SelectionDAGNodes.h revision 2a610c7387664bc557a35ce3bb4c0d4df56e4755
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/ilist_node.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include "llvm/Support/DebugLoc.h"
35#include <cassert>
36#include <climits>
37
38namespace llvm {
39
40class SelectionDAG;
41class GlobalValue;
42class MachineBasicBlock;
43class MachineConstantPoolValue;
44class SDNode;
45class Value;
46template <typename T> struct DenseMapInfo;
47template <typename T> struct simplify_type;
48template <typename T> struct ilist_traits;
49
50/// SDVTList - This represents a list of ValueType's that has been intern'd by
51/// a SelectionDAG.  Instances of this simple value class are returned by
52/// SelectionDAG::getVTList(...).
53///
54struct SDVTList {
55  const EVT *VTs;
56  unsigned int NumVTs;
57};
58
59/// ISD namespace - This namespace contains an enum which represents all of the
60/// SelectionDAG node types and value types.
61///
62namespace ISD {
63
64  //===--------------------------------------------------------------------===//
65  /// ISD::NodeType enum - This enum defines the target-independent operators
66  /// for a SelectionDAG.
67  ///
68  /// Targets may also define target-dependent operator codes for SDNodes. For
69  /// example, on x86, these are the enum values in the X86ISD namespace.
70  /// Targets should aim to use target-independent operators to model their
71  /// instruction sets as much as possible, and only use target-dependent
72  /// operators when they have special requirements.
73  ///
74  /// Finally, during and after selection proper, SNodes may use special
75  /// operator codes that correspond directly with MachineInstr opcodes. These
76  /// are used to represent selected instructions. See the isMachineOpcode()
77  /// and getMachineOpcode() member functions of SDNode.
78  ///
79  enum NodeType {
80    // DELETED_NODE - This is an illegal value that is used to catch
81    // errors.  This opcode is not a legal opcode for any node.
82    DELETED_NODE,
83
84    // EntryToken - This is the marker used to indicate the start of the region.
85    EntryToken,
86
87    // TokenFactor - This node takes multiple tokens as input and produces a
88    // single token result.  This is used to represent the fact that the operand
89    // operators are independent of each other.
90    TokenFactor,
91
92    // AssertSext, AssertZext - These nodes record if a register contains a
93    // value that has already been zero or sign extended from a narrower type.
94    // These nodes take two operands.  The first is the node that has already
95    // been extended, and the second is a value type node indicating the width
96    // of the extension
97    AssertSext, AssertZext,
98
99    // Various leaf nodes.
100    BasicBlock, VALUETYPE, CONDCODE, Register,
101    Constant, ConstantFP,
102    GlobalAddress, GlobalTLSAddress, FrameIndex,
103    JumpTable, ConstantPool, ExternalSymbol,
104
105    // The address of the GOT
106    GLOBAL_OFFSET_TABLE,
107
108    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
109    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
110    // of the frame or return address to return.  An index of zero corresponds
111    // to the current function's frame or return address, an index of one to the
112    // parent's frame or return address, and so on.
113    FRAMEADDR, RETURNADDR,
114
115    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
116    // first (possible) on-stack argument. This is needed for correct stack
117    // adjustment during unwind.
118    FRAME_TO_ARGS_OFFSET,
119
120    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
121    // address of the exception block on entry to an landing pad block.
122    EXCEPTIONADDR,
123
124    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
125    // address of the Language Specific Data Area for the enclosing function.
126    LSDAADDR,
127
128    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
129    // the selection index of the exception thrown.
130    EHSELECTION,
131
132    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
133    // 'eh_return' gcc dwarf builtin, which is used to return from
134    // exception. The general meaning is: adjust stack by OFFSET and pass
135    // execution to HANDLER. Many platform-related details also :)
136    EH_RETURN,
137
138    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
139    // simplification of the constant.
140    TargetConstant,
141    TargetConstantFP,
142
143    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
144    // anything else with this node, and this is valid in the target-specific
145    // dag, turning into a GlobalAddress operand.
146    TargetGlobalAddress,
147    TargetGlobalTLSAddress,
148    TargetFrameIndex,
149    TargetJumpTable,
150    TargetConstantPool,
151    TargetExternalSymbol,
152
153    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
154    /// This node represents a target intrinsic function with no side effects.
155    /// The first operand is the ID number of the intrinsic from the
156    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
157    /// node has returns the result of the intrinsic.
158    INTRINSIC_WO_CHAIN,
159
160    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
161    /// This node represents a target intrinsic function with side effects that
162    /// returns a result.  The first operand is a chain pointer.  The second is
163    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
164    /// operands to the intrinsic follow.  The node has two results, the result
165    /// of the intrinsic and an output chain.
166    INTRINSIC_W_CHAIN,
167
168    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
169    /// This node represents a target intrinsic function with side effects that
170    /// does not return a result.  The first operand is a chain pointer.  The
171    /// second is the ID number of the intrinsic from the llvm::Intrinsic
172    /// namespace.  The operands to the intrinsic follow.
173    INTRINSIC_VOID,
174
175    // CopyToReg - This node has three operands: a chain, a register number to
176    // set to this value, and a value.
177    CopyToReg,
178
179    // CopyFromReg - This node indicates that the input value is a virtual or
180    // physical register that is defined outside of the scope of this
181    // SelectionDAG.  The register is available from the RegisterSDNode object.
182    CopyFromReg,
183
184    // UNDEF - An undefined node
185    UNDEF,
186
187    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
188    // a Constant, which is required to be operand #1) half of the integer or
189    // float value specified as operand #0.  This is only for use before
190    // legalization, for values that will be broken into multiple registers.
191    EXTRACT_ELEMENT,
192
193    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
194    // two values of the same integer value type, this produces a value twice as
195    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
196    BUILD_PAIR,
197
198    // MERGE_VALUES - This node takes multiple discrete operands and returns
199    // them all as its individual results.  This nodes has exactly the same
200    // number of inputs and outputs. This node is useful for some pieces of the
201    // code generator that want to think about a single node with multiple
202    // results, not multiple nodes.
203    MERGE_VALUES,
204
205    // Simple integer binary arithmetic operators.
206    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
207
208    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
209    // a signed/unsigned value of type i[2*N], and return the full value as
210    // two results, each of type iN.
211    SMUL_LOHI, UMUL_LOHI,
212
213    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
214    // remainder result.
215    SDIVREM, UDIVREM,
216
217    // CARRY_FALSE - This node is used when folding other nodes,
218    // like ADDC/SUBC, which indicate the carry result is always false.
219    CARRY_FALSE,
220
221    // Carry-setting nodes for multiple precision addition and subtraction.
222    // These nodes take two operands of the same value type, and produce two
223    // results.  The first result is the normal add or sub result, the second
224    // result is the carry flag result.
225    ADDC, SUBC,
226
227    // Carry-using nodes for multiple precision addition and subtraction.  These
228    // nodes take three operands: The first two are the normal lhs and rhs to
229    // the add or sub, and the third is the input carry flag.  These nodes
230    // produce two results; the normal result of the add or sub, and the output
231    // carry flag.  These nodes both read and write a carry flag to allow them
232    // to them to be chained together for add and sub of arbitrarily large
233    // values.
234    ADDE, SUBE,
235
236    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
237    // These nodes take two operands: the normal LHS and RHS to the add. They
238    // produce two results: the normal result of the add, and a boolean that
239    // indicates if an overflow occured (*not* a flag, because it may be stored
240    // to memory, etc.).  If the type of the boolean is not i1 then the high
241    // bits conform to getBooleanContents.
242    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
243    SADDO, UADDO,
244
245    // Same for subtraction
246    SSUBO, USUBO,
247
248    // Same for multiplication
249    SMULO, UMULO,
250
251    // Simple binary floating point operators.
252    FADD, FSUB, FMUL, FDIV, FREM,
253
254    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
255    // DAG node does not require that X and Y have the same type, just that they
256    // are both floating point.  X and the result must have the same type.
257    // FCOPYSIGN(f32, f64) is allowed.
258    FCOPYSIGN,
259
260    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
261    // value as an integer 0/1 value.
262    FGETSIGN,
263
264    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
265    /// specified, possibly variable, elements.  The number of elements is
266    /// required to be a power of two.  The types of the operands must all be
267    /// the same and must match the vector element type, except that integer
268    /// types are allowed to be larger than the element type, in which case
269    /// the operands are implicitly truncated.
270    BUILD_VECTOR,
271
272    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
273    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
274    /// element type then VAL is truncated before replacement.
275    INSERT_VECTOR_ELT,
276
277    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
278    /// identified by the (potentially variable) element number IDX.  If the
279    /// return type is an integer type larger than the element type of the
280    /// vector, the result is extended to the width of the return type.
281    EXTRACT_VECTOR_ELT,
282
283    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
284    /// vector type with the same length and element type, this produces a
285    /// concatenated vector result value, with length equal to the sum of the
286    /// lengths of the input vectors.
287    CONCAT_VECTORS,
288
289    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
290    /// vector value) starting with the (potentially variable) element number
291    /// IDX, which must be a multiple of the result vector length.
292    EXTRACT_SUBVECTOR,
293
294    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
295    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
296    /// values that indicate which value (or undef) each result element will
297    /// get.  These constant ints are accessible through the
298    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
299    /// 'vperm' instruction, except that the indices must be constants and are
300    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
301    VECTOR_SHUFFLE,
302
303    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
304    /// scalar value into element 0 of the resultant vector type.  The top
305    /// elements 1 to N-1 of the N-element vector are undefined.  The type
306    /// of the operand must match the vector element type, except when they
307    /// are integer types.  In this case the operand is allowed to be wider
308    /// than the vector element type, and is implicitly truncated to it.
309    SCALAR_TO_VECTOR,
310
311    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
312    // an unsigned/signed value of type i[2*N], then return the top part.
313    MULHU, MULHS,
314
315    // Bitwise operators - logical and, logical or, logical xor, shift left,
316    // shift right algebraic (shift in sign bits), shift right logical (shift in
317    // zeroes), rotate left, rotate right, and byteswap.
318    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
319
320    // Counting operators
321    CTTZ, CTLZ, CTPOP,
322
323    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
324    // i1 then the high bits must conform to getBooleanContents.
325    SELECT,
326
327    // Select with condition operator - This selects between a true value and
328    // a false value (ops #2 and #3) based on the boolean result of comparing
329    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
330    // condition code in op #4, a CondCodeSDNode.
331    SELECT_CC,
332
333    // SetCC operator - This evaluates to a true value iff the condition is
334    // true.  If the result value type is not i1 then the high bits conform
335    // to getBooleanContents.  The operands to this are the left and right
336    // operands to compare (ops #0, and #1) and the condition code to compare
337    // them with (op #2) as a CondCodeSDNode.
338    SETCC,
339
340    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
341    // integer elements with all bits of the result elements set to true if the
342    // comparison is true or all cleared if the comparison is false.  The
343    // operands to this are the left and right operands to compare (LHS/RHS) and
344    // the condition code to compare them with (COND) as a CondCodeSDNode.
345    VSETCC,
346
347    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
348    // integer shift operations, just like ADD/SUB_PARTS.  The operation
349    // ordering is:
350    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
351    SHL_PARTS, SRA_PARTS, SRL_PARTS,
352
353    // Conversion operators.  These are all single input single output
354    // operations.  For all of these, the result type must be strictly
355    // wider or narrower (depending on the operation) than the source
356    // type.
357
358    // SIGN_EXTEND - Used for integer types, replicating the sign bit
359    // into new bits.
360    SIGN_EXTEND,
361
362    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
363    ZERO_EXTEND,
364
365    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
366    ANY_EXTEND,
367
368    // TRUNCATE - Completely drop the high bits.
369    TRUNCATE,
370
371    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
372    // depends on the first letter) to floating point.
373    SINT_TO_FP,
374    UINT_TO_FP,
375
376    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
377    // sign extend a small value in a large integer register (e.g. sign
378    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
379    // with the 7th bit).  The size of the smaller type is indicated by the 1th
380    // operand, a ValueType node.
381    SIGN_EXTEND_INREG,
382
383    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
384    /// integer.
385    FP_TO_SINT,
386    FP_TO_UINT,
387
388    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
389    /// down to the precision of the destination VT.  TRUNC is a flag, which is
390    /// always an integer that is zero or one.  If TRUNC is 0, this is a
391    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
392    /// value of Y.
393    ///
394    /// The TRUNC = 1 case is used in cases where we know that the value will
395    /// not be modified by the node, because Y is not using any of the extra
396    /// precision of source type.  This allows certain transformations like
397    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
398    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
399    FP_ROUND,
400
401    // FLT_ROUNDS_ - Returns current rounding mode:
402    // -1 Undefined
403    //  0 Round to 0
404    //  1 Round to nearest
405    //  2 Round to +inf
406    //  3 Round to -inf
407    FLT_ROUNDS_,
408
409    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
410    /// rounds it to a floating point value.  It then promotes it and returns it
411    /// in a register of the same size.  This operation effectively just
412    /// discards excess precision.  The type to round down to is specified by
413    /// the VT operand, a VTSDNode.
414    FP_ROUND_INREG,
415
416    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
417    FP_EXTEND,
418
419    // BIT_CONVERT - Theis operator converts between integer and FP values, as
420    // if one was stored to memory as integer and the other was loaded from the
421    // same address (or equivalently for vector format conversions, etc).  The
422    // source and result are required to have the same bit size (e.g.
423    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
424    // conversions, but that is a noop, deleted by getNode().
425    BIT_CONVERT,
426
427    // CONVERT_RNDSAT - This operator is used to support various conversions
428    // between various types (float, signed, unsigned and vectors of those
429    // types) with rounding and saturation. NOTE: Avoid using this operator as
430    // most target don't support it and the operator might be removed in the
431    // future. It takes the following arguments:
432    //   0) value
433    //   1) dest type (type to convert to)
434    //   2) src type (type to convert from)
435    //   3) rounding imm
436    //   4) saturation imm
437    //   5) ISD::CvtCode indicating the type of conversion to do
438    CONVERT_RNDSAT,
439
440    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
441    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
442    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
443    // point operations. These are inspired by libm.
444    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
445    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
446    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
447
448    // LOAD and STORE have token chains as their first operand, then the same
449    // operands as an LLVM load/store instruction, then an offset node that
450    // is added / subtracted from the base pointer to form the address (for
451    // indexed memory ops).
452    LOAD, STORE,
453
454    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
455    // to a specified boundary.  This node always has two return values: a new
456    // stack pointer value and a chain. The first operand is the token chain,
457    // the second is the number of bytes to allocate, and the third is the
458    // alignment boundary.  The size is guaranteed to be a multiple of the stack
459    // alignment, and the alignment is guaranteed to be bigger than the stack
460    // alignment (if required) or 0 to get standard stack alignment.
461    DYNAMIC_STACKALLOC,
462
463    // Control flow instructions.  These all have token chains.
464
465    // BR - Unconditional branch.  The first operand is the chain
466    // operand, the second is the MBB to branch to.
467    BR,
468
469    // BRIND - Indirect branch.  The first operand is the chain, the second
470    // is the value to branch to, which must be of the same type as the target's
471    // pointer type.
472    BRIND,
473
474    // BR_JT - Jumptable branch. The first operand is the chain, the second
475    // is the jumptable index, the last one is the jumptable entry index.
476    BR_JT,
477
478    // BRCOND - Conditional branch.  The first operand is the chain, the
479    // second is the condition, the third is the block to branch to if the
480    // condition is true.  If the type of the condition is not i1, then the
481    // high bits must conform to getBooleanContents.
482    BRCOND,
483
484    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
485    // that the condition is represented as condition code, and two nodes to
486    // compare, rather than as a combined SetCC node.  The operands in order are
487    // chain, cc, lhs, rhs, block to branch to if condition is true.
488    BR_CC,
489
490    // INLINEASM - Represents an inline asm block.  This node always has two
491    // return values: a chain and a flag result.  The inputs are as follows:
492    //   Operand #0   : Input chain.
493    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
494    //   Operand #2n+2: A RegisterNode.
495    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
496    //   Operand #last: Optional, an incoming flag.
497    INLINEASM,
498
499    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
500    // locations needed for debug and exception handling tables.  These nodes
501    // take a chain as input and return a chain.
502    DBG_LABEL,
503    EH_LABEL,
504
505    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
506    // value, the same type as the pointer type for the system, and an output
507    // chain.
508    STACKSAVE,
509
510    // STACKRESTORE has two operands, an input chain and a pointer to restore to
511    // it returns an output chain.
512    STACKRESTORE,
513
514    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
515    // a call sequence, and carry arbitrary information that target might want
516    // to know.  The first operand is a chain, the rest are specified by the
517    // target and not touched by the DAG optimizers.
518    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
519    CALLSEQ_START,  // Beginning of a call sequence
520    CALLSEQ_END,    // End of a call sequence
521
522    // VAARG - VAARG has three operands: an input chain, a pointer, and a
523    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
524    VAARG,
525
526    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
527    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
528    // source.
529    VACOPY,
530
531    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
532    // pointer, and a SRCVALUE.
533    VAEND, VASTART,
534
535    // SRCVALUE - This is a node type that holds a Value* that is used to
536    // make reference to a value in the LLVM IR.
537    SRCVALUE,
538
539    // MEMOPERAND - This is a node that contains a MachineMemOperand which
540    // records information about a memory reference. This is used to make
541    // AliasAnalysis queries from the backend.
542    MEMOPERAND,
543
544    // PCMARKER - This corresponds to the pcmarker intrinsic.
545    PCMARKER,
546
547    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
548    // The only operand is a chain and a value and a chain are produced.  The
549    // value is the contents of the architecture specific cycle counter like
550    // register (or other high accuracy low latency clock source)
551    READCYCLECOUNTER,
552
553    // HANDLENODE node - Used as a handle for various purposes.
554    HANDLENODE,
555
556    // DBG_STOPPOINT - This node is used to represent a source location for
557    // debug info.  It takes token chain as input, and carries a line number,
558    // column number, and a pointer to a CompileUnit object identifying
559    // the containing compilation unit.  It produces a token chain as output.
560    DBG_STOPPOINT,
561
562    // DEBUG_LOC - This node is used to represent source line information
563    // embedded in the code.  It takes a token chain as input, then a line
564    // number, then a column then a file id (provided by MachineModuleInfo.) It
565    // produces a token chain as output.
566    DEBUG_LOC,
567
568    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
569    // It takes as input a token chain, the pointer to the trampoline,
570    // the pointer to the nested function, the pointer to pass for the
571    // 'nest' parameter, a SRCVALUE for the trampoline and another for
572    // the nested function (allowing targets to access the original
573    // Function*).  It produces the result of the intrinsic and a token
574    // chain as output.
575    TRAMPOLINE,
576
577    // TRAP - Trapping instruction
578    TRAP,
579
580    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
581    // their first operand. The other operands are the address to prefetch,
582    // read / write specifier, and locality specifier.
583    PREFETCH,
584
585    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
586    //                       store-store, device)
587    // This corresponds to the memory.barrier intrinsic.
588    // it takes an input chain, 4 operands to specify the type of barrier, an
589    // operand specifying if the barrier applies to device and uncached memory
590    // and produces an output chain.
591    MEMBARRIER,
592
593    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
594    // this corresponds to the atomic.lcs intrinsic.
595    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
596    // the return is always the original value in *ptr
597    ATOMIC_CMP_SWAP,
598
599    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
600    // this corresponds to the atomic.swap intrinsic.
601    // amt is stored to *ptr atomically.
602    // the return is always the original value in *ptr
603    ATOMIC_SWAP,
604
605    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
606    // this corresponds to the atomic.load.[OpName] intrinsic.
607    // op(*ptr, amt) is stored to *ptr atomically.
608    // the return is always the original value in *ptr
609    ATOMIC_LOAD_ADD,
610    ATOMIC_LOAD_SUB,
611    ATOMIC_LOAD_AND,
612    ATOMIC_LOAD_OR,
613    ATOMIC_LOAD_XOR,
614    ATOMIC_LOAD_NAND,
615    ATOMIC_LOAD_MIN,
616    ATOMIC_LOAD_MAX,
617    ATOMIC_LOAD_UMIN,
618    ATOMIC_LOAD_UMAX,
619
620    // BUILTIN_OP_END - This must be the last enum value in this list.
621    BUILTIN_OP_END
622  };
623
624  /// Node predicates
625
626  /// isBuildVectorAllOnes - Return true if the specified node is a
627  /// BUILD_VECTOR where all of the elements are ~0 or undef.
628  bool isBuildVectorAllOnes(const SDNode *N);
629
630  /// isBuildVectorAllZeros - Return true if the specified node is a
631  /// BUILD_VECTOR where all of the elements are 0 or undef.
632  bool isBuildVectorAllZeros(const SDNode *N);
633
634  /// isScalarToVector - Return true if the specified node is a
635  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
636  /// element is not an undef.
637  bool isScalarToVector(const SDNode *N);
638
639  /// isDebugLabel - Return true if the specified node represents a debug
640  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
641  bool isDebugLabel(const SDNode *N);
642
643  //===--------------------------------------------------------------------===//
644  /// MemIndexedMode enum - This enum defines the load / store indexed
645  /// addressing modes.
646  ///
647  /// UNINDEXED    "Normal" load / store. The effective address is already
648  ///              computed and is available in the base pointer. The offset
649  ///              operand is always undefined. In addition to producing a
650  ///              chain, an unindexed load produces one value (result of the
651  ///              load); an unindexed store does not produce a value.
652  ///
653  /// PRE_INC      Similar to the unindexed mode where the effective address is
654  /// PRE_DEC      the value of the base pointer add / subtract the offset.
655  ///              It considers the computation as being folded into the load /
656  ///              store operation (i.e. the load / store does the address
657  ///              computation as well as performing the memory transaction).
658  ///              The base operand is always undefined. In addition to
659  ///              producing a chain, pre-indexed load produces two values
660  ///              (result of the load and the result of the address
661  ///              computation); a pre-indexed store produces one value (result
662  ///              of the address computation).
663  ///
664  /// POST_INC     The effective address is the value of the base pointer. The
665  /// POST_DEC     value of the offset operand is then added to / subtracted
666  ///              from the base after memory transaction. In addition to
667  ///              producing a chain, post-indexed load produces two values
668  ///              (the result of the load and the result of the base +/- offset
669  ///              computation); a post-indexed store produces one value (the
670  ///              the result of the base +/- offset computation).
671  ///
672  enum MemIndexedMode {
673    UNINDEXED = 0,
674    PRE_INC,
675    PRE_DEC,
676    POST_INC,
677    POST_DEC,
678    LAST_INDEXED_MODE
679  };
680
681  //===--------------------------------------------------------------------===//
682  /// LoadExtType enum - This enum defines the three variants of LOADEXT
683  /// (load with extension).
684  ///
685  /// SEXTLOAD loads the integer operand and sign extends it to a larger
686  ///          integer result type.
687  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
688  ///          integer result type.
689  /// EXTLOAD  is used for three things: floating point extending loads,
690  ///          integer extending loads [the top bits are undefined], and vector
691  ///          extending loads [load into low elt].
692  ///
693  enum LoadExtType {
694    NON_EXTLOAD = 0,
695    EXTLOAD,
696    SEXTLOAD,
697    ZEXTLOAD,
698    LAST_LOADEXT_TYPE
699  };
700
701  //===--------------------------------------------------------------------===//
702  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
703  /// below work out, when considering SETFALSE (something that never exists
704  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
705  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
706  /// to.  If the "N" column is 1, the result of the comparison is undefined if
707  /// the input is a NAN.
708  ///
709  /// All of these (except for the 'always folded ops') should be handled for
710  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
711  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
712  ///
713  /// Note that these are laid out in a specific order to allow bit-twiddling
714  /// to transform conditions.
715  enum CondCode {
716    // Opcode          N U L G E       Intuitive operation
717    SETFALSE,      //    0 0 0 0       Always false (always folded)
718    SETOEQ,        //    0 0 0 1       True if ordered and equal
719    SETOGT,        //    0 0 1 0       True if ordered and greater than
720    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
721    SETOLT,        //    0 1 0 0       True if ordered and less than
722    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
723    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
724    SETO,          //    0 1 1 1       True if ordered (no nans)
725    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
726    SETUEQ,        //    1 0 0 1       True if unordered or equal
727    SETUGT,        //    1 0 1 0       True if unordered or greater than
728    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
729    SETULT,        //    1 1 0 0       True if unordered or less than
730    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
731    SETUNE,        //    1 1 1 0       True if unordered or not equal
732    SETTRUE,       //    1 1 1 1       Always true (always folded)
733    // Don't care operations: undefined if the input is a nan.
734    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
735    SETEQ,         //  1 X 0 0 1       True if equal
736    SETGT,         //  1 X 0 1 0       True if greater than
737    SETGE,         //  1 X 0 1 1       True if greater than or equal
738    SETLT,         //  1 X 1 0 0       True if less than
739    SETLE,         //  1 X 1 0 1       True if less than or equal
740    SETNE,         //  1 X 1 1 0       True if not equal
741    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
742
743    SETCC_INVALID       // Marker value.
744  };
745
746  /// isSignedIntSetCC - Return true if this is a setcc instruction that
747  /// performs a signed comparison when used with integer operands.
748  inline bool isSignedIntSetCC(CondCode Code) {
749    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
750  }
751
752  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
753  /// performs an unsigned comparison when used with integer operands.
754  inline bool isUnsignedIntSetCC(CondCode Code) {
755    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
756  }
757
758  /// isTrueWhenEqual - Return true if the specified condition returns true if
759  /// the two operands to the condition are equal.  Note that if one of the two
760  /// operands is a NaN, this value is meaningless.
761  inline bool isTrueWhenEqual(CondCode Cond) {
762    return ((int)Cond & 1) != 0;
763  }
764
765  /// getUnorderedFlavor - This function returns 0 if the condition is always
766  /// false if an operand is a NaN, 1 if the condition is always true if the
767  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
768  /// NaN.
769  inline unsigned getUnorderedFlavor(CondCode Cond) {
770    return ((int)Cond >> 3) & 3;
771  }
772
773  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
774  /// 'op' is a valid SetCC operation.
775  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
776
777  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
778  /// when given the operation for (X op Y).
779  CondCode getSetCCSwappedOperands(CondCode Operation);
780
781  /// getSetCCOrOperation - Return the result of a logical OR between different
782  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
783  /// function returns SETCC_INVALID if it is not possible to represent the
784  /// resultant comparison.
785  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
786
787  /// getSetCCAndOperation - Return the result of a logical AND between
788  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
789  /// function returns SETCC_INVALID if it is not possible to represent the
790  /// resultant comparison.
791  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
792
793  //===--------------------------------------------------------------------===//
794  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
795  /// supports.
796  enum CvtCode {
797    CVT_FF,     // Float from Float
798    CVT_FS,     // Float from Signed
799    CVT_FU,     // Float from Unsigned
800    CVT_SF,     // Signed from Float
801    CVT_UF,     // Unsigned from Float
802    CVT_SS,     // Signed from Signed
803    CVT_SU,     // Signed from Unsigned
804    CVT_US,     // Unsigned from Signed
805    CVT_UU,     // Unsigned from Unsigned
806    CVT_INVALID // Marker - Invalid opcode
807  };
808}  // end llvm::ISD namespace
809
810
811//===----------------------------------------------------------------------===//
812/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
813/// values as the result of a computation.  Many nodes return multiple values,
814/// from loads (which define a token and a return value) to ADDC (which returns
815/// a result and a carry value), to calls (which may return an arbitrary number
816/// of values).
817///
818/// As such, each use of a SelectionDAG computation must indicate the node that
819/// computes it as well as which return value to use from that node.  This pair
820/// of information is represented with the SDValue value type.
821///
822class SDValue {
823  SDNode *Node;       // The node defining the value we are using.
824  unsigned ResNo;     // Which return value of the node we are using.
825public:
826  SDValue() : Node(0), ResNo(0) {}
827  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
828
829  /// get the index which selects a specific result in the SDNode
830  unsigned getResNo() const { return ResNo; }
831
832  /// get the SDNode which holds the desired result
833  SDNode *getNode() const { return Node; }
834
835  /// set the SDNode
836  void setNode(SDNode *N) { Node = N; }
837
838  bool operator==(const SDValue &O) const {
839    return Node == O.Node && ResNo == O.ResNo;
840  }
841  bool operator!=(const SDValue &O) const {
842    return !operator==(O);
843  }
844  bool operator<(const SDValue &O) const {
845    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
846  }
847
848  SDValue getValue(unsigned R) const {
849    return SDValue(Node, R);
850  }
851
852  // isOperandOf - Return true if this node is an operand of N.
853  bool isOperandOf(SDNode *N) const;
854
855  /// getValueType - Return the ValueType of the referenced return value.
856  ///
857  inline EVT getValueType() const;
858
859  /// getValueSizeInBits - Returns the size of the value in bits.
860  ///
861  unsigned getValueSizeInBits() const {
862    return getValueType().getSizeInBits();
863  }
864
865  // Forwarding methods - These forward to the corresponding methods in SDNode.
866  inline unsigned getOpcode() const;
867  inline unsigned getNumOperands() const;
868  inline const SDValue &getOperand(unsigned i) const;
869  inline uint64_t getConstantOperandVal(unsigned i) const;
870  inline bool isTargetOpcode() const;
871  inline bool isMachineOpcode() const;
872  inline unsigned getMachineOpcode() const;
873  inline const DebugLoc getDebugLoc() const;
874
875
876  /// reachesChainWithoutSideEffects - Return true if this operand (which must
877  /// be a chain) reaches the specified operand without crossing any
878  /// side-effecting instructions.  In practice, this looks through token
879  /// factors and non-volatile loads.  In order to remain efficient, this only
880  /// looks a couple of nodes in, it does not do an exhaustive search.
881  bool reachesChainWithoutSideEffects(SDValue Dest,
882                                      unsigned Depth = 2) const;
883
884  /// use_empty - Return true if there are no nodes using value ResNo
885  /// of Node.
886  ///
887  inline bool use_empty() const;
888
889  /// hasOneUse - Return true if there is exactly one node using value
890  /// ResNo of Node.
891  ///
892  inline bool hasOneUse() const;
893};
894
895
896template<> struct DenseMapInfo<SDValue> {
897  static inline SDValue getEmptyKey() {
898    return SDValue((SDNode*)-1, -1U);
899  }
900  static inline SDValue getTombstoneKey() {
901    return SDValue((SDNode*)-1, 0);
902  }
903  static unsigned getHashValue(const SDValue &Val) {
904    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
905            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
906  }
907  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
908    return LHS == RHS;
909  }
910  static bool isPod() { return true; }
911};
912
913/// simplify_type specializations - Allow casting operators to work directly on
914/// SDValues as if they were SDNode*'s.
915template<> struct simplify_type<SDValue> {
916  typedef SDNode* SimpleType;
917  static SimpleType getSimplifiedValue(const SDValue &Val) {
918    return static_cast<SimpleType>(Val.getNode());
919  }
920};
921template<> struct simplify_type<const SDValue> {
922  typedef SDNode* SimpleType;
923  static SimpleType getSimplifiedValue(const SDValue &Val) {
924    return static_cast<SimpleType>(Val.getNode());
925  }
926};
927
928/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
929/// which records the SDNode being used and the result number, a
930/// pointer to the SDNode using the value, and Next and Prev pointers,
931/// which link together all the uses of an SDNode.
932///
933class SDUse {
934  /// Val - The value being used.
935  SDValue Val;
936  /// User - The user of this value.
937  SDNode *User;
938  /// Prev, Next - Pointers to the uses list of the SDNode referred by
939  /// this operand.
940  SDUse **Prev, *Next;
941
942  SDUse(const SDUse &U);          // Do not implement
943  void operator=(const SDUse &U); // Do not implement
944
945public:
946  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
947
948  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
949  operator const SDValue&() const { return Val; }
950
951  /// If implicit conversion to SDValue doesn't work, the get() method returns
952  /// the SDValue.
953  const SDValue &get() const { return Val; }
954
955  /// getUser - This returns the SDNode that contains this Use.
956  SDNode *getUser() { return User; }
957
958  /// getNext - Get the next SDUse in the use list.
959  SDUse *getNext() const { return Next; }
960
961  /// getNode - Convenience function for get().getNode().
962  SDNode *getNode() const { return Val.getNode(); }
963  /// getResNo - Convenience function for get().getResNo().
964  unsigned getResNo() const { return Val.getResNo(); }
965  /// getValueType - Convenience function for get().getValueType().
966  EVT getValueType() const { return Val.getValueType(); }
967
968  /// operator== - Convenience function for get().operator==
969  bool operator==(const SDValue &V) const {
970    return Val == V;
971  }
972
973  /// operator!= - Convenience function for get().operator!=
974  bool operator!=(const SDValue &V) const {
975    return Val != V;
976  }
977
978  /// operator< - Convenience function for get().operator<
979  bool operator<(const SDValue &V) const {
980    return Val < V;
981  }
982
983private:
984  friend class SelectionDAG;
985  friend class SDNode;
986
987  void setUser(SDNode *p) { User = p; }
988
989  /// set - Remove this use from its existing use list, assign it the
990  /// given value, and add it to the new value's node's use list.
991  inline void set(const SDValue &V);
992  /// setInitial - like set, but only supports initializing a newly-allocated
993  /// SDUse with a non-null value.
994  inline void setInitial(const SDValue &V);
995  /// setNode - like set, but only sets the Node portion of the value,
996  /// leaving the ResNo portion unmodified.
997  inline void setNode(SDNode *N);
998
999  void addToList(SDUse **List) {
1000    Next = *List;
1001    if (Next) Next->Prev = &Next;
1002    Prev = List;
1003    *List = this;
1004  }
1005
1006  void removeFromList() {
1007    *Prev = Next;
1008    if (Next) Next->Prev = Prev;
1009  }
1010};
1011
1012/// simplify_type specializations - Allow casting operators to work directly on
1013/// SDValues as if they were SDNode*'s.
1014template<> struct simplify_type<SDUse> {
1015  typedef SDNode* SimpleType;
1016  static SimpleType getSimplifiedValue(const SDUse &Val) {
1017    return static_cast<SimpleType>(Val.getNode());
1018  }
1019};
1020template<> struct simplify_type<const SDUse> {
1021  typedef SDNode* SimpleType;
1022  static SimpleType getSimplifiedValue(const SDUse &Val) {
1023    return static_cast<SimpleType>(Val.getNode());
1024  }
1025};
1026
1027
1028/// SDNode - Represents one node in the SelectionDAG.
1029///
1030class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1031private:
1032  /// NodeType - The operation that this node performs.
1033  ///
1034  short NodeType;
1035
1036  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1037  /// then they will be delete[]'d when the node is destroyed.
1038  unsigned short OperandsNeedDelete : 1;
1039
1040protected:
1041  /// SubclassData - This member is defined by this class, but is not used for
1042  /// anything.  Subclasses can use it to hold whatever state they find useful.
1043  /// This field is initialized to zero by the ctor.
1044  unsigned short SubclassData : 15;
1045
1046private:
1047  /// NodeId - Unique id per SDNode in the DAG.
1048  int NodeId;
1049
1050  /// OperandList - The values that are used by this operation.
1051  ///
1052  SDUse *OperandList;
1053
1054  /// ValueList - The types of the values this node defines.  SDNode's may
1055  /// define multiple values simultaneously.
1056  const EVT *ValueList;
1057
1058  /// UseList - List of uses for this SDNode.
1059  SDUse *UseList;
1060
1061  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1062  unsigned short NumOperands, NumValues;
1063
1064  /// debugLoc - source line information.
1065  DebugLoc debugLoc;
1066
1067  /// getValueTypeList - Return a pointer to the specified value type.
1068  static const EVT *getValueTypeList(EVT VT);
1069
1070  friend class SelectionDAG;
1071  friend struct ilist_traits<SDNode>;
1072
1073public:
1074  //===--------------------------------------------------------------------===//
1075  //  Accessors
1076  //
1077
1078  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1079  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1080  /// are the opcode values in the ISD and <target>ISD namespaces. For
1081  /// post-isel opcodes, see getMachineOpcode.
1082  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1083
1084  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1085  /// \<target\>ISD namespace).
1086  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1087
1088  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1089  /// corresponding to a MachineInstr opcode.
1090  bool isMachineOpcode() const { return NodeType < 0; }
1091
1092  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1093  /// true. It returns the MachineInstr opcode value that the node's opcode
1094  /// corresponds to.
1095  unsigned getMachineOpcode() const {
1096    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1097    return ~NodeType;
1098  }
1099
1100  /// use_empty - Return true if there are no uses of this node.
1101  ///
1102  bool use_empty() const { return UseList == NULL; }
1103
1104  /// hasOneUse - Return true if there is exactly one use of this node.
1105  ///
1106  bool hasOneUse() const {
1107    return !use_empty() && next(use_begin()) == use_end();
1108  }
1109
1110  /// use_size - Return the number of uses of this node. This method takes
1111  /// time proportional to the number of uses.
1112  ///
1113  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1114
1115  /// getNodeId - Return the unique node id.
1116  ///
1117  int getNodeId() const { return NodeId; }
1118
1119  /// setNodeId - Set unique node id.
1120  void setNodeId(int Id) { NodeId = Id; }
1121
1122  /// getDebugLoc - Return the source location info.
1123  const DebugLoc getDebugLoc() const { return debugLoc; }
1124
1125  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1126  /// it in the constructor is preferable.
1127  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1128
1129  /// use_iterator - This class provides iterator support for SDUse
1130  /// operands that use a specific SDNode.
1131  class use_iterator
1132    : public forward_iterator<SDUse, ptrdiff_t> {
1133    SDUse *Op;
1134    explicit use_iterator(SDUse *op) : Op(op) {
1135    }
1136    friend class SDNode;
1137  public:
1138    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1139    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1140
1141    use_iterator(const use_iterator &I) : Op(I.Op) {}
1142    use_iterator() : Op(0) {}
1143
1144    bool operator==(const use_iterator &x) const {
1145      return Op == x.Op;
1146    }
1147    bool operator!=(const use_iterator &x) const {
1148      return !operator==(x);
1149    }
1150
1151    /// atEnd - return true if this iterator is at the end of uses list.
1152    bool atEnd() const { return Op == 0; }
1153
1154    // Iterator traversal: forward iteration only.
1155    use_iterator &operator++() {          // Preincrement
1156      assert(Op && "Cannot increment end iterator!");
1157      Op = Op->getNext();
1158      return *this;
1159    }
1160
1161    use_iterator operator++(int) {        // Postincrement
1162      use_iterator tmp = *this; ++*this; return tmp;
1163    }
1164
1165    /// Retrieve a pointer to the current user node.
1166    SDNode *operator*() const {
1167      assert(Op && "Cannot dereference end iterator!");
1168      return Op->getUser();
1169    }
1170
1171    SDNode *operator->() const { return operator*(); }
1172
1173    SDUse &getUse() const { return *Op; }
1174
1175    /// getOperandNo - Retrieve the operand # of this use in its user.
1176    ///
1177    unsigned getOperandNo() const {
1178      assert(Op && "Cannot dereference end iterator!");
1179      return (unsigned)(Op - Op->getUser()->OperandList);
1180    }
1181  };
1182
1183  /// use_begin/use_end - Provide iteration support to walk over all uses
1184  /// of an SDNode.
1185
1186  use_iterator use_begin() const {
1187    return use_iterator(UseList);
1188  }
1189
1190  static use_iterator use_end() { return use_iterator(0); }
1191
1192
1193  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1194  /// indicated value.  This method ignores uses of other values defined by this
1195  /// operation.
1196  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1197
1198  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1199  /// value. This method ignores uses of other values defined by this operation.
1200  bool hasAnyUseOfValue(unsigned Value) const;
1201
1202  /// isOnlyUserOf - Return true if this node is the only use of N.
1203  ///
1204  bool isOnlyUserOf(SDNode *N) const;
1205
1206  /// isOperandOf - Return true if this node is an operand of N.
1207  ///
1208  bool isOperandOf(SDNode *N) const;
1209
1210  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1211  /// node is either an operand of N or it can be reached by recursively
1212  /// traversing up the operands.
1213  /// NOTE: this is an expensive method. Use it carefully.
1214  bool isPredecessorOf(SDNode *N) const;
1215
1216  /// getNumOperands - Return the number of values used by this operation.
1217  ///
1218  unsigned getNumOperands() const { return NumOperands; }
1219
1220  /// getConstantOperandVal - Helper method returns the integer value of a
1221  /// ConstantSDNode operand.
1222  uint64_t getConstantOperandVal(unsigned Num) const;
1223
1224  const SDValue &getOperand(unsigned Num) const {
1225    assert(Num < NumOperands && "Invalid child # of SDNode!");
1226    return OperandList[Num];
1227  }
1228
1229  typedef SDUse* op_iterator;
1230  op_iterator op_begin() const { return OperandList; }
1231  op_iterator op_end() const { return OperandList+NumOperands; }
1232
1233  SDVTList getVTList() const {
1234    SDVTList X = { ValueList, NumValues };
1235    return X;
1236  };
1237
1238  /// getFlaggedNode - If this node has a flag operand, return the node
1239  /// to which the flag operand points. Otherwise return NULL.
1240  SDNode *getFlaggedNode() const {
1241    if (getNumOperands() != 0 &&
1242      getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
1243      return getOperand(getNumOperands()-1).getNode();
1244    return 0;
1245  }
1246
1247  // If this is a pseudo op, like copyfromreg, look to see if there is a
1248  // real target node flagged to it.  If so, return the target node.
1249  const SDNode *getFlaggedMachineNode() const {
1250    const SDNode *FoundNode = this;
1251
1252    // Climb up flag edges until a machine-opcode node is found, or the
1253    // end of the chain is reached.
1254    while (!FoundNode->isMachineOpcode()) {
1255      const SDNode *N = FoundNode->getFlaggedNode();
1256      if (!N) break;
1257      FoundNode = N;
1258    }
1259
1260    return FoundNode;
1261  }
1262
1263  /// getNumValues - Return the number of values defined/returned by this
1264  /// operator.
1265  ///
1266  unsigned getNumValues() const { return NumValues; }
1267
1268  /// getValueType - Return the type of a specified result.
1269  ///
1270  EVT getValueType(unsigned ResNo) const {
1271    assert(ResNo < NumValues && "Illegal result number!");
1272    return ValueList[ResNo];
1273  }
1274
1275  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1276  ///
1277  unsigned getValueSizeInBits(unsigned ResNo) const {
1278    return getValueType(ResNo).getSizeInBits();
1279  }
1280
1281  typedef const EVT* value_iterator;
1282  value_iterator value_begin() const { return ValueList; }
1283  value_iterator value_end() const { return ValueList+NumValues; }
1284
1285  /// getOperationName - Return the opcode of this operation for printing.
1286  ///
1287  std::string getOperationName(const SelectionDAG *G = 0) const;
1288  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1289  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1290  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1291  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1292  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1293  void dump() const;
1294  void dumpr() const;
1295  void dump(const SelectionDAG *G) const;
1296
1297  static bool classof(const SDNode *) { return true; }
1298
1299  /// Profile - Gather unique data for the node.
1300  ///
1301  void Profile(FoldingSetNodeID &ID) const;
1302
1303  /// addUse - This method should only be used by the SDUse class.
1304  ///
1305  void addUse(SDUse &U) { U.addToList(&UseList); }
1306
1307protected:
1308  static SDVTList getSDVTList(EVT VT) {
1309    SDVTList Ret = { getValueTypeList(VT), 1 };
1310    return Ret;
1311  }
1312
1313  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1314         unsigned NumOps)
1315    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1316      NodeId(-1),
1317      OperandList(NumOps ? new SDUse[NumOps] : 0),
1318      ValueList(VTs.VTs), UseList(NULL),
1319      NumOperands(NumOps), NumValues(VTs.NumVTs),
1320      debugLoc(dl) {
1321    for (unsigned i = 0; i != NumOps; ++i) {
1322      OperandList[i].setUser(this);
1323      OperandList[i].setInitial(Ops[i]);
1324    }
1325  }
1326
1327  /// This constructor adds no operands itself; operands can be
1328  /// set later with InitOperands.
1329  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1330    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1331      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1332      NumOperands(0), NumValues(VTs.NumVTs),
1333      debugLoc(dl) {}
1334
1335  /// InitOperands - Initialize the operands list of this with 1 operand.
1336  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1337    Ops[0].setUser(this);
1338    Ops[0].setInitial(Op0);
1339    NumOperands = 1;
1340    OperandList = Ops;
1341  }
1342
1343  /// InitOperands - Initialize the operands list of this with 2 operands.
1344  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1345    Ops[0].setUser(this);
1346    Ops[0].setInitial(Op0);
1347    Ops[1].setUser(this);
1348    Ops[1].setInitial(Op1);
1349    NumOperands = 2;
1350    OperandList = Ops;
1351  }
1352
1353  /// InitOperands - Initialize the operands list of this with 3 operands.
1354  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1355                    const SDValue &Op2) {
1356    Ops[0].setUser(this);
1357    Ops[0].setInitial(Op0);
1358    Ops[1].setUser(this);
1359    Ops[1].setInitial(Op1);
1360    Ops[2].setUser(this);
1361    Ops[2].setInitial(Op2);
1362    NumOperands = 3;
1363    OperandList = Ops;
1364  }
1365
1366  /// InitOperands - Initialize the operands list of this with 4 operands.
1367  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1368                    const SDValue &Op2, const SDValue &Op3) {
1369    Ops[0].setUser(this);
1370    Ops[0].setInitial(Op0);
1371    Ops[1].setUser(this);
1372    Ops[1].setInitial(Op1);
1373    Ops[2].setUser(this);
1374    Ops[2].setInitial(Op2);
1375    Ops[3].setUser(this);
1376    Ops[3].setInitial(Op3);
1377    NumOperands = 4;
1378    OperandList = Ops;
1379  }
1380
1381  /// InitOperands - Initialize the operands list of this with N operands.
1382  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1383    for (unsigned i = 0; i != N; ++i) {
1384      Ops[i].setUser(this);
1385      Ops[i].setInitial(Vals[i]);
1386    }
1387    NumOperands = N;
1388    OperandList = Ops;
1389  }
1390
1391  /// DropOperands - Release the operands and set this node to have
1392  /// zero operands.
1393  void DropOperands();
1394};
1395
1396
1397// Define inline functions from the SDValue class.
1398
1399inline unsigned SDValue::getOpcode() const {
1400  return Node->getOpcode();
1401}
1402inline EVT SDValue::getValueType() const {
1403  return Node->getValueType(ResNo);
1404}
1405inline unsigned SDValue::getNumOperands() const {
1406  return Node->getNumOperands();
1407}
1408inline const SDValue &SDValue::getOperand(unsigned i) const {
1409  return Node->getOperand(i);
1410}
1411inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1412  return Node->getConstantOperandVal(i);
1413}
1414inline bool SDValue::isTargetOpcode() const {
1415  return Node->isTargetOpcode();
1416}
1417inline bool SDValue::isMachineOpcode() const {
1418  return Node->isMachineOpcode();
1419}
1420inline unsigned SDValue::getMachineOpcode() const {
1421  return Node->getMachineOpcode();
1422}
1423inline bool SDValue::use_empty() const {
1424  return !Node->hasAnyUseOfValue(ResNo);
1425}
1426inline bool SDValue::hasOneUse() const {
1427  return Node->hasNUsesOfValue(1, ResNo);
1428}
1429inline const DebugLoc SDValue::getDebugLoc() const {
1430  return Node->getDebugLoc();
1431}
1432
1433// Define inline functions from the SDUse class.
1434
1435inline void SDUse::set(const SDValue &V) {
1436  if (Val.getNode()) removeFromList();
1437  Val = V;
1438  if (V.getNode()) V.getNode()->addUse(*this);
1439}
1440
1441inline void SDUse::setInitial(const SDValue &V) {
1442  Val = V;
1443  V.getNode()->addUse(*this);
1444}
1445
1446inline void SDUse::setNode(SDNode *N) {
1447  if (Val.getNode()) removeFromList();
1448  Val.setNode(N);
1449  if (N) N->addUse(*this);
1450}
1451
1452/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1453/// to allow co-allocation of node operands with the node itself.
1454class UnarySDNode : public SDNode {
1455  SDUse Op;
1456public:
1457  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1458    : SDNode(Opc, dl, VTs) {
1459    InitOperands(&Op, X);
1460  }
1461};
1462
1463/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1464/// to allow co-allocation of node operands with the node itself.
1465class BinarySDNode : public SDNode {
1466  SDUse Ops[2];
1467public:
1468  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1469    : SDNode(Opc, dl, VTs) {
1470    InitOperands(Ops, X, Y);
1471  }
1472};
1473
1474/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1475/// to allow co-allocation of node operands with the node itself.
1476class TernarySDNode : public SDNode {
1477  SDUse Ops[3];
1478public:
1479  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1480                SDValue Z)
1481    : SDNode(Opc, dl, VTs) {
1482    InitOperands(Ops, X, Y, Z);
1483  }
1484};
1485
1486
1487/// HandleSDNode - This class is used to form a handle around another node that
1488/// is persistant and is updated across invocations of replaceAllUsesWith on its
1489/// operand.  This node should be directly created by end-users and not added to
1490/// the AllNodes list.
1491class HandleSDNode : public SDNode {
1492  SDUse Op;
1493public:
1494  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1495  // fixed.
1496#ifdef __GNUC__
1497  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1498#else
1499  explicit HandleSDNode(SDValue X)
1500#endif
1501    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1502             getSDVTList(MVT::Other)) {
1503    InitOperands(&Op, X);
1504  }
1505  ~HandleSDNode();
1506  const SDValue &getValue() const { return Op; }
1507};
1508
1509/// Abstact virtual class for operations for memory operations
1510class MemSDNode : public SDNode {
1511private:
1512  // MemoryVT - VT of in-memory value.
1513  EVT MemoryVT;
1514
1515  //! SrcValue - Memory location for alias analysis.
1516  const Value *SrcValue;
1517
1518  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1519  int SVOffset;
1520
1521public:
1522  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
1523            const Value *srcValue, int SVOff,
1524            unsigned alignment, bool isvolatile);
1525
1526  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1527            unsigned NumOps, EVT MemoryVT, const Value *srcValue, int SVOff,
1528            unsigned alignment, bool isvolatile);
1529
1530  /// Returns alignment and volatility of the memory access
1531  unsigned getAlignment() const { return (1u << (SubclassData >> 6)) >> 1; }
1532  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1533
1534  /// getRawSubclassData - Return the SubclassData value, which contains an
1535  /// encoding of the alignment and volatile information, as well as bits
1536  /// used by subclasses. This function should only be used to compute a
1537  /// FoldingSetNodeID value.
1538  unsigned getRawSubclassData() const {
1539    return SubclassData;
1540  }
1541
1542  /// Returns the SrcValue and offset that describes the location of the access
1543  const Value *getSrcValue() const { return SrcValue; }
1544  int getSrcValueOffset() const { return SVOffset; }
1545
1546  /// getMemoryVT - Return the type of the in-memory value.
1547  EVT getMemoryVT() const { return MemoryVT; }
1548
1549  /// getMemOperand - Return a MachineMemOperand object describing the memory
1550  /// reference performed by operation.
1551  MachineMemOperand getMemOperand() const;
1552
1553  const SDValue &getChain() const { return getOperand(0); }
1554  const SDValue &getBasePtr() const {
1555    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1556  }
1557
1558  // Methods to support isa and dyn_cast
1559  static bool classof(const MemSDNode *) { return true; }
1560  static bool classof(const SDNode *N) {
1561    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1562    // with either an intrinsic or a target opcode.
1563    return N->getOpcode() == ISD::LOAD                ||
1564           N->getOpcode() == ISD::STORE               ||
1565           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1566           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1567           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1568           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1569           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1570           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1571           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1572           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1573           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1574           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1575           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1576           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1577           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1578           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1579           N->isTargetOpcode();
1580  }
1581};
1582
1583/// AtomicSDNode - A SDNode reprenting atomic operations.
1584///
1585class AtomicSDNode : public MemSDNode {
1586  SDUse Ops[4];
1587
1588public:
1589  // Opc:   opcode for atomic
1590  // VTL:    value type list
1591  // Chain:  memory chain for operaand
1592  // Ptr:    address to update as a SDValue
1593  // Cmp:    compare value
1594  // Swp:    swap value
1595  // SrcVal: address to update as a Value (used for MemOperand)
1596  // Align:  alignment of memory
1597  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1598               SDValue Chain, SDValue Ptr,
1599               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1600               unsigned Align=0)
1601    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1602                Align, /*isVolatile=*/true) {
1603    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1604  }
1605  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1606               SDValue Chain, SDValue Ptr,
1607               SDValue Val, const Value* SrcVal, unsigned Align=0)
1608    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1609                Align, /*isVolatile=*/true) {
1610    InitOperands(Ops, Chain, Ptr, Val);
1611  }
1612
1613  const SDValue &getBasePtr() const { return getOperand(1); }
1614  const SDValue &getVal() const { return getOperand(2); }
1615
1616  bool isCompareAndSwap() const {
1617    unsigned Op = getOpcode();
1618    return Op == ISD::ATOMIC_CMP_SWAP;
1619  }
1620
1621  // Methods to support isa and dyn_cast
1622  static bool classof(const AtomicSDNode *) { return true; }
1623  static bool classof(const SDNode *N) {
1624    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1625           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1626           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1627           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1628           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1629           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1630           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1631           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1632           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1633           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1634           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1635           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1636  }
1637};
1638
1639/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1640/// memory and need an associated memory operand.
1641///
1642class MemIntrinsicSDNode : public MemSDNode {
1643  bool ReadMem;  // Intrinsic reads memory
1644  bool WriteMem; // Intrinsic writes memory
1645public:
1646  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1647                     const SDValue *Ops, unsigned NumOps,
1648                     EVT MemoryVT, const Value *srcValue, int SVO,
1649                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1650    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1651      ReadMem(ReadMem), WriteMem(WriteMem) {
1652  }
1653
1654  bool readMem() const { return ReadMem; }
1655  bool writeMem() const { return WriteMem; }
1656
1657  // Methods to support isa and dyn_cast
1658  static bool classof(const MemIntrinsicSDNode *) { return true; }
1659  static bool classof(const SDNode *N) {
1660    // We lower some target intrinsics to their target opcode
1661    // early a node with a target opcode can be of this class
1662    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1663           N->getOpcode() == ISD::INTRINSIC_VOID ||
1664           N->isTargetOpcode();
1665  }
1666};
1667
1668/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1669/// support for the llvm IR shufflevector instruction.  It combines elements
1670/// from two input vectors into a new input vector, with the selection and
1671/// ordering of elements determined by an array of integers, referred to as
1672/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1673/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1674/// An index of -1 is treated as undef, such that the code generator may put
1675/// any value in the corresponding element of the result.
1676class ShuffleVectorSDNode : public SDNode {
1677  SDUse Ops[2];
1678
1679  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1680  // is freed when the SelectionDAG object is destroyed.
1681  const int *Mask;
1682protected:
1683  friend class SelectionDAG;
1684  ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
1685                      const int *M)
1686    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
1687    InitOperands(Ops, N1, N2);
1688  }
1689public:
1690
1691  void getMask(SmallVectorImpl<int> &M) const {
1692    EVT VT = getValueType(0);
1693    M.clear();
1694    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1695      M.push_back(Mask[i]);
1696  }
1697  int getMaskElt(unsigned Idx) const {
1698    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1699    return Mask[Idx];
1700  }
1701
1702  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1703  int  getSplatIndex() const {
1704    assert(isSplat() && "Cannot get splat index for non-splat!");
1705    return Mask[0];
1706  }
1707  static bool isSplatMask(const int *Mask, EVT VT);
1708
1709  static bool classof(const ShuffleVectorSDNode *) { return true; }
1710  static bool classof(const SDNode *N) {
1711    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1712  }
1713};
1714
1715class ConstantSDNode : public SDNode {
1716  const ConstantInt *Value;
1717  friend class SelectionDAG;
1718  ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
1719    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1720             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1721  }
1722public:
1723
1724  const ConstantInt *getConstantIntValue() const { return Value; }
1725  const APInt &getAPIntValue() const { return Value->getValue(); }
1726  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1727  int64_t getSExtValue() const { return Value->getSExtValue(); }
1728
1729  bool isNullValue() const { return Value->isNullValue(); }
1730  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1731
1732  static bool classof(const ConstantSDNode *) { return true; }
1733  static bool classof(const SDNode *N) {
1734    return N->getOpcode() == ISD::Constant ||
1735           N->getOpcode() == ISD::TargetConstant;
1736  }
1737};
1738
1739class ConstantFPSDNode : public SDNode {
1740  const ConstantFP *Value;
1741  friend class SelectionDAG;
1742  ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1743    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1744             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1745  }
1746public:
1747
1748  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1749  const ConstantFP *getConstantFPValue() const { return Value; }
1750
1751  /// isExactlyValue - We don't rely on operator== working on double values, as
1752  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1753  /// As such, this method can be used to do an exact bit-for-bit comparison of
1754  /// two floating point values.
1755
1756  /// We leave the version with the double argument here because it's just so
1757  /// convenient to write "2.0" and the like.  Without this function we'd
1758  /// have to duplicate its logic everywhere it's called.
1759  bool isExactlyValue(double V) const {
1760    bool ignored;
1761    // convert is not supported on this type
1762    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1763      return false;
1764    APFloat Tmp(V);
1765    Tmp.convert(Value->getValueAPF().getSemantics(),
1766                APFloat::rmNearestTiesToEven, &ignored);
1767    return isExactlyValue(Tmp);
1768  }
1769  bool isExactlyValue(const APFloat& V) const;
1770
1771  bool isValueValidForType(EVT VT, const APFloat& Val);
1772
1773  static bool classof(const ConstantFPSDNode *) { return true; }
1774  static bool classof(const SDNode *N) {
1775    return N->getOpcode() == ISD::ConstantFP ||
1776           N->getOpcode() == ISD::TargetConstantFP;
1777  }
1778};
1779
1780class GlobalAddressSDNode : public SDNode {
1781  GlobalValue *TheGlobal;
1782  int64_t Offset;
1783  unsigned char TargetFlags;
1784  friend class SelectionDAG;
1785  GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
1786                      int64_t o, unsigned char TargetFlags);
1787public:
1788
1789  GlobalValue *getGlobal() const { return TheGlobal; }
1790  int64_t getOffset() const { return Offset; }
1791  unsigned char getTargetFlags() const { return TargetFlags; }
1792  // Return the address space this GlobalAddress belongs to.
1793  unsigned getAddressSpace() const;
1794
1795  static bool classof(const GlobalAddressSDNode *) { return true; }
1796  static bool classof(const SDNode *N) {
1797    return N->getOpcode() == ISD::GlobalAddress ||
1798           N->getOpcode() == ISD::TargetGlobalAddress ||
1799           N->getOpcode() == ISD::GlobalTLSAddress ||
1800           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1801  }
1802};
1803
1804class FrameIndexSDNode : public SDNode {
1805  int FI;
1806  friend class SelectionDAG;
1807  FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1808    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1809      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1810  }
1811public:
1812
1813  int getIndex() const { return FI; }
1814
1815  static bool classof(const FrameIndexSDNode *) { return true; }
1816  static bool classof(const SDNode *N) {
1817    return N->getOpcode() == ISD::FrameIndex ||
1818           N->getOpcode() == ISD::TargetFrameIndex;
1819  }
1820};
1821
1822class JumpTableSDNode : public SDNode {
1823  int JTI;
1824  unsigned char TargetFlags;
1825  friend class SelectionDAG;
1826  JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1827    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1828      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1829  }
1830public:
1831
1832  int getIndex() const { return JTI; }
1833  unsigned char getTargetFlags() const { return TargetFlags; }
1834
1835  static bool classof(const JumpTableSDNode *) { return true; }
1836  static bool classof(const SDNode *N) {
1837    return N->getOpcode() == ISD::JumpTable ||
1838           N->getOpcode() == ISD::TargetJumpTable;
1839  }
1840};
1841
1842class ConstantPoolSDNode : public SDNode {
1843  union {
1844    Constant *ConstVal;
1845    MachineConstantPoolValue *MachineCPVal;
1846  } Val;
1847  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1848  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1849  unsigned char TargetFlags;
1850  friend class SelectionDAG;
1851  ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
1852                     unsigned char TF)
1853    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1854             DebugLoc::getUnknownLoc(),
1855             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1856    assert((int)Offset >= 0 && "Offset is too large");
1857    Val.ConstVal = c;
1858  }
1859  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1860                     EVT VT, int o, unsigned Align, unsigned char TF)
1861    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1862             DebugLoc::getUnknownLoc(),
1863             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1864    assert((int)Offset >= 0 && "Offset is too large");
1865    Val.MachineCPVal = v;
1866    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1867  }
1868public:
1869
1870
1871  bool isMachineConstantPoolEntry() const {
1872    return (int)Offset < 0;
1873  }
1874
1875  Constant *getConstVal() const {
1876    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1877    return Val.ConstVal;
1878  }
1879
1880  MachineConstantPoolValue *getMachineCPVal() const {
1881    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1882    return Val.MachineCPVal;
1883  }
1884
1885  int getOffset() const {
1886    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1887  }
1888
1889  // Return the alignment of this constant pool object, which is either 0 (for
1890  // default alignment) or the desired value.
1891  unsigned getAlignment() const { return Alignment; }
1892  unsigned char getTargetFlags() const { return TargetFlags; }
1893
1894  const Type *getType() const;
1895
1896  static bool classof(const ConstantPoolSDNode *) { return true; }
1897  static bool classof(const SDNode *N) {
1898    return N->getOpcode() == ISD::ConstantPool ||
1899           N->getOpcode() == ISD::TargetConstantPool;
1900  }
1901};
1902
1903class BasicBlockSDNode : public SDNode {
1904  MachineBasicBlock *MBB;
1905  friend class SelectionDAG;
1906  /// Debug info is meaningful and potentially useful here, but we create
1907  /// blocks out of order when they're jumped to, which makes it a bit
1908  /// harder.  Let's see if we need it first.
1909  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1910    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1911             getSDVTList(MVT::Other)), MBB(mbb) {
1912  }
1913public:
1914
1915  MachineBasicBlock *getBasicBlock() const { return MBB; }
1916
1917  static bool classof(const BasicBlockSDNode *) { return true; }
1918  static bool classof(const SDNode *N) {
1919    return N->getOpcode() == ISD::BasicBlock;
1920  }
1921};
1922
1923/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1924/// BUILD_VECTORs.
1925class BuildVectorSDNode : public SDNode {
1926  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1927  explicit BuildVectorSDNode();        // Do not implement
1928public:
1929  /// isConstantSplat - Check if this is a constant splat, and if so, find the
1930  /// smallest element size that splats the vector.  If MinSplatBits is
1931  /// nonzero, the element size must be at least that large.  Note that the
1932  /// splat element may be the entire vector (i.e., a one element vector).
1933  /// Returns the splat element value in SplatValue.  Any undefined bits in
1934  /// that value are zero, and the corresponding bits in the SplatUndef mask
1935  /// are set.  The SplatBitSize value is set to the splat element size in
1936  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1937  /// undefined.
1938  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1939                       unsigned &SplatBitSize, bool &HasAnyUndefs,
1940                       unsigned MinSplatBits = 0);
1941
1942  static inline bool classof(const BuildVectorSDNode *) { return true; }
1943  static inline bool classof(const SDNode *N) {
1944    return N->getOpcode() == ISD::BUILD_VECTOR;
1945  }
1946};
1947
1948/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1949/// used when the SelectionDAG needs to make a simple reference to something
1950/// in the LLVM IR representation.
1951///
1952/// Note that this is not used for carrying alias information; that is done
1953/// with MemOperandSDNode, which includes a Value which is required to be a
1954/// pointer, and several other fields specific to memory references.
1955///
1956class SrcValueSDNode : public SDNode {
1957  const Value *V;
1958  friend class SelectionDAG;
1959  /// Create a SrcValue for a general value.
1960  explicit SrcValueSDNode(const Value *v)
1961    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
1962             getSDVTList(MVT::Other)), V(v) {}
1963
1964public:
1965  /// getValue - return the contained Value.
1966  const Value *getValue() const { return V; }
1967
1968  static bool classof(const SrcValueSDNode *) { return true; }
1969  static bool classof(const SDNode *N) {
1970    return N->getOpcode() == ISD::SRCVALUE;
1971  }
1972};
1973
1974
1975/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
1976/// used to represent a reference to memory after ISD::LOAD
1977/// and ISD::STORE have been lowered.
1978///
1979class MemOperandSDNode : public SDNode {
1980  friend class SelectionDAG;
1981  /// Create a MachineMemOperand node
1982  explicit MemOperandSDNode(const MachineMemOperand &mo)
1983    : SDNode(ISD::MEMOPERAND, DebugLoc::getUnknownLoc(),
1984             getSDVTList(MVT::Other)), MO(mo) {}
1985
1986public:
1987  /// MO - The contained MachineMemOperand.
1988  const MachineMemOperand MO;
1989
1990  static bool classof(const MemOperandSDNode *) { return true; }
1991  static bool classof(const SDNode *N) {
1992    return N->getOpcode() == ISD::MEMOPERAND;
1993  }
1994};
1995
1996
1997class RegisterSDNode : public SDNode {
1998  unsigned Reg;
1999  friend class SelectionDAG;
2000  RegisterSDNode(unsigned reg, EVT VT)
2001    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
2002             getSDVTList(VT)), Reg(reg) {
2003  }
2004public:
2005
2006  unsigned getReg() const { return Reg; }
2007
2008  static bool classof(const RegisterSDNode *) { return true; }
2009  static bool classof(const SDNode *N) {
2010    return N->getOpcode() == ISD::Register;
2011  }
2012};
2013
2014class DbgStopPointSDNode : public SDNode {
2015  SDUse Chain;
2016  unsigned Line;
2017  unsigned Column;
2018  MDNode *CU;
2019  friend class SelectionDAG;
2020  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2021                     MDNode *cu)
2022    : SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(),
2023      getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) {
2024    InitOperands(&Chain, ch);
2025  }
2026public:
2027  unsigned getLine() const { return Line; }
2028  unsigned getColumn() const { return Column; }
2029  MDNode *getCompileUnit() const { return CU; }
2030
2031  static bool classof(const DbgStopPointSDNode *) { return true; }
2032  static bool classof(const SDNode *N) {
2033    return N->getOpcode() == ISD::DBG_STOPPOINT;
2034  }
2035};
2036
2037class LabelSDNode : public SDNode {
2038  SDUse Chain;
2039  unsigned LabelID;
2040  friend class SelectionDAG;
2041LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2042    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2043    InitOperands(&Chain, ch);
2044  }
2045public:
2046  unsigned getLabelID() const { return LabelID; }
2047
2048  static bool classof(const LabelSDNode *) { return true; }
2049  static bool classof(const SDNode *N) {
2050    return N->getOpcode() == ISD::DBG_LABEL ||
2051           N->getOpcode() == ISD::EH_LABEL;
2052  }
2053};
2054
2055class ExternalSymbolSDNode : public SDNode {
2056  const char *Symbol;
2057  unsigned char TargetFlags;
2058
2059  friend class SelectionDAG;
2060  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
2061    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2062             DebugLoc::getUnknownLoc(),
2063             getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
2064  }
2065public:
2066
2067  const char *getSymbol() const { return Symbol; }
2068  unsigned char getTargetFlags() const { return TargetFlags; }
2069
2070  static bool classof(const ExternalSymbolSDNode *) { return true; }
2071  static bool classof(const SDNode *N) {
2072    return N->getOpcode() == ISD::ExternalSymbol ||
2073           N->getOpcode() == ISD::TargetExternalSymbol;
2074  }
2075};
2076
2077class CondCodeSDNode : public SDNode {
2078  ISD::CondCode Condition;
2079  friend class SelectionDAG;
2080  explicit CondCodeSDNode(ISD::CondCode Cond)
2081    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2082             getSDVTList(MVT::Other)), Condition(Cond) {
2083  }
2084public:
2085
2086  ISD::CondCode get() const { return Condition; }
2087
2088  static bool classof(const CondCodeSDNode *) { return true; }
2089  static bool classof(const SDNode *N) {
2090    return N->getOpcode() == ISD::CONDCODE;
2091  }
2092};
2093
2094/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2095/// future and most targets don't support it.
2096class CvtRndSatSDNode : public SDNode {
2097  ISD::CvtCode CvtCode;
2098  friend class SelectionDAG;
2099  explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
2100                           unsigned NumOps, ISD::CvtCode Code)
2101    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2102      CvtCode(Code) {
2103    assert(NumOps == 5 && "wrong number of operations");
2104  }
2105public:
2106  ISD::CvtCode getCvtCode() const { return CvtCode; }
2107
2108  static bool classof(const CvtRndSatSDNode *) { return true; }
2109  static bool classof(const SDNode *N) {
2110    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2111  }
2112};
2113
2114namespace ISD {
2115  struct ArgFlagsTy {
2116  private:
2117    static const uint64_t NoFlagSet      = 0ULL;
2118    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2119    static const uint64_t ZExtOffs       = 0;
2120    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2121    static const uint64_t SExtOffs       = 1;
2122    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2123    static const uint64_t InRegOffs      = 2;
2124    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2125    static const uint64_t SRetOffs       = 3;
2126    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2127    static const uint64_t ByValOffs      = 4;
2128    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2129    static const uint64_t NestOffs       = 5;
2130    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2131    static const uint64_t ByValAlignOffs = 6;
2132    static const uint64_t Split          = 1ULL << 10;
2133    static const uint64_t SplitOffs      = 10;
2134    static const uint64_t OrigAlign      = 0x1FULL<<27;
2135    static const uint64_t OrigAlignOffs  = 27;
2136    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2137    static const uint64_t ByValSizeOffs  = 32;
2138
2139    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2140
2141    uint64_t Flags;
2142  public:
2143    ArgFlagsTy() : Flags(0) { }
2144
2145    bool isZExt()   const { return Flags & ZExt; }
2146    void setZExt()  { Flags |= One << ZExtOffs; }
2147
2148    bool isSExt()   const { return Flags & SExt; }
2149    void setSExt()  { Flags |= One << SExtOffs; }
2150
2151    bool isInReg()  const { return Flags & InReg; }
2152    void setInReg() { Flags |= One << InRegOffs; }
2153
2154    bool isSRet()   const { return Flags & SRet; }
2155    void setSRet()  { Flags |= One << SRetOffs; }
2156
2157    bool isByVal()  const { return Flags & ByVal; }
2158    void setByVal() { Flags |= One << ByValOffs; }
2159
2160    bool isNest()   const { return Flags & Nest; }
2161    void setNest()  { Flags |= One << NestOffs; }
2162
2163    unsigned getByValAlign() const {
2164      return (unsigned)
2165        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2166    }
2167    void setByValAlign(unsigned A) {
2168      Flags = (Flags & ~ByValAlign) |
2169        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2170    }
2171
2172    bool isSplit()   const { return Flags & Split; }
2173    void setSplit()  { Flags |= One << SplitOffs; }
2174
2175    unsigned getOrigAlign() const {
2176      return (unsigned)
2177        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2178    }
2179    void setOrigAlign(unsigned A) {
2180      Flags = (Flags & ~OrigAlign) |
2181        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2182    }
2183
2184    unsigned getByValSize() const {
2185      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2186    }
2187    void setByValSize(unsigned S) {
2188      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2189    }
2190
2191    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2192    std::string getArgFlagsString();
2193
2194    /// getRawBits - Represent the flags as a bunch of bits.
2195    uint64_t getRawBits() const { return Flags; }
2196  };
2197
2198  /// InputArg - This struct carries flags and type information about a
2199  /// single incoming (formal) argument or incoming (from the perspective
2200  /// of the caller) return value virtual register.
2201  ///
2202  struct InputArg {
2203    ArgFlagsTy Flags;
2204    EVT VT;
2205    bool Used;
2206
2207    InputArg() : VT(MVT::Other), Used(false) {}
2208    InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
2209      : Flags(flags), VT(vt), Used(used) {
2210      assert(VT.isSimple() &&
2211             "InputArg value type must be Simple!");
2212    }
2213  };
2214
2215  /// OutputArg - This struct carries flags and a value for a
2216  /// single outgoing (actual) argument or outgoing (from the perspective
2217  /// of the caller) return value virtual register.
2218  ///
2219  struct OutputArg {
2220    ArgFlagsTy Flags;
2221    SDValue Val;
2222    bool IsFixed;
2223
2224    OutputArg() : IsFixed(false) {}
2225    OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
2226      : Flags(flags), Val(val), IsFixed(isfixed) {
2227      assert(Val.getValueType().isSimple() &&
2228             "OutputArg value type must be Simple!");
2229    }
2230  };
2231}
2232
2233/// VTSDNode - This class is used to represent EVT's, which are used
2234/// to parameterize some operations.
2235class VTSDNode : public SDNode {
2236  EVT ValueType;
2237  friend class SelectionDAG;
2238  explicit VTSDNode(EVT VT)
2239    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2240             getSDVTList(MVT::Other)), ValueType(VT) {
2241  }
2242public:
2243
2244  EVT getVT() const { return ValueType; }
2245
2246  static bool classof(const VTSDNode *) { return true; }
2247  static bool classof(const SDNode *N) {
2248    return N->getOpcode() == ISD::VALUETYPE;
2249  }
2250};
2251
2252/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2253///
2254class LSBaseSDNode : public MemSDNode {
2255  //! Operand array for load and store
2256  /*!
2257    \note Moving this array to the base class captures more
2258    common functionality shared between LoadSDNode and
2259    StoreSDNode
2260   */
2261  SDUse Ops[4];
2262public:
2263  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2264               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2265               EVT VT, const Value *SV, int SVO, unsigned Align, bool Vol)
2266    : MemSDNode(NodeTy, dl, VTs, VT, SV, SVO, Align, Vol) {
2267    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2268    SubclassData |= AM << 2;
2269    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2270    InitOperands(Ops, Operands, numOperands);
2271    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2272           "Only indexed loads and stores have a non-undef offset operand");
2273  }
2274
2275  const SDValue &getOffset() const {
2276    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2277  }
2278
2279  /// getAddressingMode - Return the addressing mode for this load or store:
2280  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2281  ISD::MemIndexedMode getAddressingMode() const {
2282    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2283  }
2284
2285  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2286  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2287
2288  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2289  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2290
2291  static bool classof(const LSBaseSDNode *) { return true; }
2292  static bool classof(const SDNode *N) {
2293    return N->getOpcode() == ISD::LOAD ||
2294           N->getOpcode() == ISD::STORE;
2295  }
2296};
2297
2298/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2299///
2300class LoadSDNode : public LSBaseSDNode {
2301  friend class SelectionDAG;
2302  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2303             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT LVT,
2304             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2305    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2306                   VTs, AM, LVT, SV, O, Align, Vol) {
2307    SubclassData |= (unsigned short)ETy;
2308    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2309  }
2310public:
2311
2312  /// getExtensionType - Return whether this is a plain node,
2313  /// or one of the varieties of value-extending loads.
2314  ISD::LoadExtType getExtensionType() const {
2315    return ISD::LoadExtType(SubclassData & 3);
2316  }
2317
2318  const SDValue &getBasePtr() const { return getOperand(1); }
2319  const SDValue &getOffset() const { return getOperand(2); }
2320
2321  static bool classof(const LoadSDNode *) { return true; }
2322  static bool classof(const SDNode *N) {
2323    return N->getOpcode() == ISD::LOAD;
2324  }
2325};
2326
2327/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2328///
2329class StoreSDNode : public LSBaseSDNode {
2330  friend class SelectionDAG;
2331  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2332              ISD::MemIndexedMode AM, bool isTrunc, EVT SVT,
2333              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2334    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2335                   VTs, AM, SVT, SV, O, Align, Vol) {
2336    SubclassData |= (unsigned short)isTrunc;
2337    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2338  }
2339public:
2340
2341  /// isTruncatingStore - Return true if the op does a truncation before store.
2342  /// For integers this is the same as doing a TRUNCATE and storing the result.
2343  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2344  bool isTruncatingStore() const { return SubclassData & 1; }
2345
2346  const SDValue &getValue() const { return getOperand(1); }
2347  const SDValue &getBasePtr() const { return getOperand(2); }
2348  const SDValue &getOffset() const { return getOperand(3); }
2349
2350  static bool classof(const StoreSDNode *) { return true; }
2351  static bool classof(const SDNode *N) {
2352    return N->getOpcode() == ISD::STORE;
2353  }
2354};
2355
2356
2357class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2358  SDNode *Node;
2359  unsigned Operand;
2360
2361  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2362public:
2363  bool operator==(const SDNodeIterator& x) const {
2364    return Operand == x.Operand;
2365  }
2366  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2367
2368  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2369    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2370    Operand = I.Operand;
2371    return *this;
2372  }
2373
2374  pointer operator*() const {
2375    return Node->getOperand(Operand).getNode();
2376  }
2377  pointer operator->() const { return operator*(); }
2378
2379  SDNodeIterator& operator++() {                // Preincrement
2380    ++Operand;
2381    return *this;
2382  }
2383  SDNodeIterator operator++(int) { // Postincrement
2384    SDNodeIterator tmp = *this; ++*this; return tmp;
2385  }
2386
2387  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2388  static SDNodeIterator end  (SDNode *N) {
2389    return SDNodeIterator(N, N->getNumOperands());
2390  }
2391
2392  unsigned getOperand() const { return Operand; }
2393  const SDNode *getNode() const { return Node; }
2394};
2395
2396template <> struct GraphTraits<SDNode*> {
2397  typedef SDNode NodeType;
2398  typedef SDNodeIterator ChildIteratorType;
2399  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2400  static inline ChildIteratorType child_begin(NodeType *N) {
2401    return SDNodeIterator::begin(N);
2402  }
2403  static inline ChildIteratorType child_end(NodeType *N) {
2404    return SDNodeIterator::end(N);
2405  }
2406};
2407
2408/// LargestSDNode - The largest SDNode class.
2409///
2410typedef LoadSDNode LargestSDNode;
2411
2412/// MostAlignedSDNode - The SDNode class with the greatest alignment
2413/// requirement.
2414///
2415typedef GlobalAddressSDNode MostAlignedSDNode;
2416
2417namespace ISD {
2418  /// isNormalLoad - Returns true if the specified node is a non-extending
2419  /// and unindexed load.
2420  inline bool isNormalLoad(const SDNode *N) {
2421    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2422    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2423      Ld->getAddressingMode() == ISD::UNINDEXED;
2424  }
2425
2426  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2427  /// load.
2428  inline bool isNON_EXTLoad(const SDNode *N) {
2429    return isa<LoadSDNode>(N) &&
2430      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2431  }
2432
2433  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2434  ///
2435  inline bool isEXTLoad(const SDNode *N) {
2436    return isa<LoadSDNode>(N) &&
2437      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2438  }
2439
2440  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2441  ///
2442  inline bool isSEXTLoad(const SDNode *N) {
2443    return isa<LoadSDNode>(N) &&
2444      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2445  }
2446
2447  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2448  ///
2449  inline bool isZEXTLoad(const SDNode *N) {
2450    return isa<LoadSDNode>(N) &&
2451      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2452  }
2453
2454  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2455  ///
2456  inline bool isUNINDEXEDLoad(const SDNode *N) {
2457    return isa<LoadSDNode>(N) &&
2458      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2459  }
2460
2461  /// isNormalStore - Returns true if the specified node is a non-truncating
2462  /// and unindexed store.
2463  inline bool isNormalStore(const SDNode *N) {
2464    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2465    return St && !St->isTruncatingStore() &&
2466      St->getAddressingMode() == ISD::UNINDEXED;
2467  }
2468
2469  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2470  /// store.
2471  inline bool isNON_TRUNCStore(const SDNode *N) {
2472    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2473  }
2474
2475  /// isTRUNCStore - Returns true if the specified node is a truncating
2476  /// store.
2477  inline bool isTRUNCStore(const SDNode *N) {
2478    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2479  }
2480
2481  /// isUNINDEXEDStore - Returns true if the specified node is an
2482  /// unindexed store.
2483  inline bool isUNINDEXEDStore(const SDNode *N) {
2484    return isa<StoreSDNode>(N) &&
2485      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2486  }
2487}
2488
2489
2490} // end llvm namespace
2491
2492#endif
2493