SelectionDAGNodes.h revision 1645ed0b93901ec678cd54024c8b09bca632b296
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Support/DataTypes.h"
24#include <cassert>
25#include <vector>
26
27namespace llvm {
28
29class SelectionDAG;
30class GlobalValue;
31class MachineBasicBlock;
32class SDNode;
33template <typename T> struct simplify_type;
34
35/// ISD namespace - This namespace contains an enum which represents all of the
36/// SelectionDAG node types and value types.
37///
38namespace ISD {
39  //===--------------------------------------------------------------------===//
40  /// ISD::NodeType enum - This enum defines all of the operators valid in a
41  /// SelectionDAG.
42  ///
43  enum NodeType {
44    // Leaf nodes
45    EntryToken, Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
46    BasicBlock, ExternalSymbol,
47
48    // CopyToReg - This node has chain and child nodes, and an associated
49    // register number.  The instruction selector must guarantee that the value
50    // of the value node is available in the virtual register stored in the
51    // CopyRegSDNode object.
52    CopyToReg,
53
54    // CopyFromReg - This node indicates that the input value is a virtual or
55    // physical register that is defined outside of the scope of this
56    // SelectionDAG.  The virtual register is available from the
57    // CopyRegSDNode object.
58    CopyFromReg,
59
60    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
61    // a Constant, which is required to be operand #1), element of the aggregate
62    // value specified as operand #0.  This is only for use before legalization,
63    // for values that will be broken into multiple registers.
64    EXTRACT_ELEMENT,
65
66    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
67    // two values of the same integer value type, this produces a value twice as
68    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
69    BUILD_PAIR,
70
71
72    // Simple binary arithmetic operators.
73    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
74
75    // Bitwise operators.
76    AND, OR, XOR, SHL, SRA, SRL,
77
78    // Select operator.
79    SELECT,
80
81    // SetCC operator - This evaluates to a boolean (i1) true value if the
82    // condition is true.  These nodes are instances of the
83    // SetCCSDNode class, which contains the condition code as extra
84    // state.
85    SETCC,
86
87    // addc - Three input, two output operator: (X, Y, C) -> (X+Y+C,
88    // Cout).  X,Y are integer inputs of agreeing size, C is a one bit
89    // value, and two values are produced: the sum and a carry out.
90    ADDC, SUBB,
91
92    // Conversion operators.  These are all single input single output
93    // operations.  For all of these, the result type must be strictly
94    // wider or narrower (depending on the operation) than the source
95    // type.
96
97    // SIGN_EXTEND - Used for integer types, replicating the sign bit
98    // into new bits.
99    SIGN_EXTEND,
100
101    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
102    ZERO_EXTEND,
103
104    // TRUNCATE - Completely drop the high bits.
105    TRUNCATE,
106
107    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
108    // depends on the first letter) to floating point.
109    SINT_TO_FP,
110    UINT_TO_FP,
111
112    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
113    // integer.
114    FP_TO_SINT,
115    FP_TO_UINT,
116
117    // FP_ROUND - Perform a rounding operation from the current
118    // precision down to the specified precision.
119    FP_ROUND,
120
121    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
122    FP_EXTEND,
123
124    // Other operators.  LOAD and STORE have token chains.
125    LOAD, STORE,
126
127    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
128    // to a specified boundary.  The first operand is the token chain, the
129    // second is the number of bytes to allocate, and the third is the alignment
130    // boundary.
131    DYNAMIC_STACKALLOC,
132
133    // Control flow instructions.  These all have token chains.
134
135    // BR - Unconditional branch.  The first operand is the chain
136    // operand, the second is the MBB to branch to.
137    BR,
138
139    // BRCOND - Conditional branch.  The first operand is the chain,
140    // the second is the condition, the third is the block to branch
141    // to if the condition is true.
142    BRCOND,
143
144    // RET - Return from function.  The first operand is the chain,
145    // and any subsequent operands are the return values for the
146    // function.  This operation can have variable number of operands.
147    RET,
148
149    // CALL - Call to a function pointer.  The first operand is the chain, the
150    // second is the destination function pointer (a GlobalAddress for a direct
151    // call).  Arguments have already been lowered to explicit DAGs according to
152    // the calling convention in effect here.
153    CALL,
154
155    // ADJCALLSTACKDOWN/ADJCALLSTACKUP - These operators mark the beginning and
156    // end of a call sequence and indicate how much the stack pointer needs to
157    // be adjusted for that particular call.  The first operand is a chain, the
158    // second is a ConstantSDNode of intptr type.
159    ADJCALLSTACKDOWN,  // Beginning of a call sequence
160    ADJCALLSTACKUP,    // End of a call sequence
161
162
163    // BUILTIN_OP_END - This must be the last enum value in this list.
164    BUILTIN_OP_END,
165  };
166
167  //===--------------------------------------------------------------------===//
168  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
169  /// below work out, when considering SETFALSE (something that never exists
170  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
171  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
172  /// to.  If the "N" column is 1, the result of the comparison is undefined if
173  /// the input is a NAN.
174  ///
175  /// All of these (except for the 'always folded ops') should be handled for
176  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
177  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
178  ///
179  /// Note that these are laid out in a specific order to allow bit-twiddling
180  /// to transform conditions.
181  enum CondCode {
182    // Opcode          N U L G E       Intuitive operation
183    SETFALSE,      //    0 0 0 0       Always false (always folded)
184    SETOEQ,        //    0 0 0 1       True if ordered and equal
185    SETOGT,        //    0 0 1 0       True if ordered and greater than
186    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
187    SETOLT,        //    0 1 0 0       True if ordered and less than
188    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
189    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
190    SETO,          //    0 1 1 1       True if ordered (no nans)
191    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
192    SETUEQ,        //    1 0 0 1       True if unordered or equal
193    SETUGT,        //    1 0 1 0       True if unordered or greater than
194    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
195    SETULT,        //    1 1 0 0       True if unordered or less than
196    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
197    SETUNE,        //    1 1 1 0       True if unordered or not equal
198    SETTRUE,       //    1 1 1 1       Always true (always folded)
199    // Don't care operations: undefined if the input is a nan.
200    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
201    SETEQ,         //  1 X 0 0 1       True if equal
202    SETGT,         //  1 X 0 1 0       True if greater than
203    SETGE,         //  1 X 0 1 1       True if greater than or equal
204    SETLT,         //  1 X 1 0 0       True if less than
205    SETLE,         //  1 X 1 0 1       True if less than or equal
206    SETNE,         //  1 X 1 1 0       True if not equal
207    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
208
209    SETCC_INVALID,      // Marker value.
210  };
211
212  /// isSignedIntSetCC - Return true if this is a setcc instruction that
213  /// performs a signed comparison when used with integer operands.
214  inline bool isSignedIntSetCC(CondCode Code) {
215    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
216  }
217
218  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
219  /// performs an unsigned comparison when used with integer operands.
220  inline bool isUnsignedIntSetCC(CondCode Code) {
221    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
222  }
223
224  /// isTrueWhenEqual - Return true if the specified condition returns true if
225  /// the two operands to the condition are equal.  Note that if one of the two
226  /// operands is a NaN, this value is meaningless.
227  inline bool isTrueWhenEqual(CondCode Cond) {
228    return ((int)Cond & 1) != 0;
229  }
230
231  /// getUnorderedFlavor - This function returns 0 if the condition is always
232  /// false if an operand is a NaN, 1 if the condition is always true if the
233  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
234  /// NaN.
235  inline unsigned getUnorderedFlavor(CondCode Cond) {
236    return ((int)Cond >> 3) & 3;
237  }
238
239  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
240  /// 'op' is a valid SetCC operation.
241  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
242
243  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
244  /// when given the operation for (X op Y).
245  CondCode getSetCCSwappedOperands(CondCode Operation);
246
247  /// getSetCCOrOperation - Return the result of a logical OR between different
248  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
249  /// function returns SETCC_INVALID if it is not possible to represent the
250  /// resultant comparison.
251  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
252
253  /// getSetCCAndOperation - Return the result of a logical AND between
254  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
255  /// function returns SETCC_INVALID if it is not possible to represent the
256  /// resultant comparison.
257  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
258}  // end llvm::ISD namespace
259
260
261//===----------------------------------------------------------------------===//
262/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
263/// values as the result of a computation.  Many nodes return multiple values,
264/// from loads (which define a token and a return value) to ADDC (which returns
265/// a result and a carry value), to calls (which may return an arbitrary number
266/// of values).
267///
268/// As such, each use of a SelectionDAG computation must indicate the node that
269/// computes it as well as which return value to use from that node.  This pair
270/// of information is represented with the SDOperand value type.
271///
272struct SDOperand {
273  SDNode *Val;        // The node defining the value we are using.
274  unsigned ResNo;     // Which return value of the node we are using.
275
276  SDOperand() : Val(0) {}
277  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
278
279  bool operator==(const SDOperand &O) const {
280    return Val == O.Val && ResNo == O.ResNo;
281  }
282  bool operator!=(const SDOperand &O) const {
283    return !operator==(O);
284  }
285  bool operator<(const SDOperand &O) const {
286    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
287  }
288
289  SDOperand getValue(unsigned R) const {
290    return SDOperand(Val, R);
291  }
292
293  /// getValueType - Return the ValueType of the referenced return value.
294  ///
295  inline MVT::ValueType getValueType() const;
296
297  // Forwarding methods - These forward to the corresponding methods in SDNode.
298  inline unsigned getOpcode() const;
299  inline unsigned getNumOperands() const;
300  inline const SDOperand &getOperand(unsigned i) const;
301};
302
303
304/// simplify_type specializations - Allow casting operators to work directly on
305/// SDOperands as if they were SDNode*'s.
306template<> struct simplify_type<SDOperand> {
307  typedef SDNode* SimpleType;
308  static SimpleType getSimplifiedValue(const SDOperand &Val) {
309    return static_cast<SimpleType>(Val.Val);
310  }
311};
312template<> struct simplify_type<const SDOperand> {
313  typedef SDNode* SimpleType;
314  static SimpleType getSimplifiedValue(const SDOperand &Val) {
315    return static_cast<SimpleType>(Val.Val);
316  }
317};
318
319
320/// SDNode - Represents one node in the SelectionDAG.
321///
322class SDNode {
323  unsigned NodeType;
324  std::vector<SDOperand> Operands;
325
326  /// Values - The types of the values this node defines.  SDNode's may define
327  /// multiple values simultaneously.
328  std::vector<MVT::ValueType> Values;
329
330  /// Uses - These are all of the SDNode's that use a value produced by this
331  /// node.
332  std::vector<SDNode*> Uses;
333public:
334
335  //===--------------------------------------------------------------------===//
336  //  Accessors
337  //
338  unsigned getOpcode()  const { return NodeType; }
339
340  size_t use_size() const { return Uses.size(); }
341  bool use_empty() const { return Uses.empty(); }
342  bool hasOneUse() const { return Uses.size() == 1; }
343
344  /// getNumOperands - Return the number of values used by this operation.
345  ///
346  unsigned getNumOperands() const { return Operands.size(); }
347
348  const SDOperand &getOperand(unsigned Num) {
349    assert(Num < Operands.size() && "Invalid child # of SDNode!");
350    return Operands[Num];
351  }
352
353  const SDOperand &getOperand(unsigned Num) const {
354    assert(Num < Operands.size() && "Invalid child # of SDNode!");
355    return Operands[Num];
356  }
357
358  /// getNumValues - Return the number of values defined/returned by this
359  /// operator.
360  ///
361  unsigned getNumValues() const { return Values.size(); }
362
363  /// getValueType - Return the type of a specified result.
364  ///
365  MVT::ValueType getValueType(unsigned ResNo) const {
366    assert(ResNo < Values.size() && "Illegal result number!");
367    return Values[ResNo];
368  }
369
370  void dump() const;
371
372  static bool classof(const SDNode *) { return true; }
373
374protected:
375  friend class SelectionDAG;
376
377  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT) {
378    Values.reserve(1);
379    Values.push_back(VT);
380  }
381
382  SDNode(unsigned NT, SDOperand Op)
383    : NodeType(NT) {
384    Operands.reserve(1); Operands.push_back(Op);
385    Op.Val->Uses.push_back(this);
386  }
387  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
388    : NodeType(NT) {
389    Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
390    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
391  }
392  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
393    : NodeType(NT) {
394    Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
395    Operands.push_back(N3);
396    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
397    N3.Val->Uses.push_back(this);
398  }
399  SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
400    Operands.swap(Nodes);
401    for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
402      Nodes[i].Val->Uses.push_back(this);
403  }
404
405  virtual ~SDNode() {
406    // FIXME: Drop uses.
407  }
408
409  void setValueTypes(MVT::ValueType VT) {
410    Values.reserve(1);
411    Values.push_back(VT);
412  }
413  void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
414    Values.reserve(2);
415    Values.push_back(VT1);
416    Values.push_back(VT2);
417  }
418  /// Note: this method destroys the vector passed in.
419  void setValueTypes(std::vector<MVT::ValueType> &VTs) {
420    std::swap(Values, VTs);
421  }
422
423  void removeUser(SDNode *User) {
424    // Remove this user from the operand's use list.
425    for (unsigned i = Uses.size(); ; --i) {
426      assert(i != 0 && "Didn't find user!");
427      if (Uses[i-1] == User) {
428        Uses.erase(Uses.begin()+i-1);
429        break;
430      }
431    }
432  }
433};
434
435
436// Define inline functions from the SDOperand class.
437
438inline unsigned SDOperand::getOpcode() const {
439  return Val->getOpcode();
440}
441inline MVT::ValueType SDOperand::getValueType() const {
442  return Val->getValueType(ResNo);
443}
444inline unsigned SDOperand::getNumOperands() const {
445  return Val->getNumOperands();
446}
447inline const SDOperand &SDOperand::getOperand(unsigned i) const {
448  return Val->getOperand(i);
449}
450
451
452
453class ConstantSDNode : public SDNode {
454  uint64_t Value;
455protected:
456  friend class SelectionDAG;
457  ConstantSDNode(uint64_t val, MVT::ValueType VT)
458    : SDNode(ISD::Constant, VT), Value(val) {
459  }
460public:
461
462  uint64_t getValue() const { return Value; }
463
464  int64_t getSignExtended() const {
465    unsigned Bits = MVT::getSizeInBits(getValueType(0));
466    return ((int64_t)Value << 64-Bits) >> 64-Bits;
467  }
468
469  bool isNullValue() const { return Value == 0; }
470  bool isAllOnesValue() const {
471    return Value == (1ULL << MVT::getSizeInBits(getValueType(0)))-1;
472  }
473
474  static bool classof(const ConstantSDNode *) { return true; }
475  static bool classof(const SDNode *N) {
476    return N->getOpcode() == ISD::Constant;
477  }
478};
479
480class ConstantFPSDNode : public SDNode {
481  double Value;
482protected:
483  friend class SelectionDAG;
484  ConstantFPSDNode(double val, MVT::ValueType VT)
485    : SDNode(ISD::ConstantFP, VT), Value(val) {
486  }
487public:
488
489  double getValue() const { return Value; }
490
491  /// isExactlyValue - We don't rely on operator== working on double values, as
492  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
493  /// As such, this method can be used to do an exact bit-for-bit comparison of
494  /// two floating point values.
495  bool isExactlyValue(double V) const {
496    union {
497      double V;
498      uint64_t I;
499    } T1;
500    T1.V = Value;
501    union {
502      double V;
503      uint64_t I;
504    } T2;
505    T2.V = V;
506    return T1.I == T2.I;
507  }
508
509  static bool classof(const ConstantFPSDNode *) { return true; }
510  static bool classof(const SDNode *N) {
511    return N->getOpcode() == ISD::ConstantFP;
512  }
513};
514
515class GlobalAddressSDNode : public SDNode {
516  GlobalValue *TheGlobal;
517protected:
518  friend class SelectionDAG;
519  GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT)
520    : SDNode(ISD::GlobalAddress, VT) {
521    TheGlobal = const_cast<GlobalValue*>(GA);
522  }
523public:
524
525  GlobalValue *getGlobal() const { return TheGlobal; }
526
527  static bool classof(const GlobalAddressSDNode *) { return true; }
528  static bool classof(const SDNode *N) {
529    return N->getOpcode() == ISD::GlobalAddress;
530  }
531};
532
533
534class FrameIndexSDNode : public SDNode {
535  int FI;
536protected:
537  friend class SelectionDAG;
538  FrameIndexSDNode(int fi, MVT::ValueType VT)
539    : SDNode(ISD::FrameIndex, VT), FI(fi) {}
540public:
541
542  int getIndex() const { return FI; }
543
544  static bool classof(const FrameIndexSDNode *) { return true; }
545  static bool classof(const SDNode *N) {
546    return N->getOpcode() == ISD::FrameIndex;
547  }
548};
549
550class ConstantPoolSDNode : public SDNode {
551  unsigned CPI;
552protected:
553  friend class SelectionDAG;
554  ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT)
555    : SDNode(ISD::ConstantPool, VT), CPI(cpi) {}
556public:
557
558  unsigned getIndex() const { return CPI; }
559
560  static bool classof(const ConstantPoolSDNode *) { return true; }
561  static bool classof(const SDNode *N) {
562    return N->getOpcode() == ISD::ConstantPool;
563  }
564};
565
566class BasicBlockSDNode : public SDNode {
567  MachineBasicBlock *MBB;
568protected:
569  friend class SelectionDAG;
570  BasicBlockSDNode(MachineBasicBlock *mbb)
571    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
572public:
573
574  MachineBasicBlock *getBasicBlock() const { return MBB; }
575
576  static bool classof(const BasicBlockSDNode *) { return true; }
577  static bool classof(const SDNode *N) {
578    return N->getOpcode() == ISD::BasicBlock;
579  }
580};
581
582
583class CopyRegSDNode : public SDNode {
584  unsigned Reg;
585protected:
586  friend class SelectionDAG;
587  CopyRegSDNode(SDOperand Chain, SDOperand Src, unsigned reg)
588    : SDNode(ISD::CopyToReg, Chain, Src), Reg(reg) {
589    setValueTypes(MVT::Other);  // Just a token chain.
590  }
591  CopyRegSDNode(unsigned reg, MVT::ValueType VT)
592    : SDNode(ISD::CopyFromReg, VT), Reg(reg) {
593  }
594public:
595
596  unsigned getReg() const { return Reg; }
597
598  static bool classof(const CopyRegSDNode *) { return true; }
599  static bool classof(const SDNode *N) {
600    return N->getOpcode() == ISD::CopyToReg ||
601           N->getOpcode() == ISD::CopyFromReg;
602  }
603};
604
605class ExternalSymbolSDNode : public SDNode {
606  const char *Symbol;
607protected:
608  friend class SelectionDAG;
609  ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
610    : SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
611    }
612public:
613
614  const char *getSymbol() const { return Symbol; }
615
616  static bool classof(const ExternalSymbolSDNode *) { return true; }
617  static bool classof(const SDNode *N) {
618    return N->getOpcode() == ISD::ExternalSymbol;
619  }
620};
621
622class SetCCSDNode : public SDNode {
623  ISD::CondCode Condition;
624protected:
625  friend class SelectionDAG;
626  SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS)
627    : SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) {
628    setValueTypes(MVT::i1);
629  }
630public:
631
632  ISD::CondCode getCondition() const { return Condition; }
633
634  static bool classof(const SetCCSDNode *) { return true; }
635  static bool classof(const SDNode *N) {
636    return N->getOpcode() == ISD::SETCC;
637  }
638};
639
640} // end llvm namespace
641
642#endif
643