SelectionDAGNodes.h revision 2b7a271c713ff1db83990f691126bc33d6c59b52
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/ilist_node.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include "llvm/Support/DebugLoc.h"
35#include <cassert>
36#include <climits>
37
38namespace llvm {
39
40class SelectionDAG;
41class GlobalValue;
42class MachineBasicBlock;
43class MachineConstantPoolValue;
44class SDNode;
45class Value;
46template <typename T> struct DenseMapInfo;
47template <typename T> struct simplify_type;
48template <typename T> struct ilist_traits;
49
50/// SDVTList - This represents a list of ValueType's that has been intern'd by
51/// a SelectionDAG.  Instances of this simple value class are returned by
52/// SelectionDAG::getVTList(...).
53///
54struct SDVTList {
55  const MVT *VTs;
56  unsigned int NumVTs;
57};
58
59/// ISD namespace - This namespace contains an enum which represents all of the
60/// SelectionDAG node types and value types.
61///
62namespace ISD {
63
64  //===--------------------------------------------------------------------===//
65  /// ISD::NodeType enum - This enum defines the target-independent operators
66  /// for a SelectionDAG.
67  ///
68  /// Targets may also define target-dependent operator codes for SDNodes. For
69  /// example, on x86, these are the enum values in the X86ISD namespace.
70  /// Targets should aim to use target-independent operators to model their
71  /// instruction sets as much as possible, and only use target-dependent
72  /// operators when they have special requirements.
73  ///
74  /// Finally, during and after selection proper, SNodes may use special
75  /// operator codes that correspond directly with MachineInstr opcodes. These
76  /// are used to represent selected instructions. See the isMachineOpcode()
77  /// and getMachineOpcode() member functions of SDNode.
78  ///
79  enum NodeType {
80    // DELETED_NODE - This is an illegal value that is used to catch
81    // errors.  This opcode is not a legal opcode for any node.
82    DELETED_NODE,
83
84    // EntryToken - This is the marker used to indicate the start of the region.
85    EntryToken,
86
87    // TokenFactor - This node takes multiple tokens as input and produces a
88    // single token result.  This is used to represent the fact that the operand
89    // operators are independent of each other.
90    TokenFactor,
91
92    // AssertSext, AssertZext - These nodes record if a register contains a
93    // value that has already been zero or sign extended from a narrower type.
94    // These nodes take two operands.  The first is the node that has already
95    // been extended, and the second is a value type node indicating the width
96    // of the extension
97    AssertSext, AssertZext,
98
99    // Various leaf nodes.
100    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
101    Constant, ConstantFP,
102    GlobalAddress, GlobalTLSAddress, FrameIndex,
103    JumpTable, ConstantPool, ExternalSymbol,
104
105    // The address of the GOT
106    GLOBAL_OFFSET_TABLE,
107
108    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
109    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
110    // of the frame or return address to return.  An index of zero corresponds
111    // to the current function's frame or return address, an index of one to the
112    // parent's frame or return address, and so on.
113    FRAMEADDR, RETURNADDR,
114
115    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
116    // first (possible) on-stack argument. This is needed for correct stack
117    // adjustment during unwind.
118    FRAME_TO_ARGS_OFFSET,
119
120    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
121    // address of the exception block on entry to an landing pad block.
122    EXCEPTIONADDR,
123
124    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
125    // the selection index of the exception thrown.
126    EHSELECTION,
127
128    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
129    // 'eh_return' gcc dwarf builtin, which is used to return from
130    // exception. The general meaning is: adjust stack by OFFSET and pass
131    // execution to HANDLER. Many platform-related details also :)
132    EH_RETURN,
133
134    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
135    // simplification of the constant.
136    TargetConstant,
137    TargetConstantFP,
138
139    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
140    // anything else with this node, and this is valid in the target-specific
141    // dag, turning into a GlobalAddress operand.
142    TargetGlobalAddress,
143    TargetGlobalTLSAddress,
144    TargetFrameIndex,
145    TargetJumpTable,
146    TargetConstantPool,
147    TargetExternalSymbol,
148
149    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
150    /// This node represents a target intrinsic function with no side effects.
151    /// The first operand is the ID number of the intrinsic from the
152    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
153    /// node has returns the result of the intrinsic.
154    INTRINSIC_WO_CHAIN,
155
156    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
157    /// This node represents a target intrinsic function with side effects that
158    /// returns a result.  The first operand is a chain pointer.  The second is
159    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
160    /// operands to the intrinsic follow.  The node has two results, the result
161    /// of the intrinsic and an output chain.
162    INTRINSIC_W_CHAIN,
163
164    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
165    /// This node represents a target intrinsic function with side effects that
166    /// does not return a result.  The first operand is a chain pointer.  The
167    /// second is the ID number of the intrinsic from the llvm::Intrinsic
168    /// namespace.  The operands to the intrinsic follow.
169    INTRINSIC_VOID,
170
171    // CopyToReg - This node has three operands: a chain, a register number to
172    // set to this value, and a value.
173    CopyToReg,
174
175    // CopyFromReg - This node indicates that the input value is a virtual or
176    // physical register that is defined outside of the scope of this
177    // SelectionDAG.  The register is available from the RegisterSDNode object.
178    CopyFromReg,
179
180    // UNDEF - An undefined node
181    UNDEF,
182
183    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
184    /// represents the formal arguments for a function.  CC# is a Constant value
185    /// indicating the calling convention of the function, and ISVARARG is a
186    /// flag that indicates whether the function is varargs or not. This node
187    /// has one result value for each incoming argument, plus one for the output
188    /// chain. It must be custom legalized. See description of CALL node for
189    /// FLAG argument contents explanation.
190    ///
191    FORMAL_ARGUMENTS,
192
193    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
194    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
195    /// This node represents a fully general function call, before the legalizer
196    /// runs.  This has one result value for each argument / flag pair, plus
197    /// a chain result. It must be custom legalized. Flag argument indicates
198    /// misc. argument attributes. Currently:
199    /// Bit 0 - signness
200    /// Bit 1 - 'inreg' attribute
201    /// Bit 2 - 'sret' attribute
202    /// Bit 4 - 'byval' attribute
203    /// Bit 5 - 'nest' attribute
204    /// Bit 6-9 - alignment of byval structures
205    /// Bit 10-26 - size of byval structures
206    /// Bits 31:27 - argument ABI alignment in the first argument piece and
207    /// alignment '1' in other argument pieces.
208    ///
209    /// CALL nodes use the CallSDNode subclass of SDNode, which
210    /// additionally carries information about the calling convention,
211    /// whether the call is varargs, and if it's marked as a tail call.
212    ///
213    CALL,
214
215    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
216    // a Constant, which is required to be operand #1) half of the integer or
217    // float value specified as operand #0.  This is only for use before
218    // legalization, for values that will be broken into multiple registers.
219    EXTRACT_ELEMENT,
220
221    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
222    // two values of the same integer value type, this produces a value twice as
223    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
224    BUILD_PAIR,
225
226    // MERGE_VALUES - This node takes multiple discrete operands and returns
227    // them all as its individual results.  This nodes has exactly the same
228    // number of inputs and outputs, and is only valid before legalization.
229    // This node is useful for some pieces of the code generator that want to
230    // think about a single node with multiple results, not multiple nodes.
231    MERGE_VALUES,
232
233    // Simple integer binary arithmetic operators.
234    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
235
236    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
237    // a signed/unsigned value of type i[2*N], and return the full value as
238    // two results, each of type iN.
239    SMUL_LOHI, UMUL_LOHI,
240
241    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
242    // remainder result.
243    SDIVREM, UDIVREM,
244
245    // CARRY_FALSE - This node is used when folding other nodes,
246    // like ADDC/SUBC, which indicate the carry result is always false.
247    CARRY_FALSE,
248
249    // Carry-setting nodes for multiple precision addition and subtraction.
250    // These nodes take two operands of the same value type, and produce two
251    // results.  The first result is the normal add or sub result, the second
252    // result is the carry flag result.
253    ADDC, SUBC,
254
255    // Carry-using nodes for multiple precision addition and subtraction.  These
256    // nodes take three operands: The first two are the normal lhs and rhs to
257    // the add or sub, and the third is the input carry flag.  These nodes
258    // produce two results; the normal result of the add or sub, and the output
259    // carry flag.  These nodes both read and write a carry flag to allow them
260    // to them to be chained together for add and sub of arbitrarily large
261    // values.
262    ADDE, SUBE,
263
264    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
265    // These nodes take two operands: the normal LHS and RHS to the add. They
266    // produce two results: the normal result of the add, and a boolean that
267    // indicates if an overflow occured (*not* a flag, because it may be stored
268    // to memory, etc.).  If the type of the boolean is not i1 then the high
269    // bits conform to getBooleanContents.
270    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
271    SADDO, UADDO,
272
273    // Same for subtraction
274    SSUBO, USUBO,
275
276    // Same for multiplication
277    SMULO, UMULO,
278
279    // Simple binary floating point operators.
280    FADD, FSUB, FMUL, FDIV, FREM,
281
282    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
283    // DAG node does not require that X and Y have the same type, just that they
284    // are both floating point.  X and the result must have the same type.
285    // FCOPYSIGN(f32, f64) is allowed.
286    FCOPYSIGN,
287
288    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
289    // value as an integer 0/1 value.
290    FGETSIGN,
291
292    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
293    /// specified, possibly variable, elements.  The number of elements is
294    /// required to be a power of two.  The types of the operands must all be
295    /// the same and must match the vector element type, except that integer
296    /// types are allowed to be larger than the element type, in which case
297    /// the operands are implicitly truncated.
298    BUILD_VECTOR,
299
300    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
301    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
302    /// element type then VAL is truncated before replacement.
303    INSERT_VECTOR_ELT,
304
305    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
306    /// identified by the (potentially variable) element number IDX.
307    EXTRACT_VECTOR_ELT,
308
309    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
310    /// vector type with the same length and element type, this produces a
311    /// concatenated vector result value, with length equal to the sum of the
312    /// lengths of the input vectors.
313    CONCAT_VECTORS,
314
315    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
316    /// vector value) starting with the (potentially variable) element number
317    /// IDX, which must be a multiple of the result vector length.
318    EXTRACT_SUBVECTOR,
319
320    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
321    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
322    /// values that indicate which value (or undef) each result element will
323    /// get.  These constant ints are accessible through the
324    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
325    /// 'vperm' instruction, except that the indices must be constants and are
326    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
327    VECTOR_SHUFFLE,
328
329    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
330    /// scalar value into element 0 of the resultant vector type.  The top
331    /// elements 1 to N-1 of the N-element vector are undefined.  The type
332    /// of the operand must match the vector element type, except when they
333    /// are integer types.  In this case the operand is allowed to be wider
334    /// than the vector element type, and is implicitly truncated to it.
335    SCALAR_TO_VECTOR,
336
337    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
338    // an unsigned/signed value of type i[2*N], then return the top part.
339    MULHU, MULHS,
340
341    // Bitwise operators - logical and, logical or, logical xor, shift left,
342    // shift right algebraic (shift in sign bits), shift right logical (shift in
343    // zeroes), rotate left, rotate right, and byteswap.
344    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
345
346    // Counting operators
347    CTTZ, CTLZ, CTPOP,
348
349    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
350    // i1 then the high bits must conform to getBooleanContents.
351    SELECT,
352
353    // Select with condition operator - This selects between a true value and
354    // a false value (ops #2 and #3) based on the boolean result of comparing
355    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
356    // condition code in op #4, a CondCodeSDNode.
357    SELECT_CC,
358
359    // SetCC operator - This evaluates to a true value iff the condition is
360    // true.  If the result value type is not i1 then the high bits conform
361    // to getBooleanContents.  The operands to this are the left and right
362    // operands to compare (ops #0, and #1) and the condition code to compare
363    // them with (op #2) as a CondCodeSDNode.
364    SETCC,
365
366    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
367    // integer elements with all bits of the result elements set to true if the
368    // comparison is true or all cleared if the comparison is false.  The
369    // operands to this are the left and right operands to compare (LHS/RHS) and
370    // the condition code to compare them with (COND) as a CondCodeSDNode.
371    VSETCC,
372
373    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
374    // integer shift operations, just like ADD/SUB_PARTS.  The operation
375    // ordering is:
376    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
377    SHL_PARTS, SRA_PARTS, SRL_PARTS,
378
379    // Conversion operators.  These are all single input single output
380    // operations.  For all of these, the result type must be strictly
381    // wider or narrower (depending on the operation) than the source
382    // type.
383
384    // SIGN_EXTEND - Used for integer types, replicating the sign bit
385    // into new bits.
386    SIGN_EXTEND,
387
388    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
389    ZERO_EXTEND,
390
391    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
392    ANY_EXTEND,
393
394    // TRUNCATE - Completely drop the high bits.
395    TRUNCATE,
396
397    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
398    // depends on the first letter) to floating point.
399    SINT_TO_FP,
400    UINT_TO_FP,
401
402    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
403    // sign extend a small value in a large integer register (e.g. sign
404    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
405    // with the 7th bit).  The size of the smaller type is indicated by the 1th
406    // operand, a ValueType node.
407    SIGN_EXTEND_INREG,
408
409    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
410    /// integer.
411    FP_TO_SINT,
412    FP_TO_UINT,
413
414    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
415    /// down to the precision of the destination VT.  TRUNC is a flag, which is
416    /// always an integer that is zero or one.  If TRUNC is 0, this is a
417    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
418    /// value of Y.
419    ///
420    /// The TRUNC = 1 case is used in cases where we know that the value will
421    /// not be modified by the node, because Y is not using any of the extra
422    /// precision of source type.  This allows certain transformations like
423    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
424    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
425    FP_ROUND,
426
427    // FLT_ROUNDS_ - Returns current rounding mode:
428    // -1 Undefined
429    //  0 Round to 0
430    //  1 Round to nearest
431    //  2 Round to +inf
432    //  3 Round to -inf
433    FLT_ROUNDS_,
434
435    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
436    /// rounds it to a floating point value.  It then promotes it and returns it
437    /// in a register of the same size.  This operation effectively just
438    /// discards excess precision.  The type to round down to is specified by
439    /// the VT operand, a VTSDNode.
440    FP_ROUND_INREG,
441
442    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
443    FP_EXTEND,
444
445    // BIT_CONVERT - Theis operator converts between integer and FP values, as
446    // if one was stored to memory as integer and the other was loaded from the
447    // same address (or equivalently for vector format conversions, etc).  The
448    // source and result are required to have the same bit size (e.g.
449    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
450    // conversions, but that is a noop, deleted by getNode().
451    BIT_CONVERT,
452
453    // CONVERT_RNDSAT - This operator is used to support various conversions
454    // between various types (float, signed, unsigned and vectors of those
455    // types) with rounding and saturation. NOTE: Avoid using this operator as
456    // most target don't support it and the operator might be removed in the
457    // future. It takes the following arguments:
458    //   0) value
459    //   1) dest type (type to convert to)
460    //   2) src type (type to convert from)
461    //   3) rounding imm
462    //   4) saturation imm
463    //   5) ISD::CvtCode indicating the type of conversion to do
464    CONVERT_RNDSAT,
465
466    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
467    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
468    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
469    // point operations. These are inspired by libm.
470    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
471    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
472    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
473
474    // LOAD and STORE have token chains as their first operand, then the same
475    // operands as an LLVM load/store instruction, then an offset node that
476    // is added / subtracted from the base pointer to form the address (for
477    // indexed memory ops).
478    LOAD, STORE,
479
480    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
481    // to a specified boundary.  This node always has two return values: a new
482    // stack pointer value and a chain. The first operand is the token chain,
483    // the second is the number of bytes to allocate, and the third is the
484    // alignment boundary.  The size is guaranteed to be a multiple of the stack
485    // alignment, and the alignment is guaranteed to be bigger than the stack
486    // alignment (if required) or 0 to get standard stack alignment.
487    DYNAMIC_STACKALLOC,
488
489    // Control flow instructions.  These all have token chains.
490
491    // BR - Unconditional branch.  The first operand is the chain
492    // operand, the second is the MBB to branch to.
493    BR,
494
495    // BRIND - Indirect branch.  The first operand is the chain, the second
496    // is the value to branch to, which must be of the same type as the target's
497    // pointer type.
498    BRIND,
499
500    // BR_JT - Jumptable branch. The first operand is the chain, the second
501    // is the jumptable index, the last one is the jumptable entry index.
502    BR_JT,
503
504    // BRCOND - Conditional branch.  The first operand is the chain, the
505    // second is the condition, the third is the block to branch to if the
506    // condition is true.  If the type of the condition is not i1, then the
507    // high bits must conform to getBooleanContents.
508    BRCOND,
509
510    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
511    // that the condition is represented as condition code, and two nodes to
512    // compare, rather than as a combined SetCC node.  The operands in order are
513    // chain, cc, lhs, rhs, block to branch to if condition is true.
514    BR_CC,
515
516    // RET - Return from function.  The first operand is the chain,
517    // and any subsequent operands are pairs of return value and return value
518    // attributes (see CALL for description of attributes) for the function.
519    // This operation can have variable number of operands.
520    RET,
521
522    // INLINEASM - Represents an inline asm block.  This node always has two
523    // return values: a chain and a flag result.  The inputs are as follows:
524    //   Operand #0   : Input chain.
525    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
526    //   Operand #2n+2: A RegisterNode.
527    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
528    //   Operand #last: Optional, an incoming flag.
529    INLINEASM,
530
531    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
532    // locations needed for debug and exception handling tables.  These nodes
533    // take a chain as input and return a chain.
534    DBG_LABEL,
535    EH_LABEL,
536
537    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
538    // local variable declarations for debugging information. First operand is
539    // a chain, while the next two operands are first two arguments (address
540    // and variable) of a llvm.dbg.declare instruction.
541    DECLARE,
542
543    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
544    // value, the same type as the pointer type for the system, and an output
545    // chain.
546    STACKSAVE,
547
548    // STACKRESTORE has two operands, an input chain and a pointer to restore to
549    // it returns an output chain.
550    STACKRESTORE,
551
552    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
553    // a call sequence, and carry arbitrary information that target might want
554    // to know.  The first operand is a chain, the rest are specified by the
555    // target and not touched by the DAG optimizers.
556    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
557    CALLSEQ_START,  // Beginning of a call sequence
558    CALLSEQ_END,    // End of a call sequence
559
560    // VAARG - VAARG has three operands: an input chain, a pointer, and a
561    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
562    VAARG,
563
564    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
565    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
566    // source.
567    VACOPY,
568
569    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
570    // pointer, and a SRCVALUE.
571    VAEND, VASTART,
572
573    // SRCVALUE - This is a node type that holds a Value* that is used to
574    // make reference to a value in the LLVM IR.
575    SRCVALUE,
576
577    // MEMOPERAND - This is a node that contains a MachineMemOperand which
578    // records information about a memory reference. This is used to make
579    // AliasAnalysis queries from the backend.
580    MEMOPERAND,
581
582    // PCMARKER - This corresponds to the pcmarker intrinsic.
583    PCMARKER,
584
585    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
586    // The only operand is a chain and a value and a chain are produced.  The
587    // value is the contents of the architecture specific cycle counter like
588    // register (or other high accuracy low latency clock source)
589    READCYCLECOUNTER,
590
591    // HANDLENODE node - Used as a handle for various purposes.
592    HANDLENODE,
593
594    // DBG_STOPPOINT - This node is used to represent a source location for
595    // debug info.  It takes token chain as input, and carries a line number,
596    // column number, and a pointer to a CompileUnit object identifying
597    // the containing compilation unit.  It produces a token chain as output.
598    DBG_STOPPOINT,
599
600    // DEBUG_LOC - This node is used to represent source line information
601    // embedded in the code.  It takes a token chain as input, then a line
602    // number, then a column then a file id (provided by MachineModuleInfo.) It
603    // produces a token chain as output.
604    DEBUG_LOC,
605
606    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
607    // It takes as input a token chain, the pointer to the trampoline,
608    // the pointer to the nested function, the pointer to pass for the
609    // 'nest' parameter, a SRCVALUE for the trampoline and another for
610    // the nested function (allowing targets to access the original
611    // Function*).  It produces the result of the intrinsic and a token
612    // chain as output.
613    TRAMPOLINE,
614
615    // TRAP - Trapping instruction
616    TRAP,
617
618    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
619    // their first operand. The other operands are the address to prefetch,
620    // read / write specifier, and locality specifier.
621    PREFETCH,
622
623    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
624    //                       store-store, device)
625    // This corresponds to the memory.barrier intrinsic.
626    // it takes an input chain, 4 operands to specify the type of barrier, an
627    // operand specifying if the barrier applies to device and uncached memory
628    // and produces an output chain.
629    MEMBARRIER,
630
631    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
632    // this corresponds to the atomic.lcs intrinsic.
633    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
634    // the return is always the original value in *ptr
635    ATOMIC_CMP_SWAP,
636
637    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
638    // this corresponds to the atomic.swap intrinsic.
639    // amt is stored to *ptr atomically.
640    // the return is always the original value in *ptr
641    ATOMIC_SWAP,
642
643    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
644    // this corresponds to the atomic.load.[OpName] intrinsic.
645    // op(*ptr, amt) is stored to *ptr atomically.
646    // the return is always the original value in *ptr
647    ATOMIC_LOAD_ADD,
648    ATOMIC_LOAD_SUB,
649    ATOMIC_LOAD_AND,
650    ATOMIC_LOAD_OR,
651    ATOMIC_LOAD_XOR,
652    ATOMIC_LOAD_NAND,
653    ATOMIC_LOAD_MIN,
654    ATOMIC_LOAD_MAX,
655    ATOMIC_LOAD_UMIN,
656    ATOMIC_LOAD_UMAX,
657
658    // BUILTIN_OP_END - This must be the last enum value in this list.
659    BUILTIN_OP_END
660  };
661
662  /// Node predicates
663
664  /// isBuildVectorAllOnes - Return true if the specified node is a
665  /// BUILD_VECTOR where all of the elements are ~0 or undef.
666  bool isBuildVectorAllOnes(const SDNode *N);
667
668  /// isBuildVectorAllZeros - Return true if the specified node is a
669  /// BUILD_VECTOR where all of the elements are 0 or undef.
670  bool isBuildVectorAllZeros(const SDNode *N);
671
672  /// isScalarToVector - Return true if the specified node is a
673  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
674  /// element is not an undef.
675  bool isScalarToVector(const SDNode *N);
676
677  /// isDebugLabel - Return true if the specified node represents a debug
678  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
679  bool isDebugLabel(const SDNode *N);
680
681  //===--------------------------------------------------------------------===//
682  /// MemIndexedMode enum - This enum defines the load / store indexed
683  /// addressing modes.
684  ///
685  /// UNINDEXED    "Normal" load / store. The effective address is already
686  ///              computed and is available in the base pointer. The offset
687  ///              operand is always undefined. In addition to producing a
688  ///              chain, an unindexed load produces one value (result of the
689  ///              load); an unindexed store does not produce a value.
690  ///
691  /// PRE_INC      Similar to the unindexed mode where the effective address is
692  /// PRE_DEC      the value of the base pointer add / subtract the offset.
693  ///              It considers the computation as being folded into the load /
694  ///              store operation (i.e. the load / store does the address
695  ///              computation as well as performing the memory transaction).
696  ///              The base operand is always undefined. In addition to
697  ///              producing a chain, pre-indexed load produces two values
698  ///              (result of the load and the result of the address
699  ///              computation); a pre-indexed store produces one value (result
700  ///              of the address computation).
701  ///
702  /// POST_INC     The effective address is the value of the base pointer. The
703  /// POST_DEC     value of the offset operand is then added to / subtracted
704  ///              from the base after memory transaction. In addition to
705  ///              producing a chain, post-indexed load produces two values
706  ///              (the result of the load and the result of the base +/- offset
707  ///              computation); a post-indexed store produces one value (the
708  ///              the result of the base +/- offset computation).
709  ///
710  enum MemIndexedMode {
711    UNINDEXED = 0,
712    PRE_INC,
713    PRE_DEC,
714    POST_INC,
715    POST_DEC,
716    LAST_INDEXED_MODE
717  };
718
719  //===--------------------------------------------------------------------===//
720  /// LoadExtType enum - This enum defines the three variants of LOADEXT
721  /// (load with extension).
722  ///
723  /// SEXTLOAD loads the integer operand and sign extends it to a larger
724  ///          integer result type.
725  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
726  ///          integer result type.
727  /// EXTLOAD  is used for three things: floating point extending loads,
728  ///          integer extending loads [the top bits are undefined], and vector
729  ///          extending loads [load into low elt].
730  ///
731  enum LoadExtType {
732    NON_EXTLOAD = 0,
733    EXTLOAD,
734    SEXTLOAD,
735    ZEXTLOAD,
736    LAST_LOADEXT_TYPE
737  };
738
739  //===--------------------------------------------------------------------===//
740  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
741  /// below work out, when considering SETFALSE (something that never exists
742  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
743  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
744  /// to.  If the "N" column is 1, the result of the comparison is undefined if
745  /// the input is a NAN.
746  ///
747  /// All of these (except for the 'always folded ops') should be handled for
748  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
749  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
750  ///
751  /// Note that these are laid out in a specific order to allow bit-twiddling
752  /// to transform conditions.
753  enum CondCode {
754    // Opcode          N U L G E       Intuitive operation
755    SETFALSE,      //    0 0 0 0       Always false (always folded)
756    SETOEQ,        //    0 0 0 1       True if ordered and equal
757    SETOGT,        //    0 0 1 0       True if ordered and greater than
758    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
759    SETOLT,        //    0 1 0 0       True if ordered and less than
760    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
761    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
762    SETO,          //    0 1 1 1       True if ordered (no nans)
763    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
764    SETUEQ,        //    1 0 0 1       True if unordered or equal
765    SETUGT,        //    1 0 1 0       True if unordered or greater than
766    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
767    SETULT,        //    1 1 0 0       True if unordered or less than
768    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
769    SETUNE,        //    1 1 1 0       True if unordered or not equal
770    SETTRUE,       //    1 1 1 1       Always true (always folded)
771    // Don't care operations: undefined if the input is a nan.
772    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
773    SETEQ,         //  1 X 0 0 1       True if equal
774    SETGT,         //  1 X 0 1 0       True if greater than
775    SETGE,         //  1 X 0 1 1       True if greater than or equal
776    SETLT,         //  1 X 1 0 0       True if less than
777    SETLE,         //  1 X 1 0 1       True if less than or equal
778    SETNE,         //  1 X 1 1 0       True if not equal
779    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
780
781    SETCC_INVALID       // Marker value.
782  };
783
784  /// isSignedIntSetCC - Return true if this is a setcc instruction that
785  /// performs a signed comparison when used with integer operands.
786  inline bool isSignedIntSetCC(CondCode Code) {
787    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
788  }
789
790  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
791  /// performs an unsigned comparison when used with integer operands.
792  inline bool isUnsignedIntSetCC(CondCode Code) {
793    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
794  }
795
796  /// isTrueWhenEqual - Return true if the specified condition returns true if
797  /// the two operands to the condition are equal.  Note that if one of the two
798  /// operands is a NaN, this value is meaningless.
799  inline bool isTrueWhenEqual(CondCode Cond) {
800    return ((int)Cond & 1) != 0;
801  }
802
803  /// getUnorderedFlavor - This function returns 0 if the condition is always
804  /// false if an operand is a NaN, 1 if the condition is always true if the
805  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
806  /// NaN.
807  inline unsigned getUnorderedFlavor(CondCode Cond) {
808    return ((int)Cond >> 3) & 3;
809  }
810
811  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
812  /// 'op' is a valid SetCC operation.
813  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
814
815  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
816  /// when given the operation for (X op Y).
817  CondCode getSetCCSwappedOperands(CondCode Operation);
818
819  /// getSetCCOrOperation - Return the result of a logical OR between different
820  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
821  /// function returns SETCC_INVALID if it is not possible to represent the
822  /// resultant comparison.
823  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
824
825  /// getSetCCAndOperation - Return the result of a logical AND between
826  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
827  /// function returns SETCC_INVALID if it is not possible to represent the
828  /// resultant comparison.
829  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
830
831  //===--------------------------------------------------------------------===//
832  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
833  /// supports.
834  enum CvtCode {
835    CVT_FF,     // Float from Float
836    CVT_FS,     // Float from Signed
837    CVT_FU,     // Float from Unsigned
838    CVT_SF,     // Signed from Float
839    CVT_UF,     // Unsigned from Float
840    CVT_SS,     // Signed from Signed
841    CVT_SU,     // Signed from Unsigned
842    CVT_US,     // Unsigned from Signed
843    CVT_UU,     // Unsigned from Unsigned
844    CVT_INVALID // Marker - Invalid opcode
845  };
846}  // end llvm::ISD namespace
847
848
849//===----------------------------------------------------------------------===//
850/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
851/// values as the result of a computation.  Many nodes return multiple values,
852/// from loads (which define a token and a return value) to ADDC (which returns
853/// a result and a carry value), to calls (which may return an arbitrary number
854/// of values).
855///
856/// As such, each use of a SelectionDAG computation must indicate the node that
857/// computes it as well as which return value to use from that node.  This pair
858/// of information is represented with the SDValue value type.
859///
860class SDValue {
861  SDNode *Node;       // The node defining the value we are using.
862  unsigned ResNo;     // Which return value of the node we are using.
863public:
864  SDValue() : Node(0), ResNo(0) {}
865  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
866
867  /// get the index which selects a specific result in the SDNode
868  unsigned getResNo() const { return ResNo; }
869
870  /// get the SDNode which holds the desired result
871  SDNode *getNode() const { return Node; }
872
873  /// set the SDNode
874  void setNode(SDNode *N) { Node = N; }
875
876  bool operator==(const SDValue &O) const {
877    return Node == O.Node && ResNo == O.ResNo;
878  }
879  bool operator!=(const SDValue &O) const {
880    return !operator==(O);
881  }
882  bool operator<(const SDValue &O) const {
883    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
884  }
885
886  SDValue getValue(unsigned R) const {
887    return SDValue(Node, R);
888  }
889
890  // isOperandOf - Return true if this node is an operand of N.
891  bool isOperandOf(SDNode *N) const;
892
893  /// getValueType - Return the ValueType of the referenced return value.
894  ///
895  inline MVT getValueType() const;
896
897  /// getValueSizeInBits - Returns the size of the value in bits.
898  ///
899  unsigned getValueSizeInBits() const {
900    return getValueType().getSizeInBits();
901  }
902
903  // Forwarding methods - These forward to the corresponding methods in SDNode.
904  inline unsigned getOpcode() const;
905  inline unsigned getNumOperands() const;
906  inline const SDValue &getOperand(unsigned i) const;
907  inline uint64_t getConstantOperandVal(unsigned i) const;
908  inline bool isTargetOpcode() const;
909  inline bool isMachineOpcode() const;
910  inline unsigned getMachineOpcode() const;
911  inline const DebugLoc getDebugLoc() const;
912
913
914  /// reachesChainWithoutSideEffects - Return true if this operand (which must
915  /// be a chain) reaches the specified operand without crossing any
916  /// side-effecting instructions.  In practice, this looks through token
917  /// factors and non-volatile loads.  In order to remain efficient, this only
918  /// looks a couple of nodes in, it does not do an exhaustive search.
919  bool reachesChainWithoutSideEffects(SDValue Dest,
920                                      unsigned Depth = 2) const;
921
922  /// use_empty - Return true if there are no nodes using value ResNo
923  /// of Node.
924  ///
925  inline bool use_empty() const;
926
927  /// hasOneUse - Return true if there is exactly one node using value
928  /// ResNo of Node.
929  ///
930  inline bool hasOneUse() const;
931};
932
933
934template<> struct DenseMapInfo<SDValue> {
935  static inline SDValue getEmptyKey() {
936    return SDValue((SDNode*)-1, -1U);
937  }
938  static inline SDValue getTombstoneKey() {
939    return SDValue((SDNode*)-1, 0);
940  }
941  static unsigned getHashValue(const SDValue &Val) {
942    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
943            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
944  }
945  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
946    return LHS == RHS;
947  }
948  static bool isPod() { return true; }
949};
950
951/// simplify_type specializations - Allow casting operators to work directly on
952/// SDValues as if they were SDNode*'s.
953template<> struct simplify_type<SDValue> {
954  typedef SDNode* SimpleType;
955  static SimpleType getSimplifiedValue(const SDValue &Val) {
956    return static_cast<SimpleType>(Val.getNode());
957  }
958};
959template<> struct simplify_type<const SDValue> {
960  typedef SDNode* SimpleType;
961  static SimpleType getSimplifiedValue(const SDValue &Val) {
962    return static_cast<SimpleType>(Val.getNode());
963  }
964};
965
966/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
967/// which records the SDNode being used and the result number, a
968/// pointer to the SDNode using the value, and Next and Prev pointers,
969/// which link together all the uses of an SDNode.
970///
971class SDUse {
972  /// Val - The value being used.
973  SDValue Val;
974  /// User - The user of this value.
975  SDNode *User;
976  /// Prev, Next - Pointers to the uses list of the SDNode referred by
977  /// this operand.
978  SDUse **Prev, *Next;
979
980  SDUse(const SDUse &U);          // Do not implement
981  void operator=(const SDUse &U); // Do not implement
982
983public:
984  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
985
986  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
987  operator const SDValue&() const { return Val; }
988
989  /// If implicit conversion to SDValue doesn't work, the get() method returns
990  /// the SDValue.
991  const SDValue &get() const { return Val; }
992
993  /// getUser - This returns the SDNode that contains this Use.
994  SDNode *getUser() { return User; }
995
996  /// getNext - Get the next SDUse in the use list.
997  SDUse *getNext() const { return Next; }
998
999  /// getNode - Convenience function for get().getNode().
1000  SDNode *getNode() const { return Val.getNode(); }
1001  /// getResNo - Convenience function for get().getResNo().
1002  unsigned getResNo() const { return Val.getResNo(); }
1003  /// getValueType - Convenience function for get().getValueType().
1004  MVT getValueType() const { return Val.getValueType(); }
1005
1006  /// operator== - Convenience function for get().operator==
1007  bool operator==(const SDValue &V) const {
1008    return Val == V;
1009  }
1010
1011  /// operator!= - Convenience function for get().operator!=
1012  bool operator!=(const SDValue &V) const {
1013    return Val != V;
1014  }
1015
1016  /// operator< - Convenience function for get().operator<
1017  bool operator<(const SDValue &V) const {
1018    return Val < V;
1019  }
1020
1021private:
1022  friend class SelectionDAG;
1023  friend class SDNode;
1024
1025  void setUser(SDNode *p) { User = p; }
1026
1027  /// set - Remove this use from its existing use list, assign it the
1028  /// given value, and add it to the new value's node's use list.
1029  inline void set(const SDValue &V);
1030  /// setInitial - like set, but only supports initializing a newly-allocated
1031  /// SDUse with a non-null value.
1032  inline void setInitial(const SDValue &V);
1033  /// setNode - like set, but only sets the Node portion of the value,
1034  /// leaving the ResNo portion unmodified.
1035  inline void setNode(SDNode *N);
1036
1037  void addToList(SDUse **List) {
1038    Next = *List;
1039    if (Next) Next->Prev = &Next;
1040    Prev = List;
1041    *List = this;
1042  }
1043
1044  void removeFromList() {
1045    *Prev = Next;
1046    if (Next) Next->Prev = Prev;
1047  }
1048};
1049
1050/// simplify_type specializations - Allow casting operators to work directly on
1051/// SDValues as if they were SDNode*'s.
1052template<> struct simplify_type<SDUse> {
1053  typedef SDNode* SimpleType;
1054  static SimpleType getSimplifiedValue(const SDUse &Val) {
1055    return static_cast<SimpleType>(Val.getNode());
1056  }
1057};
1058template<> struct simplify_type<const SDUse> {
1059  typedef SDNode* SimpleType;
1060  static SimpleType getSimplifiedValue(const SDUse &Val) {
1061    return static_cast<SimpleType>(Val.getNode());
1062  }
1063};
1064
1065
1066/// SDNode - Represents one node in the SelectionDAG.
1067///
1068class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1069private:
1070  /// NodeType - The operation that this node performs.
1071  ///
1072  short NodeType;
1073
1074  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1075  /// then they will be delete[]'d when the node is destroyed.
1076  unsigned short OperandsNeedDelete : 1;
1077
1078protected:
1079  /// SubclassData - This member is defined by this class, but is not used for
1080  /// anything.  Subclasses can use it to hold whatever state they find useful.
1081  /// This field is initialized to zero by the ctor.
1082  unsigned short SubclassData : 15;
1083
1084private:
1085  /// NodeId - Unique id per SDNode in the DAG.
1086  int NodeId;
1087
1088  /// OperandList - The values that are used by this operation.
1089  ///
1090  SDUse *OperandList;
1091
1092  /// ValueList - The types of the values this node defines.  SDNode's may
1093  /// define multiple values simultaneously.
1094  const MVT *ValueList;
1095
1096  /// UseList - List of uses for this SDNode.
1097  SDUse *UseList;
1098
1099  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1100  unsigned short NumOperands, NumValues;
1101
1102  /// debugLoc - source line information.
1103  DebugLoc debugLoc;
1104
1105  /// getValueTypeList - Return a pointer to the specified value type.
1106  static const MVT *getValueTypeList(MVT VT);
1107
1108  friend class SelectionDAG;
1109  friend struct ilist_traits<SDNode>;
1110
1111public:
1112  //===--------------------------------------------------------------------===//
1113  //  Accessors
1114  //
1115
1116  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1117  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1118  /// are the opcode values in the ISD and <target>ISD namespaces. For
1119  /// post-isel opcodes, see getMachineOpcode.
1120  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1121
1122  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1123  /// \<target\>ISD namespace).
1124  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1125
1126  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1127  /// corresponding to a MachineInstr opcode.
1128  bool isMachineOpcode() const { return NodeType < 0; }
1129
1130  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1131  /// true. It returns the MachineInstr opcode value that the node's opcode
1132  /// corresponds to.
1133  unsigned getMachineOpcode() const {
1134    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1135    return ~NodeType;
1136  }
1137
1138  /// use_empty - Return true if there are no uses of this node.
1139  ///
1140  bool use_empty() const { return UseList == NULL; }
1141
1142  /// hasOneUse - Return true if there is exactly one use of this node.
1143  ///
1144  bool hasOneUse() const {
1145    return !use_empty() && next(use_begin()) == use_end();
1146  }
1147
1148  /// use_size - Return the number of uses of this node. This method takes
1149  /// time proportional to the number of uses.
1150  ///
1151  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1152
1153  /// getNodeId - Return the unique node id.
1154  ///
1155  int getNodeId() const { return NodeId; }
1156
1157  /// setNodeId - Set unique node id.
1158  void setNodeId(int Id) { NodeId = Id; }
1159
1160  /// getDebugLoc - Return the source location info.
1161  const DebugLoc getDebugLoc() const { return debugLoc; }
1162
1163  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1164  /// it in the constructor is preferable.
1165  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1166
1167  /// use_iterator - This class provides iterator support for SDUse
1168  /// operands that use a specific SDNode.
1169  class use_iterator
1170    : public forward_iterator<SDUse, ptrdiff_t> {
1171    SDUse *Op;
1172    explicit use_iterator(SDUse *op) : Op(op) {
1173    }
1174    friend class SDNode;
1175  public:
1176    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1177    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1178
1179    use_iterator(const use_iterator &I) : Op(I.Op) {}
1180    use_iterator() : Op(0) {}
1181
1182    bool operator==(const use_iterator &x) const {
1183      return Op == x.Op;
1184    }
1185    bool operator!=(const use_iterator &x) const {
1186      return !operator==(x);
1187    }
1188
1189    /// atEnd - return true if this iterator is at the end of uses list.
1190    bool atEnd() const { return Op == 0; }
1191
1192    // Iterator traversal: forward iteration only.
1193    use_iterator &operator++() {          // Preincrement
1194      assert(Op && "Cannot increment end iterator!");
1195      Op = Op->getNext();
1196      return *this;
1197    }
1198
1199    use_iterator operator++(int) {        // Postincrement
1200      use_iterator tmp = *this; ++*this; return tmp;
1201    }
1202
1203    /// Retrieve a pointer to the current user node.
1204    SDNode *operator*() const {
1205      assert(Op && "Cannot dereference end iterator!");
1206      return Op->getUser();
1207    }
1208
1209    SDNode *operator->() const { return operator*(); }
1210
1211    SDUse &getUse() const { return *Op; }
1212
1213    /// getOperandNo - Retrieve the operand # of this use in its user.
1214    ///
1215    unsigned getOperandNo() const {
1216      assert(Op && "Cannot dereference end iterator!");
1217      return (unsigned)(Op - Op->getUser()->OperandList);
1218    }
1219  };
1220
1221  /// use_begin/use_end - Provide iteration support to walk over all uses
1222  /// of an SDNode.
1223
1224  use_iterator use_begin() const {
1225    return use_iterator(UseList);
1226  }
1227
1228  static use_iterator use_end() { return use_iterator(0); }
1229
1230
1231  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1232  /// indicated value.  This method ignores uses of other values defined by this
1233  /// operation.
1234  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1235
1236  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1237  /// value. This method ignores uses of other values defined by this operation.
1238  bool hasAnyUseOfValue(unsigned Value) const;
1239
1240  /// isOnlyUserOf - Return true if this node is the only use of N.
1241  ///
1242  bool isOnlyUserOf(SDNode *N) const;
1243
1244  /// isOperandOf - Return true if this node is an operand of N.
1245  ///
1246  bool isOperandOf(SDNode *N) const;
1247
1248  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1249  /// node is either an operand of N or it can be reached by recursively
1250  /// traversing up the operands.
1251  /// NOTE: this is an expensive method. Use it carefully.
1252  bool isPredecessorOf(SDNode *N) const;
1253
1254  /// getNumOperands - Return the number of values used by this operation.
1255  ///
1256  unsigned getNumOperands() const { return NumOperands; }
1257
1258  /// getConstantOperandVal - Helper method returns the integer value of a
1259  /// ConstantSDNode operand.
1260  uint64_t getConstantOperandVal(unsigned Num) const;
1261
1262  const SDValue &getOperand(unsigned Num) const {
1263    assert(Num < NumOperands && "Invalid child # of SDNode!");
1264    return OperandList[Num];
1265  }
1266
1267  typedef SDUse* op_iterator;
1268  op_iterator op_begin() const { return OperandList; }
1269  op_iterator op_end() const { return OperandList+NumOperands; }
1270
1271  SDVTList getVTList() const {
1272    SDVTList X = { ValueList, NumValues };
1273    return X;
1274  };
1275
1276  /// getFlaggedNode - If this node has a flag operand, return the node
1277  /// to which the flag operand points. Otherwise return NULL.
1278  SDNode *getFlaggedNode() const {
1279    if (getNumOperands() != 0 &&
1280        getOperand(getNumOperands()-1).getValueType() == MVT::Flag)
1281      return getOperand(getNumOperands()-1).getNode();
1282    return 0;
1283  }
1284
1285  // If this is a pseudo op, like copyfromreg, look to see if there is a
1286  // real target node flagged to it.  If so, return the target node.
1287  const SDNode *getFlaggedMachineNode() const {
1288    const SDNode *FoundNode = this;
1289
1290    // Climb up flag edges until a machine-opcode node is found, or the
1291    // end of the chain is reached.
1292    while (!FoundNode->isMachineOpcode()) {
1293      const SDNode *N = FoundNode->getFlaggedNode();
1294      if (!N) break;
1295      FoundNode = N;
1296    }
1297
1298    return FoundNode;
1299  }
1300
1301  /// getNumValues - Return the number of values defined/returned by this
1302  /// operator.
1303  ///
1304  unsigned getNumValues() const { return NumValues; }
1305
1306  /// getValueType - Return the type of a specified result.
1307  ///
1308  MVT getValueType(unsigned ResNo) const {
1309    assert(ResNo < NumValues && "Illegal result number!");
1310    return ValueList[ResNo];
1311  }
1312
1313  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1314  ///
1315  unsigned getValueSizeInBits(unsigned ResNo) const {
1316    return getValueType(ResNo).getSizeInBits();
1317  }
1318
1319  typedef const MVT* value_iterator;
1320  value_iterator value_begin() const { return ValueList; }
1321  value_iterator value_end() const { return ValueList+NumValues; }
1322
1323  /// getOperationName - Return the opcode of this operation for printing.
1324  ///
1325  std::string getOperationName(const SelectionDAG *G = 0) const;
1326  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1327  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1328  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1329  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1330  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1331  void dump() const;
1332  void dumpr() const;
1333  void dump(const SelectionDAG *G) const;
1334
1335  static bool classof(const SDNode *) { return true; }
1336
1337  /// Profile - Gather unique data for the node.
1338  ///
1339  void Profile(FoldingSetNodeID &ID) const;
1340
1341  /// addUse - This method should only be used by the SDUse class.
1342  ///
1343  void addUse(SDUse &U) { U.addToList(&UseList); }
1344
1345protected:
1346  static SDVTList getSDVTList(MVT VT) {
1347    SDVTList Ret = { getValueTypeList(VT), 1 };
1348    return Ret;
1349  }
1350
1351  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1352         unsigned NumOps)
1353    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1354      NodeId(-1),
1355      OperandList(NumOps ? new SDUse[NumOps] : 0),
1356      ValueList(VTs.VTs), UseList(NULL),
1357      NumOperands(NumOps), NumValues(VTs.NumVTs),
1358      debugLoc(dl) {
1359    for (unsigned i = 0; i != NumOps; ++i) {
1360      OperandList[i].setUser(this);
1361      OperandList[i].setInitial(Ops[i]);
1362    }
1363  }
1364
1365  /// This constructor adds no operands itself; operands can be
1366  /// set later with InitOperands.
1367  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1368    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1369      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1370      NumOperands(0), NumValues(VTs.NumVTs),
1371      debugLoc(dl) {}
1372
1373  /// InitOperands - Initialize the operands list of this with 1 operand.
1374  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1375    Ops[0].setUser(this);
1376    Ops[0].setInitial(Op0);
1377    NumOperands = 1;
1378    OperandList = Ops;
1379  }
1380
1381  /// InitOperands - Initialize the operands list of this with 2 operands.
1382  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1383    Ops[0].setUser(this);
1384    Ops[0].setInitial(Op0);
1385    Ops[1].setUser(this);
1386    Ops[1].setInitial(Op1);
1387    NumOperands = 2;
1388    OperandList = Ops;
1389  }
1390
1391  /// InitOperands - Initialize the operands list of this with 3 operands.
1392  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1393                    const SDValue &Op2) {
1394    Ops[0].setUser(this);
1395    Ops[0].setInitial(Op0);
1396    Ops[1].setUser(this);
1397    Ops[1].setInitial(Op1);
1398    Ops[2].setUser(this);
1399    Ops[2].setInitial(Op2);
1400    NumOperands = 3;
1401    OperandList = Ops;
1402  }
1403
1404  /// InitOperands - Initialize the operands list of this with 4 operands.
1405  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1406                    const SDValue &Op2, const SDValue &Op3) {
1407    Ops[0].setUser(this);
1408    Ops[0].setInitial(Op0);
1409    Ops[1].setUser(this);
1410    Ops[1].setInitial(Op1);
1411    Ops[2].setUser(this);
1412    Ops[2].setInitial(Op2);
1413    Ops[3].setUser(this);
1414    Ops[3].setInitial(Op3);
1415    NumOperands = 4;
1416    OperandList = Ops;
1417  }
1418
1419  /// InitOperands - Initialize the operands list of this with N operands.
1420  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1421    for (unsigned i = 0; i != N; ++i) {
1422      Ops[i].setUser(this);
1423      Ops[i].setInitial(Vals[i]);
1424    }
1425    NumOperands = N;
1426    OperandList = Ops;
1427  }
1428
1429  /// DropOperands - Release the operands and set this node to have
1430  /// zero operands.
1431  void DropOperands();
1432};
1433
1434
1435// Define inline functions from the SDValue class.
1436
1437inline unsigned SDValue::getOpcode() const {
1438  return Node->getOpcode();
1439}
1440inline MVT SDValue::getValueType() const {
1441  return Node->getValueType(ResNo);
1442}
1443inline unsigned SDValue::getNumOperands() const {
1444  return Node->getNumOperands();
1445}
1446inline const SDValue &SDValue::getOperand(unsigned i) const {
1447  return Node->getOperand(i);
1448}
1449inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1450  return Node->getConstantOperandVal(i);
1451}
1452inline bool SDValue::isTargetOpcode() const {
1453  return Node->isTargetOpcode();
1454}
1455inline bool SDValue::isMachineOpcode() const {
1456  return Node->isMachineOpcode();
1457}
1458inline unsigned SDValue::getMachineOpcode() const {
1459  return Node->getMachineOpcode();
1460}
1461inline bool SDValue::use_empty() const {
1462  return !Node->hasAnyUseOfValue(ResNo);
1463}
1464inline bool SDValue::hasOneUse() const {
1465  return Node->hasNUsesOfValue(1, ResNo);
1466}
1467inline const DebugLoc SDValue::getDebugLoc() const {
1468  return Node->getDebugLoc();
1469}
1470
1471// Define inline functions from the SDUse class.
1472
1473inline void SDUse::set(const SDValue &V) {
1474  if (Val.getNode()) removeFromList();
1475  Val = V;
1476  if (V.getNode()) V.getNode()->addUse(*this);
1477}
1478
1479inline void SDUse::setInitial(const SDValue &V) {
1480  Val = V;
1481  V.getNode()->addUse(*this);
1482}
1483
1484inline void SDUse::setNode(SDNode *N) {
1485  if (Val.getNode()) removeFromList();
1486  Val.setNode(N);
1487  if (N) N->addUse(*this);
1488}
1489
1490/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1491/// to allow co-allocation of node operands with the node itself.
1492class UnarySDNode : public SDNode {
1493  SDUse Op;
1494public:
1495  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1496    : SDNode(Opc, dl, VTs) {
1497    InitOperands(&Op, X);
1498  }
1499};
1500
1501/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1502/// to allow co-allocation of node operands with the node itself.
1503class BinarySDNode : public SDNode {
1504  SDUse Ops[2];
1505public:
1506  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1507    : SDNode(Opc, dl, VTs) {
1508    InitOperands(Ops, X, Y);
1509  }
1510};
1511
1512/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1513/// to allow co-allocation of node operands with the node itself.
1514class TernarySDNode : public SDNode {
1515  SDUse Ops[3];
1516public:
1517  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1518                SDValue Z)
1519    : SDNode(Opc, dl, VTs) {
1520    InitOperands(Ops, X, Y, Z);
1521  }
1522};
1523
1524
1525/// HandleSDNode - This class is used to form a handle around another node that
1526/// is persistant and is updated across invocations of replaceAllUsesWith on its
1527/// operand.  This node should be directly created by end-users and not added to
1528/// the AllNodes list.
1529class HandleSDNode : public SDNode {
1530  SDUse Op;
1531public:
1532  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1533  // fixed.
1534#ifdef __GNUC__
1535  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1536#else
1537  explicit HandleSDNode(SDValue X)
1538#endif
1539    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1540             getSDVTList(MVT::Other)) {
1541    InitOperands(&Op, X);
1542  }
1543  ~HandleSDNode();
1544  const SDValue &getValue() const { return Op; }
1545};
1546
1547/// Abstact virtual class for operations for memory operations
1548class MemSDNode : public SDNode {
1549private:
1550  // MemoryVT - VT of in-memory value.
1551  MVT MemoryVT;
1552
1553  //! SrcValue - Memory location for alias analysis.
1554  const Value *SrcValue;
1555
1556  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1557  int SVOffset;
1558
1559public:
1560  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT MemoryVT,
1561            const Value *srcValue, int SVOff,
1562            unsigned alignment, bool isvolatile);
1563
1564  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1565            unsigned NumOps, MVT MemoryVT, const Value *srcValue, int SVOff,
1566            unsigned alignment, bool isvolatile);
1567
1568  /// Returns alignment and volatility of the memory access
1569  unsigned getAlignment() const { return (1u << (SubclassData >> 6)) >> 1; }
1570  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1571
1572  /// getRawSubclassData - Return the SubclassData value, which contains an
1573  /// encoding of the alignment and volatile information, as well as bits
1574  /// used by subclasses. This function should only be used to compute a
1575  /// FoldingSetNodeID value.
1576  unsigned getRawSubclassData() const {
1577    return SubclassData;
1578  }
1579
1580  /// Returns the SrcValue and offset that describes the location of the access
1581  const Value *getSrcValue() const { return SrcValue; }
1582  int getSrcValueOffset() const { return SVOffset; }
1583
1584  /// getMemoryVT - Return the type of the in-memory value.
1585  MVT getMemoryVT() const { return MemoryVT; }
1586
1587  /// getMemOperand - Return a MachineMemOperand object describing the memory
1588  /// reference performed by operation.
1589  MachineMemOperand getMemOperand() const;
1590
1591  const SDValue &getChain() const { return getOperand(0); }
1592  const SDValue &getBasePtr() const {
1593    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1594  }
1595
1596  // Methods to support isa and dyn_cast
1597  static bool classof(const MemSDNode *) { return true; }
1598  static bool classof(const SDNode *N) {
1599    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1600    // with either an intrinsic or a target opcode.
1601    return N->getOpcode() == ISD::LOAD                ||
1602           N->getOpcode() == ISD::STORE               ||
1603           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1604           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1605           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1606           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1607           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1608           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1609           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1610           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1611           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1612           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1613           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1614           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1615           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1616           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1617           N->isTargetOpcode();
1618  }
1619};
1620
1621/// AtomicSDNode - A SDNode reprenting atomic operations.
1622///
1623class AtomicSDNode : public MemSDNode {
1624  SDUse Ops[4];
1625
1626public:
1627  // Opc:   opcode for atomic
1628  // VTL:    value type list
1629  // Chain:  memory chain for operaand
1630  // Ptr:    address to update as a SDValue
1631  // Cmp:    compare value
1632  // Swp:    swap value
1633  // SrcVal: address to update as a Value (used for MemOperand)
1634  // Align:  alignment of memory
1635  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
1636               SDValue Chain, SDValue Ptr,
1637               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1638               unsigned Align=0)
1639    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1640                Align, /*isVolatile=*/true) {
1641    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1642  }
1643  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
1644               SDValue Chain, SDValue Ptr,
1645               SDValue Val, const Value* SrcVal, unsigned Align=0)
1646    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1647                Align, /*isVolatile=*/true) {
1648    InitOperands(Ops, Chain, Ptr, Val);
1649  }
1650
1651  const SDValue &getBasePtr() const { return getOperand(1); }
1652  const SDValue &getVal() const { return getOperand(2); }
1653
1654  bool isCompareAndSwap() const {
1655    unsigned Op = getOpcode();
1656    return Op == ISD::ATOMIC_CMP_SWAP;
1657  }
1658
1659  // Methods to support isa and dyn_cast
1660  static bool classof(const AtomicSDNode *) { return true; }
1661  static bool classof(const SDNode *N) {
1662    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1663           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1664           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1665           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1666           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1667           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1668           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1669           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1670           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1671           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1672           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1673           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1674  }
1675};
1676
1677/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1678/// memory and need an associated memory operand.
1679///
1680class MemIntrinsicSDNode : public MemSDNode {
1681  bool ReadMem;  // Intrinsic reads memory
1682  bool WriteMem; // Intrinsic writes memory
1683public:
1684  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1685                     const SDValue *Ops, unsigned NumOps,
1686                     MVT MemoryVT, const Value *srcValue, int SVO,
1687                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1688    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1689      ReadMem(ReadMem), WriteMem(WriteMem) {
1690  }
1691
1692  bool readMem() const { return ReadMem; }
1693  bool writeMem() const { return WriteMem; }
1694
1695  // Methods to support isa and dyn_cast
1696  static bool classof(const MemIntrinsicSDNode *) { return true; }
1697  static bool classof(const SDNode *N) {
1698    // We lower some target intrinsics to their target opcode
1699    // early a node with a target opcode can be of this class
1700    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1701           N->getOpcode() == ISD::INTRINSIC_VOID ||
1702           N->isTargetOpcode();
1703  }
1704};
1705
1706/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1707/// support for the llvm IR shufflevector instruction.  It combines elements
1708/// from two input vectors into a new input vector, with the selection and
1709/// ordering of elements determined by an array of integers, referred to as
1710/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1711/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1712/// An index of -1 is treated as undef, such that the code generator may put
1713/// any value in the corresponding element of the result.
1714class ShuffleVectorSDNode : public SDNode {
1715  SDUse Ops[2];
1716
1717  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1718  // is freed when the SelectionDAG object is destroyed.
1719  const int *Mask;
1720protected:
1721  friend class SelectionDAG;
1722  ShuffleVectorSDNode(MVT VT, DebugLoc dl, SDValue N1, SDValue N2,
1723                      const int *M)
1724    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
1725    InitOperands(Ops, N1, N2);
1726  }
1727public:
1728
1729  void getMask(SmallVectorImpl<int> &M) const {
1730    MVT VT = getValueType(0);
1731    M.clear();
1732    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1733      M.push_back(Mask[i]);
1734  }
1735  int getMaskElt(unsigned Idx) const {
1736    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1737    return Mask[Idx];
1738  }
1739
1740  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1741  int  getSplatIndex() const {
1742    assert(isSplat() && "Cannot get splat index for non-splat!");
1743    return Mask[0];
1744  }
1745  static bool isSplatMask(const int *Mask, MVT VT);
1746
1747  static bool classof(const ShuffleVectorSDNode *) { return true; }
1748  static bool classof(const SDNode *N) {
1749    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1750  }
1751};
1752
1753class ConstantSDNode : public SDNode {
1754  const ConstantInt *Value;
1755  friend class SelectionDAG;
1756  ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
1757    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1758             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1759  }
1760public:
1761
1762  const ConstantInt *getConstantIntValue() const { return Value; }
1763  const APInt &getAPIntValue() const { return Value->getValue(); }
1764  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1765  int64_t getSExtValue() const { return Value->getSExtValue(); }
1766
1767  bool isNullValue() const { return Value->isNullValue(); }
1768  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1769
1770  static bool classof(const ConstantSDNode *) { return true; }
1771  static bool classof(const SDNode *N) {
1772    return N->getOpcode() == ISD::Constant ||
1773           N->getOpcode() == ISD::TargetConstant;
1774  }
1775};
1776
1777class ConstantFPSDNode : public SDNode {
1778  const ConstantFP *Value;
1779  friend class SelectionDAG;
1780  ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
1781    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1782             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1783  }
1784public:
1785
1786  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1787  const ConstantFP *getConstantFPValue() const { return Value; }
1788
1789  /// isExactlyValue - We don't rely on operator== working on double values, as
1790  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1791  /// As such, this method can be used to do an exact bit-for-bit comparison of
1792  /// two floating point values.
1793
1794  /// We leave the version with the double argument here because it's just so
1795  /// convenient to write "2.0" and the like.  Without this function we'd
1796  /// have to duplicate its logic everywhere it's called.
1797  bool isExactlyValue(double V) const {
1798    bool ignored;
1799    // convert is not supported on this type
1800    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1801      return false;
1802    APFloat Tmp(V);
1803    Tmp.convert(Value->getValueAPF().getSemantics(),
1804                APFloat::rmNearestTiesToEven, &ignored);
1805    return isExactlyValue(Tmp);
1806  }
1807  bool isExactlyValue(const APFloat& V) const;
1808
1809  bool isValueValidForType(MVT VT, const APFloat& Val);
1810
1811  static bool classof(const ConstantFPSDNode *) { return true; }
1812  static bool classof(const SDNode *N) {
1813    return N->getOpcode() == ISD::ConstantFP ||
1814           N->getOpcode() == ISD::TargetConstantFP;
1815  }
1816};
1817
1818class GlobalAddressSDNode : public SDNode {
1819  GlobalValue *TheGlobal;
1820  int64_t Offset;
1821  unsigned char TargetFlags;
1822  friend class SelectionDAG;
1823  GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, MVT VT,
1824                      int64_t o, unsigned char TargetFlags);
1825public:
1826
1827  GlobalValue *getGlobal() const { return TheGlobal; }
1828  int64_t getOffset() const { return Offset; }
1829  unsigned char getTargetFlags() const { return TargetFlags; }
1830  // Return the address space this GlobalAddress belongs to.
1831  unsigned getAddressSpace() const;
1832
1833  static bool classof(const GlobalAddressSDNode *) { return true; }
1834  static bool classof(const SDNode *N) {
1835    return N->getOpcode() == ISD::GlobalAddress ||
1836           N->getOpcode() == ISD::TargetGlobalAddress ||
1837           N->getOpcode() == ISD::GlobalTLSAddress ||
1838           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1839  }
1840};
1841
1842class FrameIndexSDNode : public SDNode {
1843  int FI;
1844  friend class SelectionDAG;
1845  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1846    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1847      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1848  }
1849public:
1850
1851  int getIndex() const { return FI; }
1852
1853  static bool classof(const FrameIndexSDNode *) { return true; }
1854  static bool classof(const SDNode *N) {
1855    return N->getOpcode() == ISD::FrameIndex ||
1856           N->getOpcode() == ISD::TargetFrameIndex;
1857  }
1858};
1859
1860class JumpTableSDNode : public SDNode {
1861  int JTI;
1862  unsigned char TargetFlags;
1863  friend class SelectionDAG;
1864  JumpTableSDNode(int jti, MVT VT, bool isTarg, unsigned char TF)
1865    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1866      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1867  }
1868public:
1869
1870  int getIndex() const { return JTI; }
1871  unsigned char getTargetFlags() const { return TargetFlags; }
1872
1873  static bool classof(const JumpTableSDNode *) { return true; }
1874  static bool classof(const SDNode *N) {
1875    return N->getOpcode() == ISD::JumpTable ||
1876           N->getOpcode() == ISD::TargetJumpTable;
1877  }
1878};
1879
1880class ConstantPoolSDNode : public SDNode {
1881  union {
1882    Constant *ConstVal;
1883    MachineConstantPoolValue *MachineCPVal;
1884  } Val;
1885  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1886  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1887  unsigned char TargetFlags;
1888  friend class SelectionDAG;
1889  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align,
1890                     unsigned char TF)
1891    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1892             DebugLoc::getUnknownLoc(),
1893             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1894    assert((int)Offset >= 0 && "Offset is too large");
1895    Val.ConstVal = c;
1896  }
1897  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1898                     MVT VT, int o, unsigned Align, unsigned char TF)
1899    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1900             DebugLoc::getUnknownLoc(),
1901             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1902    assert((int)Offset >= 0 && "Offset is too large");
1903    Val.MachineCPVal = v;
1904    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1905  }
1906public:
1907
1908
1909  bool isMachineConstantPoolEntry() const {
1910    return (int)Offset < 0;
1911  }
1912
1913  Constant *getConstVal() const {
1914    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1915    return Val.ConstVal;
1916  }
1917
1918  MachineConstantPoolValue *getMachineCPVal() const {
1919    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1920    return Val.MachineCPVal;
1921  }
1922
1923  int getOffset() const {
1924    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1925  }
1926
1927  // Return the alignment of this constant pool object, which is either 0 (for
1928  // default alignment) or the desired value.
1929  unsigned getAlignment() const { return Alignment; }
1930  unsigned char getTargetFlags() const { return TargetFlags; }
1931
1932  const Type *getType() const;
1933
1934  static bool classof(const ConstantPoolSDNode *) { return true; }
1935  static bool classof(const SDNode *N) {
1936    return N->getOpcode() == ISD::ConstantPool ||
1937           N->getOpcode() == ISD::TargetConstantPool;
1938  }
1939};
1940
1941class BasicBlockSDNode : public SDNode {
1942  MachineBasicBlock *MBB;
1943  friend class SelectionDAG;
1944  /// Debug info is meaningful and potentially useful here, but we create
1945  /// blocks out of order when they're jumped to, which makes it a bit
1946  /// harder.  Let's see if we need it first.
1947  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1948    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1949             getSDVTList(MVT::Other)), MBB(mbb) {
1950  }
1951public:
1952
1953  MachineBasicBlock *getBasicBlock() const { return MBB; }
1954
1955  static bool classof(const BasicBlockSDNode *) { return true; }
1956  static bool classof(const SDNode *N) {
1957    return N->getOpcode() == ISD::BasicBlock;
1958  }
1959};
1960
1961/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1962/// BUILD_VECTORs.
1963class BuildVectorSDNode : public SDNode {
1964  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1965  explicit BuildVectorSDNode();        // Do not implement
1966public:
1967  /// isConstantSplat - Check if this is a constant splat, and if so, find the
1968  /// smallest element size that splats the vector.  If MinSplatBits is
1969  /// nonzero, the element size must be at least that large.  Note that the
1970  /// splat element may be the entire vector (i.e., a one element vector).
1971  /// Returns the splat element value in SplatValue.  Any undefined bits in
1972  /// that value are zero, and the corresponding bits in the SplatUndef mask
1973  /// are set.  The SplatBitSize value is set to the splat element size in
1974  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1975  /// undefined.
1976  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1977                       unsigned &SplatBitSize, bool &HasAnyUndefs,
1978                       unsigned MinSplatBits = 0);
1979
1980  static inline bool classof(const BuildVectorSDNode *) { return true; }
1981  static inline bool classof(const SDNode *N) {
1982    return N->getOpcode() == ISD::BUILD_VECTOR;
1983  }
1984};
1985
1986/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1987/// used when the SelectionDAG needs to make a simple reference to something
1988/// in the LLVM IR representation.
1989///
1990/// Note that this is not used for carrying alias information; that is done
1991/// with MemOperandSDNode, which includes a Value which is required to be a
1992/// pointer, and several other fields specific to memory references.
1993///
1994class SrcValueSDNode : public SDNode {
1995  const Value *V;
1996  friend class SelectionDAG;
1997  /// Create a SrcValue for a general value.
1998  explicit SrcValueSDNode(const Value *v)
1999    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
2000             getSDVTList(MVT::Other)), V(v) {}
2001
2002public:
2003  /// getValue - return the contained Value.
2004  const Value *getValue() const { return V; }
2005
2006  static bool classof(const SrcValueSDNode *) { return true; }
2007  static bool classof(const SDNode *N) {
2008    return N->getOpcode() == ISD::SRCVALUE;
2009  }
2010};
2011
2012
2013/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
2014/// used to represent a reference to memory after ISD::LOAD
2015/// and ISD::STORE have been lowered.
2016///
2017class MemOperandSDNode : public SDNode {
2018  friend class SelectionDAG;
2019  /// Create a MachineMemOperand node
2020  explicit MemOperandSDNode(const MachineMemOperand &mo)
2021    : SDNode(ISD::MEMOPERAND, DebugLoc::getUnknownLoc(),
2022             getSDVTList(MVT::Other)), MO(mo) {}
2023
2024public:
2025  /// MO - The contained MachineMemOperand.
2026  const MachineMemOperand MO;
2027
2028  static bool classof(const MemOperandSDNode *) { return true; }
2029  static bool classof(const SDNode *N) {
2030    return N->getOpcode() == ISD::MEMOPERAND;
2031  }
2032};
2033
2034
2035class RegisterSDNode : public SDNode {
2036  unsigned Reg;
2037  friend class SelectionDAG;
2038  RegisterSDNode(unsigned reg, MVT VT)
2039    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
2040             getSDVTList(VT)), Reg(reg) {
2041  }
2042public:
2043
2044  unsigned getReg() const { return Reg; }
2045
2046  static bool classof(const RegisterSDNode *) { return true; }
2047  static bool classof(const SDNode *N) {
2048    return N->getOpcode() == ISD::Register;
2049  }
2050};
2051
2052class DbgStopPointSDNode : public SDNode {
2053  SDUse Chain;
2054  unsigned Line;
2055  unsigned Column;
2056  Value *CU;
2057  friend class SelectionDAG;
2058  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2059                     Value *cu)
2060    : SDNode(ISD::DBG_STOPPOINT, DebugLoc::getUnknownLoc(),
2061      getSDVTList(MVT::Other)), Line(l), Column(c), CU(cu) {
2062    InitOperands(&Chain, ch);
2063  }
2064public:
2065  unsigned getLine() const { return Line; }
2066  unsigned getColumn() const { return Column; }
2067  Value *getCompileUnit() const { return CU; }
2068
2069  static bool classof(const DbgStopPointSDNode *) { return true; }
2070  static bool classof(const SDNode *N) {
2071    return N->getOpcode() == ISD::DBG_STOPPOINT;
2072  }
2073};
2074
2075class LabelSDNode : public SDNode {
2076  SDUse Chain;
2077  unsigned LabelID;
2078  friend class SelectionDAG;
2079LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2080    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2081    InitOperands(&Chain, ch);
2082  }
2083public:
2084  unsigned getLabelID() const { return LabelID; }
2085
2086  static bool classof(const LabelSDNode *) { return true; }
2087  static bool classof(const SDNode *N) {
2088    return N->getOpcode() == ISD::DBG_LABEL ||
2089           N->getOpcode() == ISD::EH_LABEL;
2090  }
2091};
2092
2093class ExternalSymbolSDNode : public SDNode {
2094  const char *Symbol;
2095  unsigned char TargetFlags;
2096
2097  friend class SelectionDAG;
2098  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, MVT VT)
2099    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2100             DebugLoc::getUnknownLoc(),
2101             getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
2102  }
2103public:
2104
2105  const char *getSymbol() const { return Symbol; }
2106  unsigned char getTargetFlags() const { return TargetFlags; }
2107
2108  static bool classof(const ExternalSymbolSDNode *) { return true; }
2109  static bool classof(const SDNode *N) {
2110    return N->getOpcode() == ISD::ExternalSymbol ||
2111           N->getOpcode() == ISD::TargetExternalSymbol;
2112  }
2113};
2114
2115class CondCodeSDNode : public SDNode {
2116  ISD::CondCode Condition;
2117  friend class SelectionDAG;
2118  explicit CondCodeSDNode(ISD::CondCode Cond)
2119    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2120             getSDVTList(MVT::Other)), Condition(Cond) {
2121  }
2122public:
2123
2124  ISD::CondCode get() const { return Condition; }
2125
2126  static bool classof(const CondCodeSDNode *) { return true; }
2127  static bool classof(const SDNode *N) {
2128    return N->getOpcode() == ISD::CONDCODE;
2129  }
2130};
2131
2132/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2133/// future and most targets don't support it.
2134class CvtRndSatSDNode : public SDNode {
2135  ISD::CvtCode CvtCode;
2136  friend class SelectionDAG;
2137  explicit CvtRndSatSDNode(MVT VT, DebugLoc dl, const SDValue *Ops,
2138                           unsigned NumOps, ISD::CvtCode Code)
2139    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2140      CvtCode(Code) {
2141    assert(NumOps == 5 && "wrong number of operations");
2142  }
2143public:
2144  ISD::CvtCode getCvtCode() const { return CvtCode; }
2145
2146  static bool classof(const CvtRndSatSDNode *) { return true; }
2147  static bool classof(const SDNode *N) {
2148    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2149  }
2150};
2151
2152namespace ISD {
2153  struct ArgFlagsTy {
2154  private:
2155    static const uint64_t NoFlagSet      = 0ULL;
2156    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2157    static const uint64_t ZExtOffs       = 0;
2158    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2159    static const uint64_t SExtOffs       = 1;
2160    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2161    static const uint64_t InRegOffs      = 2;
2162    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2163    static const uint64_t SRetOffs       = 3;
2164    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2165    static const uint64_t ByValOffs      = 4;
2166    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2167    static const uint64_t NestOffs       = 5;
2168    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2169    static const uint64_t ByValAlignOffs = 6;
2170    static const uint64_t Split          = 1ULL << 10;
2171    static const uint64_t SplitOffs      = 10;
2172    static const uint64_t OrigAlign      = 0x1FULL<<27;
2173    static const uint64_t OrigAlignOffs  = 27;
2174    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2175    static const uint64_t ByValSizeOffs  = 32;
2176
2177    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2178
2179    uint64_t Flags;
2180  public:
2181    ArgFlagsTy() : Flags(0) { }
2182
2183    bool isZExt()   const { return Flags & ZExt; }
2184    void setZExt()  { Flags |= One << ZExtOffs; }
2185
2186    bool isSExt()   const { return Flags & SExt; }
2187    void setSExt()  { Flags |= One << SExtOffs; }
2188
2189    bool isInReg()  const { return Flags & InReg; }
2190    void setInReg() { Flags |= One << InRegOffs; }
2191
2192    bool isSRet()   const { return Flags & SRet; }
2193    void setSRet()  { Flags |= One << SRetOffs; }
2194
2195    bool isByVal()  const { return Flags & ByVal; }
2196    void setByVal() { Flags |= One << ByValOffs; }
2197
2198    bool isNest()   const { return Flags & Nest; }
2199    void setNest()  { Flags |= One << NestOffs; }
2200
2201    unsigned getByValAlign() const {
2202      return (unsigned)
2203        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2204    }
2205    void setByValAlign(unsigned A) {
2206      Flags = (Flags & ~ByValAlign) |
2207        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2208    }
2209
2210    bool isSplit()   const { return Flags & Split; }
2211    void setSplit()  { Flags |= One << SplitOffs; }
2212
2213    unsigned getOrigAlign() const {
2214      return (unsigned)
2215        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2216    }
2217    void setOrigAlign(unsigned A) {
2218      Flags = (Flags & ~OrigAlign) |
2219        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2220    }
2221
2222    unsigned getByValSize() const {
2223      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2224    }
2225    void setByValSize(unsigned S) {
2226      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2227    }
2228
2229    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2230    std::string getArgFlagsString();
2231
2232    /// getRawBits - Represent the flags as a bunch of bits.
2233    uint64_t getRawBits() const { return Flags; }
2234  };
2235}
2236
2237/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2238class ARG_FLAGSSDNode : public SDNode {
2239  ISD::ArgFlagsTy TheFlags;
2240  friend class SelectionDAG;
2241  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2242    : SDNode(ISD::ARG_FLAGS, DebugLoc::getUnknownLoc(),
2243             getSDVTList(MVT::Other)), TheFlags(Flags) {
2244  }
2245public:
2246  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2247
2248  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2249  static bool classof(const SDNode *N) {
2250    return N->getOpcode() == ISD::ARG_FLAGS;
2251  }
2252};
2253
2254/// CallSDNode - Node for calls -- ISD::CALL.
2255class CallSDNode : public SDNode {
2256  unsigned CallingConv;
2257  bool IsVarArg;
2258  bool IsTailCall;
2259  unsigned NumFixedArgs;
2260  // We might eventually want a full-blown Attributes for the result; that
2261  // will expand the size of the representation.  At the moment we only
2262  // need Inreg.
2263  bool Inreg;
2264  friend class SelectionDAG;
2265  CallSDNode(unsigned cc, DebugLoc dl, bool isvararg, bool istailcall,
2266             bool isinreg, SDVTList VTs, const SDValue *Operands,
2267             unsigned numOperands, unsigned numFixedArgs)
2268    : SDNode(ISD::CALL, dl, VTs, Operands, numOperands),
2269      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2270      NumFixedArgs(numFixedArgs), Inreg(isinreg) {}
2271public:
2272  unsigned getCallingConv() const { return CallingConv; }
2273  unsigned isVarArg() const { return IsVarArg; }
2274  unsigned isTailCall() const { return IsTailCall; }
2275  unsigned isInreg() const { return Inreg; }
2276
2277  /// Set this call to not be marked as a tail call. Normally setter
2278  /// methods in SDNodes are unsafe because it breaks the CSE map,
2279  /// but we don't include the tail call flag for calls so it's ok
2280  /// in this case.
2281  void setNotTailCall() { IsTailCall = false; }
2282
2283  SDValue getChain() const { return getOperand(0); }
2284  SDValue getCallee() const { return getOperand(1); }
2285
2286  unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
2287  unsigned getNumFixedArgs() const {
2288    if (isVarArg())
2289      return NumFixedArgs;
2290    else
2291      return getNumArgs();
2292  }
2293  SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
2294  SDValue getArgFlagsVal(unsigned i) const {
2295    return getOperand(3+2*i);
2296  }
2297  ISD::ArgFlagsTy getArgFlags(unsigned i) const {
2298    return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
2299  }
2300
2301  unsigned getNumRetVals() const { return getNumValues() - 1; }
2302  MVT getRetValType(unsigned i) const { return getValueType(i); }
2303
2304  static bool classof(const CallSDNode *) { return true; }
2305  static bool classof(const SDNode *N) {
2306    return N->getOpcode() == ISD::CALL;
2307  }
2308};
2309
2310/// VTSDNode - This class is used to represent MVT's, which are used
2311/// to parameterize some operations.
2312class VTSDNode : public SDNode {
2313  MVT ValueType;
2314  friend class SelectionDAG;
2315  explicit VTSDNode(MVT VT)
2316    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2317             getSDVTList(MVT::Other)), ValueType(VT) {
2318  }
2319public:
2320
2321  MVT getVT() const { return ValueType; }
2322
2323  static bool classof(const VTSDNode *) { return true; }
2324  static bool classof(const SDNode *N) {
2325    return N->getOpcode() == ISD::VALUETYPE;
2326  }
2327};
2328
2329/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2330///
2331class LSBaseSDNode : public MemSDNode {
2332  //! Operand array for load and store
2333  /*!
2334    \note Moving this array to the base class captures more
2335    common functionality shared between LoadSDNode and
2336    StoreSDNode
2337   */
2338  SDUse Ops[4];
2339public:
2340  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2341               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2342               MVT VT, const Value *SV, int SVO, unsigned Align, bool Vol)
2343    : MemSDNode(NodeTy, dl, VTs, VT, SV, SVO, Align, Vol) {
2344    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2345    SubclassData |= AM << 2;
2346    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2347    InitOperands(Ops, Operands, numOperands);
2348    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2349           "Only indexed loads and stores have a non-undef offset operand");
2350  }
2351
2352  const SDValue &getOffset() const {
2353    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2354  }
2355
2356  /// getAddressingMode - Return the addressing mode for this load or store:
2357  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2358  ISD::MemIndexedMode getAddressingMode() const {
2359    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2360  }
2361
2362  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2363  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2364
2365  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2366  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2367
2368  static bool classof(const LSBaseSDNode *) { return true; }
2369  static bool classof(const SDNode *N) {
2370    return N->getOpcode() == ISD::LOAD ||
2371           N->getOpcode() == ISD::STORE;
2372  }
2373};
2374
2375/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2376///
2377class LoadSDNode : public LSBaseSDNode {
2378  friend class SelectionDAG;
2379  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2380             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2381             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2382    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2383                   VTs, AM, LVT, SV, O, Align, Vol) {
2384    SubclassData |= (unsigned short)ETy;
2385    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2386  }
2387public:
2388
2389  /// getExtensionType - Return whether this is a plain node,
2390  /// or one of the varieties of value-extending loads.
2391  ISD::LoadExtType getExtensionType() const {
2392    return ISD::LoadExtType(SubclassData & 3);
2393  }
2394
2395  const SDValue &getBasePtr() const { return getOperand(1); }
2396  const SDValue &getOffset() const { return getOperand(2); }
2397
2398  static bool classof(const LoadSDNode *) { return true; }
2399  static bool classof(const SDNode *N) {
2400    return N->getOpcode() == ISD::LOAD;
2401  }
2402};
2403
2404/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2405///
2406class StoreSDNode : public LSBaseSDNode {
2407  friend class SelectionDAG;
2408  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2409              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2410              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2411    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2412                   VTs, AM, SVT, SV, O, Align, Vol) {
2413    SubclassData |= (unsigned short)isTrunc;
2414    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2415  }
2416public:
2417
2418  /// isTruncatingStore - Return true if the op does a truncation before store.
2419  /// For integers this is the same as doing a TRUNCATE and storing the result.
2420  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2421  bool isTruncatingStore() const { return SubclassData & 1; }
2422
2423  const SDValue &getValue() const { return getOperand(1); }
2424  const SDValue &getBasePtr() const { return getOperand(2); }
2425  const SDValue &getOffset() const { return getOperand(3); }
2426
2427  static bool classof(const StoreSDNode *) { return true; }
2428  static bool classof(const SDNode *N) {
2429    return N->getOpcode() == ISD::STORE;
2430  }
2431};
2432
2433
2434class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2435  SDNode *Node;
2436  unsigned Operand;
2437
2438  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2439public:
2440  bool operator==(const SDNodeIterator& x) const {
2441    return Operand == x.Operand;
2442  }
2443  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2444
2445  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2446    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2447    Operand = I.Operand;
2448    return *this;
2449  }
2450
2451  pointer operator*() const {
2452    return Node->getOperand(Operand).getNode();
2453  }
2454  pointer operator->() const { return operator*(); }
2455
2456  SDNodeIterator& operator++() {                // Preincrement
2457    ++Operand;
2458    return *this;
2459  }
2460  SDNodeIterator operator++(int) { // Postincrement
2461    SDNodeIterator tmp = *this; ++*this; return tmp;
2462  }
2463
2464  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2465  static SDNodeIterator end  (SDNode *N) {
2466    return SDNodeIterator(N, N->getNumOperands());
2467  }
2468
2469  unsigned getOperand() const { return Operand; }
2470  const SDNode *getNode() const { return Node; }
2471};
2472
2473template <> struct GraphTraits<SDNode*> {
2474  typedef SDNode NodeType;
2475  typedef SDNodeIterator ChildIteratorType;
2476  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2477  static inline ChildIteratorType child_begin(NodeType *N) {
2478    return SDNodeIterator::begin(N);
2479  }
2480  static inline ChildIteratorType child_end(NodeType *N) {
2481    return SDNodeIterator::end(N);
2482  }
2483};
2484
2485/// LargestSDNode - The largest SDNode class.
2486///
2487typedef LoadSDNode LargestSDNode;
2488
2489/// MostAlignedSDNode - The SDNode class with the greatest alignment
2490/// requirement.
2491///
2492typedef ARG_FLAGSSDNode MostAlignedSDNode;
2493
2494namespace ISD {
2495  /// isNormalLoad - Returns true if the specified node is a non-extending
2496  /// and unindexed load.
2497  inline bool isNormalLoad(const SDNode *N) {
2498    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2499    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2500      Ld->getAddressingMode() == ISD::UNINDEXED;
2501  }
2502
2503  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2504  /// load.
2505  inline bool isNON_EXTLoad(const SDNode *N) {
2506    return isa<LoadSDNode>(N) &&
2507      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2508  }
2509
2510  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2511  ///
2512  inline bool isEXTLoad(const SDNode *N) {
2513    return isa<LoadSDNode>(N) &&
2514      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2515  }
2516
2517  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2518  ///
2519  inline bool isSEXTLoad(const SDNode *N) {
2520    return isa<LoadSDNode>(N) &&
2521      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2522  }
2523
2524  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2525  ///
2526  inline bool isZEXTLoad(const SDNode *N) {
2527    return isa<LoadSDNode>(N) &&
2528      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2529  }
2530
2531  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2532  ///
2533  inline bool isUNINDEXEDLoad(const SDNode *N) {
2534    return isa<LoadSDNode>(N) &&
2535      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2536  }
2537
2538  /// isNormalStore - Returns true if the specified node is a non-truncating
2539  /// and unindexed store.
2540  inline bool isNormalStore(const SDNode *N) {
2541    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2542    return St && !St->isTruncatingStore() &&
2543      St->getAddressingMode() == ISD::UNINDEXED;
2544  }
2545
2546  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2547  /// store.
2548  inline bool isNON_TRUNCStore(const SDNode *N) {
2549    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2550  }
2551
2552  /// isTRUNCStore - Returns true if the specified node is a truncating
2553  /// store.
2554  inline bool isTRUNCStore(const SDNode *N) {
2555    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2556  }
2557
2558  /// isUNINDEXEDStore - Returns true if the specified node is an
2559  /// unindexed store.
2560  inline bool isUNINDEXEDStore(const SDNode *N) {
2561    return isa<StoreSDNode>(N) &&
2562      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2563  }
2564}
2565
2566
2567} // end llvm namespace
2568
2569#endif
2570