DESCRIPTION: Value is in memory at the address specified by register 1930 // N plus an offset. 1931 //---------------------------------------------------------------------- 1932 case DW_OP_breg0: 1933 case DW_OP_breg1: 1934 case DW_OP_breg2: 1935 case DW_OP_breg3: 1936 case DW_OP_breg4: 1937 case DW_OP_breg5: 1938 case DW_OP_breg6: 1939 case DW_OP_breg7: 1940 case DW_OP_breg8: 1941 case DW_OP_breg9: 1942 case DW_OP_breg10: 1943 case DW_OP_breg11: 1944 case DW_OP_breg12: 1945 case DW_OP_breg13: 1946 case DW_OP_breg14: 1947 case DW_OP_breg15: 1948 case DW_OP_breg16: 1949 case DW_OP_breg17: 1950 case DW_OP_breg18: 1951 case DW_OP_breg19: 1952 case DW_OP_breg20: 1953 case DW_OP_breg21: 1954 case DW_OP_breg22: 1955 case DW_OP_breg23: 1956 case DW_OP_breg24: 1957 case DW_OP_breg25: 1958 case DW_OP_breg26: 1959 case DW_OP_breg27: 1960 case DW_OP_breg28: 1961 case DW_OP_breg29: 1962 case DW_OP_breg30: 1963 case DW_OP_breg31: 1964 { 1965 reg_num = op - DW_OP_breg0; 1966 1967 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 1968 { 1969 int64_t breg_offset = opcodes.GetSLEB128(&offset); 1970 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 1971 stack.push_back(tmp); 1972 stack.back().SetValueType (Value::eValueTypeLoadAddress); 1973 } 1974 else 1975 return false; 1976 } 1977 break; 1978 //---------------------------------------------------------------------- 1979 // OPCODE: DW_OP_bregx 1980 // OPERANDS: 2 1981 // ULEB128 literal operand that encodes the register. 1982 // SLEB128 offset from register N 1983 // DESCRIPTION: Value is in memory at the address specified by register 1984 // N plus an offset. 1985 //---------------------------------------------------------------------- 1986 case DW_OP_bregx: 1987 { 1988 reg_num = opcodes.GetULEB128(&offset); 1989 1990 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 1991 { 1992 int64_t breg_offset = opcodes.GetSLEB128(&offset); 1993 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 1994 stack.push_back(tmp); 1995 stack.back().SetValueType (Value::eValueTypeLoadAddress); 1996 } 1997 else 1998 return false; 1999 } 2000 break; 2001 2002 case DW_OP_fbreg: 2003 if (exe_ctx && exe_ctx->frame) 2004 { 2005 Scalar value; 2006 if (exe_ctx->frame->GetFrameBaseValue(value, error_ptr)) 2007 { 2008 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2009 value += fbreg_offset; 2010 stack.push_back(value); 2011 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2012 } 2013 else 2014 return false; 2015 } 2016 else 2017 { 2018 if (error_ptr) 2019 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2020 return false; 2021 } 2022 break; 2023 2024 //---------------------------------------------------------------------- 2025 // OPCODE: DW_OP_nop 2026 // OPERANDS: none 2027 // DESCRIPTION: A place holder. It has no effect on the location stack 2028 // or any of its values. 2029 //---------------------------------------------------------------------- 2030 case DW_OP_nop: 2031 break; 2032 2033 //---------------------------------------------------------------------- 2034 // OPCODE: DW_OP_piece 2035 // OPERANDS: 1 2036 // ULEB128: byte size of the piece 2037 // DESCRIPTION: The operand describes the size in bytes of the piece of 2038 // the object referenced by the DWARF expression whose result is at the 2039 // top of the stack. If the piece is located in a register, but does not 2040 // occupy the entire register, the placement of the piece within that 2041 // register is defined by the ABI. 2042 // 2043 // Many compilers store a single variable in sets of registers, or store 2044 // a variable partially in memory and partially in registers. 2045 // DW_OP_piece provides a way of describing how large a part of a 2046 // variable a particular DWARF expression refers to. 2047 //---------------------------------------------------------------------- 2048 case DW_OP_piece: 2049 if (error_ptr) 2050 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); 2051 return false; 2052 2053 //---------------------------------------------------------------------- 2054 // OPCODE: DW_OP_push_object_address 2055 // OPERANDS: none 2056 // DESCRIPTION: Pushes the address of the object currently being 2057 // evaluated as part of evaluation of a user presented expression. 2058 // This object may correspond to an independent variable described by 2059 // its own DIE or it may be a component of an array, structure, or class 2060 // whose address has been dynamically determined by an earlier step 2061 // during user expression evaluation. 2062 //---------------------------------------------------------------------- 2063 case DW_OP_push_object_address: 2064 if (error_ptr) 2065 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2066 return false; 2067 2068 //---------------------------------------------------------------------- 2069 // OPCODE: DW_OP_call2 2070 // OPERANDS: 2071 // uint16_t compile unit relative offset of a DIE 2072 // DESCRIPTION: Performs subroutine calls during evaluation 2073 // of a DWARF expression. The operand is the 2-byte unsigned offset 2074 // of a debugging information entry in the current compilation unit. 2075 // 2076 // Operand interpretation is exactly like that for DW_FORM_ref2. 2077 // 2078 // This operation transfers control of DWARF expression evaluation 2079 // to the DW_AT_location attribute of the referenced DIE. If there is 2080 // no such attribute, then there is no effect. Execution of the DWARF 2081 // expression of a DW_AT_location attribute may add to and/or remove from 2082 // values on the stack. Execution returns to the point following the call 2083 // when the end of the attribute is reached. Values on the stack at the 2084 // time of the call may be used as parameters by the called expression 2085 // and values left on the stack by the called expression may be used as 2086 // return values by prior agreement between the calling and called 2087 // expressions. 2088 //---------------------------------------------------------------------- 2089 case DW_OP_call2: 2090 if (error_ptr) 2091 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2092 return false; 2093 //---------------------------------------------------------------------- 2094 // OPCODE: DW_OP_call4 2095 // OPERANDS: 1 2096 // uint32_t compile unit relative offset of a DIE 2097 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2098 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2099 // of a debugging information entry in the current compilation unit. 2100 // 2101 // Operand interpretation DW_OP_call4 is exactly like that for 2102 // DW_FORM_ref4. 2103 // 2104 // This operation transfers control of DWARF expression evaluation 2105 // to the DW_AT_location attribute of the referenced DIE. If there is 2106 // no such attribute, then there is no effect. Execution of the DWARF 2107 // expression of a DW_AT_location attribute may add to and/or remove from 2108 // values on the stack. Execution returns to the point following the call 2109 // when the end of the attribute is reached. Values on the stack at the 2110 // time of the call may be used as parameters by the called expression 2111 // and values left on the stack by the called expression may be used as 2112 // return values by prior agreement between the calling and called 2113 // expressions. 2114 //---------------------------------------------------------------------- 2115 case DW_OP_call4: 2116 if (error_ptr) 2117 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2118 return false; 2119 2120 2121 //---------------------------------------------------------------------- 2122 // OPCODE: DW_OP_call_ref 2123 // OPERANDS: 2124 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t 2125 // absolute DIE offset for 64 bit DWARF. 2126 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2127 // expression. Takes a single operand. In the 32-bit DWARF format, the 2128 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it 2129 // is an 8-byte unsigned value. The operand is used as the offset of a 2130 // debugging information entry in a .debug_info section which may be 2131 // contained in a shared object for executable other than that 2132 // containing the operator. For references from one shared object or 2133 // executable to another, the relocation must be performed by the 2134 // consumer. 2135 // 2136 // Operand interpretation of DW_OP_call_ref is exactly like that for 2137 // DW_FORM_ref_addr. 2138 // 2139 // This operation transfers control of DWARF expression evaluation 2140 // to the DW_AT_location attribute of the referenced DIE. If there is 2141 // no such attribute, then there is no effect. Execution of the DWARF 2142 // expression of a DW_AT_location attribute may add to and/or remove from 2143 // values on the stack. Execution returns to the point following the call 2144 // when the end of the attribute is reached. Values on the stack at the 2145 // time of the call may be used as parameters by the called expression 2146 // and values left on the stack by the called expression may be used as 2147 // return values by prior agreement between the calling and called 2148 // expressions. 2149 //---------------------------------------------------------------------- 2150 case DW_OP_call_ref: 2151 if (error_ptr) 2152 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref."); 2153 return false; 2154 2155 //---------------------------------------------------------------------- 2156 // OPCODE: DW_OP_APPLE_array_ref 2157 // OPERANDS: none 2158 // DESCRIPTION: Pops a value off the stack and uses it as the array 2159 // index. Pops a second value off the stack and uses it as the array 2160 // itself. Pushes a value onto the stack representing the element of 2161 // the array specified by the index. 2162 //---------------------------------------------------------------------- 2163 case DW_OP_APPLE_array_ref: 2164 { 2165 if (stack.size() < 2) 2166 { 2167 if (error_ptr) 2168 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref."); 2169 return false; 2170 } 2171 2172 Value index_val = stack.back(); 2173 stack.pop_back(); 2174 Value array_val = stack.back(); 2175 stack.pop_back(); 2176 2177 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context); 2178 int64_t index = index_scalar.SLongLong(LONG_LONG_MAX); 2179 2180 if (index == LONG_LONG_MAX) 2181 { 2182 if (error_ptr) 2183 error_ptr->SetErrorString("Invalid array index."); 2184 return false; 2185 } 2186 2187 if (array_val.GetContextType() != Value::eContextTypeClangType) 2188 { 2189 if (error_ptr) 2190 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time."); 2191 return false; 2192 } 2193 2194 if (array_val.GetValueType() != Value::eValueTypeLoadAddress && 2195 array_val.GetValueType() != Value::eValueTypeHostAddress) 2196 { 2197 if (error_ptr) 2198 error_ptr->SetErrorString("Array must be stored in memory."); 2199 return false; 2200 } 2201 2202 void *array_type = array_val.GetClangType(); 2203 2204 void *member_type; 2205 uint64_t size = 0; 2206 2207 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) && 2208 (!ClangASTContext::IsArrayType(array_type, &member_type, &size))) 2209 { 2210 if (error_ptr) 2211 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array."); 2212 return false; 2213 } 2214 2215 if (size && (index >= size || index < 0)) 2216 { 2217 if (error_ptr) 2218 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size); 2219 return false; 2220 } 2221 2222 uint64_t member_bit_size = ClangASTType::GetClangTypeBitWidth(ast_context, member_type); 2223 uint64_t member_bit_align = ClangASTType::GetTypeBitAlign(ast_context, member_type); 2224 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align; 2225 if (member_bit_incr % 8) 2226 { 2227 if (error_ptr) 2228 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned", index, size); 2229 return false; 2230 } 2231 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index; 2232 2233 Value member; 2234 2235 member.SetContext(Value::eContextTypeClangType, member_type); 2236 member.SetValueType(array_val.GetValueType()); 2237 2238 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2239 addr_t member_loc = array_base + member_offset; 2240 member.GetScalar() = (uint64_t)member_loc; 2241 2242 stack.push_back(member); 2243 } 2244 break; 2245 2246 //---------------------------------------------------------------------- 2247 // OPCODE: DW_OP_APPLE_uninit 2248 // OPERANDS: none 2249 // DESCRIPTION: Lets us know that the value is currently not initialized 2250 //---------------------------------------------------------------------- 2251 case DW_OP_APPLE_uninit: 2252 //return eResultTypeErrorUninitialized; 2253 break; // Ignore this as we have seen cases where this value is incorrectly added 2254 2255 //---------------------------------------------------------------------- 2256 // OPCODE: DW_OP_APPLE_assign 2257 // OPERANDS: none 2258 // DESCRIPTION: Pops a value off of the stack and assigns it to the next 2259 // item on the stack which must be something assignable (inferior 2260 // Variable, inferior Type with address, inferior register, or 2261 // expression local variable. 2262 //---------------------------------------------------------------------- 2263 case DW_OP_APPLE_assign: 2264 if (stack.size() < 2) 2265 { 2266 if (error_ptr) 2267 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign."); 2268 return false; 2269 } 2270 else 2271 { 2272 tmp = stack.back(); 2273 stack.pop_back(); 2274 Value::ContextType context_type = stack.back().GetContextType(); 2275 StreamString new_value(Stream::eBinary, 4, lldb::endian::InlHostByteOrder()); 2276 switch (context_type) 2277 { 2278 case Value::eContextTypeClangType: 2279 { 2280 void *clang_type = stack.back().GetClangType(); 2281 2282 if (ClangASTContext::IsAggregateType (clang_type)) 2283 { 2284 Value::ValueType source_value_type = tmp.GetValueType(); 2285 Value::ValueType target_value_type = stack.back().GetValueType(); 2286 2287 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong(); 2288 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong(); 2289 2290 size_t byte_size = (ClangASTType::GetClangTypeBitWidth(ast_context, clang_type) + 7) / 8; 2291 2292 switch (source_value_type) 2293 { 2294 case Value::eValueTypeScalar: 2295 case Value::eValueTypeFileAddress: 2296 break; 2297 2298 case Value::eValueTypeLoadAddress: 2299 switch (target_value_type) 2300 { 2301 case Value::eValueTypeLoadAddress: 2302 { 2303 DataBufferHeap data; 2304 data.SetByteSize(byte_size); 2305 2306 Error error; 2307 if (exe_ctx->process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size) 2308 { 2309 if (error_ptr) 2310 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2311 return false; 2312 } 2313 2314 if (exe_ctx->process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size) 2315 { 2316 if (error_ptr) 2317 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2318 return false; 2319 } 2320 } 2321 break; 2322 case Value::eValueTypeHostAddress: 2323 if (exe_ctx->process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2324 { 2325 if (error_ptr) 2326 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2327 return false; 2328 } 2329 else 2330 { 2331 Error error; 2332 if (exe_ctx->process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size) 2333 { 2334 if (error_ptr) 2335 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2336 return false; 2337 } 2338 } 2339 break; 2340 default: 2341 return false; 2342 } 2343 break; 2344 case Value::eValueTypeHostAddress: 2345 switch (target_value_type) 2346 { 2347 case Value::eValueTypeLoadAddress: 2348 if (exe_ctx->process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2349 { 2350 if (error_ptr) 2351 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2352 return false; 2353 } 2354 else 2355 { 2356 Error error; 2357 if (exe_ctx->process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size) 2358 { 2359 if (error_ptr) 2360 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2361 return false; 2362 } 2363 } 2364 case Value::eValueTypeHostAddress: 2365 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size); 2366 break; 2367 default: 2368 return false; 2369 } 2370 } 2371 } 2372 else 2373 { 2374 if (!ClangASTType::SetValueFromScalar (ast_context, 2375 clang_type, 2376 tmp.ResolveValue(exe_ctx, ast_context), 2377 new_value)) 2378 { 2379 if (error_ptr) 2380 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n"); 2381 return false; 2382 } 2383 2384 Value::ValueType value_type = stack.back().GetValueType(); 2385 2386 switch (value_type) 2387 { 2388 case Value::eValueTypeLoadAddress: 2389 case Value::eValueTypeHostAddress: 2390 { 2391 lldb::AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost); 2392 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2393 if (!ClangASTType::WriteToMemory (ast_context, 2394 clang_type, 2395 exe_ctx, 2396 addr, 2397 address_type, 2398 new_value)) 2399 { 2400 if (error_ptr) 2401 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr); 2402 return false; 2403 } 2404 } 2405 break; 2406 2407 default: 2408 break; 2409 } 2410 } 2411 } 2412 break; 2413 2414 default: 2415 if (error_ptr) 2416 error_ptr->SetErrorString ("Assign failed."); 2417 return false; 2418 } 2419 } 2420 break; 2421 2422 //---------------------------------------------------------------------- 2423 // OPCODE: DW_OP_APPLE_address_of 2424 // OPERANDS: none 2425 // DESCRIPTION: Pops a value off of the stack and pushed its address. 2426 // The top item on the stack must be a variable, or already be a memory 2427 // location. 2428 //---------------------------------------------------------------------- 2429 case DW_OP_APPLE_address_of: 2430 if (stack.empty()) 2431 { 2432 if (error_ptr) 2433 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of."); 2434 return false; 2435 } 2436 else 2437 { 2438 Value::ValueType value_type = stack.back().GetValueType(); 2439 switch (value_type) 2440 { 2441 default: 2442 case Value::eValueTypeScalar: // raw scalar value 2443 if (error_ptr) 2444 error_ptr->SetErrorString("Top stack item isn't a memory based object."); 2445 return false; 2446 2447 case Value::eValueTypeLoadAddress: // load address value 2448 case Value::eValueTypeFileAddress: // file address value 2449 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb) 2450 // Taking the address of an object reduces it to the address 2451 // of the value and removes any extra context it had. 2452 //stack.back().SetValueType(Value::eValueTypeScalar); 2453 stack.back().ClearContext(); 2454 break; 2455 } 2456 } 2457 break; 2458 2459 //---------------------------------------------------------------------- 2460 // OPCODE: DW_OP_APPLE_value_of 2461 // OPERANDS: none 2462 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2463 // The top item on the stack must be a variable, expression variable. 2464 //---------------------------------------------------------------------- 2465 case DW_OP_APPLE_value_of: 2466 if (stack.empty()) 2467 { 2468 if (error_ptr) 2469 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of."); 2470 return false; 2471 } 2472 else if (!stack.back().ValueOf(exe_ctx, ast_context)) 2473 { 2474 if (error_ptr) 2475 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of."); 2476 return false; 2477 } 2478 break; 2479 2480 //---------------------------------------------------------------------- 2481 // OPCODE: DW_OP_APPLE_deref_type 2482 // OPERANDS: none 2483 // DESCRIPTION: gets the value pointed to by the top stack item 2484 //---------------------------------------------------------------------- 2485 case DW_OP_APPLE_deref_type: 2486 { 2487 if (stack.empty()) 2488 { 2489 if (error_ptr) 2490 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type."); 2491 return false; 2492 } 2493 2494 tmp = stack.back(); 2495 stack.pop_back(); 2496 2497 if (tmp.GetContextType() != Value::eContextTypeClangType) 2498 { 2499 if (error_ptr) 2500 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type"); 2501 return false; 2502 } 2503 2504 void *ptr_type = tmp.GetClangType(); 2505 void *target_type; 2506 2507 if (!ClangASTContext::IsPointerType(ptr_type, &target_type)) 2508 { 2509 if (error_ptr) 2510 error_ptr->SetErrorString("Dereferencing a non-pointer type"); 2511 return false; 2512 } 2513 2514 // TODO do we want all pointers to be dereferenced as load addresses? 2515 Value::ValueType value_type = tmp.GetValueType(); 2516 2517 tmp.ResolveValue(exe_ctx, ast_context); 2518 2519 tmp.SetValueType(value_type); 2520 tmp.SetContext(Value::eContextTypeClangType, target_type); 2521 2522 stack.push_back(tmp); 2523 } 2524 break; 2525 2526 //---------------------------------------------------------------------- 2527 // OPCODE: DW_OP_APPLE_expr_local 2528 // OPERANDS: ULEB128 2529 // DESCRIPTION: pushes the expression local variable index onto the 2530 // stack and set the appropriate context so we know the stack item is 2531 // an expression local variable index. 2532 //---------------------------------------------------------------------- 2533 case DW_OP_APPLE_expr_local: 2534 { 2535 /* 2536 uint32_t idx = opcodes.GetULEB128(&offset); 2537 if (expr_locals == NULL) 2538 { 2539 if (error_ptr) 2540 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx); 2541 return false; 2542 } 2543 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx); 2544 if (expr_local_variable == NULL) 2545 { 2546 if (error_ptr) 2547 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx); 2548 return false; 2549 } 2550 Value *proxy = expr_local_variable->CreateProxy(); 2551 stack.push_back(*proxy); 2552 delete proxy; 2553 //stack.back().SetContext (Value::eContextTypeClangType, expr_local_variable->GetClangType()); 2554 */ 2555 } 2556 break; 2557 2558 //---------------------------------------------------------------------- 2559 // OPCODE: DW_OP_APPLE_extern 2560 // OPERANDS: ULEB128 2561 // DESCRIPTION: pushes a proxy for the extern object index onto the 2562 // stack. 2563 //---------------------------------------------------------------------- 2564 case DW_OP_APPLE_extern: 2565 { 2566 /* 2567 uint32_t idx = opcodes.GetULEB128(&offset); 2568 if (!decl_map) 2569 { 2570 if (error_ptr) 2571 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx); 2572 return false; 2573 } 2574 Value *extern_var = decl_map->GetValueForIndex(idx); 2575 if (!extern_var) 2576 { 2577 if (error_ptr) 2578 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx); 2579 return false; 2580 } 2581 Value *proxy = extern_var->CreateProxy(); 2582 stack.push_back(*proxy); 2583 delete proxy; 2584 */ 2585 } 2586 break; 2587 2588 case DW_OP_APPLE_scalar_cast: 2589 if (stack.empty()) 2590 { 2591 if (error_ptr) 2592 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast."); 2593 return false; 2594 } 2595 else 2596 { 2597 // Simple scalar cast 2598 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset))) 2599 { 2600 if (error_ptr) 2601 error_ptr->SetErrorString("Cast failed."); 2602 return false; 2603 } 2604 } 2605 break; 2606 2607 2608 case DW_OP_APPLE_clang_cast: 2609 if (stack.empty()) 2610 { 2611 if (error_ptr) 2612 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast."); 2613 return false; 2614 } 2615 else 2616 { 2617 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*)); 2618 stack.back().SetContext (Value::eContextTypeClangType, clang_type); 2619 } 2620 break; 2621 //---------------------------------------------------------------------- 2622 // OPCODE: DW_OP_APPLE_constf 2623 // OPERANDS: 1 byte float length, followed by that many bytes containing 2624 // the constant float data. 2625 // DESCRIPTION: Push a float value onto the expression stack. 2626 //---------------------------------------------------------------------- 2627 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 2628 { 2629 uint8_t float_length = opcodes.GetU8(&offset); 2630 if (sizeof(float) == float_length) 2631 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset); 2632 else if (sizeof(double) == float_length) 2633 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset); 2634 else if (sizeof(long double) == float_length) 2635 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset); 2636 else 2637 { 2638 StreamString new_value; 2639 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 2640 2641 if (error_ptr) 2642 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData()); 2643 return false; 2644 } 2645 tmp.SetValueType(Value::eValueTypeScalar); 2646 tmp.ClearContext(); 2647 stack.push_back(tmp); 2648 } 2649 break; 2650 //---------------------------------------------------------------------- 2651 // OPCODE: DW_OP_APPLE_clear 2652 // OPERANDS: none 2653 // DESCRIPTION: Clears the expression stack. 2654 //---------------------------------------------------------------------- 2655 case DW_OP_APPLE_clear: 2656 stack.clear(); 2657 break; 2658 2659 //---------------------------------------------------------------------- 2660 // OPCODE: DW_OP_APPLE_error 2661 // OPERANDS: none 2662 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2663 // The top item on the stack must be a variable, expression variable. 2664 //---------------------------------------------------------------------- 2665 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 2666 if (error_ptr) 2667 error_ptr->SetErrorString ("Generic error."); 2668 return false; 2669 } 2670 } 2671 2672 if (stack.empty()) 2673 { 2674 if (error_ptr) 2675 error_ptr->SetErrorString ("Stack empty after evaluation."); 2676 return false; 2677 } 2678 else if (log) 2679 { 2680 size_t count = stack.size(); 2681 log->Printf("Stack after operation has %d values:", count); 2682 for (size_t i=0; i<count; ++i) 2683 { 2684 StreamString new_value; 2685 new_value.Printf("[%zu]", i); 2686 stack[i].Dump(&new_value); 2687 log->Printf(" %s", new_value.GetData()); 2688 } 2689 } 2690 2691 result = stack.back(); 2692 return true; // Return true on success 2693} 2694 2695