SelectionDAGNodes.h revision 1ea58a52a4296afff10e9db1e54928f38e6d74c6
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APInt.h"
28#include "llvm/ADT/alist.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include <cassert>
35
36namespace llvm {
37
38class SelectionDAG;
39class GlobalValue;
40class MachineBasicBlock;
41class MachineConstantPoolValue;
42class SDNode;
43class CompileUnitDesc;
44template <typename T> struct DenseMapInfo;
45template <typename T> struct simplify_type;
46
47/// SDVTList - This represents a list of ValueType's that has been intern'd by
48/// a SelectionDAG.  Instances of this simple value class are returned by
49/// SelectionDAG::getVTList(...).
50///
51struct SDVTList {
52  const MVT *VTs;
53  unsigned short NumVTs;
54};
55
56/// ISD namespace - This namespace contains an enum which represents all of the
57/// SelectionDAG node types and value types.
58///
59namespace ISD {
60
61  //===--------------------------------------------------------------------===//
62  /// ISD::NodeType enum - This enum defines all of the operators valid in a
63  /// SelectionDAG.
64  ///
65  enum NodeType {
66    // DELETED_NODE - This is an illegal flag value that is used to catch
67    // errors.  This opcode is not a legal opcode for any node.
68    DELETED_NODE,
69
70    // EntryToken - This is the marker used to indicate the start of the region.
71    EntryToken,
72
73    // Token factor - This node takes multiple tokens as input and produces a
74    // single token result.  This is used to represent the fact that the operand
75    // operators are independent of each other.
76    TokenFactor,
77
78    // AssertSext, AssertZext - These nodes record if a register contains a
79    // value that has already been zero or sign extended from a narrower type.
80    // These nodes take two operands.  The first is the node that has already
81    // been extended, and the second is a value type node indicating the width
82    // of the extension
83    AssertSext, AssertZext,
84
85    // Various leaf nodes.
86    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
87    Constant, ConstantFP,
88    GlobalAddress, GlobalTLSAddress, FrameIndex,
89    JumpTable, ConstantPool, ExternalSymbol,
90
91    // The address of the GOT
92    GLOBAL_OFFSET_TABLE,
93
94    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
95    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
96    // of the frame or return address to return.  An index of zero corresponds
97    // to the current function's frame or return address, an index of one to the
98    // parent's frame or return address, and so on.
99    FRAMEADDR, RETURNADDR,
100
101    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
102    // first (possible) on-stack argument. This is needed for correct stack
103    // adjustment during unwind.
104    FRAME_TO_ARGS_OFFSET,
105
106    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
107    // address of the exception block on entry to an landing pad block.
108    EXCEPTIONADDR,
109
110    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
111    // the selection index of the exception thrown.
112    EHSELECTION,
113
114    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
115    // 'eh_return' gcc dwarf builtin, which is used to return from
116    // exception. The general meaning is: adjust stack by OFFSET and pass
117    // execution to HANDLER. Many platform-related details also :)
118    EH_RETURN,
119
120    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
121    // simplification of the constant.
122    TargetConstant,
123    TargetConstantFP,
124
125    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
126    // anything else with this node, and this is valid in the target-specific
127    // dag, turning into a GlobalAddress operand.
128    TargetGlobalAddress,
129    TargetGlobalTLSAddress,
130    TargetFrameIndex,
131    TargetJumpTable,
132    TargetConstantPool,
133    TargetExternalSymbol,
134
135    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
136    /// This node represents a target intrinsic function with no side effects.
137    /// The first operand is the ID number of the intrinsic from the
138    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
139    /// node has returns the result of the intrinsic.
140    INTRINSIC_WO_CHAIN,
141
142    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
143    /// This node represents a target intrinsic function with side effects that
144    /// returns a result.  The first operand is a chain pointer.  The second is
145    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
146    /// operands to the intrinsic follow.  The node has two results, the result
147    /// of the intrinsic and an output chain.
148    INTRINSIC_W_CHAIN,
149
150    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
151    /// This node represents a target intrinsic function with side effects that
152    /// does not return a result.  The first operand is a chain pointer.  The
153    /// second is the ID number of the intrinsic from the llvm::Intrinsic
154    /// namespace.  The operands to the intrinsic follow.
155    INTRINSIC_VOID,
156
157    // CopyToReg - This node has three operands: a chain, a register number to
158    // set to this value, and a value.
159    CopyToReg,
160
161    // CopyFromReg - This node indicates that the input value is a virtual or
162    // physical register that is defined outside of the scope of this
163    // SelectionDAG.  The register is available from the RegisterSDNode object.
164    CopyFromReg,
165
166    // UNDEF - An undefined node
167    UNDEF,
168
169    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
170    /// represents the formal arguments for a function.  CC# is a Constant value
171    /// indicating the calling convention of the function, and ISVARARG is a
172    /// flag that indicates whether the function is varargs or not. This node
173    /// has one result value for each incoming argument, plus one for the output
174    /// chain. It must be custom legalized. See description of CALL node for
175    /// FLAG argument contents explanation.
176    ///
177    FORMAL_ARGUMENTS,
178
179    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
180    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
181    /// This node represents a fully general function call, before the legalizer
182    /// runs.  This has one result value for each argument / flag pair, plus
183    /// a chain result. It must be custom legalized. Flag argument indicates
184    /// misc. argument attributes. Currently:
185    /// Bit 0 - signness
186    /// Bit 1 - 'inreg' attribute
187    /// Bit 2 - 'sret' attribute
188    /// Bit 4 - 'byval' attribute
189    /// Bit 5 - 'nest' attribute
190    /// Bit 6-9 - alignment of byval structures
191    /// Bit 10-26 - size of byval structures
192    /// Bits 31:27 - argument ABI alignment in the first argument piece and
193    /// alignment '1' in other argument pieces.
194    CALL,
195
196    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
197    // a Constant, which is required to be operand #1) half of the integer or
198    // float value specified as operand #0.  This is only for use before
199    // legalization, for values that will be broken into multiple registers.
200    EXTRACT_ELEMENT,
201
202    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
203    // two values of the same integer value type, this produces a value twice as
204    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
205    BUILD_PAIR,
206
207    // MERGE_VALUES - This node takes multiple discrete operands and returns
208    // them all as its individual results.  This nodes has exactly the same
209    // number of inputs and outputs, and is only valid before legalization.
210    // This node is useful for some pieces of the code generator that want to
211    // think about a single node with multiple results, not multiple nodes.
212    MERGE_VALUES,
213
214    // Simple integer binary arithmetic operators.
215    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
216
217    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
218    // a signed/unsigned value of type i[2*N], and return the full value as
219    // two results, each of type iN.
220    SMUL_LOHI, UMUL_LOHI,
221
222    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
223    // remainder result.
224    SDIVREM, UDIVREM,
225
226    // CARRY_FALSE - This node is used when folding other nodes,
227    // like ADDC/SUBC, which indicate the carry result is always false.
228    CARRY_FALSE,
229
230    // Carry-setting nodes for multiple precision addition and subtraction.
231    // These nodes take two operands of the same value type, and produce two
232    // results.  The first result is the normal add or sub result, the second
233    // result is the carry flag result.
234    ADDC, SUBC,
235
236    // Carry-using nodes for multiple precision addition and subtraction.  These
237    // nodes take three operands: The first two are the normal lhs and rhs to
238    // the add or sub, and the third is the input carry flag.  These nodes
239    // produce two results; the normal result of the add or sub, and the output
240    // carry flag.  These nodes both read and write a carry flag to allow them
241    // to them to be chained together for add and sub of arbitrarily large
242    // values.
243    ADDE, SUBE,
244
245    // Simple binary floating point operators.
246    FADD, FSUB, FMUL, FDIV, FREM,
247
248    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
249    // DAG node does not require that X and Y have the same type, just that they
250    // are both floating point.  X and the result must have the same type.
251    // FCOPYSIGN(f32, f64) is allowed.
252    FCOPYSIGN,
253
254    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
255    // value as an integer 0/1 value.
256    FGETSIGN,
257
258    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
259    /// with the specified, possibly variable, elements.  The number of elements
260    /// is required to be a power of two.
261    BUILD_VECTOR,
262
263    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
264    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
265    /// element type then VAL is truncated before replacement.
266    INSERT_VECTOR_ELT,
267
268    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
269    /// identified by the (potentially variable) element number IDX.
270    EXTRACT_VECTOR_ELT,
271
272    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
273    /// vector type with the same length and element type, this produces a
274    /// concatenated vector result value, with length equal to the sum of the
275    /// lengths of the input vectors.
276    CONCAT_VECTORS,
277
278    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
279    /// vector value) starting with the (potentially variable) element number
280    /// IDX, which must be a multiple of the result vector length.
281    EXTRACT_SUBVECTOR,
282
283    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
284    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
285    /// (maybe of an illegal datatype) or undef that indicate which value each
286    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
287    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
288    /// that the indices must be constants and are in terms of the element size
289    /// of VEC1/VEC2, not in terms of bytes.
290    VECTOR_SHUFFLE,
291
292    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
293    /// scalar value into element 0 of the resultant vector type.  The top
294    /// elements 1 to N-1 of the N-element vector are undefined.
295    SCALAR_TO_VECTOR,
296
297    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
298    // This node takes a superreg and a constant sub-register index as operands.
299    // Note sub-register indices must be increasing. That is, if the
300    // sub-register index of a 8-bit sub-register is N, then the index for a
301    // 16-bit sub-register must be at least N+1.
302    EXTRACT_SUBREG,
303
304    // INSERT_SUBREG - This node is used to insert a sub-register value.
305    // This node takes a superreg, a subreg value, and a constant sub-register
306    // index as operands.
307    INSERT_SUBREG,
308
309    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
310    // an unsigned/signed value of type i[2*N], then return the top part.
311    MULHU, MULHS,
312
313    // Bitwise operators - logical and, logical or, logical xor, shift left,
314    // shift right algebraic (shift in sign bits), shift right logical (shift in
315    // zeroes), rotate left, rotate right, and byteswap.
316    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
317
318    // Counting operators
319    CTTZ, CTLZ, CTPOP,
320
321    // Select(COND, TRUEVAL, FALSEVAL)
322    SELECT,
323
324    // Select with condition operator - This selects between a true value and
325    // a false value (ops #2 and #3) based on the boolean result of comparing
326    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
327    // condition code in op #4, a CondCodeSDNode.
328    SELECT_CC,
329
330    // SetCC operator - This evaluates to a boolean (i1) true value if the
331    // condition is true.  The operands to this are the left and right operands
332    // to compare (ops #0, and #1) and the condition code to compare them with
333    // (op #2) as a CondCodeSDNode.
334    SETCC,
335
336    // Vector SetCC operator - This evaluates to a vector of integer elements
337    // with the high bit in each element set to true if the comparison is true
338    // and false if the comparison is false.  All other bits in each element
339    // are undefined.  The operands to this are the left and right operands
340    // to compare (ops #0, and #1) and the condition code to compare them with
341    // (op #2) as a CondCodeSDNode.
342    VSETCC,
343
344    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
345    // integer shift operations, just like ADD/SUB_PARTS.  The operation
346    // ordering is:
347    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
348    SHL_PARTS, SRA_PARTS, SRL_PARTS,
349
350    // Conversion operators.  These are all single input single output
351    // operations.  For all of these, the result type must be strictly
352    // wider or narrower (depending on the operation) than the source
353    // type.
354
355    // SIGN_EXTEND - Used for integer types, replicating the sign bit
356    // into new bits.
357    SIGN_EXTEND,
358
359    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
360    ZERO_EXTEND,
361
362    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
363    ANY_EXTEND,
364
365    // TRUNCATE - Completely drop the high bits.
366    TRUNCATE,
367
368    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
369    // depends on the first letter) to floating point.
370    SINT_TO_FP,
371    UINT_TO_FP,
372
373    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
374    // sign extend a small value in a large integer register (e.g. sign
375    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
376    // with the 7th bit).  The size of the smaller type is indicated by the 1th
377    // operand, a ValueType node.
378    SIGN_EXTEND_INREG,
379
380    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
381    /// integer.
382    FP_TO_SINT,
383    FP_TO_UINT,
384
385    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
386    /// down to the precision of the destination VT.  TRUNC is a flag, which is
387    /// always an integer that is zero or one.  If TRUNC is 0, this is a
388    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
389    /// value of Y.
390    ///
391    /// The TRUNC = 1 case is used in cases where we know that the value will
392    /// not be modified by the node, because Y is not using any of the extra
393    /// precision of source type.  This allows certain transformations like
394    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
395    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
396    FP_ROUND,
397
398    // FLT_ROUNDS_ - Returns current rounding mode:
399    // -1 Undefined
400    //  0 Round to 0
401    //  1 Round to nearest
402    //  2 Round to +inf
403    //  3 Round to -inf
404    FLT_ROUNDS_,
405
406    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
407    /// rounds it to a floating point value.  It then promotes it and returns it
408    /// in a register of the same size.  This operation effectively just
409    /// discards excess precision.  The type to round down to is specified by
410    /// the VT operand, a VTSDNode.
411    FP_ROUND_INREG,
412
413    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
414    FP_EXTEND,
415
416    // BIT_CONVERT - Theis operator converts between integer and FP values, as
417    // if one was stored to memory as integer and the other was loaded from the
418    // same address (or equivalently for vector format conversions, etc).  The
419    // source and result are required to have the same bit size (e.g.
420    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
421    // conversions, but that is a noop, deleted by getNode().
422    BIT_CONVERT,
423
424    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
425    // negation, absolute value, square root, sine and cosine, powi, and pow
426    // operations.
427    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
428
429    // LOAD and STORE have token chains as their first operand, then the same
430    // operands as an LLVM load/store instruction, then an offset node that
431    // is added / subtracted from the base pointer to form the address (for
432    // indexed memory ops).
433    LOAD, STORE,
434
435    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
436    // to a specified boundary.  This node always has two return values: a new
437    // stack pointer value and a chain. The first operand is the token chain,
438    // the second is the number of bytes to allocate, and the third is the
439    // alignment boundary.  The size is guaranteed to be a multiple of the stack
440    // alignment, and the alignment is guaranteed to be bigger than the stack
441    // alignment (if required) or 0 to get standard stack alignment.
442    DYNAMIC_STACKALLOC,
443
444    // Control flow instructions.  These all have token chains.
445
446    // BR - Unconditional branch.  The first operand is the chain
447    // operand, the second is the MBB to branch to.
448    BR,
449
450    // BRIND - Indirect branch.  The first operand is the chain, the second
451    // is the value to branch to, which must be of the same type as the target's
452    // pointer type.
453    BRIND,
454
455    // BR_JT - Jumptable branch. The first operand is the chain, the second
456    // is the jumptable index, the last one is the jumptable entry index.
457    BR_JT,
458
459    // BRCOND - Conditional branch.  The first operand is the chain,
460    // the second is the condition, the third is the block to branch
461    // to if the condition is true.
462    BRCOND,
463
464    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
465    // that the condition is represented as condition code, and two nodes to
466    // compare, rather than as a combined SetCC node.  The operands in order are
467    // chain, cc, lhs, rhs, block to branch to if condition is true.
468    BR_CC,
469
470    // RET - Return from function.  The first operand is the chain,
471    // and any subsequent operands are pairs of return value and return value
472    // signness for the function.  This operation can have variable number of
473    // operands.
474    RET,
475
476    // INLINEASM - Represents an inline asm block.  This node always has two
477    // return values: a chain and a flag result.  The inputs are as follows:
478    //   Operand #0   : Input chain.
479    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
480    //   Operand #2n+2: A RegisterNode.
481    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
482    //   Operand #last: Optional, an incoming flag.
483    INLINEASM,
484
485    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
486    // locations needed for debug and exception handling tables.  These nodes
487    // take a chain as input and return a chain.
488    DBG_LABEL,
489    EH_LABEL,
490
491    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
492    // local variable declarations for debugging information. First operand is
493    // a chain, while the next two operands are first two arguments (address
494    // and variable) of a llvm.dbg.declare instruction.
495    DECLARE,
496
497    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
498    // value, the same type as the pointer type for the system, and an output
499    // chain.
500    STACKSAVE,
501
502    // STACKRESTORE has two operands, an input chain and a pointer to restore to
503    // it returns an output chain.
504    STACKRESTORE,
505
506    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
507    // a call sequence, and carry arbitrary information that target might want
508    // to know.  The first operand is a chain, the rest are specified by the
509    // target and not touched by the DAG optimizers.
510    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
511    CALLSEQ_START,  // Beginning of a call sequence
512    CALLSEQ_END,    // End of a call sequence
513
514    // VAARG - VAARG has three operands: an input chain, a pointer, and a
515    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
516    VAARG,
517
518    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
519    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
520    // source.
521    VACOPY,
522
523    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
524    // pointer, and a SRCVALUE.
525    VAEND, VASTART,
526
527    // SRCVALUE - This is a node type that holds a Value* that is used to
528    // make reference to a value in the LLVM IR.
529    SRCVALUE,
530
531    // MEMOPERAND - This is a node that contains a MachineMemOperand which
532    // records information about a memory reference. This is used to make
533    // AliasAnalysis queries from the backend.
534    MEMOPERAND,
535
536    // PCMARKER - This corresponds to the pcmarker intrinsic.
537    PCMARKER,
538
539    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
540    // The only operand is a chain and a value and a chain are produced.  The
541    // value is the contents of the architecture specific cycle counter like
542    // register (or other high accuracy low latency clock source)
543    READCYCLECOUNTER,
544
545    // HANDLENODE node - Used as a handle for various purposes.
546    HANDLENODE,
547
548    // DBG_STOPPOINT - This node is used to represent a source location for
549    // debug info.  It takes token chain as input, and carries a line number,
550    // column number, and a pointer to a CompileUnitDesc object identifying
551    // the containing compilation unit.  It produces a token chain as output.
552    DBG_STOPPOINT,
553
554    // DEBUG_LOC - This node is used to represent source line information
555    // embedded in the code.  It takes a token chain as input, then a line
556    // number, then a column then a file id (provided by MachineModuleInfo.) It
557    // produces a token chain as output.
558    DEBUG_LOC,
559
560    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
561    // It takes as input a token chain, the pointer to the trampoline,
562    // the pointer to the nested function, the pointer to pass for the
563    // 'nest' parameter, a SRCVALUE for the trampoline and another for
564    // the nested function (allowing targets to access the original
565    // Function*).  It produces the result of the intrinsic and a token
566    // chain as output.
567    TRAMPOLINE,
568
569    // TRAP - Trapping instruction
570    TRAP,
571
572    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
573    // their first operand. The other operands are the address to prefetch,
574    // read / write specifier, and locality specifier.
575    PREFETCH,
576
577    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
578    //                       store-store, device)
579    // This corresponds to the memory.barrier intrinsic.
580    // it takes an input chain, 4 operands to specify the type of barrier, an
581    // operand specifying if the barrier applies to device and uncached memory
582    // and produces an output chain.
583    MEMBARRIER,
584
585    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
586    // this corresponds to the atomic.lcs intrinsic.
587    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
588    // the return is always the original value in *ptr
589    ATOMIC_CMP_SWAP,
590
591    // Val, OUTCHAIN = ATOMIC_LOAD_ADD(INCHAIN, ptr, amt)
592    // this corresponds to the atomic.las intrinsic.
593    // *ptr + amt is stored to *ptr atomically.
594    // the return is always the original value in *ptr
595    ATOMIC_LOAD_ADD,
596
597    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
598    // this corresponds to the atomic.swap intrinsic.
599    // amt is stored to *ptr atomically.
600    // the return is always the original value in *ptr
601    ATOMIC_SWAP,
602
603    // Val, OUTCHAIN = ATOMIC_LOAD_SUB(INCHAIN, ptr, amt)
604    // this corresponds to the atomic.lss intrinsic.
605    // *ptr - amt is stored to *ptr atomically.
606    // the return is always the original value in *ptr
607    ATOMIC_LOAD_SUB,
608
609    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
610    // this corresponds to the atomic.[OpName] intrinsic.
611    // op(*ptr, amt) is stored to *ptr atomically.
612    // the return is always the original value in *ptr
613    ATOMIC_LOAD_AND,
614    ATOMIC_LOAD_OR,
615    ATOMIC_LOAD_XOR,
616    ATOMIC_LOAD_NAND,
617    ATOMIC_LOAD_MIN,
618    ATOMIC_LOAD_MAX,
619    ATOMIC_LOAD_UMIN,
620    ATOMIC_LOAD_UMAX,
621
622    // BUILTIN_OP_END - This must be the last enum value in this list.
623    BUILTIN_OP_END
624  };
625
626  /// Node predicates
627
628  /// isBuildVectorAllOnes - Return true if the specified node is a
629  /// BUILD_VECTOR where all of the elements are ~0 or undef.
630  bool isBuildVectorAllOnes(const SDNode *N);
631
632  /// isBuildVectorAllZeros - Return true if the specified node is a
633  /// BUILD_VECTOR where all of the elements are 0 or undef.
634  bool isBuildVectorAllZeros(const SDNode *N);
635
636  /// isScalarToVector - Return true if the specified node is a
637  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
638  /// element is not an undef.
639  bool isScalarToVector(const SDNode *N);
640
641  /// isDebugLabel - Return true if the specified node represents a debug
642  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
643  bool isDebugLabel(const SDNode *N);
644
645  //===--------------------------------------------------------------------===//
646  /// MemIndexedMode enum - This enum defines the load / store indexed
647  /// addressing modes.
648  ///
649  /// UNINDEXED    "Normal" load / store. The effective address is already
650  ///              computed and is available in the base pointer. The offset
651  ///              operand is always undefined. In addition to producing a
652  ///              chain, an unindexed load produces one value (result of the
653  ///              load); an unindexed store does not produce a value.
654  ///
655  /// PRE_INC      Similar to the unindexed mode where the effective address is
656  /// PRE_DEC      the value of the base pointer add / subtract the offset.
657  ///              It considers the computation as being folded into the load /
658  ///              store operation (i.e. the load / store does the address
659  ///              computation as well as performing the memory transaction).
660  ///              The base operand is always undefined. In addition to
661  ///              producing a chain, pre-indexed load produces two values
662  ///              (result of the load and the result of the address
663  ///              computation); a pre-indexed store produces one value (result
664  ///              of the address computation).
665  ///
666  /// POST_INC     The effective address is the value of the base pointer. The
667  /// POST_DEC     value of the offset operand is then added to / subtracted
668  ///              from the base after memory transaction. In addition to
669  ///              producing a chain, post-indexed load produces two values
670  ///              (the result of the load and the result of the base +/- offset
671  ///              computation); a post-indexed store produces one value (the
672  ///              the result of the base +/- offset computation).
673  ///
674  enum MemIndexedMode {
675    UNINDEXED = 0,
676    PRE_INC,
677    PRE_DEC,
678    POST_INC,
679    POST_DEC,
680    LAST_INDEXED_MODE
681  };
682
683  //===--------------------------------------------------------------------===//
684  /// LoadExtType enum - This enum defines the three variants of LOADEXT
685  /// (load with extension).
686  ///
687  /// SEXTLOAD loads the integer operand and sign extends it to a larger
688  ///          integer result type.
689  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
690  ///          integer result type.
691  /// EXTLOAD  is used for three things: floating point extending loads,
692  ///          integer extending loads [the top bits are undefined], and vector
693  ///          extending loads [load into low elt].
694  ///
695  enum LoadExtType {
696    NON_EXTLOAD = 0,
697    EXTLOAD,
698    SEXTLOAD,
699    ZEXTLOAD,
700    LAST_LOADX_TYPE
701  };
702
703  //===--------------------------------------------------------------------===//
704  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
705  /// below work out, when considering SETFALSE (something that never exists
706  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
707  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
708  /// to.  If the "N" column is 1, the result of the comparison is undefined if
709  /// the input is a NAN.
710  ///
711  /// All of these (except for the 'always folded ops') should be handled for
712  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
713  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
714  ///
715  /// Note that these are laid out in a specific order to allow bit-twiddling
716  /// to transform conditions.
717  enum CondCode {
718    // Opcode          N U L G E       Intuitive operation
719    SETFALSE,      //    0 0 0 0       Always false (always folded)
720    SETOEQ,        //    0 0 0 1       True if ordered and equal
721    SETOGT,        //    0 0 1 0       True if ordered and greater than
722    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
723    SETOLT,        //    0 1 0 0       True if ordered and less than
724    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
725    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
726    SETO,          //    0 1 1 1       True if ordered (no nans)
727    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
728    SETUEQ,        //    1 0 0 1       True if unordered or equal
729    SETUGT,        //    1 0 1 0       True if unordered or greater than
730    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
731    SETULT,        //    1 1 0 0       True if unordered or less than
732    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
733    SETUNE,        //    1 1 1 0       True if unordered or not equal
734    SETTRUE,       //    1 1 1 1       Always true (always folded)
735    // Don't care operations: undefined if the input is a nan.
736    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
737    SETEQ,         //  1 X 0 0 1       True if equal
738    SETGT,         //  1 X 0 1 0       True if greater than
739    SETGE,         //  1 X 0 1 1       True if greater than or equal
740    SETLT,         //  1 X 1 0 0       True if less than
741    SETLE,         //  1 X 1 0 1       True if less than or equal
742    SETNE,         //  1 X 1 1 0       True if not equal
743    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
744
745    SETCC_INVALID       // Marker value.
746  };
747
748  /// isSignedIntSetCC - Return true if this is a setcc instruction that
749  /// performs a signed comparison when used with integer operands.
750  inline bool isSignedIntSetCC(CondCode Code) {
751    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
752  }
753
754  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
755  /// performs an unsigned comparison when used with integer operands.
756  inline bool isUnsignedIntSetCC(CondCode Code) {
757    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
758  }
759
760  /// isTrueWhenEqual - Return true if the specified condition returns true if
761  /// the two operands to the condition are equal.  Note that if one of the two
762  /// operands is a NaN, this value is meaningless.
763  inline bool isTrueWhenEqual(CondCode Cond) {
764    return ((int)Cond & 1) != 0;
765  }
766
767  /// getUnorderedFlavor - This function returns 0 if the condition is always
768  /// false if an operand is a NaN, 1 if the condition is always true if the
769  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
770  /// NaN.
771  inline unsigned getUnorderedFlavor(CondCode Cond) {
772    return ((int)Cond >> 3) & 3;
773  }
774
775  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
776  /// 'op' is a valid SetCC operation.
777  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
778
779  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
780  /// when given the operation for (X op Y).
781  CondCode getSetCCSwappedOperands(CondCode Operation);
782
783  /// getSetCCOrOperation - Return the result of a logical OR between different
784  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
785  /// function returns SETCC_INVALID if it is not possible to represent the
786  /// resultant comparison.
787  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
788
789  /// getSetCCAndOperation - Return the result of a logical AND between
790  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
791  /// function returns SETCC_INVALID if it is not possible to represent the
792  /// resultant comparison.
793  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
794}  // end llvm::ISD namespace
795
796
797//===----------------------------------------------------------------------===//
798/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
799/// values as the result of a computation.  Many nodes return multiple values,
800/// from loads (which define a token and a return value) to ADDC (which returns
801/// a result and a carry value), to calls (which may return an arbitrary number
802/// of values).
803///
804/// As such, each use of a SelectionDAG computation must indicate the node that
805/// computes it as well as which return value to use from that node.  This pair
806/// of information is represented with the SDOperand value type.
807///
808class SDOperand {
809public:
810  SDNode *Val;        // The node defining the value we are using.
811  unsigned ResNo;     // Which return value of the node we are using.
812
813  SDOperand() : Val(0), ResNo(0) {}
814  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
815
816  bool operator==(const SDOperand &O) const {
817    return Val == O.Val && ResNo == O.ResNo;
818  }
819  bool operator!=(const SDOperand &O) const {
820    return !operator==(O);
821  }
822  bool operator<(const SDOperand &O) const {
823    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
824  }
825
826  SDOperand getValue(unsigned R) const {
827    return SDOperand(Val, R);
828  }
829
830  // isOperandOf - Return true if this node is an operand of N.
831  bool isOperandOf(SDNode *N) const;
832
833  /// getValueType - Return the ValueType of the referenced return value.
834  ///
835  inline MVT getValueType() const;
836
837  /// getValueSizeInBits - Returns the size of the value in bits.
838  ///
839  unsigned getValueSizeInBits() const {
840    return getValueType().getSizeInBits();
841  }
842
843  // Forwarding methods - These forward to the corresponding methods in SDNode.
844  inline unsigned getOpcode() const;
845  inline unsigned getNumOperands() const;
846  inline const SDOperand &getOperand(unsigned i) const;
847  inline uint64_t getConstantOperandVal(unsigned i) const;
848  inline bool isTargetOpcode() const;
849  inline unsigned getTargetOpcode() const;
850
851
852  /// reachesChainWithoutSideEffects - Return true if this operand (which must
853  /// be a chain) reaches the specified operand without crossing any
854  /// side-effecting instructions.  In practice, this looks through token
855  /// factors and non-volatile loads.  In order to remain efficient, this only
856  /// looks a couple of nodes in, it does not do an exhaustive search.
857  bool reachesChainWithoutSideEffects(SDOperand Dest,
858                                      unsigned Depth = 2) const;
859
860  /// hasOneUse - Return true if there is exactly one operation using this
861  /// result value of the defining operator.
862  inline bool hasOneUse() const;
863
864  /// use_empty - Return true if there are no operations using this
865  /// result value of the defining operator.
866  inline bool use_empty() const;
867};
868
869
870template<> struct DenseMapInfo<SDOperand> {
871  static inline SDOperand getEmptyKey() {
872    return SDOperand((SDNode*)-1, -1U);
873  }
874  static inline SDOperand getTombstoneKey() {
875    return SDOperand((SDNode*)-1, 0);
876  }
877  static unsigned getHashValue(const SDOperand &Val) {
878    return ((unsigned)((uintptr_t)Val.Val >> 4) ^
879            (unsigned)((uintptr_t)Val.Val >> 9)) + Val.ResNo;
880  }
881  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
882    return LHS == RHS;
883  }
884  static bool isPod() { return true; }
885};
886
887/// simplify_type specializations - Allow casting operators to work directly on
888/// SDOperands as if they were SDNode*'s.
889template<> struct simplify_type<SDOperand> {
890  typedef SDNode* SimpleType;
891  static SimpleType getSimplifiedValue(const SDOperand &Val) {
892    return static_cast<SimpleType>(Val.Val);
893  }
894};
895template<> struct simplify_type<const SDOperand> {
896  typedef SDNode* SimpleType;
897  static SimpleType getSimplifiedValue(const SDOperand &Val) {
898    return static_cast<SimpleType>(Val.Val);
899  }
900};
901
902/// SDUse - Represents a use of the SDNode referred by
903/// the SDOperand.
904class SDUse {
905  SDOperand Operand;
906  /// User - Parent node of this operand.
907  SDNode    *User;
908  /// Prev, next - Pointers to the uses list of the SDNode referred by
909  /// this operand.
910  SDUse **Prev, *Next;
911public:
912  friend class SDNode;
913  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}
914
915  SDUse(SDNode *val, unsigned resno) :
916    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}
917
918  SDUse& operator= (const SDOperand& Op) {
919      Operand = Op;
920      Next = NULL;
921      Prev = NULL;
922      return *this;
923  }
924
925  SDUse& operator= (const SDUse& Op) {
926      Operand = Op;
927      Next = NULL;
928      Prev = NULL;
929      return *this;
930  }
931
932  SDUse * getNext() { return Next; }
933
934  SDNode *getUser() { return User; }
935
936  void setUser(SDNode *p) { User = p; }
937
938  operator SDOperand() const { return Operand; }
939
940  const SDOperand& getSDOperand() const { return Operand; }
941
942  SDNode* &getVal () { return Operand.Val; }
943
944  bool operator==(const SDOperand &O) const {
945    return Operand == O;
946  }
947
948  bool operator!=(const SDOperand &O) const {
949    return !(Operand == O);
950  }
951
952  bool operator<(const SDOperand &O) const {
953    return Operand < O;
954  }
955
956protected:
957  void addToList(SDUse **List) {
958    Next = *List;
959    if (Next) Next->Prev = &Next;
960    Prev = List;
961    *List = this;
962  }
963
964  void removeFromList() {
965    *Prev = Next;
966    if (Next) Next->Prev = Prev;
967  }
968};
969
970
971/// simplify_type specializations - Allow casting operators to work directly on
972/// SDOperands as if they were SDNode*'s.
973template<> struct simplify_type<SDUse> {
974  typedef SDNode* SimpleType;
975  static SimpleType getSimplifiedValue(const SDUse &Val) {
976    return static_cast<SimpleType>(Val.getSDOperand().Val);
977  }
978};
979template<> struct simplify_type<const SDUse> {
980  typedef SDNode* SimpleType;
981  static SimpleType getSimplifiedValue(const SDUse &Val) {
982    return static_cast<SimpleType>(Val.getSDOperand().Val);
983  }
984};
985
986
987/// SDOperandPtr - A helper SDOperand pointer class, that can handle
988/// arrays of SDUse and arrays of SDOperand objects. This is required
989/// in many places inside the SelectionDAG.
990///
991class SDOperandPtr {
992  const SDOperand *ptr; // The pointer to the SDOperand object
993  int object_size;      // The size of the object containg the SDOperand
994public:
995  SDOperandPtr() : ptr(0), object_size(0) {}
996
997  SDOperandPtr(SDUse * use_ptr) {
998    ptr = &use_ptr->getSDOperand();
999    object_size = (int)sizeof(SDUse);
1000  }
1001
1002  SDOperandPtr(const SDOperand * op_ptr) {
1003    ptr = op_ptr;
1004    object_size = (int)sizeof(SDOperand);
1005  }
1006
1007  const SDOperand operator *() { return *ptr; }
1008  const SDOperand *operator ->() { return ptr; }
1009  SDOperandPtr operator ++ () {
1010    ptr = (SDOperand*)((char *)ptr + object_size);
1011    return *this;
1012  }
1013
1014  SDOperandPtr operator ++ (int) {
1015    SDOperandPtr tmp = *this;
1016    ptr = (SDOperand*)((char *)ptr + object_size);
1017    return tmp;
1018  }
1019
1020  SDOperand operator[] (int idx) const {
1021    return *(SDOperand*)((char*) ptr + object_size * idx);
1022  }
1023};
1024
1025/// SDNode - Represents one node in the SelectionDAG.
1026///
1027class SDNode : public FoldingSetNode {
1028private:
1029  /// NodeType - The operation that this node performs.
1030  ///
1031  unsigned short NodeType;
1032
1033  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1034  /// then they will be delete[]'d when the node is destroyed.
1035  bool OperandsNeedDelete : 1;
1036
1037  /// NodeId - Unique id per SDNode in the DAG.
1038  int NodeId;
1039
1040  /// OperandList - The values that are used by this operation.
1041  ///
1042  SDUse *OperandList;
1043
1044  /// ValueList - The types of the values this node defines.  SDNode's may
1045  /// define multiple values simultaneously.
1046  const MVT *ValueList;
1047
1048  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1049  unsigned short NumOperands, NumValues;
1050
1051  /// UsesSize - The size of the uses list.
1052  unsigned UsesSize;
1053
1054  /// Uses - List of uses for this SDNode.
1055  SDUse *Uses;
1056
1057  /// addUse - add SDUse to the list of uses.
1058  void addUse(SDUse &U) { U.addToList(&Uses); }
1059
1060  // Out-of-line virtual method to give class a home.
1061  virtual void ANCHOR();
1062public:
1063  virtual ~SDNode() {
1064    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1065    NodeType = ISD::DELETED_NODE;
1066  }
1067
1068  //===--------------------------------------------------------------------===//
1069  //  Accessors
1070  //
1071  unsigned getOpcode()  const { return NodeType; }
1072  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1073  unsigned getTargetOpcode() const {
1074    assert(isTargetOpcode() && "Not a target opcode!");
1075    return NodeType - ISD::BUILTIN_OP_END;
1076  }
1077
1078  size_t use_size() const { return UsesSize; }
1079  bool use_empty() const { return Uses == NULL; }
1080  bool hasOneUse() const { return use_size() == 1; }
1081
1082  /// getNodeId - Return the unique node id.
1083  ///
1084  int getNodeId() const { return NodeId; }
1085
1086  /// setNodeId - Set unique node id.
1087  void setNodeId(int Id) { NodeId = Id; }
1088
1089  /// use_iterator - This class provides iterator support for SDUse
1090  /// operands that use a specific SDNode.
1091  class use_iterator
1092    : public forward_iterator<SDUse, ptrdiff_t> {
1093    SDUse *Op;
1094    explicit use_iterator(SDUse *op) : Op(op) {
1095    }
1096    friend class SDNode;
1097  public:
1098    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1099    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1100
1101    use_iterator(const use_iterator &I) : Op(I.Op) {}
1102    use_iterator() : Op(0) {}
1103
1104    bool operator==(const use_iterator &x) const {
1105      return Op == x.Op;
1106    }
1107    bool operator!=(const use_iterator &x) const {
1108      return !operator==(x);
1109    }
1110
1111    /// atEnd - return true if this iterator is at the end of uses list.
1112    bool atEnd() const { return Op == 0; }
1113
1114    // Iterator traversal: forward iteration only.
1115    use_iterator &operator++() {          // Preincrement
1116      assert(Op && "Cannot increment end iterator!");
1117      Op = Op->getNext();
1118      return *this;
1119    }
1120
1121    use_iterator operator++(int) {        // Postincrement
1122      use_iterator tmp = *this; ++*this; return tmp;
1123    }
1124
1125
1126    /// getOperandNum - Retrive a number of a current operand.
1127    unsigned getOperandNum() const {
1128      assert(Op && "Cannot dereference end iterator!");
1129      return (unsigned)(Op - Op->getUser()->OperandList);
1130    }
1131
1132    /// Retrieve a reference to the current operand.
1133    SDUse &operator*() const {
1134      assert(Op && "Cannot dereference end iterator!");
1135      return *Op;
1136    }
1137
1138    /// Retrieve a pointer to the current operand.
1139    SDUse *operator->() const {
1140      assert(Op && "Cannot dereference end iterator!");
1141      return Op;
1142    }
1143  };
1144
1145  /// use_begin/use_end - Provide iteration support to walk over all uses
1146  /// of an SDNode.
1147
1148  use_iterator use_begin(SDNode *node) const {
1149    return use_iterator(node->Uses);
1150  }
1151
1152  use_iterator use_begin() const {
1153    return use_iterator(Uses);
1154  }
1155
1156  static use_iterator use_end() { return use_iterator(0); }
1157
1158
1159  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1160  /// indicated value.  This method ignores uses of other values defined by this
1161  /// operation.
1162  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1163
1164  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1165  /// value. This method ignores uses of other values defined by this operation.
1166  bool hasAnyUseOfValue(unsigned Value) const;
1167
1168  /// isOnlyUseOf - Return true if this node is the only use of N.
1169  ///
1170  bool isOnlyUseOf(SDNode *N) const;
1171
1172  /// isOperandOf - Return true if this node is an operand of N.
1173  ///
1174  bool isOperandOf(SDNode *N) const;
1175
1176  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1177  /// node is either an operand of N or it can be reached by recursively
1178  /// traversing up the operands.
1179  /// NOTE: this is an expensive method. Use it carefully.
1180  bool isPredecessorOf(SDNode *N) const;
1181
1182  /// getNumOperands - Return the number of values used by this operation.
1183  ///
1184  unsigned getNumOperands() const { return NumOperands; }
1185
1186  /// getConstantOperandVal - Helper method returns the integer value of a
1187  /// ConstantSDNode operand.
1188  uint64_t getConstantOperandVal(unsigned Num) const;
1189
1190  const SDOperand &getOperand(unsigned Num) const {
1191    assert(Num < NumOperands && "Invalid child # of SDNode!");
1192    return OperandList[Num].getSDOperand();
1193  }
1194
1195  typedef SDUse* op_iterator;
1196  op_iterator op_begin() const { return OperandList; }
1197  op_iterator op_end() const { return OperandList+NumOperands; }
1198
1199
1200  SDVTList getVTList() const {
1201    SDVTList X = { ValueList, NumValues };
1202    return X;
1203  };
1204
1205  /// getNumValues - Return the number of values defined/returned by this
1206  /// operator.
1207  ///
1208  unsigned getNumValues() const { return NumValues; }
1209
1210  /// getValueType - Return the type of a specified result.
1211  ///
1212  MVT getValueType(unsigned ResNo) const {
1213    assert(ResNo < NumValues && "Illegal result number!");
1214    return ValueList[ResNo];
1215  }
1216
1217  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1218  ///
1219  unsigned getValueSizeInBits(unsigned ResNo) const {
1220    return getValueType(ResNo).getSizeInBits();
1221  }
1222
1223  typedef const MVT* value_iterator;
1224  value_iterator value_begin() const { return ValueList; }
1225  value_iterator value_end() const { return ValueList+NumValues; }
1226
1227  /// getOperationName - Return the opcode of this operation for printing.
1228  ///
1229  std::string getOperationName(const SelectionDAG *G = 0) const;
1230  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1231  void dump() const;
1232  void dump(const SelectionDAG *G) const;
1233
1234  static bool classof(const SDNode *) { return true; }
1235
1236  /// Profile - Gather unique data for the node.
1237  ///
1238  void Profile(FoldingSetNodeID &ID);
1239
1240protected:
1241  friend class SelectionDAG;
1242
1243  /// getValueTypeList - Return a pointer to the specified value type.
1244  ///
1245  static const MVT *getValueTypeList(MVT VT);
1246  static SDVTList getSDVTList(MVT VT) {
1247    SDVTList Ret = { getValueTypeList(VT), 1 };
1248    return Ret;
1249  }
1250
1251  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
1252    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1253    OperandsNeedDelete = true;
1254    NumOperands = NumOps;
1255    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1256
1257    for (unsigned i = 0; i != NumOps; ++i) {
1258      OperandList[i] = Ops[i];
1259      OperandList[i].setUser(this);
1260      Ops[i].Val->addUse(OperandList[i]);
1261      ++Ops[i].Val->UsesSize;
1262    }
1263
1264    ValueList = VTs.VTs;
1265    NumValues = VTs.NumVTs;
1266  }
1267
1268  SDNode(unsigned Opc, SDVTList VTs, const SDUse *Ops, unsigned NumOps)
1269    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1270    OperandsNeedDelete = true;
1271    NumOperands = NumOps;
1272    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1273
1274    for (unsigned i = 0; i != NumOps; ++i) {
1275      OperandList[i] = Ops[i];
1276      OperandList[i].setUser(this);
1277      Ops[i].getSDOperand().Val->addUse(OperandList[i]);
1278      ++Ops[i].getSDOperand().Val->UsesSize;
1279    }
1280
1281    ValueList = VTs.VTs;
1282    NumValues = VTs.NumVTs;
1283  }
1284
1285  SDNode(unsigned Opc, SDVTList VTs)
1286    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1287    OperandsNeedDelete = false;  // Operands set with InitOperands.
1288    NumOperands = 0;
1289    OperandList = 0;
1290    ValueList = VTs.VTs;
1291    NumValues = VTs.NumVTs;
1292  }
1293
1294  /// InitOperands - Initialize the operands list of this node with the
1295  /// specified values, which are part of the node (thus they don't need to be
1296  /// copied in or allocated).
1297  void InitOperands(SDUse *Ops, unsigned NumOps) {
1298    assert(OperandList == 0 && "Operands already set!");
1299    NumOperands = NumOps;
1300    OperandList = Ops;
1301    UsesSize = 0;
1302    Uses = NULL;
1303
1304    for (unsigned i = 0; i != NumOps; ++i) {
1305      OperandList[i].setUser(this);
1306      Ops[i].getVal()->addUse(OperandList[i]);
1307      ++Ops[i].getVal()->UsesSize;
1308    }
1309  }
1310
1311  /// DropOperands - Release the operands and set this node to have
1312  /// zero operands.  This should only be used by HandleSDNode to clear
1313  /// its operand list.
1314  void DropOperands();
1315
1316  /// MorphNodeTo - This frees the operands of the current node, resets the
1317  /// opcode, types, and operands to the specified value.  This should only be
1318  /// used by the SelectionDAG class.
1319  void MorphNodeTo(unsigned Opc, SDVTList L,
1320                   const SDOperand *Ops, unsigned NumOps,
1321                   SmallVectorImpl<SDNode *> &DeadNodes);
1322
1323  void addUser(unsigned i, SDNode *User) {
1324    assert(User->OperandList[i].getUser() && "Node without parent");
1325    addUse(User->OperandList[i]);
1326    ++UsesSize;
1327  }
1328
1329  void removeUser(unsigned i, SDNode *User) {
1330    assert(User->OperandList[i].getUser() && "Node without parent");
1331    SDUse &Op = User->OperandList[i];
1332    Op.removeFromList();
1333    --UsesSize;
1334  }
1335};
1336
1337
1338// Define inline functions from the SDOperand class.
1339
1340inline unsigned SDOperand::getOpcode() const {
1341  return Val->getOpcode();
1342}
1343inline MVT SDOperand::getValueType() const {
1344  return Val->getValueType(ResNo);
1345}
1346inline unsigned SDOperand::getNumOperands() const {
1347  return Val->getNumOperands();
1348}
1349inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1350  return Val->getOperand(i);
1351}
1352inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1353  return Val->getConstantOperandVal(i);
1354}
1355inline bool SDOperand::isTargetOpcode() const {
1356  return Val->isTargetOpcode();
1357}
1358inline unsigned SDOperand::getTargetOpcode() const {
1359  return Val->getTargetOpcode();
1360}
1361inline bool SDOperand::hasOneUse() const {
1362  return Val->hasNUsesOfValue(1, ResNo);
1363}
1364inline bool SDOperand::use_empty() const {
1365  return !Val->hasAnyUseOfValue(ResNo);
1366}
1367
1368/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1369/// to allow co-allocation of node operands with the node itself.
1370class UnarySDNode : public SDNode {
1371  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1372  SDUse Op;
1373public:
1374  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1375    : SDNode(Opc, VTs) {
1376    Op = X;
1377    InitOperands(&Op, 1);
1378  }
1379};
1380
1381/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1382/// to allow co-allocation of node operands with the node itself.
1383class BinarySDNode : public SDNode {
1384  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1385  SDUse Ops[2];
1386public:
1387  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1388    : SDNode(Opc, VTs) {
1389    Ops[0] = X;
1390    Ops[1] = Y;
1391    InitOperands(Ops, 2);
1392  }
1393};
1394
1395/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1396/// to allow co-allocation of node operands with the node itself.
1397class TernarySDNode : public SDNode {
1398  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1399  SDUse Ops[3];
1400public:
1401  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1402                SDOperand Z)
1403    : SDNode(Opc, VTs) {
1404    Ops[0] = X;
1405    Ops[1] = Y;
1406    Ops[2] = Z;
1407    InitOperands(Ops, 3);
1408  }
1409};
1410
1411
1412/// HandleSDNode - This class is used to form a handle around another node that
1413/// is persistant and is updated across invocations of replaceAllUsesWith on its
1414/// operand.  This node should be directly created by end-users and not added to
1415/// the AllNodes list.
1416class HandleSDNode : public SDNode {
1417  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1418  SDUse Op;
1419public:
1420  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1421  // fixed.
1422#ifdef __GNUC__
1423  explicit __attribute__((__noinline__)) HandleSDNode(SDOperand X)
1424#else
1425  explicit HandleSDNode(SDOperand X)
1426#endif
1427    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1428    Op = X;
1429    InitOperands(&Op, 1);
1430  }
1431  ~HandleSDNode();
1432  SDUse getValue() const { return Op; }
1433};
1434
1435/// Abstact virtual class for operations for memory operations
1436class MemSDNode : public SDNode {
1437  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1438
1439private:
1440  // MemoryVT - VT of in-memory value.
1441  MVT MemoryVT;
1442
1443  //! SrcValue - Memory location for alias analysis.
1444  const Value *SrcValue;
1445
1446  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1447  int SVOffset;
1448
1449  /// Flags - the low bit indicates whether this is a volatile reference;
1450  /// the remainder is a log2 encoding of the alignment in bytes.
1451  unsigned Flags;
1452
1453public:
1454  MemSDNode(unsigned Opc, SDVTList VTs, MVT MemoryVT,
1455            const Value *srcValue, int SVOff,
1456            unsigned alignment, bool isvolatile);
1457
1458  /// Returns alignment and volatility of the memory access
1459  unsigned getAlignment() const { return (1u << (Flags >> 1)) >> 1; }
1460  bool isVolatile() const { return Flags & 1; }
1461
1462  /// Returns the SrcValue and offset that describes the location of the access
1463  const Value *getSrcValue() const { return SrcValue; }
1464  int getSrcValueOffset() const { return SVOffset; }
1465
1466  /// getMemoryVT - Return the type of the in-memory value.
1467  MVT getMemoryVT() const { return MemoryVT; }
1468
1469  /// getMemOperand - Return a MachineMemOperand object describing the memory
1470  /// reference performed by operation.
1471  MachineMemOperand getMemOperand() const;
1472
1473  const SDOperand &getChain() const { return getOperand(0); }
1474  const SDOperand &getBasePtr() const {
1475    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1476  }
1477
1478  // Methods to support isa and dyn_cast
1479  static bool classof(const MemSDNode *) { return true; }
1480  static bool classof(const SDNode *N) {
1481    return N->getOpcode() == ISD::LOAD  ||
1482           N->getOpcode() == ISD::STORE ||
1483           N->getOpcode() == ISD::ATOMIC_CMP_SWAP  ||
1484           N->getOpcode() == ISD::ATOMIC_LOAD_ADD  ||
1485           N->getOpcode() == ISD::ATOMIC_SWAP      ||
1486           N->getOpcode() == ISD::ATOMIC_LOAD_SUB  ||
1487           N->getOpcode() == ISD::ATOMIC_LOAD_AND  ||
1488           N->getOpcode() == ISD::ATOMIC_LOAD_OR   ||
1489           N->getOpcode() == ISD::ATOMIC_LOAD_XOR  ||
1490           N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1491           N->getOpcode() == ISD::ATOMIC_LOAD_MIN  ||
1492           N->getOpcode() == ISD::ATOMIC_LOAD_MAX  ||
1493           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1494           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1495  }
1496};
1497
1498/// Atomic operations node
1499class AtomicSDNode : public MemSDNode {
1500  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1501  SDUse Ops[4];
1502
1503 public:
1504  // Opc:   opcode for atomic
1505  // VTL:    value type list
1506  // Chain:  memory chain for operaand
1507  // Ptr:    address to update as a SDOperand
1508  // Cmp:    compare value
1509  // Swp:    swap value
1510  // SrcVal: address to update as a Value (used for MemOperand)
1511  // Align:  alignment of memory
1512  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1513               SDOperand Cmp, SDOperand Swp, const Value* SrcVal,
1514               unsigned Align=0)
1515    : MemSDNode(Opc, VTL, Cmp.getValueType(), SrcVal, /*SVOffset=*/0,
1516                Align, /*isVolatile=*/true) {
1517    Ops[0] = Chain;
1518    Ops[1] = Ptr;
1519    Ops[2] = Swp;
1520    Ops[3] = Cmp;
1521    InitOperands(Ops, 4);
1522  }
1523  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1524               SDOperand Val, const Value* SrcVal, unsigned Align=0)
1525    : MemSDNode(Opc, VTL, Val.getValueType(), SrcVal, /*SVOffset=*/0,
1526                Align, /*isVolatile=*/true) {
1527    Ops[0] = Chain;
1528    Ops[1] = Ptr;
1529    Ops[2] = Val;
1530    InitOperands(Ops, 3);
1531  }
1532
1533  const SDOperand &getBasePtr() const { return getOperand(1); }
1534  const SDOperand &getVal() const { return getOperand(2); }
1535
1536  bool isCompareAndSwap() const { return getOpcode() == ISD::ATOMIC_CMP_SWAP; }
1537
1538  // Methods to support isa and dyn_cast
1539  static bool classof(const AtomicSDNode *) { return true; }
1540  static bool classof(const SDNode *N) {
1541    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP  ||
1542           N->getOpcode() == ISD::ATOMIC_LOAD_ADD  ||
1543           N->getOpcode() == ISD::ATOMIC_SWAP      ||
1544           N->getOpcode() == ISD::ATOMIC_LOAD_SUB  ||
1545           N->getOpcode() == ISD::ATOMIC_LOAD_AND  ||
1546           N->getOpcode() == ISD::ATOMIC_LOAD_OR   ||
1547           N->getOpcode() == ISD::ATOMIC_LOAD_XOR  ||
1548           N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1549           N->getOpcode() == ISD::ATOMIC_LOAD_MIN  ||
1550           N->getOpcode() == ISD::ATOMIC_LOAD_MAX  ||
1551           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1552           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1553  }
1554};
1555
1556class ConstantSDNode : public SDNode {
1557  APInt Value;
1558  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1559protected:
1560  friend class SelectionDAG;
1561  ConstantSDNode(bool isTarget, const APInt &val, MVT VT)
1562    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1563      Value(val) {
1564  }
1565public:
1566
1567  const APInt &getAPIntValue() const { return Value; }
1568  uint64_t getValue() const { return Value.getZExtValue(); }
1569
1570  int64_t getSignExtended() const {
1571    unsigned Bits = getValueType(0).getSizeInBits();
1572    return ((int64_t)Value.getZExtValue() << (64-Bits)) >> (64-Bits);
1573  }
1574
1575  bool isNullValue() const { return Value == 0; }
1576  bool isAllOnesValue() const {
1577    return Value == getValueType(0).getIntegerVTBitMask();
1578  }
1579
1580  static bool classof(const ConstantSDNode *) { return true; }
1581  static bool classof(const SDNode *N) {
1582    return N->getOpcode() == ISD::Constant ||
1583           N->getOpcode() == ISD::TargetConstant;
1584  }
1585};
1586
1587class ConstantFPSDNode : public SDNode {
1588  APFloat Value;
1589  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1590protected:
1591  friend class SelectionDAG;
1592  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT VT)
1593    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1594             getSDVTList(VT)), Value(val) {
1595  }
1596public:
1597
1598  const APFloat& getValueAPF() const { return Value; }
1599
1600  /// isExactlyValue - We don't rely on operator== working on double values, as
1601  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1602  /// As such, this method can be used to do an exact bit-for-bit comparison of
1603  /// two floating point values.
1604
1605  /// We leave the version with the double argument here because it's just so
1606  /// convenient to write "2.0" and the like.  Without this function we'd
1607  /// have to duplicate its logic everywhere it's called.
1608  bool isExactlyValue(double V) const {
1609    // convert is not supported on this type
1610    if (&Value.getSemantics() == &APFloat::PPCDoubleDouble)
1611      return false;
1612    APFloat Tmp(V);
1613    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
1614    return isExactlyValue(Tmp);
1615  }
1616  bool isExactlyValue(const APFloat& V) const;
1617
1618  bool isValueValidForType(MVT VT, const APFloat& Val);
1619
1620  static bool classof(const ConstantFPSDNode *) { return true; }
1621  static bool classof(const SDNode *N) {
1622    return N->getOpcode() == ISD::ConstantFP ||
1623           N->getOpcode() == ISD::TargetConstantFP;
1624  }
1625};
1626
1627class GlobalAddressSDNode : public SDNode {
1628  GlobalValue *TheGlobal;
1629  int Offset;
1630  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1631protected:
1632  friend class SelectionDAG;
1633  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT, int o = 0);
1634public:
1635
1636  GlobalValue *getGlobal() const { return TheGlobal; }
1637  int getOffset() const { return Offset; }
1638
1639  static bool classof(const GlobalAddressSDNode *) { return true; }
1640  static bool classof(const SDNode *N) {
1641    return N->getOpcode() == ISD::GlobalAddress ||
1642           N->getOpcode() == ISD::TargetGlobalAddress ||
1643           N->getOpcode() == ISD::GlobalTLSAddress ||
1644           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1645  }
1646};
1647
1648class FrameIndexSDNode : public SDNode {
1649  int FI;
1650  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1651protected:
1652  friend class SelectionDAG;
1653  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1654    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1655      FI(fi) {
1656  }
1657public:
1658
1659  int getIndex() const { return FI; }
1660
1661  static bool classof(const FrameIndexSDNode *) { return true; }
1662  static bool classof(const SDNode *N) {
1663    return N->getOpcode() == ISD::FrameIndex ||
1664           N->getOpcode() == ISD::TargetFrameIndex;
1665  }
1666};
1667
1668class JumpTableSDNode : public SDNode {
1669  int JTI;
1670  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1671protected:
1672  friend class SelectionDAG;
1673  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1674    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1675      JTI(jti) {
1676  }
1677public:
1678
1679  int getIndex() const { return JTI; }
1680
1681  static bool classof(const JumpTableSDNode *) { return true; }
1682  static bool classof(const SDNode *N) {
1683    return N->getOpcode() == ISD::JumpTable ||
1684           N->getOpcode() == ISD::TargetJumpTable;
1685  }
1686};
1687
1688class ConstantPoolSDNode : public SDNode {
1689  union {
1690    Constant *ConstVal;
1691    MachineConstantPoolValue *MachineCPVal;
1692  } Val;
1693  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1694  unsigned Alignment;
1695  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1696protected:
1697  friend class SelectionDAG;
1698  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1699    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1700             getSDVTList(VT)), Offset(o), Alignment(0) {
1701    assert((int)Offset >= 0 && "Offset is too large");
1702    Val.ConstVal = c;
1703  }
1704  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1705    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1706             getSDVTList(VT)), Offset(o), Alignment(Align) {
1707    assert((int)Offset >= 0 && "Offset is too large");
1708    Val.ConstVal = c;
1709  }
1710  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1711                     MVT VT, int o=0)
1712    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1713             getSDVTList(VT)), Offset(o), Alignment(0) {
1714    assert((int)Offset >= 0 && "Offset is too large");
1715    Val.MachineCPVal = v;
1716    Offset |= 1 << (sizeof(unsigned)*8-1);
1717  }
1718  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1719                     MVT VT, int o, unsigned Align)
1720    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1721             getSDVTList(VT)), Offset(o), Alignment(Align) {
1722    assert((int)Offset >= 0 && "Offset is too large");
1723    Val.MachineCPVal = v;
1724    Offset |= 1 << (sizeof(unsigned)*8-1);
1725  }
1726public:
1727
1728  bool isMachineConstantPoolEntry() const {
1729    return (int)Offset < 0;
1730  }
1731
1732  Constant *getConstVal() const {
1733    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1734    return Val.ConstVal;
1735  }
1736
1737  MachineConstantPoolValue *getMachineCPVal() const {
1738    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1739    return Val.MachineCPVal;
1740  }
1741
1742  int getOffset() const {
1743    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1744  }
1745
1746  // Return the alignment of this constant pool object, which is either 0 (for
1747  // default alignment) or log2 of the desired value.
1748  unsigned getAlignment() const { return Alignment; }
1749
1750  const Type *getType() const;
1751
1752  static bool classof(const ConstantPoolSDNode *) { return true; }
1753  static bool classof(const SDNode *N) {
1754    return N->getOpcode() == ISD::ConstantPool ||
1755           N->getOpcode() == ISD::TargetConstantPool;
1756  }
1757};
1758
1759class BasicBlockSDNode : public SDNode {
1760  MachineBasicBlock *MBB;
1761  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1762protected:
1763  friend class SelectionDAG;
1764  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1765    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1766  }
1767public:
1768
1769  MachineBasicBlock *getBasicBlock() const { return MBB; }
1770
1771  static bool classof(const BasicBlockSDNode *) { return true; }
1772  static bool classof(const SDNode *N) {
1773    return N->getOpcode() == ISD::BasicBlock;
1774  }
1775};
1776
1777/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1778/// used when the SelectionDAG needs to make a simple reference to something
1779/// in the LLVM IR representation.
1780///
1781/// Note that this is not used for carrying alias information; that is done
1782/// with MemOperandSDNode, which includes a Value which is required to be a
1783/// pointer, and several other fields specific to memory references.
1784///
1785class SrcValueSDNode : public SDNode {
1786  const Value *V;
1787  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1788protected:
1789  friend class SelectionDAG;
1790  /// Create a SrcValue for a general value.
1791  explicit SrcValueSDNode(const Value *v)
1792    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1793
1794public:
1795  /// getValue - return the contained Value.
1796  const Value *getValue() const { return V; }
1797
1798  static bool classof(const SrcValueSDNode *) { return true; }
1799  static bool classof(const SDNode *N) {
1800    return N->getOpcode() == ISD::SRCVALUE;
1801  }
1802};
1803
1804
1805/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
1806/// used to represent a reference to memory after ISD::LOAD
1807/// and ISD::STORE have been lowered.
1808///
1809class MemOperandSDNode : public SDNode {
1810  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1811protected:
1812  friend class SelectionDAG;
1813  /// Create a MachineMemOperand node
1814  explicit MemOperandSDNode(const MachineMemOperand &mo)
1815    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
1816
1817public:
1818  /// MO - The contained MachineMemOperand.
1819  const MachineMemOperand MO;
1820
1821  static bool classof(const MemOperandSDNode *) { return true; }
1822  static bool classof(const SDNode *N) {
1823    return N->getOpcode() == ISD::MEMOPERAND;
1824  }
1825};
1826
1827
1828class RegisterSDNode : public SDNode {
1829  unsigned Reg;
1830  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1831protected:
1832  friend class SelectionDAG;
1833  RegisterSDNode(unsigned reg, MVT VT)
1834    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1835  }
1836public:
1837
1838  unsigned getReg() const { return Reg; }
1839
1840  static bool classof(const RegisterSDNode *) { return true; }
1841  static bool classof(const SDNode *N) {
1842    return N->getOpcode() == ISD::Register;
1843  }
1844};
1845
1846class DbgStopPointSDNode : public SDNode {
1847  SDUse Chain;
1848  unsigned Line;
1849  unsigned Column;
1850  const CompileUnitDesc *CU;
1851  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1852protected:
1853  friend class SelectionDAG;
1854  DbgStopPointSDNode(SDOperand ch, unsigned l, unsigned c,
1855                     const CompileUnitDesc *cu)
1856    : SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
1857      Line(l), Column(c), CU(cu) {
1858    Chain = ch;
1859    InitOperands(&Chain, 1);
1860  }
1861public:
1862  unsigned getLine() const { return Line; }
1863  unsigned getColumn() const { return Column; }
1864  const CompileUnitDesc *getCompileUnit() const { return CU; }
1865
1866  static bool classof(const DbgStopPointSDNode *) { return true; }
1867  static bool classof(const SDNode *N) {
1868    return N->getOpcode() == ISD::DBG_STOPPOINT;
1869  }
1870};
1871
1872class LabelSDNode : public SDNode {
1873  SDUse Chain;
1874  unsigned LabelID;
1875  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1876protected:
1877  friend class SelectionDAG;
1878  LabelSDNode(unsigned NodeTy, SDOperand ch, unsigned id)
1879    : SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
1880    Chain = ch;
1881    InitOperands(&Chain, 1);
1882  }
1883public:
1884  unsigned getLabelID() const { return LabelID; }
1885
1886  static bool classof(const LabelSDNode *) { return true; }
1887  static bool classof(const SDNode *N) {
1888    return N->getOpcode() == ISD::DBG_LABEL ||
1889           N->getOpcode() == ISD::EH_LABEL;
1890  }
1891};
1892
1893class ExternalSymbolSDNode : public SDNode {
1894  const char *Symbol;
1895  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1896protected:
1897  friend class SelectionDAG;
1898  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
1899    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1900             getSDVTList(VT)), Symbol(Sym) {
1901  }
1902public:
1903
1904  const char *getSymbol() const { return Symbol; }
1905
1906  static bool classof(const ExternalSymbolSDNode *) { return true; }
1907  static bool classof(const SDNode *N) {
1908    return N->getOpcode() == ISD::ExternalSymbol ||
1909           N->getOpcode() == ISD::TargetExternalSymbol;
1910  }
1911};
1912
1913class CondCodeSDNode : public SDNode {
1914  ISD::CondCode Condition;
1915  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1916protected:
1917  friend class SelectionDAG;
1918  explicit CondCodeSDNode(ISD::CondCode Cond)
1919    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1920  }
1921public:
1922
1923  ISD::CondCode get() const { return Condition; }
1924
1925  static bool classof(const CondCodeSDNode *) { return true; }
1926  static bool classof(const SDNode *N) {
1927    return N->getOpcode() == ISD::CONDCODE;
1928  }
1929};
1930
1931namespace ISD {
1932  struct ArgFlagsTy {
1933  private:
1934    static const uint64_t NoFlagSet      = 0ULL;
1935    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
1936    static const uint64_t ZExtOffs       = 0;
1937    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
1938    static const uint64_t SExtOffs       = 1;
1939    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
1940    static const uint64_t InRegOffs      = 2;
1941    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
1942    static const uint64_t SRetOffs       = 3;
1943    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
1944    static const uint64_t ByValOffs      = 4;
1945    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
1946    static const uint64_t NestOffs       = 5;
1947    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
1948    static const uint64_t ByValAlignOffs = 6;
1949    static const uint64_t Split          = 1ULL << 10;
1950    static const uint64_t SplitOffs      = 10;
1951    static const uint64_t OrigAlign      = 0x1FULL<<27;
1952    static const uint64_t OrigAlignOffs  = 27;
1953    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
1954    static const uint64_t ByValSizeOffs  = 32;
1955
1956    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
1957
1958    uint64_t Flags;
1959  public:
1960    ArgFlagsTy() : Flags(0) { }
1961
1962    bool isZExt()   const { return Flags & ZExt; }
1963    void setZExt()  { Flags |= One << ZExtOffs; }
1964
1965    bool isSExt()   const { return Flags & SExt; }
1966    void setSExt()  { Flags |= One << SExtOffs; }
1967
1968    bool isInReg()  const { return Flags & InReg; }
1969    void setInReg() { Flags |= One << InRegOffs; }
1970
1971    bool isSRet()   const { return Flags & SRet; }
1972    void setSRet()  { Flags |= One << SRetOffs; }
1973
1974    bool isByVal()  const { return Flags & ByVal; }
1975    void setByVal() { Flags |= One << ByValOffs; }
1976
1977    bool isNest()   const { return Flags & Nest; }
1978    void setNest()  { Flags |= One << NestOffs; }
1979
1980    unsigned getByValAlign() const {
1981      return (unsigned)
1982        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
1983    }
1984    void setByValAlign(unsigned A) {
1985      Flags = (Flags & ~ByValAlign) |
1986        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
1987    }
1988
1989    bool isSplit()   const { return Flags & Split; }
1990    void setSplit()  { Flags |= One << SplitOffs; }
1991
1992    unsigned getOrigAlign() const {
1993      return (unsigned)
1994        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
1995    }
1996    void setOrigAlign(unsigned A) {
1997      Flags = (Flags & ~OrigAlign) |
1998        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
1999    }
2000
2001    unsigned getByValSize() const {
2002      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2003    }
2004    void setByValSize(unsigned S) {
2005      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2006    }
2007
2008    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2009    std::string getArgFlagsString();
2010
2011    /// getRawBits - Represent the flags as a bunch of bits.
2012    uint64_t getRawBits() const { return Flags; }
2013  };
2014}
2015
2016/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2017class ARG_FLAGSSDNode : public SDNode {
2018  ISD::ArgFlagsTy TheFlags;
2019  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2020protected:
2021  friend class SelectionDAG;
2022  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2023    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
2024  }
2025public:
2026  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2027
2028  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2029  static bool classof(const SDNode *N) {
2030    return N->getOpcode() == ISD::ARG_FLAGS;
2031  }
2032};
2033
2034/// VTSDNode - This class is used to represent MVT's, which are used
2035/// to parameterize some operations.
2036class VTSDNode : public SDNode {
2037  MVT ValueType;
2038  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2039protected:
2040  friend class SelectionDAG;
2041  explicit VTSDNode(MVT VT)
2042    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
2043  }
2044public:
2045
2046  MVT getVT() const { return ValueType; }
2047
2048  static bool classof(const VTSDNode *) { return true; }
2049  static bool classof(const SDNode *N) {
2050    return N->getOpcode() == ISD::VALUETYPE;
2051  }
2052};
2053
2054/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2055///
2056class LSBaseSDNode : public MemSDNode {
2057private:
2058  // AddrMode - unindexed, pre-indexed, post-indexed.
2059  ISD::MemIndexedMode AddrMode;
2060
2061protected:
2062  //! Operand array for load and store
2063  /*!
2064    \note Moving this array to the base class captures more
2065    common functionality shared between LoadSDNode and
2066    StoreSDNode
2067   */
2068  SDUse Ops[4];
2069public:
2070  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned numOperands,
2071               SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
2072               const Value *SV, int SVO, unsigned Align, bool Vol)
2073    : MemSDNode(NodeTy, VTs, VT, SV, SVO, Align, Vol), AddrMode(AM) {
2074    for (unsigned i = 0; i != numOperands; ++i)
2075      Ops[i] = Operands[i];
2076    InitOperands(Ops, numOperands);
2077    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2078    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2079           "Only indexed loads and stores have a non-undef offset operand");
2080  }
2081
2082  const SDOperand &getOffset() const {
2083    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2084  }
2085
2086  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
2087
2088  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2089  bool isIndexed() const { return AddrMode != ISD::UNINDEXED; }
2090
2091  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2092  bool isUnindexed() const { return AddrMode == ISD::UNINDEXED; }
2093
2094  static bool classof(const LSBaseSDNode *) { return true; }
2095  static bool classof(const SDNode *N) {
2096    return N->getOpcode() == ISD::LOAD ||
2097           N->getOpcode() == ISD::STORE;
2098  }
2099};
2100
2101/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2102///
2103class LoadSDNode : public LSBaseSDNode {
2104  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2105
2106  // ExtType - non-ext, anyext, sext, zext.
2107  ISD::LoadExtType ExtType;
2108
2109protected:
2110  friend class SelectionDAG;
2111  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
2112             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2113             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2114    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2115                   VTs, AM, LVT, SV, O, Align, Vol),
2116      ExtType(ETy) {}
2117public:
2118
2119  ISD::LoadExtType getExtensionType() const { return ExtType; }
2120  const SDOperand &getBasePtr() const { return getOperand(1); }
2121  const SDOperand &getOffset() const { return getOperand(2); }
2122
2123  static bool classof(const LoadSDNode *) { return true; }
2124  static bool classof(const SDNode *N) {
2125    return N->getOpcode() == ISD::LOAD;
2126  }
2127};
2128
2129/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2130///
2131class StoreSDNode : public LSBaseSDNode {
2132  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2133
2134  // IsTruncStore - True if the op does a truncation before store.  For
2135  // integers this is the same as doing a TRUNCATE and storing the result.
2136  // For floats, it is the same as doing an FP_ROUND and storing the result.
2137  bool IsTruncStore;
2138protected:
2139  friend class SelectionDAG;
2140  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
2141              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2142              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2143    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2144                   VTs, AM, SVT, SV, O, Align, Vol),
2145      IsTruncStore(isTrunc) {}
2146public:
2147
2148  bool isTruncatingStore() const { return IsTruncStore; }
2149  const SDOperand &getValue() const { return getOperand(1); }
2150  const SDOperand &getBasePtr() const { return getOperand(2); }
2151  const SDOperand &getOffset() const { return getOperand(3); }
2152
2153  static bool classof(const StoreSDNode *) { return true; }
2154  static bool classof(const SDNode *N) {
2155    return N->getOpcode() == ISD::STORE;
2156  }
2157};
2158
2159
2160class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2161  SDNode *Node;
2162  unsigned Operand;
2163
2164  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2165public:
2166  bool operator==(const SDNodeIterator& x) const {
2167    return Operand == x.Operand;
2168  }
2169  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2170
2171  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2172    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2173    Operand = I.Operand;
2174    return *this;
2175  }
2176
2177  pointer operator*() const {
2178    return Node->getOperand(Operand).Val;
2179  }
2180  pointer operator->() const { return operator*(); }
2181
2182  SDNodeIterator& operator++() {                // Preincrement
2183    ++Operand;
2184    return *this;
2185  }
2186  SDNodeIterator operator++(int) { // Postincrement
2187    SDNodeIterator tmp = *this; ++*this; return tmp;
2188  }
2189
2190  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2191  static SDNodeIterator end  (SDNode *N) {
2192    return SDNodeIterator(N, N->getNumOperands());
2193  }
2194
2195  unsigned getOperand() const { return Operand; }
2196  const SDNode *getNode() const { return Node; }
2197};
2198
2199template <> struct GraphTraits<SDNode*> {
2200  typedef SDNode NodeType;
2201  typedef SDNodeIterator ChildIteratorType;
2202  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2203  static inline ChildIteratorType child_begin(NodeType *N) {
2204    return SDNodeIterator::begin(N);
2205  }
2206  static inline ChildIteratorType child_end(NodeType *N) {
2207    return SDNodeIterator::end(N);
2208  }
2209};
2210
2211/// LargestSDNode - The largest SDNode class.
2212///
2213typedef LoadSDNode LargestSDNode;
2214
2215// alist_traits specialization for pool-allocating SDNodes.
2216template <>
2217class alist_traits<SDNode, LargestSDNode> {
2218  typedef alist_iterator<SDNode, LargestSDNode> iterator;
2219
2220public:
2221  // Pool-allocate and recycle SDNodes.
2222  typedef RecyclingAllocator<BumpPtrAllocator, SDNode, LargestSDNode>
2223    AllocatorType;
2224
2225  // Allocate the allocator immediately inside the traits class.
2226  AllocatorType Allocator;
2227
2228  void addNodeToList(SDNode* N) {}
2229  void removeNodeFromList(SDNode* N) {}
2230  void transferNodesFromList(alist_traits &, iterator, iterator) {}
2231  void deleteNode(SDNode *N) {
2232    N->~SDNode();
2233    Allocator.Deallocate(N);
2234  }
2235};
2236
2237namespace ISD {
2238  /// isNormalLoad - Returns true if the specified node is a non-extending
2239  /// and unindexed load.
2240  inline bool isNormalLoad(const SDNode *N) {
2241    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2242    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2243      Ld->getAddressingMode() == ISD::UNINDEXED;
2244  }
2245
2246  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2247  /// load.
2248  inline bool isNON_EXTLoad(const SDNode *N) {
2249    return isa<LoadSDNode>(N) &&
2250      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2251  }
2252
2253  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2254  ///
2255  inline bool isEXTLoad(const SDNode *N) {
2256    return isa<LoadSDNode>(N) &&
2257      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2258  }
2259
2260  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2261  ///
2262  inline bool isSEXTLoad(const SDNode *N) {
2263    return isa<LoadSDNode>(N) &&
2264      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2265  }
2266
2267  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2268  ///
2269  inline bool isZEXTLoad(const SDNode *N) {
2270    return isa<LoadSDNode>(N) &&
2271      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2272  }
2273
2274  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2275  ///
2276  inline bool isUNINDEXEDLoad(const SDNode *N) {
2277    return isa<LoadSDNode>(N) &&
2278      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2279  }
2280
2281  /// isNormalStore - Returns true if the specified node is a non-truncating
2282  /// and unindexed store.
2283  inline bool isNormalStore(const SDNode *N) {
2284    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2285    return St && !St->isTruncatingStore() &&
2286      St->getAddressingMode() == ISD::UNINDEXED;
2287  }
2288
2289  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2290  /// store.
2291  inline bool isNON_TRUNCStore(const SDNode *N) {
2292    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2293  }
2294
2295  /// isTRUNCStore - Returns true if the specified node is a truncating
2296  /// store.
2297  inline bool isTRUNCStore(const SDNode *N) {
2298    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2299  }
2300
2301  /// isUNINDEXEDStore - Returns true if the specified node is an
2302  /// unindexed store.
2303  inline bool isUNINDEXEDStore(const SDNode *N) {
2304    return isa<StoreSDNode>(N) &&
2305      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2306  }
2307}
2308
2309
2310} // end llvm namespace
2311
2312#endif
2313