DWARFExpression.cpp revision 952e9dc874944fcdbbb224f3ec4fc2c859376f64
1//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include "lldb/Expression/DWARFExpression.h" 11 12#include <vector> 13 14#include "lldb/Core/DataEncoder.h" 15#include "lldb/Core/dwarf.h" 16#include "lldb/Core/Log.h" 17#include "lldb/Core/RegisterValue.h" 18#include "lldb/Core/StreamString.h" 19#include "lldb/Core/Scalar.h" 20#include "lldb/Core/Value.h" 21#include "lldb/Core/VMRange.h" 22 23#include "lldb/Expression/ClangExpressionDeclMap.h" 24#include "lldb/Expression/ClangExpressionVariable.h" 25 26#include "lldb/Host/Endian.h" 27#include "lldb/Host/Host.h" 28 29#include "lldb/lldb-private-log.h" 30 31#include "lldb/Symbol/ClangASTType.h" 32#include "lldb/Symbol/ClangASTContext.h" 33#include "lldb/Symbol/Type.h" 34 35#include "lldb/Target/ABI.h" 36#include "lldb/Target/ExecutionContext.h" 37#include "lldb/Target/Process.h" 38#include "lldb/Target/RegisterContext.h" 39#include "lldb/Target/StackFrame.h" 40 41using namespace lldb; 42using namespace lldb_private; 43 44const char * 45DW_OP_value_to_name (uint32_t val) 46{ 47 static char invalid[100]; 48 switch (val) { 49 case 0x03: return "DW_OP_addr"; 50 case 0x06: return "DW_OP_deref"; 51 case 0x08: return "DW_OP_const1u"; 52 case 0x09: return "DW_OP_const1s"; 53 case 0x0a: return "DW_OP_const2u"; 54 case 0x0b: return "DW_OP_const2s"; 55 case 0x0c: return "DW_OP_const4u"; 56 case 0x0d: return "DW_OP_const4s"; 57 case 0x0e: return "DW_OP_const8u"; 58 case 0x0f: return "DW_OP_const8s"; 59 case 0x10: return "DW_OP_constu"; 60 case 0x11: return "DW_OP_consts"; 61 case 0x12: return "DW_OP_dup"; 62 case 0x13: return "DW_OP_drop"; 63 case 0x14: return "DW_OP_over"; 64 case 0x15: return "DW_OP_pick"; 65 case 0x16: return "DW_OP_swap"; 66 case 0x17: return "DW_OP_rot"; 67 case 0x18: return "DW_OP_xderef"; 68 case 0x19: return "DW_OP_abs"; 69 case 0x1a: return "DW_OP_and"; 70 case 0x1b: return "DW_OP_div"; 71 case 0x1c: return "DW_OP_minus"; 72 case 0x1d: return "DW_OP_mod"; 73 case 0x1e: return "DW_OP_mul"; 74 case 0x1f: return "DW_OP_neg"; 75 case 0x20: return "DW_OP_not"; 76 case 0x21: return "DW_OP_or"; 77 case 0x22: return "DW_OP_plus"; 78 case 0x23: return "DW_OP_plus_uconst"; 79 case 0x24: return "DW_OP_shl"; 80 case 0x25: return "DW_OP_shr"; 81 case 0x26: return "DW_OP_shra"; 82 case 0x27: return "DW_OP_xor"; 83 case 0x2f: return "DW_OP_skip"; 84 case 0x28: return "DW_OP_bra"; 85 case 0x29: return "DW_OP_eq"; 86 case 0x2a: return "DW_OP_ge"; 87 case 0x2b: return "DW_OP_gt"; 88 case 0x2c: return "DW_OP_le"; 89 case 0x2d: return "DW_OP_lt"; 90 case 0x2e: return "DW_OP_ne"; 91 case 0x30: return "DW_OP_lit0"; 92 case 0x31: return "DW_OP_lit1"; 93 case 0x32: return "DW_OP_lit2"; 94 case 0x33: return "DW_OP_lit3"; 95 case 0x34: return "DW_OP_lit4"; 96 case 0x35: return "DW_OP_lit5"; 97 case 0x36: return "DW_OP_lit6"; 98 case 0x37: return "DW_OP_lit7"; 99 case 0x38: return "DW_OP_lit8"; 100 case 0x39: return "DW_OP_lit9"; 101 case 0x3a: return "DW_OP_lit10"; 102 case 0x3b: return "DW_OP_lit11"; 103 case 0x3c: return "DW_OP_lit12"; 104 case 0x3d: return "DW_OP_lit13"; 105 case 0x3e: return "DW_OP_lit14"; 106 case 0x3f: return "DW_OP_lit15"; 107 case 0x40: return "DW_OP_lit16"; 108 case 0x41: return "DW_OP_lit17"; 109 case 0x42: return "DW_OP_lit18"; 110 case 0x43: return "DW_OP_lit19"; 111 case 0x44: return "DW_OP_lit20"; 112 case 0x45: return "DW_OP_lit21"; 113 case 0x46: return "DW_OP_lit22"; 114 case 0x47: return "DW_OP_lit23"; 115 case 0x48: return "DW_OP_lit24"; 116 case 0x49: return "DW_OP_lit25"; 117 case 0x4a: return "DW_OP_lit26"; 118 case 0x4b: return "DW_OP_lit27"; 119 case 0x4c: return "DW_OP_lit28"; 120 case 0x4d: return "DW_OP_lit29"; 121 case 0x4e: return "DW_OP_lit30"; 122 case 0x4f: return "DW_OP_lit31"; 123 case 0x50: return "DW_OP_reg0"; 124 case 0x51: return "DW_OP_reg1"; 125 case 0x52: return "DW_OP_reg2"; 126 case 0x53: return "DW_OP_reg3"; 127 case 0x54: return "DW_OP_reg4"; 128 case 0x55: return "DW_OP_reg5"; 129 case 0x56: return "DW_OP_reg6"; 130 case 0x57: return "DW_OP_reg7"; 131 case 0x58: return "DW_OP_reg8"; 132 case 0x59: return "DW_OP_reg9"; 133 case 0x5a: return "DW_OP_reg10"; 134 case 0x5b: return "DW_OP_reg11"; 135 case 0x5c: return "DW_OP_reg12"; 136 case 0x5d: return "DW_OP_reg13"; 137 case 0x5e: return "DW_OP_reg14"; 138 case 0x5f: return "DW_OP_reg15"; 139 case 0x60: return "DW_OP_reg16"; 140 case 0x61: return "DW_OP_reg17"; 141 case 0x62: return "DW_OP_reg18"; 142 case 0x63: return "DW_OP_reg19"; 143 case 0x64: return "DW_OP_reg20"; 144 case 0x65: return "DW_OP_reg21"; 145 case 0x66: return "DW_OP_reg22"; 146 case 0x67: return "DW_OP_reg23"; 147 case 0x68: return "DW_OP_reg24"; 148 case 0x69: return "DW_OP_reg25"; 149 case 0x6a: return "DW_OP_reg26"; 150 case 0x6b: return "DW_OP_reg27"; 151 case 0x6c: return "DW_OP_reg28"; 152 case 0x6d: return "DW_OP_reg29"; 153 case 0x6e: return "DW_OP_reg30"; 154 case 0x6f: return "DW_OP_reg31"; 155 case 0x70: return "DW_OP_breg0"; 156 case 0x71: return "DW_OP_breg1"; 157 case 0x72: return "DW_OP_breg2"; 158 case 0x73: return "DW_OP_breg3"; 159 case 0x74: return "DW_OP_breg4"; 160 case 0x75: return "DW_OP_breg5"; 161 case 0x76: return "DW_OP_breg6"; 162 case 0x77: return "DW_OP_breg7"; 163 case 0x78: return "DW_OP_breg8"; 164 case 0x79: return "DW_OP_breg9"; 165 case 0x7a: return "DW_OP_breg10"; 166 case 0x7b: return "DW_OP_breg11"; 167 case 0x7c: return "DW_OP_breg12"; 168 case 0x7d: return "DW_OP_breg13"; 169 case 0x7e: return "DW_OP_breg14"; 170 case 0x7f: return "DW_OP_breg15"; 171 case 0x80: return "DW_OP_breg16"; 172 case 0x81: return "DW_OP_breg17"; 173 case 0x82: return "DW_OP_breg18"; 174 case 0x83: return "DW_OP_breg19"; 175 case 0x84: return "DW_OP_breg20"; 176 case 0x85: return "DW_OP_breg21"; 177 case 0x86: return "DW_OP_breg22"; 178 case 0x87: return "DW_OP_breg23"; 179 case 0x88: return "DW_OP_breg24"; 180 case 0x89: return "DW_OP_breg25"; 181 case 0x8a: return "DW_OP_breg26"; 182 case 0x8b: return "DW_OP_breg27"; 183 case 0x8c: return "DW_OP_breg28"; 184 case 0x8d: return "DW_OP_breg29"; 185 case 0x8e: return "DW_OP_breg30"; 186 case 0x8f: return "DW_OP_breg31"; 187 case 0x90: return "DW_OP_regx"; 188 case 0x91: return "DW_OP_fbreg"; 189 case 0x92: return "DW_OP_bregx"; 190 case 0x93: return "DW_OP_piece"; 191 case 0x94: return "DW_OP_deref_size"; 192 case 0x95: return "DW_OP_xderef_size"; 193 case 0x96: return "DW_OP_nop"; 194 case 0x97: return "DW_OP_push_object_address"; 195 case 0x98: return "DW_OP_call2"; 196 case 0x99: return "DW_OP_call4"; 197 case 0x9a: return "DW_OP_call_ref"; 198// case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 199// case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 200 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 201// case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 202// case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 203// case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 204// case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 205// case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 206// case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 207// case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 208// case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 209// case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 210// case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 211 default: 212 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 213 return invalid; 214 } 215} 216 217 218//---------------------------------------------------------------------- 219// DWARFExpression constructor 220//---------------------------------------------------------------------- 221DWARFExpression::DWARFExpression() : 222 m_data(), 223 m_reg_kind (eRegisterKindDWARF), 224 m_loclist_slide (LLDB_INVALID_ADDRESS) 225{ 226} 227 228DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 229 m_data(rhs.m_data), 230 m_reg_kind (rhs.m_reg_kind), 231 m_loclist_slide(rhs.m_loclist_slide) 232{ 233} 234 235 236DWARFExpression::DWARFExpression(const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) : 237 m_data(data, data_offset, data_length), 238 m_reg_kind (eRegisterKindDWARF), 239 m_loclist_slide(LLDB_INVALID_ADDRESS) 240{ 241} 242 243//---------------------------------------------------------------------- 244// Destructor 245//---------------------------------------------------------------------- 246DWARFExpression::~DWARFExpression() 247{ 248} 249 250 251bool 252DWARFExpression::IsValid() const 253{ 254 return m_data.GetByteSize() > 0; 255} 256 257void 258DWARFExpression::SetOpcodeData (const DataExtractor& data) 259{ 260 m_data = data; 261} 262 263void 264DWARFExpression::CopyOpcodeData (const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) 265{ 266 const uint8_t *bytes = data.PeekData(data_offset, data_length); 267 if (bytes) 268 { 269 m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length))); 270 m_data.SetByteOrder(data.GetByteOrder()); 271 m_data.SetAddressByteSize(data.GetAddressByteSize()); 272 } 273} 274 275void 276DWARFExpression::SetOpcodeData (const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) 277{ 278 m_data.SetData(data, data_offset, data_length); 279} 280 281void 282DWARFExpression::DumpLocation (Stream *s, lldb::offset_t offset, lldb::offset_t length, lldb::DescriptionLevel level, ABI *abi) const 283{ 284 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 285 return; 286 const lldb::offset_t start_offset = offset; 287 const lldb::offset_t end_offset = offset + length; 288 while (m_data.ValidOffset(offset) && offset < end_offset) 289 { 290 const lldb::offset_t op_offset = offset; 291 const uint8_t op = m_data.GetU8(&offset); 292 293 switch (level) 294 { 295 default: 296 break; 297 298 case lldb::eDescriptionLevelBrief: 299 if (offset > start_offset) 300 s->PutChar(' '); 301 break; 302 303 case lldb::eDescriptionLevelFull: 304 case lldb::eDescriptionLevelVerbose: 305 if (offset > start_offset) 306 s->EOL(); 307 s->Indent(); 308 if (level == lldb::eDescriptionLevelFull) 309 break; 310 // Fall through for verbose and print offset and DW_OP prefix.. 311 s->Printf("0x%8.8" PRIx64 ": %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 312 break; 313 } 314 315 switch (op) 316 { 317 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 318 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 319 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 320 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 321 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 322 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 323 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 324 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 325 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 326 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 327 case DW_OP_constu: s->Printf("DW_OP_constu(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 328 case DW_OP_consts: s->Printf("DW_OP_consts(0x%" PRId64 ") ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 329 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 330 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 331 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 332 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 333 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 334 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 335 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 336 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 337 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a 338 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b 339 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c 340 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d 341 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e 342 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f 343 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 344 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 345 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 346 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 347 s->Printf("DW_OP_plus_uconst(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); 348 break; 349 350 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 351 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 352 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 353 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 354 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 355 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 356 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 357 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a 358 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b 359 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c 360 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d 361 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e 362 363 case DW_OP_lit0: // 0x30 364 case DW_OP_lit1: // 0x31 365 case DW_OP_lit2: // 0x32 366 case DW_OP_lit3: // 0x33 367 case DW_OP_lit4: // 0x34 368 case DW_OP_lit5: // 0x35 369 case DW_OP_lit6: // 0x36 370 case DW_OP_lit7: // 0x37 371 case DW_OP_lit8: // 0x38 372 case DW_OP_lit9: // 0x39 373 case DW_OP_lit10: // 0x3A 374 case DW_OP_lit11: // 0x3B 375 case DW_OP_lit12: // 0x3C 376 case DW_OP_lit13: // 0x3D 377 case DW_OP_lit14: // 0x3E 378 case DW_OP_lit15: // 0x3F 379 case DW_OP_lit16: // 0x40 380 case DW_OP_lit17: // 0x41 381 case DW_OP_lit18: // 0x42 382 case DW_OP_lit19: // 0x43 383 case DW_OP_lit20: // 0x44 384 case DW_OP_lit21: // 0x45 385 case DW_OP_lit22: // 0x46 386 case DW_OP_lit23: // 0x47 387 case DW_OP_lit24: // 0x48 388 case DW_OP_lit25: // 0x49 389 case DW_OP_lit26: // 0x4A 390 case DW_OP_lit27: // 0x4B 391 case DW_OP_lit28: // 0x4C 392 case DW_OP_lit29: // 0x4D 393 case DW_OP_lit30: // 0x4E 394 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f 395 396 case DW_OP_reg0: // 0x50 397 case DW_OP_reg1: // 0x51 398 case DW_OP_reg2: // 0x52 399 case DW_OP_reg3: // 0x53 400 case DW_OP_reg4: // 0x54 401 case DW_OP_reg5: // 0x55 402 case DW_OP_reg6: // 0x56 403 case DW_OP_reg7: // 0x57 404 case DW_OP_reg8: // 0x58 405 case DW_OP_reg9: // 0x59 406 case DW_OP_reg10: // 0x5A 407 case DW_OP_reg11: // 0x5B 408 case DW_OP_reg12: // 0x5C 409 case DW_OP_reg13: // 0x5D 410 case DW_OP_reg14: // 0x5E 411 case DW_OP_reg15: // 0x5F 412 case DW_OP_reg16: // 0x60 413 case DW_OP_reg17: // 0x61 414 case DW_OP_reg18: // 0x62 415 case DW_OP_reg19: // 0x63 416 case DW_OP_reg20: // 0x64 417 case DW_OP_reg21: // 0x65 418 case DW_OP_reg22: // 0x66 419 case DW_OP_reg23: // 0x67 420 case DW_OP_reg24: // 0x68 421 case DW_OP_reg25: // 0x69 422 case DW_OP_reg26: // 0x6A 423 case DW_OP_reg27: // 0x6B 424 case DW_OP_reg28: // 0x6C 425 case DW_OP_reg29: // 0x6D 426 case DW_OP_reg30: // 0x6E 427 case DW_OP_reg31: // 0x6F 428 { 429 uint32_t reg_num = op - DW_OP_reg0; 430 if (abi) 431 { 432 RegisterInfo reg_info; 433 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 434 { 435 if (reg_info.name) 436 { 437 s->PutCString (reg_info.name); 438 break; 439 } 440 else if (reg_info.alt_name) 441 { 442 s->PutCString (reg_info.alt_name); 443 break; 444 } 445 } 446 } 447 s->Printf("DW_OP_reg%u", reg_num); break; 448 } 449 break; 450 451 case DW_OP_breg0: 452 case DW_OP_breg1: 453 case DW_OP_breg2: 454 case DW_OP_breg3: 455 case DW_OP_breg4: 456 case DW_OP_breg5: 457 case DW_OP_breg6: 458 case DW_OP_breg7: 459 case DW_OP_breg8: 460 case DW_OP_breg9: 461 case DW_OP_breg10: 462 case DW_OP_breg11: 463 case DW_OP_breg12: 464 case DW_OP_breg13: 465 case DW_OP_breg14: 466 case DW_OP_breg15: 467 case DW_OP_breg16: 468 case DW_OP_breg17: 469 case DW_OP_breg18: 470 case DW_OP_breg19: 471 case DW_OP_breg20: 472 case DW_OP_breg21: 473 case DW_OP_breg22: 474 case DW_OP_breg23: 475 case DW_OP_breg24: 476 case DW_OP_breg25: 477 case DW_OP_breg26: 478 case DW_OP_breg27: 479 case DW_OP_breg28: 480 case DW_OP_breg29: 481 case DW_OP_breg30: 482 case DW_OP_breg31: 483 { 484 uint32_t reg_num = op - DW_OP_breg0; 485 int64_t reg_offset = m_data.GetSLEB128(&offset); 486 if (abi) 487 { 488 RegisterInfo reg_info; 489 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 490 { 491 if (reg_info.name) 492 { 493 s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset); 494 break; 495 } 496 else if (reg_info.alt_name) 497 { 498 s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset); 499 break; 500 } 501 } 502 } 503 s->Printf("DW_OP_breg%i(0x%" PRIx64 ")", reg_num, reg_offset); 504 } 505 break; 506 507 case DW_OP_regx: // 0x90 1 ULEB128 register 508 { 509 uint32_t reg_num = m_data.GetULEB128(&offset); 510 if (abi) 511 { 512 RegisterInfo reg_info; 513 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 514 { 515 if (reg_info.name) 516 { 517 s->PutCString (reg_info.name); 518 break; 519 } 520 else if (reg_info.alt_name) 521 { 522 s->PutCString (reg_info.alt_name); 523 break; 524 } 525 } 526 } 527 s->Printf("DW_OP_regx(%" PRIu32 ")", reg_num); break; 528 } 529 break; 530 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 531 s->Printf("DW_OP_fbreg(%" PRIi64 ")",m_data.GetSLEB128(&offset)); 532 break; 533 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 534 { 535 uint32_t reg_num = m_data.GetULEB128(&offset); 536 int64_t reg_offset = m_data.GetSLEB128(&offset); 537 if (abi) 538 { 539 RegisterInfo reg_info; 540 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 541 { 542 if (reg_info.name) 543 { 544 s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset); 545 break; 546 } 547 else if (reg_info.alt_name) 548 { 549 s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset); 550 break; 551 } 552 } 553 } 554 s->Printf("DW_OP_bregx(reg=%" PRIu32 ",offset=%" PRIi64 ")", reg_num, reg_offset); 555 } 556 break; 557 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 558 s->Printf("DW_OP_piece(0x%" PRIx64 ")", m_data.GetULEB128(&offset)); 559 break; 560 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 561 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); 562 break; 563 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 564 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 565 break; 566 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 567 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 568 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 569 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); 570 break; 571 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 572 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); 573 break; 574 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 575 s->Printf("DW_OP_call_ref(0x%8.8" PRIx64 ")", m_data.GetAddress(&offset)); 576 break; 577// case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 578// case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 579// case DW_OP_bit_piece: // 0x9d DWARF3 2 580// s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 581// break; 582// case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 583// case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff 584// case DW_OP_APPLE_extern: 585// s->Printf("DW_OP_APPLE_extern(%" PRIu64 ")", m_data.GetULEB128(&offset)); 586// break; 587// case DW_OP_APPLE_array_ref: 588// s->PutCString("DW_OP_APPLE_array_ref"); 589// break; 590 case DW_OP_APPLE_uninit: 591 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 592 break; 593// case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 594// s->PutCString("DW_OP_APPLE_assign"); 595// break; 596// case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 597// s->PutCString("DW_OP_APPLE_address_of"); 598// break; 599// case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 600// s->PutCString("DW_OP_APPLE_value_of"); 601// break; 602// case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 603// s->PutCString("DW_OP_APPLE_deref_type"); 604// break; 605// case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 606// s->Printf("DW_OP_APPLE_expr_local(%" PRIu64 ")", m_data.GetULEB128(&offset)); 607// break; 608// case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 609// { 610// uint8_t float_length = m_data.GetU8(&offset); 611// s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); 612// m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 613// s->PutChar(')'); 614// // Consume the float data 615// m_data.GetData(&offset, float_length); 616// } 617// break; 618// case DW_OP_APPLE_scalar_cast: 619// s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 620// break; 621// case DW_OP_APPLE_clang_cast: 622// { 623// clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 624// s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); 625// } 626// break; 627// case DW_OP_APPLE_clear: 628// s->PutCString("DW_OP_APPLE_clear"); 629// break; 630// case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 631// s->PutCString("DW_OP_APPLE_error"); 632// break; 633 } 634 } 635} 636 637void 638DWARFExpression::SetLocationListSlide (addr_t slide) 639{ 640 m_loclist_slide = slide; 641} 642 643int 644DWARFExpression::GetRegisterKind () 645{ 646 return m_reg_kind; 647} 648 649void 650DWARFExpression::SetRegisterKind (RegisterKind reg_kind) 651{ 652 m_reg_kind = reg_kind; 653} 654 655bool 656DWARFExpression::IsLocationList() const 657{ 658 return m_loclist_slide != LLDB_INVALID_ADDRESS; 659} 660 661void 662DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const 663{ 664 if (IsLocationList()) 665 { 666 // We have a location list 667 lldb::offset_t offset = 0; 668 uint32_t count = 0; 669 addr_t curr_base_addr = location_list_base_addr; 670 while (m_data.ValidOffset(offset)) 671 { 672 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 673 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 674 if (begin_addr_offset < end_addr_offset) 675 { 676 if (count > 0) 677 s->PutCString(", "); 678 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 679 addr_range.Dump(s, 0, 8); 680 s->PutChar('{'); 681 lldb::offset_t location_length = m_data.GetU16(&offset); 682 DumpLocation (s, offset, location_length, level, abi); 683 s->PutChar('}'); 684 offset += location_length; 685 } 686 else if (begin_addr_offset == 0 && end_addr_offset == 0) 687 { 688 // The end of the location list is marked by both the start and end offset being zero 689 break; 690 } 691 else 692 { 693 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || 694 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) 695 { 696 curr_base_addr = end_addr_offset + location_list_base_addr; 697 // We have a new base address 698 if (count > 0) 699 s->PutCString(", "); 700 *s << "base_addr = " << end_addr_offset; 701 } 702 } 703 704 count++; 705 } 706 } 707 else 708 { 709 // We have a normal location that contains DW_OP location opcodes 710 DumpLocation (s, 0, m_data.GetByteSize(), level, abi); 711 } 712} 713 714static bool 715ReadRegisterValueAsScalar 716( 717 RegisterContext *reg_ctx, 718 uint32_t reg_kind, 719 uint32_t reg_num, 720 Error *error_ptr, 721 Value &value 722) 723{ 724 if (reg_ctx == NULL) 725 { 726 if (error_ptr) 727 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 728 } 729 else 730 { 731 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 732 if (native_reg == LLDB_INVALID_REGNUM) 733 { 734 if (error_ptr) 735 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 736 } 737 else 738 { 739 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); 740 RegisterValue reg_value; 741 if (reg_ctx->ReadRegister (reg_info, reg_value)) 742 { 743 if (reg_value.GetScalarValue(value.GetScalar())) 744 { 745 value.SetValueType (Value::eValueTypeScalar); 746 value.SetContext (Value::eContextTypeRegisterInfo, 747 const_cast<RegisterInfo *>(reg_info)); 748 if (error_ptr) 749 error_ptr->Clear(); 750 return true; 751 } 752 else 753 { 754 // If we get this error, then we need to implement a value 755 // buffer in the dwarf expression evaluation function... 756 if (error_ptr) 757 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", 758 reg_info->name); 759 } 760 } 761 else 762 { 763 if (error_ptr) 764 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); 765 } 766 } 767 } 768 return false; 769} 770 771//bool 772//DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 773//{ 774// return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 775//} 776// 777//bool 778//DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 779//{ 780// if (load_addr == LLDB_INVALID_ADDRESS) 781// return false; 782// 783// if (IsLocationList()) 784// { 785// lldb::offset_t offset = 0; 786// 787// addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 788// 789// if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 790// return false; 791// 792// while (m_data.ValidOffset(offset)) 793// { 794// // We need to figure out what the value is for the location. 795// addr_t lo_pc = m_data.GetAddress(&offset); 796// addr_t hi_pc = m_data.GetAddress(&offset); 797// if (lo_pc == 0 && hi_pc == 0) 798// break; 799// else 800// { 801// lo_pc += loc_list_base_addr; 802// hi_pc += loc_list_base_addr; 803// 804// if (lo_pc <= load_addr && load_addr < hi_pc) 805// return true; 806// 807// offset += m_data.GetU16(&offset); 808// } 809// } 810// } 811// return false; 812//} 813 814static offset_t 815GetOpcodeDataSize (const DataExtractor &data, const lldb::offset_t data_offset, const uint8_t op) 816{ 817 lldb::offset_t offset = data_offset; 818 switch (op) 819 { 820 case DW_OP_addr: 821 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) 822 return data.GetAddressByteSize(); 823 824 // Opcodes with no arguments 825 case DW_OP_deref: // 0x06 826 case DW_OP_dup: // 0x12 827 case DW_OP_drop: // 0x13 828 case DW_OP_over: // 0x14 829 case DW_OP_swap: // 0x16 830 case DW_OP_rot: // 0x17 831 case DW_OP_xderef: // 0x18 832 case DW_OP_abs: // 0x19 833 case DW_OP_and: // 0x1a 834 case DW_OP_div: // 0x1b 835 case DW_OP_minus: // 0x1c 836 case DW_OP_mod: // 0x1d 837 case DW_OP_mul: // 0x1e 838 case DW_OP_neg: // 0x1f 839 case DW_OP_not: // 0x20 840 case DW_OP_or: // 0x21 841 case DW_OP_plus: // 0x22 842 case DW_OP_shl: // 0x24 843 case DW_OP_shr: // 0x25 844 case DW_OP_shra: // 0x26 845 case DW_OP_xor: // 0x27 846 case DW_OP_eq: // 0x29 847 case DW_OP_ge: // 0x2a 848 case DW_OP_gt: // 0x2b 849 case DW_OP_le: // 0x2c 850 case DW_OP_lt: // 0x2d 851 case DW_OP_ne: // 0x2e 852 case DW_OP_lit0: // 0x30 853 case DW_OP_lit1: // 0x31 854 case DW_OP_lit2: // 0x32 855 case DW_OP_lit3: // 0x33 856 case DW_OP_lit4: // 0x34 857 case DW_OP_lit5: // 0x35 858 case DW_OP_lit6: // 0x36 859 case DW_OP_lit7: // 0x37 860 case DW_OP_lit8: // 0x38 861 case DW_OP_lit9: // 0x39 862 case DW_OP_lit10: // 0x3A 863 case DW_OP_lit11: // 0x3B 864 case DW_OP_lit12: // 0x3C 865 case DW_OP_lit13: // 0x3D 866 case DW_OP_lit14: // 0x3E 867 case DW_OP_lit15: // 0x3F 868 case DW_OP_lit16: // 0x40 869 case DW_OP_lit17: // 0x41 870 case DW_OP_lit18: // 0x42 871 case DW_OP_lit19: // 0x43 872 case DW_OP_lit20: // 0x44 873 case DW_OP_lit21: // 0x45 874 case DW_OP_lit22: // 0x46 875 case DW_OP_lit23: // 0x47 876 case DW_OP_lit24: // 0x48 877 case DW_OP_lit25: // 0x49 878 case DW_OP_lit26: // 0x4A 879 case DW_OP_lit27: // 0x4B 880 case DW_OP_lit28: // 0x4C 881 case DW_OP_lit29: // 0x4D 882 case DW_OP_lit30: // 0x4E 883 case DW_OP_lit31: // 0x4f 884 case DW_OP_reg0: // 0x50 885 case DW_OP_reg1: // 0x51 886 case DW_OP_reg2: // 0x52 887 case DW_OP_reg3: // 0x53 888 case DW_OP_reg4: // 0x54 889 case DW_OP_reg5: // 0x55 890 case DW_OP_reg6: // 0x56 891 case DW_OP_reg7: // 0x57 892 case DW_OP_reg8: // 0x58 893 case DW_OP_reg9: // 0x59 894 case DW_OP_reg10: // 0x5A 895 case DW_OP_reg11: // 0x5B 896 case DW_OP_reg12: // 0x5C 897 case DW_OP_reg13: // 0x5D 898 case DW_OP_reg14: // 0x5E 899 case DW_OP_reg15: // 0x5F 900 case DW_OP_reg16: // 0x60 901 case DW_OP_reg17: // 0x61 902 case DW_OP_reg18: // 0x62 903 case DW_OP_reg19: // 0x63 904 case DW_OP_reg20: // 0x64 905 case DW_OP_reg21: // 0x65 906 case DW_OP_reg22: // 0x66 907 case DW_OP_reg23: // 0x67 908 case DW_OP_reg24: // 0x68 909 case DW_OP_reg25: // 0x69 910 case DW_OP_reg26: // 0x6A 911 case DW_OP_reg27: // 0x6B 912 case DW_OP_reg28: // 0x6C 913 case DW_OP_reg29: // 0x6D 914 case DW_OP_reg30: // 0x6E 915 case DW_OP_reg31: // 0x6F 916 case DW_OP_nop: // 0x96 917 case DW_OP_push_object_address: // 0x97 DWARF3 918 case DW_OP_form_tls_address: // 0x9b DWARF3 919 case DW_OP_call_frame_cfa: // 0x9c DWARF3 920 case DW_OP_stack_value: // 0x9f DWARF4 921 return 0; 922 923 // Opcodes with a single 1 byte arguments 924 case DW_OP_const1u: // 0x08 1 1-byte constant 925 case DW_OP_const1s: // 0x09 1 1-byte constant 926 case DW_OP_pick: // 0x15 1 1-byte stack index 927 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 928 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 929 return 1; 930 931 // Opcodes with a single 2 byte arguments 932 case DW_OP_const2u: // 0x0a 1 2-byte constant 933 case DW_OP_const2s: // 0x0b 1 2-byte constant 934 case DW_OP_skip: // 0x2f 1 signed 2-byte constant 935 case DW_OP_bra: // 0x28 1 signed 2-byte constant 936 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) 937 return 2; 938 939 // Opcodes with a single 4 byte arguments 940 case DW_OP_const4u: // 0x0c 1 4-byte constant 941 case DW_OP_const4s: // 0x0d 1 4-byte constant 942 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) 943 return 4; 944 945 // Opcodes with a single 8 byte arguments 946 case DW_OP_const8u: // 0x0e 1 8-byte constant 947 case DW_OP_const8s: // 0x0f 1 8-byte constant 948 return 8; 949 950 // All opcodes that have a single ULEB (signed or unsigned) argument 951 case DW_OP_constu: // 0x10 1 ULEB128 constant 952 case DW_OP_consts: // 0x11 1 SLEB128 constant 953 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 954 case DW_OP_breg0: // 0x70 1 ULEB128 register 955 case DW_OP_breg1: // 0x71 1 ULEB128 register 956 case DW_OP_breg2: // 0x72 1 ULEB128 register 957 case DW_OP_breg3: // 0x73 1 ULEB128 register 958 case DW_OP_breg4: // 0x74 1 ULEB128 register 959 case DW_OP_breg5: // 0x75 1 ULEB128 register 960 case DW_OP_breg6: // 0x76 1 ULEB128 register 961 case DW_OP_breg7: // 0x77 1 ULEB128 register 962 case DW_OP_breg8: // 0x78 1 ULEB128 register 963 case DW_OP_breg9: // 0x79 1 ULEB128 register 964 case DW_OP_breg10: // 0x7a 1 ULEB128 register 965 case DW_OP_breg11: // 0x7b 1 ULEB128 register 966 case DW_OP_breg12: // 0x7c 1 ULEB128 register 967 case DW_OP_breg13: // 0x7d 1 ULEB128 register 968 case DW_OP_breg14: // 0x7e 1 ULEB128 register 969 case DW_OP_breg15: // 0x7f 1 ULEB128 register 970 case DW_OP_breg16: // 0x80 1 ULEB128 register 971 case DW_OP_breg17: // 0x81 1 ULEB128 register 972 case DW_OP_breg18: // 0x82 1 ULEB128 register 973 case DW_OP_breg19: // 0x83 1 ULEB128 register 974 case DW_OP_breg20: // 0x84 1 ULEB128 register 975 case DW_OP_breg21: // 0x85 1 ULEB128 register 976 case DW_OP_breg22: // 0x86 1 ULEB128 register 977 case DW_OP_breg23: // 0x87 1 ULEB128 register 978 case DW_OP_breg24: // 0x88 1 ULEB128 register 979 case DW_OP_breg25: // 0x89 1 ULEB128 register 980 case DW_OP_breg26: // 0x8a 1 ULEB128 register 981 case DW_OP_breg27: // 0x8b 1 ULEB128 register 982 case DW_OP_breg28: // 0x8c 1 ULEB128 register 983 case DW_OP_breg29: // 0x8d 1 ULEB128 register 984 case DW_OP_breg30: // 0x8e 1 ULEB128 register 985 case DW_OP_breg31: // 0x8f 1 ULEB128 register 986 case DW_OP_regx: // 0x90 1 ULEB128 register 987 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 988 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 989 data.Skip_LEB128(&offset); 990 return offset - data_offset; 991 992 // All opcodes that have a 2 ULEB (signed or unsigned) arguments 993 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 994 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 995 data.Skip_LEB128(&offset); 996 data.Skip_LEB128(&offset); 997 return offset - data_offset; 998 999 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4) 1000 { 1001 uint64_t block_len = data.Skip_LEB128(&offset); 1002 offset += block_len; 1003 return offset - data_offset; 1004 } 1005 1006 default: 1007 break; 1008 } 1009 return LLDB_INVALID_OFFSET; 1010} 1011 1012lldb::addr_t 1013DWARFExpression::GetLocation_DW_OP_addr (uint32_t op_addr_idx, bool &error) const 1014{ 1015 error = false; 1016 if (IsLocationList()) 1017 return LLDB_INVALID_ADDRESS; 1018 lldb::offset_t offset = 0; 1019 uint32_t curr_op_addr_idx = 0; 1020 while (m_data.ValidOffset(offset)) 1021 { 1022 const uint8_t op = m_data.GetU8(&offset); 1023 1024 if (op == DW_OP_addr) 1025 { 1026 const lldb::addr_t op_file_addr = m_data.GetAddress(&offset); 1027 if (curr_op_addr_idx == op_addr_idx) 1028 return op_file_addr; 1029 else 1030 ++curr_op_addr_idx; 1031 } 1032 else 1033 { 1034 const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1035 if (op_arg_size == LLDB_INVALID_OFFSET) 1036 { 1037 error = true; 1038 break; 1039 } 1040 offset += op_arg_size; 1041 } 1042 } 1043 return LLDB_INVALID_ADDRESS; 1044} 1045 1046bool 1047DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr) 1048{ 1049 if (IsLocationList()) 1050 return false; 1051 lldb::offset_t offset = 0; 1052 while (m_data.ValidOffset(offset)) 1053 { 1054 const uint8_t op = m_data.GetU8(&offset); 1055 1056 if (op == DW_OP_addr) 1057 { 1058 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 1059 // We have to make a copy of the data as we don't know if this 1060 // data is from a read only memory mapped buffer, so we duplicate 1061 // all of the data first, then modify it, and if all goes well, 1062 // we then replace the data for this expression 1063 1064 // So first we copy the data into a heap buffer 1065 std::auto_ptr<DataBufferHeap> head_data_ap (new DataBufferHeap (m_data.GetDataStart(), 1066 m_data.GetByteSize())); 1067 1068 // Make en encoder so we can write the address into the buffer using 1069 // the correct byte order (endianness) 1070 DataEncoder encoder (head_data_ap->GetBytes(), 1071 head_data_ap->GetByteSize(), 1072 m_data.GetByteOrder(), 1073 addr_byte_size); 1074 1075 // Replace the address in the new buffer 1076 if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX) 1077 return false; 1078 1079 // All went well, so now we can reset the data using a shared 1080 // pointer to the heap data so "m_data" will now correctly 1081 // manage the heap data. 1082 m_data.SetData (DataBufferSP (head_data_ap.release())); 1083 return true; 1084 } 1085 else 1086 { 1087 const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1088 if (op_arg_size == LLDB_INVALID_OFFSET) 1089 break; 1090 offset += op_arg_size; 1091 } 1092 } 1093 return false; 1094} 1095 1096bool 1097DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 1098{ 1099 if (addr == LLDB_INVALID_ADDRESS) 1100 return false; 1101 1102 if (IsLocationList()) 1103 { 1104 lldb::offset_t offset = 0; 1105 1106 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 1107 return false; 1108 1109 while (m_data.ValidOffset(offset)) 1110 { 1111 // We need to figure out what the value is for the location. 1112 addr_t lo_pc = m_data.GetAddress(&offset); 1113 addr_t hi_pc = m_data.GetAddress(&offset); 1114 if (lo_pc == 0 && hi_pc == 0) 1115 break; 1116 else 1117 { 1118 lo_pc += loclist_base_addr - m_loclist_slide; 1119 hi_pc += loclist_base_addr - m_loclist_slide; 1120 1121 if (lo_pc <= addr && addr < hi_pc) 1122 return true; 1123 1124 offset += m_data.GetU16(&offset); 1125 } 1126 } 1127 } 1128 return false; 1129} 1130 1131bool 1132DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, lldb::offset_t &offset, lldb::offset_t &length) 1133{ 1134 offset = 0; 1135 if (!IsLocationList()) 1136 { 1137 length = m_data.GetByteSize(); 1138 return true; 1139 } 1140 1141 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) 1142 { 1143 addr_t curr_base_addr = base_addr; 1144 1145 while (m_data.ValidOffset(offset)) 1146 { 1147 // We need to figure out what the value is for the location. 1148 addr_t lo_pc = m_data.GetAddress(&offset); 1149 addr_t hi_pc = m_data.GetAddress(&offset); 1150 if (lo_pc == 0 && hi_pc == 0) 1151 { 1152 break; 1153 } 1154 else 1155 { 1156 lo_pc += curr_base_addr - m_loclist_slide; 1157 hi_pc += curr_base_addr - m_loclist_slide; 1158 1159 length = m_data.GetU16(&offset); 1160 1161 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1162 return true; 1163 1164 offset += length; 1165 } 1166 } 1167 } 1168 offset = LLDB_INVALID_OFFSET; 1169 length = 0; 1170 return false; 1171} 1172 1173bool 1174DWARFExpression::DumpLocationForAddress (Stream *s, 1175 lldb::DescriptionLevel level, 1176 addr_t base_addr, 1177 addr_t address, 1178 ABI *abi) 1179{ 1180 lldb::offset_t offset = 0; 1181 lldb::offset_t length = 0; 1182 1183 if (GetLocation (base_addr, address, offset, length)) 1184 { 1185 if (length > 0) 1186 { 1187 DumpLocation(s, offset, length, level, abi); 1188 return true; 1189 } 1190 } 1191 return false; 1192} 1193 1194bool 1195DWARFExpression::Evaluate 1196( 1197 ExecutionContextScope *exe_scope, 1198 clang::ASTContext *ast_context, 1199 ClangExpressionVariableList *expr_locals, 1200 ClangExpressionDeclMap *decl_map, 1201 lldb::addr_t loclist_base_load_addr, 1202 const Value* initial_value_ptr, 1203 Value& result, 1204 Error *error_ptr 1205) const 1206{ 1207 ExecutionContext exe_ctx (exe_scope); 1208 return Evaluate(&exe_ctx, ast_context, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 1209} 1210 1211bool 1212DWARFExpression::Evaluate 1213( 1214 ExecutionContext *exe_ctx, 1215 clang::ASTContext *ast_context, 1216 ClangExpressionVariableList *expr_locals, 1217 ClangExpressionDeclMap *decl_map, 1218 RegisterContext *reg_ctx, 1219 lldb::addr_t loclist_base_load_addr, 1220 const Value* initial_value_ptr, 1221 Value& result, 1222 Error *error_ptr 1223) const 1224{ 1225 if (IsLocationList()) 1226 { 1227 lldb::offset_t offset = 0; 1228 addr_t pc; 1229 StackFrame *frame = NULL; 1230 if (reg_ctx) 1231 pc = reg_ctx->GetPC(); 1232 else 1233 { 1234 frame = exe_ctx->GetFramePtr(); 1235 if (!frame) 1236 return false; 1237 RegisterContextSP reg_ctx_sp = frame->GetRegisterContext(); 1238 if (!reg_ctx_sp) 1239 return false; 1240 pc = reg_ctx_sp->GetPC(); 1241 } 1242 1243 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 1244 { 1245 if (pc == LLDB_INVALID_ADDRESS) 1246 { 1247 if (error_ptr) 1248 error_ptr->SetErrorString("Invalid PC in frame."); 1249 return false; 1250 } 1251 1252 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 1253 1254 while (m_data.ValidOffset(offset)) 1255 { 1256 // We need to figure out what the value is for the location. 1257 addr_t lo_pc = m_data.GetAddress(&offset); 1258 addr_t hi_pc = m_data.GetAddress(&offset); 1259 if (lo_pc == 0 && hi_pc == 0) 1260 { 1261 break; 1262 } 1263 else 1264 { 1265 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 1266 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 1267 1268 uint16_t length = m_data.GetU16(&offset); 1269 1270 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1271 { 1272 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 1273 } 1274 offset += length; 1275 } 1276 } 1277 } 1278 if (error_ptr) 1279 error_ptr->SetErrorString ("variable not available"); 1280 return false; 1281 } 1282 1283 // Not a location list, just a single expression. 1284 return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 1285} 1286 1287 1288 1289bool 1290DWARFExpression::Evaluate 1291( 1292 ExecutionContext *exe_ctx, 1293 clang::ASTContext *ast_context, 1294 ClangExpressionVariableList *expr_locals, 1295 ClangExpressionDeclMap *decl_map, 1296 RegisterContext *reg_ctx, 1297 const DataExtractor& opcodes, 1298 const lldb::offset_t opcodes_offset, 1299 const lldb::offset_t opcodes_length, 1300 const uint32_t reg_kind, 1301 const Value* initial_value_ptr, 1302 Value& result, 1303 Error *error_ptr 1304) 1305{ 1306 std::vector<Value> stack; 1307 1308 Process *process = NULL; 1309 StackFrame *frame = NULL; 1310 1311 if (exe_ctx) 1312 { 1313 process = exe_ctx->GetProcessPtr(); 1314 frame = exe_ctx->GetFramePtr(); 1315 } 1316 if (reg_ctx == NULL && frame) 1317 reg_ctx = frame->GetRegisterContext().get(); 1318 1319 if (initial_value_ptr) 1320 stack.push_back(*initial_value_ptr); 1321 1322 lldb::offset_t offset = opcodes_offset; 1323 const lldb::offset_t end_offset = opcodes_offset + opcodes_length; 1324 Value tmp; 1325 uint32_t reg_num; 1326 1327 // Make sure all of the data is available in opcodes. 1328 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 1329 { 1330 if (error_ptr) 1331 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer."); 1332 return false; 1333 } 1334 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1335 1336 1337 while (opcodes.ValidOffset(offset) && offset < end_offset) 1338 { 1339 const lldb::offset_t op_offset = offset; 1340 const uint8_t op = opcodes.GetU8(&offset); 1341 1342 if (log && log->GetVerbose()) 1343 { 1344 size_t count = stack.size(); 1345 log->Printf("Stack before operation has %lu values:", count); 1346 for (size_t i=0; i<count; ++i) 1347 { 1348 StreamString new_value; 1349 new_value.Printf("[%" PRIu64 "]", (uint64_t)i); 1350 stack[i].Dump(&new_value); 1351 log->Printf(" %s", new_value.GetData()); 1352 } 1353 log->Printf("0x%8.8" PRIx64 ": %s", op_offset, DW_OP_value_to_name(op)); 1354 } 1355 switch (op) 1356 { 1357 //---------------------------------------------------------------------- 1358 // The DW_OP_addr operation has a single operand that encodes a machine 1359 // address and whose size is the size of an address on the target machine. 1360 //---------------------------------------------------------------------- 1361 case DW_OP_addr: 1362 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 1363 stack.back().SetValueType (Value::eValueTypeFileAddress); 1364 break; 1365 1366 //---------------------------------------------------------------------- 1367 // The DW_OP_addr_sect_offset4 is used for any location expressions in 1368 // shared libraries that have a location like: 1369 // DW_OP_addr(0x1000) 1370 // If this address resides in a shared library, then this virtual 1371 // address won't make sense when it is evaluated in the context of a 1372 // running process where shared libraries have been slid. To account for 1373 // this, this new address type where we can store the section pointer 1374 // and a 4 byte offset. 1375 //---------------------------------------------------------------------- 1376// case DW_OP_addr_sect_offset4: 1377// { 1378// result_type = eResultTypeFileAddress; 1379// lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 1380// lldb::addr_t sect_offset = opcodes.GetU32(&offset); 1381// 1382// Address so_addr (sect, sect_offset); 1383// lldb::addr_t load_addr = so_addr.GetLoadAddress(); 1384// if (load_addr != LLDB_INVALID_ADDRESS) 1385// { 1386// // We successfully resolve a file address to a load 1387// // address. 1388// stack.push_back(load_addr); 1389// break; 1390// } 1391// else 1392// { 1393// // We were able 1394// if (error_ptr) 1395// error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 1396// return false; 1397// } 1398// } 1399// break; 1400 1401 //---------------------------------------------------------------------- 1402 // OPCODE: DW_OP_deref 1403 // OPERANDS: none 1404 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1405 // The value retrieved from that address is pushed. The size of the 1406 // data retrieved from the dereferenced address is the size of an 1407 // address on the target machine. 1408 //---------------------------------------------------------------------- 1409 case DW_OP_deref: 1410 { 1411 Value::ValueType value_type = stack.back().GetValueType(); 1412 switch (value_type) 1413 { 1414 case Value::eValueTypeHostAddress: 1415 { 1416 void *src = (void *)stack.back().GetScalar().ULongLong(); 1417 intptr_t ptr; 1418 ::memcpy (&ptr, src, sizeof(void *)); 1419 stack.back().GetScalar() = ptr; 1420 stack.back().ClearContext(); 1421 } 1422 break; 1423 case Value::eValueTypeLoadAddress: 1424 if (exe_ctx) 1425 { 1426 if (process) 1427 { 1428 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1429 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1430 uint32_t addr_size = process->GetAddressByteSize(); 1431 Error error; 1432 if (process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) 1433 { 1434 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), addr_size); 1435 lldb::offset_t addr_data_offset = 0; 1436 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1437 stack.back().ClearContext(); 1438 } 1439 else 1440 { 1441 if (error_ptr) 1442 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n", 1443 pointer_addr, 1444 error.AsCString()); 1445 return false; 1446 } 1447 } 1448 else 1449 { 1450 if (error_ptr) 1451 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1452 return false; 1453 } 1454 } 1455 else 1456 { 1457 if (error_ptr) 1458 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1459 return false; 1460 } 1461 break; 1462 1463 default: 1464 break; 1465 } 1466 1467 } 1468 break; 1469 1470 //---------------------------------------------------------------------- 1471 // OPCODE: DW_OP_deref_size 1472 // OPERANDS: 1 1473 // 1 - uint8_t that specifies the size of the data to dereference. 1474 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1475 // stack entry and treats it as an address. The value retrieved from that 1476 // address is pushed. In the DW_OP_deref_size operation, however, the 1477 // size in bytes of the data retrieved from the dereferenced address is 1478 // specified by the single operand. This operand is a 1-byte unsigned 1479 // integral constant whose value may not be larger than the size of an 1480 // address on the target machine. The data retrieved is zero extended 1481 // to the size of an address on the target machine before being pushed 1482 // on the expression stack. 1483 //---------------------------------------------------------------------- 1484 case DW_OP_deref_size: 1485 { 1486 uint8_t size = opcodes.GetU8(&offset); 1487 Value::ValueType value_type = stack.back().GetValueType(); 1488 switch (value_type) 1489 { 1490 case Value::eValueTypeHostAddress: 1491 { 1492 void *src = (void *)stack.back().GetScalar().ULongLong(); 1493 intptr_t ptr; 1494 ::memcpy (&ptr, src, sizeof(void *)); 1495 // I can't decide whether the size operand should apply to the bytes in their 1496 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1497 // but I'll opt for assuming big endian regardless. 1498 switch (size) 1499 { 1500 case 1: ptr = ptr & 0xff; break; 1501 case 2: ptr = ptr & 0xffff; break; 1502 case 3: ptr = ptr & 0xffffff; break; 1503 case 4: ptr = ptr & 0xffffffff; break; 1504 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1505 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1506 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1507 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1508 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1509 default: break; 1510 } 1511 stack.back().GetScalar() = ptr; 1512 stack.back().ClearContext(); 1513 } 1514 break; 1515 case Value::eValueTypeLoadAddress: 1516 if (exe_ctx) 1517 { 1518 if (process) 1519 { 1520 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1521 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1522 Error error; 1523 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1524 { 1525 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size); 1526 lldb::offset_t addr_data_offset = 0; 1527 switch (size) 1528 { 1529 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1530 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1531 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1532 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1533 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1534 } 1535 stack.back().ClearContext(); 1536 } 1537 else 1538 { 1539 if (error_ptr) 1540 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n", 1541 pointer_addr, 1542 error.AsCString()); 1543 return false; 1544 } 1545 } 1546 else 1547 { 1548 if (error_ptr) 1549 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1550 return false; 1551 } 1552 } 1553 else 1554 { 1555 if (error_ptr) 1556 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1557 return false; 1558 } 1559 break; 1560 1561 default: 1562 break; 1563 } 1564 1565 } 1566 break; 1567 1568 //---------------------------------------------------------------------- 1569 // OPCODE: DW_OP_xderef_size 1570 // OPERANDS: 1 1571 // 1 - uint8_t that specifies the size of the data to dereference. 1572 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1573 // the top of the stack is treated as an address. The second stack 1574 // entry is treated as an "address space identifier" for those 1575 // architectures that support multiple address spaces. The top two 1576 // stack elements are popped, a data item is retrieved through an 1577 // implementation-defined address calculation and pushed as the new 1578 // stack top. In the DW_OP_xderef_size operation, however, the size in 1579 // bytes of the data retrieved from the dereferenced address is 1580 // specified by the single operand. This operand is a 1-byte unsigned 1581 // integral constant whose value may not be larger than the size of an 1582 // address on the target machine. The data retrieved is zero extended 1583 // to the size of an address on the target machine before being pushed 1584 // on the expression stack. 1585 //---------------------------------------------------------------------- 1586 case DW_OP_xderef_size: 1587 if (error_ptr) 1588 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1589 return false; 1590 //---------------------------------------------------------------------- 1591 // OPCODE: DW_OP_xderef 1592 // OPERANDS: none 1593 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1594 // the top of the stack is treated as an address. The second stack entry 1595 // is treated as an "address space identifier" for those architectures 1596 // that support multiple address spaces. The top two stack elements are 1597 // popped, a data item is retrieved through an implementation-defined 1598 // address calculation and pushed as the new stack top. The size of the 1599 // data retrieved from the dereferenced address is the size of an address 1600 // on the target machine. 1601 //---------------------------------------------------------------------- 1602 case DW_OP_xderef: 1603 if (error_ptr) 1604 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1605 return false; 1606 1607 //---------------------------------------------------------------------- 1608 // All DW_OP_constXXX opcodes have a single operand as noted below: 1609 // 1610 // Opcode Operand 1 1611 // --------------- ---------------------------------------------------- 1612 // DW_OP_const1u 1-byte unsigned integer constant 1613 // DW_OP_const1s 1-byte signed integer constant 1614 // DW_OP_const2u 2-byte unsigned integer constant 1615 // DW_OP_const2s 2-byte signed integer constant 1616 // DW_OP_const4u 4-byte unsigned integer constant 1617 // DW_OP_const4s 4-byte signed integer constant 1618 // DW_OP_const8u 8-byte unsigned integer constant 1619 // DW_OP_const8s 8-byte signed integer constant 1620 // DW_OP_constu unsigned LEB128 integer constant 1621 // DW_OP_consts signed LEB128 integer constant 1622 //---------------------------------------------------------------------- 1623 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; 1624 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; 1625 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; 1626 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; 1627 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; 1628 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; 1629 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; 1630 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; 1631 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; 1632 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; 1633 1634 //---------------------------------------------------------------------- 1635 // OPCODE: DW_OP_dup 1636 // OPERANDS: none 1637 // DESCRIPTION: duplicates the value at the top of the stack 1638 //---------------------------------------------------------------------- 1639 case DW_OP_dup: 1640 if (stack.empty()) 1641 { 1642 if (error_ptr) 1643 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1644 return false; 1645 } 1646 else 1647 stack.push_back(stack.back()); 1648 break; 1649 1650 //---------------------------------------------------------------------- 1651 // OPCODE: DW_OP_drop 1652 // OPERANDS: none 1653 // DESCRIPTION: pops the value at the top of the stack 1654 //---------------------------------------------------------------------- 1655 case DW_OP_drop: 1656 if (stack.empty()) 1657 { 1658 if (error_ptr) 1659 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1660 return false; 1661 } 1662 else 1663 stack.pop_back(); 1664 break; 1665 1666 //---------------------------------------------------------------------- 1667 // OPCODE: DW_OP_over 1668 // OPERANDS: none 1669 // DESCRIPTION: Duplicates the entry currently second in the stack at 1670 // the top of the stack. 1671 //---------------------------------------------------------------------- 1672 case DW_OP_over: 1673 if (stack.size() < 2) 1674 { 1675 if (error_ptr) 1676 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1677 return false; 1678 } 1679 else 1680 stack.push_back(stack[stack.size() - 2]); 1681 break; 1682 1683 1684 //---------------------------------------------------------------------- 1685 // OPCODE: DW_OP_pick 1686 // OPERANDS: uint8_t index into the current stack 1687 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1688 // inclusive) is pushed on the stack 1689 //---------------------------------------------------------------------- 1690 case DW_OP_pick: 1691 { 1692 uint8_t pick_idx = opcodes.GetU8(&offset); 1693 if (pick_idx < stack.size()) 1694 stack.push_back(stack[pick_idx]); 1695 else 1696 { 1697 if (error_ptr) 1698 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1699 return false; 1700 } 1701 } 1702 break; 1703 1704 //---------------------------------------------------------------------- 1705 // OPCODE: DW_OP_swap 1706 // OPERANDS: none 1707 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1708 // of the stack becomes the second stack entry, and the second entry 1709 // becomes the top of the stack 1710 //---------------------------------------------------------------------- 1711 case DW_OP_swap: 1712 if (stack.size() < 2) 1713 { 1714 if (error_ptr) 1715 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1716 return false; 1717 } 1718 else 1719 { 1720 tmp = stack.back(); 1721 stack.back() = stack[stack.size() - 2]; 1722 stack[stack.size() - 2] = tmp; 1723 } 1724 break; 1725 1726 //---------------------------------------------------------------------- 1727 // OPCODE: DW_OP_rot 1728 // OPERANDS: none 1729 // DESCRIPTION: Rotates the first three stack entries. The entry at 1730 // the top of the stack becomes the third stack entry, the second 1731 // entry becomes the top of the stack, and the third entry becomes 1732 // the second entry. 1733 //---------------------------------------------------------------------- 1734 case DW_OP_rot: 1735 if (stack.size() < 3) 1736 { 1737 if (error_ptr) 1738 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1739 return false; 1740 } 1741 else 1742 { 1743 size_t last_idx = stack.size() - 1; 1744 Value old_top = stack[last_idx]; 1745 stack[last_idx] = stack[last_idx - 1]; 1746 stack[last_idx - 1] = stack[last_idx - 2]; 1747 stack[last_idx - 2] = old_top; 1748 } 1749 break; 1750 1751 //---------------------------------------------------------------------- 1752 // OPCODE: DW_OP_abs 1753 // OPERANDS: none 1754 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1755 // value and pushes its absolute value. If the absolute value can not be 1756 // represented, the result is undefined. 1757 //---------------------------------------------------------------------- 1758 case DW_OP_abs: 1759 if (stack.empty()) 1760 { 1761 if (error_ptr) 1762 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1763 return false; 1764 } 1765 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false) 1766 { 1767 if (error_ptr) 1768 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1769 return false; 1770 } 1771 break; 1772 1773 //---------------------------------------------------------------------- 1774 // OPCODE: DW_OP_and 1775 // OPERANDS: none 1776 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1777 // operation on the two, and pushes the result. 1778 //---------------------------------------------------------------------- 1779 case DW_OP_and: 1780 if (stack.size() < 2) 1781 { 1782 if (error_ptr) 1783 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1784 return false; 1785 } 1786 else 1787 { 1788 tmp = stack.back(); 1789 stack.pop_back(); 1790 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context); 1791 } 1792 break; 1793 1794 //---------------------------------------------------------------------- 1795 // OPCODE: DW_OP_div 1796 // OPERANDS: none 1797 // DESCRIPTION: pops the top two stack values, divides the former second 1798 // entry by the former top of the stack using signed division, and 1799 // pushes the result. 1800 //---------------------------------------------------------------------- 1801 case DW_OP_div: 1802 if (stack.size() < 2) 1803 { 1804 if (error_ptr) 1805 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1806 return false; 1807 } 1808 else 1809 { 1810 tmp = stack.back(); 1811 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero()) 1812 { 1813 if (error_ptr) 1814 error_ptr->SetErrorString("Divide by zero."); 1815 return false; 1816 } 1817 else 1818 { 1819 stack.pop_back(); 1820 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context); 1821 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 1822 { 1823 if (error_ptr) 1824 error_ptr->SetErrorString("Divide failed."); 1825 return false; 1826 } 1827 } 1828 } 1829 break; 1830 1831 //---------------------------------------------------------------------- 1832 // OPCODE: DW_OP_minus 1833 // OPERANDS: none 1834 // DESCRIPTION: pops the top two stack values, subtracts the former top 1835 // of the stack from the former second entry, and pushes the result. 1836 //---------------------------------------------------------------------- 1837 case DW_OP_minus: 1838 if (stack.size() < 2) 1839 { 1840 if (error_ptr) 1841 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1842 return false; 1843 } 1844 else 1845 { 1846 tmp = stack.back(); 1847 stack.pop_back(); 1848 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context); 1849 } 1850 break; 1851 1852 //---------------------------------------------------------------------- 1853 // OPCODE: DW_OP_mod 1854 // OPERANDS: none 1855 // DESCRIPTION: pops the top two stack values and pushes the result of 1856 // the calculation: former second stack entry modulo the former top of 1857 // the stack. 1858 //---------------------------------------------------------------------- 1859 case DW_OP_mod: 1860 if (stack.size() < 2) 1861 { 1862 if (error_ptr) 1863 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1864 return false; 1865 } 1866 else 1867 { 1868 tmp = stack.back(); 1869 stack.pop_back(); 1870 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context); 1871 } 1872 break; 1873 1874 1875 //---------------------------------------------------------------------- 1876 // OPCODE: DW_OP_mul 1877 // OPERANDS: none 1878 // DESCRIPTION: pops the top two stack entries, multiplies them 1879 // together, and pushes the result. 1880 //---------------------------------------------------------------------- 1881 case DW_OP_mul: 1882 if (stack.size() < 2) 1883 { 1884 if (error_ptr) 1885 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1886 return false; 1887 } 1888 else 1889 { 1890 tmp = stack.back(); 1891 stack.pop_back(); 1892 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context); 1893 } 1894 break; 1895 1896 //---------------------------------------------------------------------- 1897 // OPCODE: DW_OP_neg 1898 // OPERANDS: none 1899 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1900 //---------------------------------------------------------------------- 1901 case DW_OP_neg: 1902 if (stack.empty()) 1903 { 1904 if (error_ptr) 1905 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1906 return false; 1907 } 1908 else 1909 { 1910 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false) 1911 { 1912 if (error_ptr) 1913 error_ptr->SetErrorString("Unary negate failed."); 1914 return false; 1915 } 1916 } 1917 break; 1918 1919 //---------------------------------------------------------------------- 1920 // OPCODE: DW_OP_not 1921 // OPERANDS: none 1922 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1923 // complement 1924 //---------------------------------------------------------------------- 1925 case DW_OP_not: 1926 if (stack.empty()) 1927 { 1928 if (error_ptr) 1929 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1930 return false; 1931 } 1932 else 1933 { 1934 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false) 1935 { 1936 if (error_ptr) 1937 error_ptr->SetErrorString("Logical NOT failed."); 1938 return false; 1939 } 1940 } 1941 break; 1942 1943 //---------------------------------------------------------------------- 1944 // OPCODE: DW_OP_or 1945 // OPERANDS: none 1946 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1947 // operation on the two, and pushes the result. 1948 //---------------------------------------------------------------------- 1949 case DW_OP_or: 1950 if (stack.size() < 2) 1951 { 1952 if (error_ptr) 1953 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 1954 return false; 1955 } 1956 else 1957 { 1958 tmp = stack.back(); 1959 stack.pop_back(); 1960 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context); 1961 } 1962 break; 1963 1964 //---------------------------------------------------------------------- 1965 // OPCODE: DW_OP_plus 1966 // OPERANDS: none 1967 // DESCRIPTION: pops the top two stack entries, adds them together, and 1968 // pushes the result. 1969 //---------------------------------------------------------------------- 1970 case DW_OP_plus: 1971 if (stack.size() < 2) 1972 { 1973 if (error_ptr) 1974 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 1975 return false; 1976 } 1977 else 1978 { 1979 tmp = stack.back(); 1980 stack.pop_back(); 1981 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context); 1982 } 1983 break; 1984 1985 //---------------------------------------------------------------------- 1986 // OPCODE: DW_OP_plus_uconst 1987 // OPERANDS: none 1988 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1989 // constant operand and pushes the result. 1990 //---------------------------------------------------------------------- 1991 case DW_OP_plus_uconst: 1992 if (stack.empty()) 1993 { 1994 if (error_ptr) 1995 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 1996 return false; 1997 } 1998 else 1999 { 2000 const uint64_t uconst_value = opcodes.GetULEB128(&offset); 2001 // Implicit conversion from a UINT to a Scalar... 2002 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value; 2003 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) 2004 { 2005 if (error_ptr) 2006 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 2007 return false; 2008 } 2009 } 2010 break; 2011 2012 //---------------------------------------------------------------------- 2013 // OPCODE: DW_OP_shl 2014 // OPERANDS: none 2015 // DESCRIPTION: pops the top two stack entries, shifts the former 2016 // second entry left by the number of bits specified by the former top 2017 // of the stack, and pushes the result. 2018 //---------------------------------------------------------------------- 2019 case DW_OP_shl: 2020 if (stack.size() < 2) 2021 { 2022 if (error_ptr) 2023 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 2024 return false; 2025 } 2026 else 2027 { 2028 tmp = stack.back(); 2029 stack.pop_back(); 2030 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context); 2031 } 2032 break; 2033 2034 //---------------------------------------------------------------------- 2035 // OPCODE: DW_OP_shr 2036 // OPERANDS: none 2037 // DESCRIPTION: pops the top two stack entries, shifts the former second 2038 // entry right logically (filling with zero bits) by the number of bits 2039 // specified by the former top of the stack, and pushes the result. 2040 //---------------------------------------------------------------------- 2041 case DW_OP_shr: 2042 if (stack.size() < 2) 2043 { 2044 if (error_ptr) 2045 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 2046 return false; 2047 } 2048 else 2049 { 2050 tmp = stack.back(); 2051 stack.pop_back(); 2052 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false) 2053 { 2054 if (error_ptr) 2055 error_ptr->SetErrorString("DW_OP_shr failed."); 2056 return false; 2057 } 2058 } 2059 break; 2060 2061 //---------------------------------------------------------------------- 2062 // OPCODE: DW_OP_shra 2063 // OPERANDS: none 2064 // DESCRIPTION: pops the top two stack entries, shifts the former second 2065 // entry right arithmetically (divide the magnitude by 2, keep the same 2066 // sign for the result) by the number of bits specified by the former 2067 // top of the stack, and pushes the result. 2068 //---------------------------------------------------------------------- 2069 case DW_OP_shra: 2070 if (stack.size() < 2) 2071 { 2072 if (error_ptr) 2073 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 2074 return false; 2075 } 2076 else 2077 { 2078 tmp = stack.back(); 2079 stack.pop_back(); 2080 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context); 2081 } 2082 break; 2083 2084 //---------------------------------------------------------------------- 2085 // OPCODE: DW_OP_xor 2086 // OPERANDS: none 2087 // DESCRIPTION: pops the top two stack entries, performs the bitwise 2088 // exclusive-or operation on the two, and pushes the result. 2089 //---------------------------------------------------------------------- 2090 case DW_OP_xor: 2091 if (stack.size() < 2) 2092 { 2093 if (error_ptr) 2094 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 2095 return false; 2096 } 2097 else 2098 { 2099 tmp = stack.back(); 2100 stack.pop_back(); 2101 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context); 2102 } 2103 break; 2104 2105 2106 //---------------------------------------------------------------------- 2107 // OPCODE: DW_OP_skip 2108 // OPERANDS: int16_t 2109 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 2110 // signed integer constant. The 2-byte constant is the number of bytes 2111 // of the DWARF expression to skip forward or backward from the current 2112 // operation, beginning after the 2-byte constant. 2113 //---------------------------------------------------------------------- 2114 case DW_OP_skip: 2115 { 2116 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 2117 lldb::offset_t new_offset = offset + skip_offset; 2118 if (new_offset >= opcodes_offset && new_offset < end_offset) 2119 offset = new_offset; 2120 else 2121 { 2122 if (error_ptr) 2123 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 2124 return false; 2125 } 2126 } 2127 break; 2128 2129 //---------------------------------------------------------------------- 2130 // OPCODE: DW_OP_bra 2131 // OPERANDS: int16_t 2132 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 2133 // signed integer constant. This operation pops the top of stack. If 2134 // the value popped is not the constant 0, the 2-byte constant operand 2135 // is the number of bytes of the DWARF expression to skip forward or 2136 // backward from the current operation, beginning after the 2-byte 2137 // constant. 2138 //---------------------------------------------------------------------- 2139 case DW_OP_bra: 2140 { 2141 tmp = stack.back(); 2142 stack.pop_back(); 2143 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 2144 Scalar zero(0); 2145 if (tmp.ResolveValue(exe_ctx, ast_context) != zero) 2146 { 2147 lldb::offset_t new_offset = offset + bra_offset; 2148 if (new_offset >= opcodes_offset && new_offset < end_offset) 2149 offset = new_offset; 2150 else 2151 { 2152 if (error_ptr) 2153 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 2154 return false; 2155 } 2156 } 2157 } 2158 break; 2159 2160 //---------------------------------------------------------------------- 2161 // OPCODE: DW_OP_eq 2162 // OPERANDS: none 2163 // DESCRIPTION: pops the top two stack values, compares using the 2164 // equals (==) operator. 2165 // STACK RESULT: push the constant value 1 onto the stack if the result 2166 // of the operation is true or the constant value 0 if the result of the 2167 // operation is false. 2168 //---------------------------------------------------------------------- 2169 case DW_OP_eq: 2170 if (stack.size() < 2) 2171 { 2172 if (error_ptr) 2173 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 2174 return false; 2175 } 2176 else 2177 { 2178 tmp = stack.back(); 2179 stack.pop_back(); 2180 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context); 2181 } 2182 break; 2183 2184 //---------------------------------------------------------------------- 2185 // OPCODE: DW_OP_ge 2186 // OPERANDS: none 2187 // DESCRIPTION: pops the top two stack values, compares using the 2188 // greater than or equal to (>=) operator. 2189 // STACK RESULT: push the constant value 1 onto the stack if the result 2190 // of the operation is true or the constant value 0 if the result of the 2191 // operation is false. 2192 //---------------------------------------------------------------------- 2193 case DW_OP_ge: 2194 if (stack.size() < 2) 2195 { 2196 if (error_ptr) 2197 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 2198 return false; 2199 } 2200 else 2201 { 2202 tmp = stack.back(); 2203 stack.pop_back(); 2204 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context); 2205 } 2206 break; 2207 2208 //---------------------------------------------------------------------- 2209 // OPCODE: DW_OP_gt 2210 // OPERANDS: none 2211 // DESCRIPTION: pops the top two stack values, compares using the 2212 // greater than (>) operator. 2213 // STACK RESULT: push the constant value 1 onto the stack if the result 2214 // of the operation is true or the constant value 0 if the result of the 2215 // operation is false. 2216 //---------------------------------------------------------------------- 2217 case DW_OP_gt: 2218 if (stack.size() < 2) 2219 { 2220 if (error_ptr) 2221 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 2222 return false; 2223 } 2224 else 2225 { 2226 tmp = stack.back(); 2227 stack.pop_back(); 2228 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context); 2229 } 2230 break; 2231 2232 //---------------------------------------------------------------------- 2233 // OPCODE: DW_OP_le 2234 // OPERANDS: none 2235 // DESCRIPTION: pops the top two stack values, compares using the 2236 // less than or equal to (<=) operator. 2237 // STACK RESULT: push the constant value 1 onto the stack if the result 2238 // of the operation is true or the constant value 0 if the result of the 2239 // operation is false. 2240 //---------------------------------------------------------------------- 2241 case DW_OP_le: 2242 if (stack.size() < 2) 2243 { 2244 if (error_ptr) 2245 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 2246 return false; 2247 } 2248 else 2249 { 2250 tmp = stack.back(); 2251 stack.pop_back(); 2252 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context); 2253 } 2254 break; 2255 2256 //---------------------------------------------------------------------- 2257 // OPCODE: DW_OP_lt 2258 // OPERANDS: none 2259 // DESCRIPTION: pops the top two stack values, compares using the 2260 // less than (<) operator. 2261 // STACK RESULT: push the constant value 1 onto the stack if the result 2262 // of the operation is true or the constant value 0 if the result of the 2263 // operation is false. 2264 //---------------------------------------------------------------------- 2265 case DW_OP_lt: 2266 if (stack.size() < 2) 2267 { 2268 if (error_ptr) 2269 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 2270 return false; 2271 } 2272 else 2273 { 2274 tmp = stack.back(); 2275 stack.pop_back(); 2276 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context); 2277 } 2278 break; 2279 2280 //---------------------------------------------------------------------- 2281 // OPCODE: DW_OP_ne 2282 // OPERANDS: none 2283 // DESCRIPTION: pops the top two stack values, compares using the 2284 // not equal (!=) operator. 2285 // STACK RESULT: push the constant value 1 onto the stack if the result 2286 // of the operation is true or the constant value 0 if the result of the 2287 // operation is false. 2288 //---------------------------------------------------------------------- 2289 case DW_OP_ne: 2290 if (stack.size() < 2) 2291 { 2292 if (error_ptr) 2293 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 2294 return false; 2295 } 2296 else 2297 { 2298 tmp = stack.back(); 2299 stack.pop_back(); 2300 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context); 2301 } 2302 break; 2303 2304 //---------------------------------------------------------------------- 2305 // OPCODE: DW_OP_litn 2306 // OPERANDS: none 2307 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 2308 // STACK RESULT: push the unsigned literal constant value onto the top 2309 // of the stack. 2310 //---------------------------------------------------------------------- 2311 case DW_OP_lit0: 2312 case DW_OP_lit1: 2313 case DW_OP_lit2: 2314 case DW_OP_lit3: 2315 case DW_OP_lit4: 2316 case DW_OP_lit5: 2317 case DW_OP_lit6: 2318 case DW_OP_lit7: 2319 case DW_OP_lit8: 2320 case DW_OP_lit9: 2321 case DW_OP_lit10: 2322 case DW_OP_lit11: 2323 case DW_OP_lit12: 2324 case DW_OP_lit13: 2325 case DW_OP_lit14: 2326 case DW_OP_lit15: 2327 case DW_OP_lit16: 2328 case DW_OP_lit17: 2329 case DW_OP_lit18: 2330 case DW_OP_lit19: 2331 case DW_OP_lit20: 2332 case DW_OP_lit21: 2333 case DW_OP_lit22: 2334 case DW_OP_lit23: 2335 case DW_OP_lit24: 2336 case DW_OP_lit25: 2337 case DW_OP_lit26: 2338 case DW_OP_lit27: 2339 case DW_OP_lit28: 2340 case DW_OP_lit29: 2341 case DW_OP_lit30: 2342 case DW_OP_lit31: 2343 stack.push_back(Scalar(op - DW_OP_lit0)); 2344 break; 2345 2346 //---------------------------------------------------------------------- 2347 // OPCODE: DW_OP_regN 2348 // OPERANDS: none 2349 // DESCRIPTION: Push the value in register n on the top of the stack. 2350 //---------------------------------------------------------------------- 2351 case DW_OP_reg0: 2352 case DW_OP_reg1: 2353 case DW_OP_reg2: 2354 case DW_OP_reg3: 2355 case DW_OP_reg4: 2356 case DW_OP_reg5: 2357 case DW_OP_reg6: 2358 case DW_OP_reg7: 2359 case DW_OP_reg8: 2360 case DW_OP_reg9: 2361 case DW_OP_reg10: 2362 case DW_OP_reg11: 2363 case DW_OP_reg12: 2364 case DW_OP_reg13: 2365 case DW_OP_reg14: 2366 case DW_OP_reg15: 2367 case DW_OP_reg16: 2368 case DW_OP_reg17: 2369 case DW_OP_reg18: 2370 case DW_OP_reg19: 2371 case DW_OP_reg20: 2372 case DW_OP_reg21: 2373 case DW_OP_reg22: 2374 case DW_OP_reg23: 2375 case DW_OP_reg24: 2376 case DW_OP_reg25: 2377 case DW_OP_reg26: 2378 case DW_OP_reg27: 2379 case DW_OP_reg28: 2380 case DW_OP_reg29: 2381 case DW_OP_reg30: 2382 case DW_OP_reg31: 2383 { 2384 reg_num = op - DW_OP_reg0; 2385 2386 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2387 stack.push_back(tmp); 2388 else 2389 return false; 2390 } 2391 break; 2392 //---------------------------------------------------------------------- 2393 // OPCODE: DW_OP_regx 2394 // OPERANDS: 2395 // ULEB128 literal operand that encodes the register. 2396 // DESCRIPTION: Push the value in register on the top of the stack. 2397 //---------------------------------------------------------------------- 2398 case DW_OP_regx: 2399 { 2400 reg_num = opcodes.GetULEB128(&offset); 2401 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2402 stack.push_back(tmp); 2403 else 2404 return false; 2405 } 2406 break; 2407 2408 //---------------------------------------------------------------------- 2409 // OPCODE: DW_OP_bregN 2410 // OPERANDS: 2411 // SLEB128 offset from register N 2412 // DESCRIPTION: Value is in memory at the address specified by register 2413 // N plus an offset. 2414 //---------------------------------------------------------------------- 2415 case DW_OP_breg0: 2416 case DW_OP_breg1: 2417 case DW_OP_breg2: 2418 case DW_OP_breg3: 2419 case DW_OP_breg4: 2420 case DW_OP_breg5: 2421 case DW_OP_breg6: 2422 case DW_OP_breg7: 2423 case DW_OP_breg8: 2424 case DW_OP_breg9: 2425 case DW_OP_breg10: 2426 case DW_OP_breg11: 2427 case DW_OP_breg12: 2428 case DW_OP_breg13: 2429 case DW_OP_breg14: 2430 case DW_OP_breg15: 2431 case DW_OP_breg16: 2432 case DW_OP_breg17: 2433 case DW_OP_breg18: 2434 case DW_OP_breg19: 2435 case DW_OP_breg20: 2436 case DW_OP_breg21: 2437 case DW_OP_breg22: 2438 case DW_OP_breg23: 2439 case DW_OP_breg24: 2440 case DW_OP_breg25: 2441 case DW_OP_breg26: 2442 case DW_OP_breg27: 2443 case DW_OP_breg28: 2444 case DW_OP_breg29: 2445 case DW_OP_breg30: 2446 case DW_OP_breg31: 2447 { 2448 reg_num = op - DW_OP_breg0; 2449 2450 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2451 { 2452 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2453 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2454 tmp.ClearContext(); 2455 stack.push_back(tmp); 2456 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2457 } 2458 else 2459 return false; 2460 } 2461 break; 2462 //---------------------------------------------------------------------- 2463 // OPCODE: DW_OP_bregx 2464 // OPERANDS: 2 2465 // ULEB128 literal operand that encodes the register. 2466 // SLEB128 offset from register N 2467 // DESCRIPTION: Value is in memory at the address specified by register 2468 // N plus an offset. 2469 //---------------------------------------------------------------------- 2470 case DW_OP_bregx: 2471 { 2472 reg_num = opcodes.GetULEB128(&offset); 2473 2474 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2475 { 2476 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2477 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; 2478 tmp.ClearContext(); 2479 stack.push_back(tmp); 2480 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2481 } 2482 else 2483 return false; 2484 } 2485 break; 2486 2487 case DW_OP_fbreg: 2488 if (exe_ctx) 2489 { 2490 if (frame) 2491 { 2492 Scalar value; 2493 if (frame->GetFrameBaseValue(value, error_ptr)) 2494 { 2495 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2496 value += fbreg_offset; 2497 stack.push_back(value); 2498 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2499 } 2500 else 2501 return false; 2502 } 2503 else 2504 { 2505 if (error_ptr) 2506 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2507 return false; 2508 } 2509 } 2510 else 2511 { 2512 if (error_ptr) 2513 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n"); 2514 return false; 2515 } 2516 2517 break; 2518 2519 //---------------------------------------------------------------------- 2520 // OPCODE: DW_OP_nop 2521 // OPERANDS: none 2522 // DESCRIPTION: A place holder. It has no effect on the location stack 2523 // or any of its values. 2524 //---------------------------------------------------------------------- 2525 case DW_OP_nop: 2526 break; 2527 2528 //---------------------------------------------------------------------- 2529 // OPCODE: DW_OP_piece 2530 // OPERANDS: 1 2531 // ULEB128: byte size of the piece 2532 // DESCRIPTION: The operand describes the size in bytes of the piece of 2533 // the object referenced by the DWARF expression whose result is at the 2534 // top of the stack. If the piece is located in a register, but does not 2535 // occupy the entire register, the placement of the piece within that 2536 // register is defined by the ABI. 2537 // 2538 // Many compilers store a single variable in sets of registers, or store 2539 // a variable partially in memory and partially in registers. 2540 // DW_OP_piece provides a way of describing how large a part of a 2541 // variable a particular DWARF expression refers to. 2542 //---------------------------------------------------------------------- 2543 case DW_OP_piece: 2544 if (error_ptr) 2545 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); 2546 return false; 2547 2548 //---------------------------------------------------------------------- 2549 // OPCODE: DW_OP_push_object_address 2550 // OPERANDS: none 2551 // DESCRIPTION: Pushes the address of the object currently being 2552 // evaluated as part of evaluation of a user presented expression. 2553 // This object may correspond to an independent variable described by 2554 // its own DIE or it may be a component of an array, structure, or class 2555 // whose address has been dynamically determined by an earlier step 2556 // during user expression evaluation. 2557 //---------------------------------------------------------------------- 2558 case DW_OP_push_object_address: 2559 if (error_ptr) 2560 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2561 return false; 2562 2563 //---------------------------------------------------------------------- 2564 // OPCODE: DW_OP_call2 2565 // OPERANDS: 2566 // uint16_t compile unit relative offset of a DIE 2567 // DESCRIPTION: Performs subroutine calls during evaluation 2568 // of a DWARF expression. The operand is the 2-byte unsigned offset 2569 // of a debugging information entry in the current compilation unit. 2570 // 2571 // Operand interpretation is exactly like that for DW_FORM_ref2. 2572 // 2573 // This operation transfers control of DWARF expression evaluation 2574 // to the DW_AT_location attribute of the referenced DIE. If there is 2575 // no such attribute, then there is no effect. Execution of the DWARF 2576 // expression of a DW_AT_location attribute may add to and/or remove from 2577 // values on the stack. Execution returns to the point following the call 2578 // when the end of the attribute is reached. Values on the stack at the 2579 // time of the call may be used as parameters by the called expression 2580 // and values left on the stack by the called expression may be used as 2581 // return values by prior agreement between the calling and called 2582 // expressions. 2583 //---------------------------------------------------------------------- 2584 case DW_OP_call2: 2585 if (error_ptr) 2586 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2587 return false; 2588 //---------------------------------------------------------------------- 2589 // OPCODE: DW_OP_call4 2590 // OPERANDS: 1 2591 // uint32_t compile unit relative offset of a DIE 2592 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2593 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2594 // of a debugging information entry in the current compilation unit. 2595 // 2596 // Operand interpretation DW_OP_call4 is exactly like that for 2597 // DW_FORM_ref4. 2598 // 2599 // This operation transfers control of DWARF expression evaluation 2600 // to the DW_AT_location attribute of the referenced DIE. If there is 2601 // no such attribute, then there is no effect. Execution of the DWARF 2602 // expression of a DW_AT_location attribute may add to and/or remove from 2603 // values on the stack. Execution returns to the point following the call 2604 // when the end of the attribute is reached. Values on the stack at the 2605 // time of the call may be used as parameters by the called expression 2606 // and values left on the stack by the called expression may be used as 2607 // return values by prior agreement between the calling and called 2608 // expressions. 2609 //---------------------------------------------------------------------- 2610 case DW_OP_call4: 2611 if (error_ptr) 2612 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2613 return false; 2614 2615 //---------------------------------------------------------------------- 2616 // OPCODE: DW_OP_stack_value 2617 // OPERANDS: None 2618 // DESCRIPTION: Specifies that the object does not exist in memory but 2619 // rather is a constant value. The value from the top of the stack is 2620 // the value to be used. This is the actual object value and not the 2621 // location. 2622 //---------------------------------------------------------------------- 2623 case DW_OP_stack_value: 2624 stack.back().SetValueType(Value::eValueTypeScalar); 2625 break; 2626 2627#if 0 2628 //---------------------------------------------------------------------- 2629 // OPCODE: DW_OP_call_ref 2630 // OPERANDS: 2631 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t 2632 // absolute DIE offset for 64 bit DWARF. 2633 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2634 // expression. Takes a single operand. In the 32-bit DWARF format, the 2635 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it 2636 // is an 8-byte unsigned value. The operand is used as the offset of a 2637 // debugging information entry in a .debug_info section which may be 2638 // contained in a shared object for executable other than that 2639 // containing the operator. For references from one shared object or 2640 // executable to another, the relocation must be performed by the 2641 // consumer. 2642 // 2643 // Operand interpretation of DW_OP_call_ref is exactly like that for 2644 // DW_FORM_ref_addr. 2645 // 2646 // This operation transfers control of DWARF expression evaluation 2647 // to the DW_AT_location attribute of the referenced DIE. If there is 2648 // no such attribute, then there is no effect. Execution of the DWARF 2649 // expression of a DW_AT_location attribute may add to and/or remove from 2650 // values on the stack. Execution returns to the point following the call 2651 // when the end of the attribute is reached. Values on the stack at the 2652 // time of the call may be used as parameters by the called expression 2653 // and values left on the stack by the called expression may be used as 2654 // return values by prior agreement between the calling and called 2655 // expressions. 2656 //---------------------------------------------------------------------- 2657 case DW_OP_call_ref: 2658 if (error_ptr) 2659 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref."); 2660 return false; 2661 2662 //---------------------------------------------------------------------- 2663 // OPCODE: DW_OP_APPLE_array_ref 2664 // OPERANDS: none 2665 // DESCRIPTION: Pops a value off the stack and uses it as the array 2666 // index. Pops a second value off the stack and uses it as the array 2667 // itself. Pushes a value onto the stack representing the element of 2668 // the array specified by the index. 2669 //---------------------------------------------------------------------- 2670 case DW_OP_APPLE_array_ref: 2671 { 2672 if (stack.size() < 2) 2673 { 2674 if (error_ptr) 2675 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref."); 2676 return false; 2677 } 2678 2679 Value index_val = stack.back(); 2680 stack.pop_back(); 2681 Value array_val = stack.back(); 2682 stack.pop_back(); 2683 2684 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context); 2685 int64_t index = index_scalar.SLongLong(LLONG_MAX); 2686 2687 if (index == LLONG_MAX) 2688 { 2689 if (error_ptr) 2690 error_ptr->SetErrorString("Invalid array index."); 2691 return false; 2692 } 2693 2694 if (array_val.GetContextType() != Value::eContextTypeClangType) 2695 { 2696 if (error_ptr) 2697 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time."); 2698 return false; 2699 } 2700 2701 if (array_val.GetValueType() != Value::eValueTypeLoadAddress && 2702 array_val.GetValueType() != Value::eValueTypeHostAddress) 2703 { 2704 if (error_ptr) 2705 error_ptr->SetErrorString("Array must be stored in memory."); 2706 return false; 2707 } 2708 2709 void *array_type = array_val.GetClangType(); 2710 2711 void *member_type; 2712 uint64_t size = 0; 2713 2714 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) && 2715 (!ClangASTContext::IsArrayType(array_type, &member_type, &size))) 2716 { 2717 if (error_ptr) 2718 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array."); 2719 return false; 2720 } 2721 2722 if (size && (index >= size || index < 0)) 2723 { 2724 if (error_ptr) 2725 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %" PRId64 " is not in [0, %" PRIu64 "]", index, size); 2726 return false; 2727 } 2728 2729 uint64_t member_bit_size = ClangASTType::GetClangTypeBitWidth(ast_context, member_type); 2730 uint64_t member_bit_align = ClangASTType::GetTypeBitAlign(ast_context, member_type); 2731 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align; 2732 if (member_bit_incr % 8) 2733 { 2734 if (error_ptr) 2735 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned"); 2736 return false; 2737 } 2738 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index; 2739 2740 Value member; 2741 2742 member.SetContext(Value::eContextTypeClangType, member_type); 2743 member.SetValueType(array_val.GetValueType()); 2744 2745 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2746 addr_t member_loc = array_base + member_offset; 2747 member.GetScalar() = (uint64_t)member_loc; 2748 2749 stack.push_back(member); 2750 } 2751 break; 2752 2753 //---------------------------------------------------------------------- 2754 // OPCODE: DW_OP_APPLE_uninit 2755 // OPERANDS: none 2756 // DESCRIPTION: Lets us know that the value is currently not initialized 2757 //---------------------------------------------------------------------- 2758 case DW_OP_APPLE_uninit: 2759 //return eResultTypeErrorUninitialized; 2760 break; // Ignore this as we have seen cases where this value is incorrectly added 2761 2762 //---------------------------------------------------------------------- 2763 // OPCODE: DW_OP_APPLE_assign 2764 // OPERANDS: none 2765 // DESCRIPTION: Pops a value off of the stack and assigns it to the next 2766 // item on the stack which must be something assignable (inferior 2767 // Variable, inferior Type with address, inferior register, or 2768 // expression local variable. 2769 //---------------------------------------------------------------------- 2770 case DW_OP_APPLE_assign: 2771 if (stack.size() < 2) 2772 { 2773 if (error_ptr) 2774 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign."); 2775 return false; 2776 } 2777 else 2778 { 2779 tmp = stack.back(); 2780 stack.pop_back(); 2781 Value::ContextType context_type = stack.back().GetContextType(); 2782 StreamString new_value(Stream::eBinary, 4, lldb::endian::InlHostByteOrder()); 2783 switch (context_type) 2784 { 2785 case Value::eContextTypeClangType: 2786 { 2787 void *clang_type = stack.back().GetClangType(); 2788 2789 if (ClangASTContext::IsAggregateType (clang_type)) 2790 { 2791 Value::ValueType source_value_type = tmp.GetValueType(); 2792 Value::ValueType target_value_type = stack.back().GetValueType(); 2793 2794 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong(); 2795 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong(); 2796 2797 const uint64_t byte_size = ClangASTType::GetTypeByteSize(ast_context, clang_type); 2798 2799 switch (source_value_type) 2800 { 2801 case Value::eValueTypeScalar: 2802 case Value::eValueTypeFileAddress: 2803 break; 2804 2805 case Value::eValueTypeLoadAddress: 2806 switch (target_value_type) 2807 { 2808 case Value::eValueTypeLoadAddress: 2809 { 2810 DataBufferHeap data; 2811 data.SetByteSize(byte_size); 2812 2813 Error error; 2814 if (process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size) 2815 { 2816 if (error_ptr) 2817 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2818 return false; 2819 } 2820 2821 if (process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size) 2822 { 2823 if (error_ptr) 2824 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2825 return false; 2826 } 2827 } 2828 break; 2829 case Value::eValueTypeHostAddress: 2830 if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2831 { 2832 if (error_ptr) 2833 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2834 return false; 2835 } 2836 else 2837 { 2838 Error error; 2839 if (process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size) 2840 { 2841 if (error_ptr) 2842 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); 2843 return false; 2844 } 2845 } 2846 break; 2847 default: 2848 return false; 2849 } 2850 break; 2851 case Value::eValueTypeHostAddress: 2852 switch (target_value_type) 2853 { 2854 case Value::eValueTypeLoadAddress: 2855 if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) 2856 { 2857 if (error_ptr) 2858 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); 2859 return false; 2860 } 2861 else 2862 { 2863 Error error; 2864 if (process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size) 2865 { 2866 if (error_ptr) 2867 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); 2868 return false; 2869 } 2870 } 2871 case Value::eValueTypeHostAddress: 2872 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size); 2873 break; 2874 default: 2875 return false; 2876 } 2877 } 2878 } 2879 else 2880 { 2881 if (!ClangASTType::SetValueFromScalar (ast_context, 2882 clang_type, 2883 tmp.ResolveValue(exe_ctx, ast_context), 2884 new_value)) 2885 { 2886 if (error_ptr) 2887 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n"); 2888 return false; 2889 } 2890 2891 Value::ValueType value_type = stack.back().GetValueType(); 2892 2893 switch (value_type) 2894 { 2895 case Value::eValueTypeLoadAddress: 2896 case Value::eValueTypeHostAddress: 2897 { 2898 AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost); 2899 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2900 if (!ClangASTType::WriteToMemory (ast_context, 2901 clang_type, 2902 exe_ctx, 2903 addr, 2904 address_type, 2905 new_value)) 2906 { 2907 if (error_ptr) 2908 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%" PRIx64 ".\n", addr); 2909 return false; 2910 } 2911 } 2912 break; 2913 2914 default: 2915 break; 2916 } 2917 } 2918 } 2919 break; 2920 2921 default: 2922 if (error_ptr) 2923 error_ptr->SetErrorString ("Assign failed."); 2924 return false; 2925 } 2926 } 2927 break; 2928 2929 //---------------------------------------------------------------------- 2930 // OPCODE: DW_OP_APPLE_address_of 2931 // OPERANDS: none 2932 // DESCRIPTION: Pops a value off of the stack and pushed its address. 2933 // The top item on the stack must be a variable, or already be a memory 2934 // location. 2935 //---------------------------------------------------------------------- 2936 case DW_OP_APPLE_address_of: 2937 if (stack.empty()) 2938 { 2939 if (error_ptr) 2940 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of."); 2941 return false; 2942 } 2943 else 2944 { 2945 Value::ValueType value_type = stack.back().GetValueType(); 2946 switch (value_type) 2947 { 2948 default: 2949 case Value::eValueTypeScalar: // raw scalar value 2950 if (error_ptr) 2951 error_ptr->SetErrorString("Top stack item isn't a memory based object."); 2952 return false; 2953 2954 case Value::eValueTypeLoadAddress: // load address value 2955 case Value::eValueTypeFileAddress: // file address value 2956 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb) 2957 // Taking the address of an object reduces it to the address 2958 // of the value and removes any extra context it had. 2959 //stack.back().SetValueType(Value::eValueTypeScalar); 2960 stack.back().ClearContext(); 2961 break; 2962 } 2963 } 2964 break; 2965 2966 //---------------------------------------------------------------------- 2967 // OPCODE: DW_OP_APPLE_value_of 2968 // OPERANDS: none 2969 // DESCRIPTION: Pops a value off of the stack and pushed its value. 2970 // The top item on the stack must be a variable, expression variable. 2971 //---------------------------------------------------------------------- 2972 case DW_OP_APPLE_value_of: 2973 if (stack.empty()) 2974 { 2975 if (error_ptr) 2976 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of."); 2977 return false; 2978 } 2979 else if (!stack.back().ValueOf(exe_ctx, ast_context)) 2980 { 2981 if (error_ptr) 2982 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of."); 2983 return false; 2984 } 2985 break; 2986 2987 //---------------------------------------------------------------------- 2988 // OPCODE: DW_OP_APPLE_deref_type 2989 // OPERANDS: none 2990 // DESCRIPTION: gets the value pointed to by the top stack item 2991 //---------------------------------------------------------------------- 2992 case DW_OP_APPLE_deref_type: 2993 { 2994 if (stack.empty()) 2995 { 2996 if (error_ptr) 2997 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type."); 2998 return false; 2999 } 3000 3001 tmp = stack.back(); 3002 stack.pop_back(); 3003 3004 if (tmp.GetContextType() != Value::eContextTypeClangType) 3005 { 3006 if (error_ptr) 3007 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type"); 3008 return false; 3009 } 3010 3011 void *ptr_type = tmp.GetClangType(); 3012 void *target_type; 3013 3014 if (!ClangASTContext::IsPointerType(ptr_type, &target_type)) 3015 { 3016 if (error_ptr) 3017 error_ptr->SetErrorString("Dereferencing a non-pointer type"); 3018 return false; 3019 } 3020 3021 // TODO do we want all pointers to be dereferenced as load addresses? 3022 Value::ValueType value_type = tmp.GetValueType(); 3023 3024 tmp.ResolveValue(exe_ctx, ast_context); 3025 3026 tmp.SetValueType(value_type); 3027 tmp.SetContext(Value::eContextTypeClangType, target_type); 3028 3029 stack.push_back(tmp); 3030 } 3031 break; 3032 3033 //---------------------------------------------------------------------- 3034 // OPCODE: DW_OP_APPLE_expr_local 3035 // OPERANDS: ULEB128 3036 // DESCRIPTION: pushes the expression local variable index onto the 3037 // stack and set the appropriate context so we know the stack item is 3038 // an expression local variable index. 3039 //---------------------------------------------------------------------- 3040 case DW_OP_APPLE_expr_local: 3041 { 3042 /* 3043 uint32_t idx = opcodes.GetULEB128(&offset); 3044 if (expr_locals == NULL) 3045 { 3046 if (error_ptr) 3047 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx); 3048 return false; 3049 } 3050 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx); 3051 if (expr_local_variable == NULL) 3052 { 3053 if (error_ptr) 3054 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx); 3055 return false; 3056 } 3057 // The proxy code has been removed. If it is ever re-added, please 3058 // use shared pointers or return by value to avoid possible memory 3059 // leak (there is no leak here, but in general, no returning pointers 3060 // that must be manually freed please. 3061 Value *proxy = expr_local_variable->CreateProxy(); 3062 stack.push_back(*proxy); 3063 delete proxy; 3064 //stack.back().SetContext (Value::eContextTypeClangType, expr_local_variable->GetClangType()); 3065 */ 3066 } 3067 break; 3068 3069 //---------------------------------------------------------------------- 3070 // OPCODE: DW_OP_APPLE_extern 3071 // OPERANDS: ULEB128 3072 // DESCRIPTION: pushes a proxy for the extern object index onto the 3073 // stack. 3074 //---------------------------------------------------------------------- 3075 case DW_OP_APPLE_extern: 3076 { 3077 /* 3078 uint32_t idx = opcodes.GetULEB128(&offset); 3079 if (!decl_map) 3080 { 3081 if (error_ptr) 3082 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx); 3083 return false; 3084 } 3085 Value *extern_var = decl_map->GetValueForIndex(idx); 3086 if (!extern_var) 3087 { 3088 if (error_ptr) 3089 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx); 3090 return false; 3091 } 3092 // The proxy code has been removed. If it is ever re-added, please 3093 // use shared pointers or return by value to avoid possible memory 3094 // leak (there is no leak here, but in general, no returning pointers 3095 // that must be manually freed please. 3096 Value *proxy = extern_var->CreateProxy(); 3097 stack.push_back(*proxy); 3098 delete proxy; 3099 */ 3100 } 3101 break; 3102 3103 case DW_OP_APPLE_scalar_cast: 3104 if (stack.empty()) 3105 { 3106 if (error_ptr) 3107 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast."); 3108 return false; 3109 } 3110 else 3111 { 3112 // Simple scalar cast 3113 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset))) 3114 { 3115 if (error_ptr) 3116 error_ptr->SetErrorString("Cast failed."); 3117 return false; 3118 } 3119 } 3120 break; 3121 3122 3123 case DW_OP_APPLE_clang_cast: 3124 if (stack.empty()) 3125 { 3126 if (error_ptr) 3127 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast."); 3128 return false; 3129 } 3130 else 3131 { 3132 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*)); 3133 stack.back().SetContext (Value::eContextTypeClangType, clang_type); 3134 } 3135 break; 3136 //---------------------------------------------------------------------- 3137 // OPCODE: DW_OP_APPLE_constf 3138 // OPERANDS: 1 byte float length, followed by that many bytes containing 3139 // the constant float data. 3140 // DESCRIPTION: Push a float value onto the expression stack. 3141 //---------------------------------------------------------------------- 3142 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 3143 { 3144 uint8_t float_length = opcodes.GetU8(&offset); 3145 if (sizeof(float) == float_length) 3146 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset); 3147 else if (sizeof(double) == float_length) 3148 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset); 3149 else if (sizeof(long double) == float_length) 3150 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset); 3151 else 3152 { 3153 StreamString new_value; 3154 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 3155 3156 if (error_ptr) 3157 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData()); 3158 return false; 3159 } 3160 tmp.SetValueType(Value::eValueTypeScalar); 3161 tmp.ClearContext(); 3162 stack.push_back(tmp); 3163 } 3164 break; 3165 //---------------------------------------------------------------------- 3166 // OPCODE: DW_OP_APPLE_clear 3167 // OPERANDS: none 3168 // DESCRIPTION: Clears the expression stack. 3169 //---------------------------------------------------------------------- 3170 case DW_OP_APPLE_clear: 3171 stack.clear(); 3172 break; 3173 3174 //---------------------------------------------------------------------- 3175 // OPCODE: DW_OP_APPLE_error 3176 // OPERANDS: none 3177 // DESCRIPTION: Pops a value off of the stack and pushed its value. 3178 // The top item on the stack must be a variable, expression variable. 3179 //---------------------------------------------------------------------- 3180 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 3181 if (error_ptr) 3182 error_ptr->SetErrorString ("Generic error."); 3183 return false; 3184#endif // #if 0 3185 3186 } 3187 } 3188 3189 if (stack.empty()) 3190 { 3191 if (error_ptr) 3192 error_ptr->SetErrorString ("Stack empty after evaluation."); 3193 return false; 3194 } 3195 else if (log && log->GetVerbose()) 3196 { 3197 size_t count = stack.size(); 3198 log->Printf("Stack after operation has %lu values:", count); 3199 for (size_t i=0; i<count; ++i) 3200 { 3201 StreamString new_value; 3202 new_value.Printf("[%" PRIu64 "]", (uint64_t)i); 3203 stack[i].Dump(&new_value); 3204 log->Printf(" %s", new_value.GetData()); 3205 } 3206 } 3207 3208 result = stack.back(); 3209 return true; // Return true on success 3210} 3211 3212