SelectionDAGNodes.h revision 2bffad3eebff7997599d12c17248ae580ba17cb8
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37
38/// ISD namespace - This namespace contains an enum which represents all of the
39/// SelectionDAG node types and value types.
40///
41namespace ISD {
42  //===--------------------------------------------------------------------===//
43  /// ISD::NodeType enum - This enum defines all of the operators valid in a
44  /// SelectionDAG.
45  ///
46  enum NodeType {
47    // EntryToken - This is the marker used to indicate the start of the region.
48    EntryToken,
49
50    // Token factor - This node is takes multiple tokens as input and produces a
51    // single token result.  This is used to represent the fact that the operand
52    // operators are independent of each other.
53    TokenFactor,
54
55    // Various leaf nodes.
56    Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
57    BasicBlock, ExternalSymbol,
58
59    // CopyToReg - This node has chain and child nodes, and an associated
60    // register number.  The instruction selector must guarantee that the value
61    // of the value node is available in the register stored in the RegSDNode
62    // object.
63    CopyToReg,
64
65    // CopyFromReg - This node indicates that the input value is a virtual or
66    // physical register that is defined outside of the scope of this
67    // SelectionDAG.  The register is available from the RegSDNode object.
68    CopyFromReg,
69
70    // ImplicitDef - This node indicates that the specified register is
71    // implicitly defined by some operation (e.g. its a live-in argument).  This
72    // register is indicated in the RegSDNode object.  The only operand to this
73    // is the token chain coming in, the only result is the token chain going
74    // out.
75    ImplicitDef,
76
77    // UNDEF - An undefined node
78    UNDEF,
79
80    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
81    // a Constant, which is required to be operand #1), element of the aggregate
82    // value specified as operand #0.  This is only for use before legalization,
83    // for values that will be broken into multiple registers.
84    EXTRACT_ELEMENT,
85
86    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
87    // two values of the same integer value type, this produces a value twice as
88    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
89    BUILD_PAIR,
90
91
92    // Simple binary arithmetic operators.
93    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
94
95    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
96    // an unsigned/signed value of type i[2*n], then return the top part.
97    MULHU, MULHS,
98
99    // Bitwise operators.
100    AND, OR, XOR, SHL, SRA, SRL,
101
102    // Select operator.
103    SELECT,
104
105    // SetCC operator - This evaluates to a boolean (i1) true value if the
106    // condition is true.  These nodes are instances of the
107    // SetCCSDNode class, which contains the condition code as extra
108    // state.
109    SETCC,
110
111    // ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
112    // broken into a multiple pieces each, and return the resulting pieces of
113    // doing an atomic add/sub operation.  This is used to handle add/sub of
114    // expanded types.  The operation ordering is:
115    //       [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
116    ADD_PARTS, SUB_PARTS,
117
118    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
119    // integer shift operations, just like ADD/SUB_PARTS.  The operation
120    // ordering is:
121    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
122    SHL_PARTS, SRA_PARTS, SRL_PARTS,
123
124    // Conversion operators.  These are all single input single output
125    // operations.  For all of these, the result type must be strictly
126    // wider or narrower (depending on the operation) than the source
127    // type.
128
129    // SIGN_EXTEND - Used for integer types, replicating the sign bit
130    // into new bits.
131    SIGN_EXTEND,
132
133    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
134    ZERO_EXTEND,
135
136    // TRUNCATE - Completely drop the high bits.
137    TRUNCATE,
138
139    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
140    // depends on the first letter) to floating point.
141    SINT_TO_FP,
142    UINT_TO_FP,
143
144    // SIGN_EXTEND_INREG/ZERO_EXTEND_INREG - These operators atomically performs
145    // a SHL/(SRA|SHL) pair to (sign|zero) extend a small value in a large
146    // integer register (e.g. sign extending the low 8 bits of a 32-bit register
147    // to fill the top 24 bits with the 7th bit).  The size of the smaller type
148    // is indicated by the ExtraValueType in the MVTSDNode for the operator.
149    SIGN_EXTEND_INREG,
150    ZERO_EXTEND_INREG,
151
152    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
153    // integer.
154    FP_TO_SINT,
155    FP_TO_UINT,
156
157    // FP_ROUND - Perform a rounding operation from the current
158    // precision down to the specified precision (currently always 64->32).
159    FP_ROUND,
160
161    // FP_ROUND_INREG - This operator takes a floating point register, and
162    // rounds it to a floating point value.  It then promotes it and returns it
163    // in a register of the same size.  This operation effectively just discards
164    // excess precision.  The type to round down to is specified by the
165    // ExtraValueType in the MVTSDNode (currently always 64->32->64).
166    FP_ROUND_INREG,
167
168    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
169    FP_EXTEND,
170
171    // FNEG, FABS - Perform unary floating point negation and absolute value
172    // operations.
173    FNEG, FABS,
174
175    // Other operators.  LOAD and STORE have token chains as their first
176    // operand, then the same operands as an LLVM load/store instruction.
177    LOAD, STORE,
178
179    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators are instances of the
180    // MVTSDNode.  All of these load a value from memory and extend them to a
181    // larger value (e.g. load a byte into a word register).  All three of these
182    // have two operands, a chain and a pointer to load from.  The extra value
183    // type is the source type being loaded.
184    //
185    // SEXTLOAD loads the integer operand and sign extends it to a larger
186    //          integer result type.
187    // ZEXTLOAD loads the integer operand and zero extends it to a larger
188    //          integer result type.
189    // EXTLOAD  is used for two things: floating point extending loads, and
190    //          integer extending loads where it doesn't matter what the high
191    //          bits are set to.  The code generator is allowed to codegen this
192    //          into whichever operation is more efficient.
193    EXTLOAD, SEXTLOAD, ZEXTLOAD,
194
195    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
196    // value and stores it to memory in one operation.  This can be used for
197    // either integer or floating point operands, and the stored type
198    // represented as the 'extra' value type in the MVTSDNode representing the
199    // operator.  This node has the same three operands as a standard store.
200    TRUNCSTORE,
201
202    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
203    // to a specified boundary.  The first operand is the token chain, the
204    // second is the number of bytes to allocate, and the third is the alignment
205    // boundary.
206    DYNAMIC_STACKALLOC,
207
208    // Control flow instructions.  These all have token chains.
209
210    // BR - Unconditional branch.  The first operand is the chain
211    // operand, the second is the MBB to branch to.
212    BR,
213
214    // BRCOND - Conditional branch.  The first operand is the chain,
215    // the second is the condition, the third is the block to branch
216    // to if the condition is true.
217    BRCOND,
218
219    // RET - Return from function.  The first operand is the chain,
220    // and any subsequent operands are the return values for the
221    // function.  This operation can have variable number of operands.
222    RET,
223
224    // CALL - Call to a function pointer.  The first operand is the chain, the
225    // second is the destination function pointer (a GlobalAddress for a direct
226    // call).  Arguments have already been lowered to explicit DAGs according to
227    // the calling convention in effect here.
228    CALL,
229
230    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
231    // correspond to the operands of the LLVM intrinsic functions.  The only
232    // result is a token chain.  The alignment argument is guaranteed to be a
233    // Constant node.
234    MEMSET,
235    MEMMOVE,
236    MEMCPY,
237
238    // ADJCALLSTACKDOWN/ADJCALLSTACKUP - These operators mark the beginning and
239    // end of a call sequence and indicate how much the stack pointer needs to
240    // be adjusted for that particular call.  The first operand is a chain, the
241    // second is a ConstantSDNode of intptr type.
242    ADJCALLSTACKDOWN,  // Beginning of a call sequence
243    ADJCALLSTACKUP,    // End of a call sequence
244
245    // PCMARKER - This corresponds to the pcmarker intrinsic.
246    PCMARKER,
247
248    // BUILTIN_OP_END - This must be the last enum value in this list.
249    BUILTIN_OP_END,
250  };
251
252  //===--------------------------------------------------------------------===//
253  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
254  /// below work out, when considering SETFALSE (something that never exists
255  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
256  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
257  /// to.  If the "N" column is 1, the result of the comparison is undefined if
258  /// the input is a NAN.
259  ///
260  /// All of these (except for the 'always folded ops') should be handled for
261  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
262  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
263  ///
264  /// Note that these are laid out in a specific order to allow bit-twiddling
265  /// to transform conditions.
266  enum CondCode {
267    // Opcode          N U L G E       Intuitive operation
268    SETFALSE,      //    0 0 0 0       Always false (always folded)
269    SETOEQ,        //    0 0 0 1       True if ordered and equal
270    SETOGT,        //    0 0 1 0       True if ordered and greater than
271    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
272    SETOLT,        //    0 1 0 0       True if ordered and less than
273    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
274    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
275    SETO,          //    0 1 1 1       True if ordered (no nans)
276    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
277    SETUEQ,        //    1 0 0 1       True if unordered or equal
278    SETUGT,        //    1 0 1 0       True if unordered or greater than
279    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
280    SETULT,        //    1 1 0 0       True if unordered or less than
281    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
282    SETUNE,        //    1 1 1 0       True if unordered or not equal
283    SETTRUE,       //    1 1 1 1       Always true (always folded)
284    // Don't care operations: undefined if the input is a nan.
285    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
286    SETEQ,         //  1 X 0 0 1       True if equal
287    SETGT,         //  1 X 0 1 0       True if greater than
288    SETGE,         //  1 X 0 1 1       True if greater than or equal
289    SETLT,         //  1 X 1 0 0       True if less than
290    SETLE,         //  1 X 1 0 1       True if less than or equal
291    SETNE,         //  1 X 1 1 0       True if not equal
292    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
293
294    SETCC_INVALID,      // Marker value.
295  };
296
297  /// isSignedIntSetCC - Return true if this is a setcc instruction that
298  /// performs a signed comparison when used with integer operands.
299  inline bool isSignedIntSetCC(CondCode Code) {
300    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
301  }
302
303  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
304  /// performs an unsigned comparison when used with integer operands.
305  inline bool isUnsignedIntSetCC(CondCode Code) {
306    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
307  }
308
309  /// isTrueWhenEqual - Return true if the specified condition returns true if
310  /// the two operands to the condition are equal.  Note that if one of the two
311  /// operands is a NaN, this value is meaningless.
312  inline bool isTrueWhenEqual(CondCode Cond) {
313    return ((int)Cond & 1) != 0;
314  }
315
316  /// getUnorderedFlavor - This function returns 0 if the condition is always
317  /// false if an operand is a NaN, 1 if the condition is always true if the
318  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
319  /// NaN.
320  inline unsigned getUnorderedFlavor(CondCode Cond) {
321    return ((int)Cond >> 3) & 3;
322  }
323
324  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
325  /// 'op' is a valid SetCC operation.
326  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
327
328  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
329  /// when given the operation for (X op Y).
330  CondCode getSetCCSwappedOperands(CondCode Operation);
331
332  /// getSetCCOrOperation - Return the result of a logical OR between different
333  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
334  /// function returns SETCC_INVALID if it is not possible to represent the
335  /// resultant comparison.
336  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
337
338  /// getSetCCAndOperation - Return the result of a logical AND between
339  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
340  /// function returns SETCC_INVALID if it is not possible to represent the
341  /// resultant comparison.
342  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
343}  // end llvm::ISD namespace
344
345
346//===----------------------------------------------------------------------===//
347/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
348/// values as the result of a computation.  Many nodes return multiple values,
349/// from loads (which define a token and a return value) to ADDC (which returns
350/// a result and a carry value), to calls (which may return an arbitrary number
351/// of values).
352///
353/// As such, each use of a SelectionDAG computation must indicate the node that
354/// computes it as well as which return value to use from that node.  This pair
355/// of information is represented with the SDOperand value type.
356///
357class SDOperand {
358public:
359  SDNode *Val;        // The node defining the value we are using.
360  unsigned ResNo;     // Which return value of the node we are using.
361
362  SDOperand() : Val(0) {}
363  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
364
365  bool operator==(const SDOperand &O) const {
366    return Val == O.Val && ResNo == O.ResNo;
367  }
368  bool operator!=(const SDOperand &O) const {
369    return !operator==(O);
370  }
371  bool operator<(const SDOperand &O) const {
372    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
373  }
374
375  SDOperand getValue(unsigned R) const {
376    return SDOperand(Val, R);
377  }
378
379  /// getValueType - Return the ValueType of the referenced return value.
380  ///
381  inline MVT::ValueType getValueType() const;
382
383  // Forwarding methods - These forward to the corresponding methods in SDNode.
384  inline unsigned getOpcode() const;
385  inline unsigned getNodeDepth() const;
386  inline unsigned getNumOperands() const;
387  inline const SDOperand &getOperand(unsigned i) const;
388
389  /// hasOneUse - Return true if there is exactly one operation using this
390  /// result value of the defining operator.
391  inline bool hasOneUse() const;
392};
393
394
395/// simplify_type specializations - Allow casting operators to work directly on
396/// SDOperands as if they were SDNode*'s.
397template<> struct simplify_type<SDOperand> {
398  typedef SDNode* SimpleType;
399  static SimpleType getSimplifiedValue(const SDOperand &Val) {
400    return static_cast<SimpleType>(Val.Val);
401  }
402};
403template<> struct simplify_type<const SDOperand> {
404  typedef SDNode* SimpleType;
405  static SimpleType getSimplifiedValue(const SDOperand &Val) {
406    return static_cast<SimpleType>(Val.Val);
407  }
408};
409
410
411/// SDNode - Represents one node in the SelectionDAG.
412///
413class SDNode {
414  /// NodeType - The operation that this node performs.
415  ///
416  unsigned short NodeType;
417
418  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
419  /// means that leaves have a depth of 1, things that use only leaves have a
420  /// depth of 2, etc.
421  unsigned short NodeDepth;
422
423  /// Operands - The values that are used by this operation.
424  ///
425  std::vector<SDOperand> Operands;
426
427  /// Values - The types of the values this node defines.  SDNode's may define
428  /// multiple values simultaneously.
429  std::vector<MVT::ValueType> Values;
430
431  /// Uses - These are all of the SDNode's that use a value produced by this
432  /// node.
433  std::vector<SDNode*> Uses;
434public:
435
436  //===--------------------------------------------------------------------===//
437  //  Accessors
438  //
439  unsigned getOpcode()  const { return NodeType; }
440
441  size_t use_size() const { return Uses.size(); }
442  bool use_empty() const { return Uses.empty(); }
443  bool hasOneUse() const { return Uses.size() == 1; }
444
445  /// getNodeDepth - Return the distance from this node to the leaves in the
446  /// graph.  The leaves have a depth of 1.
447  unsigned getNodeDepth() const { return NodeDepth; }
448
449  typedef std::vector<SDNode*>::const_iterator use_iterator;
450  use_iterator use_begin() const { return Uses.begin(); }
451  use_iterator use_end() const { return Uses.end(); }
452
453  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
454  /// indicated value.  This method ignores uses of other values defined by this
455  /// operation.
456  bool hasNUsesOfValue(unsigned NUses, unsigned Value);
457
458  /// getNumOperands - Return the number of values used by this operation.
459  ///
460  unsigned getNumOperands() const { return Operands.size(); }
461
462  const SDOperand &getOperand(unsigned Num) {
463    assert(Num < Operands.size() && "Invalid child # of SDNode!");
464    return Operands[Num];
465  }
466
467  const SDOperand &getOperand(unsigned Num) const {
468    assert(Num < Operands.size() && "Invalid child # of SDNode!");
469    return Operands[Num];
470  }
471
472  /// getNumValues - Return the number of values defined/returned by this
473  /// operator.
474  ///
475  unsigned getNumValues() const { return Values.size(); }
476
477  /// getValueType - Return the type of a specified result.
478  ///
479  MVT::ValueType getValueType(unsigned ResNo) const {
480    assert(ResNo < Values.size() && "Illegal result number!");
481    return Values[ResNo];
482  }
483
484  /// getOperationName - Return the opcode of this operation for printing.
485  ///
486  const char* getOperationName() const;
487  void dump() const;
488
489  static bool classof(const SDNode *) { return true; }
490
491protected:
492  friend class SelectionDAG;
493
494  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
495    Values.reserve(1);
496    Values.push_back(VT);
497  }
498  SDNode(unsigned NT, SDOperand Op)
499    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
500    Operands.reserve(1); Operands.push_back(Op);
501    Op.Val->Uses.push_back(this);
502  }
503  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
504    : NodeType(NT) {
505    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
506      NodeDepth = N1.Val->getNodeDepth()+1;
507    else
508      NodeDepth = N2.Val->getNodeDepth()+1;
509    Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
510    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
511  }
512  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
513    : NodeType(NT) {
514    unsigned ND = N1.Val->getNodeDepth();
515    if (ND < N2.Val->getNodeDepth())
516      ND = N2.Val->getNodeDepth();
517    if (ND < N3.Val->getNodeDepth())
518      ND = N3.Val->getNodeDepth();
519    NodeDepth = ND+1;
520
521    Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
522    Operands.push_back(N3);
523    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
524    N3.Val->Uses.push_back(this);
525  }
526  SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
527    Operands.swap(Nodes);
528    unsigned ND = 0;
529    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
530      Operands[i].Val->Uses.push_back(this);
531      if (ND < Operands[i].Val->getNodeDepth())
532        ND = Operands[i].Val->getNodeDepth();
533    }
534    NodeDepth = ND+1;
535  }
536
537  virtual ~SDNode() {
538    // FIXME: Drop uses.
539  }
540
541  void setValueTypes(MVT::ValueType VT) {
542    Values.reserve(1);
543    Values.push_back(VT);
544  }
545  void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
546    Values.reserve(2);
547    Values.push_back(VT1);
548    Values.push_back(VT2);
549  }
550  /// Note: this method destroys the vector passed in.
551  void setValueTypes(std::vector<MVT::ValueType> &VTs) {
552    std::swap(Values, VTs);
553  }
554
555  void removeUser(SDNode *User) {
556    // Remove this user from the operand's use list.
557    for (unsigned i = Uses.size(); ; --i) {
558      assert(i != 0 && "Didn't find user!");
559      if (Uses[i-1] == User) {
560        Uses.erase(Uses.begin()+i-1);
561        break;
562      }
563    }
564  }
565};
566
567
568// Define inline functions from the SDOperand class.
569
570inline unsigned SDOperand::getOpcode() const {
571  return Val->getOpcode();
572}
573inline unsigned SDOperand::getNodeDepth() const {
574  return Val->getNodeDepth();
575}
576inline MVT::ValueType SDOperand::getValueType() const {
577  return Val->getValueType(ResNo);
578}
579inline unsigned SDOperand::getNumOperands() const {
580  return Val->getNumOperands();
581}
582inline const SDOperand &SDOperand::getOperand(unsigned i) const {
583  return Val->getOperand(i);
584}
585inline bool SDOperand::hasOneUse() const {
586  return Val->hasNUsesOfValue(1, ResNo);
587}
588
589
590class ConstantSDNode : public SDNode {
591  uint64_t Value;
592protected:
593  friend class SelectionDAG;
594  ConstantSDNode(uint64_t val, MVT::ValueType VT)
595    : SDNode(ISD::Constant, VT), Value(val) {
596  }
597public:
598
599  uint64_t getValue() const { return Value; }
600
601  int64_t getSignExtended() const {
602    unsigned Bits = MVT::getSizeInBits(getValueType(0));
603    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
604  }
605
606  bool isNullValue() const { return Value == 0; }
607  bool isAllOnesValue() const {
608    int NumBits = MVT::getSizeInBits(getValueType(0));
609    if (NumBits == 64) return Value+1 == 0;
610    return Value == (1ULL << NumBits)-1;
611  }
612
613  static bool classof(const ConstantSDNode *) { return true; }
614  static bool classof(const SDNode *N) {
615    return N->getOpcode() == ISD::Constant;
616  }
617};
618
619class ConstantFPSDNode : public SDNode {
620  double Value;
621protected:
622  friend class SelectionDAG;
623  ConstantFPSDNode(double val, MVT::ValueType VT)
624    : SDNode(ISD::ConstantFP, VT), Value(val) {
625  }
626public:
627
628  double getValue() const { return Value; }
629
630  /// isExactlyValue - We don't rely on operator== working on double values, as
631  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
632  /// As such, this method can be used to do an exact bit-for-bit comparison of
633  /// two floating point values.
634  bool isExactlyValue(double V) const {
635    union {
636      double V;
637      uint64_t I;
638    } T1;
639    T1.V = Value;
640    union {
641      double V;
642      uint64_t I;
643    } T2;
644    T2.V = V;
645    return T1.I == T2.I;
646  }
647
648  static bool classof(const ConstantFPSDNode *) { return true; }
649  static bool classof(const SDNode *N) {
650    return N->getOpcode() == ISD::ConstantFP;
651  }
652};
653
654class GlobalAddressSDNode : public SDNode {
655  GlobalValue *TheGlobal;
656protected:
657  friend class SelectionDAG;
658  GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT)
659    : SDNode(ISD::GlobalAddress, VT) {
660    TheGlobal = const_cast<GlobalValue*>(GA);
661  }
662public:
663
664  GlobalValue *getGlobal() const { return TheGlobal; }
665
666  static bool classof(const GlobalAddressSDNode *) { return true; }
667  static bool classof(const SDNode *N) {
668    return N->getOpcode() == ISD::GlobalAddress;
669  }
670};
671
672
673class FrameIndexSDNode : public SDNode {
674  int FI;
675protected:
676  friend class SelectionDAG;
677  FrameIndexSDNode(int fi, MVT::ValueType VT)
678    : SDNode(ISD::FrameIndex, VT), FI(fi) {}
679public:
680
681  int getIndex() const { return FI; }
682
683  static bool classof(const FrameIndexSDNode *) { return true; }
684  static bool classof(const SDNode *N) {
685    return N->getOpcode() == ISD::FrameIndex;
686  }
687};
688
689class ConstantPoolSDNode : public SDNode {
690  unsigned CPI;
691protected:
692  friend class SelectionDAG;
693  ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT)
694    : SDNode(ISD::ConstantPool, VT), CPI(cpi) {}
695public:
696
697  unsigned getIndex() const { return CPI; }
698
699  static bool classof(const ConstantPoolSDNode *) { return true; }
700  static bool classof(const SDNode *N) {
701    return N->getOpcode() == ISD::ConstantPool;
702  }
703};
704
705class BasicBlockSDNode : public SDNode {
706  MachineBasicBlock *MBB;
707protected:
708  friend class SelectionDAG;
709  BasicBlockSDNode(MachineBasicBlock *mbb)
710    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
711public:
712
713  MachineBasicBlock *getBasicBlock() const { return MBB; }
714
715  static bool classof(const BasicBlockSDNode *) { return true; }
716  static bool classof(const SDNode *N) {
717    return N->getOpcode() == ISD::BasicBlock;
718  }
719};
720
721
722class RegSDNode : public SDNode {
723  unsigned Reg;
724protected:
725  friend class SelectionDAG;
726  RegSDNode(unsigned Opc, SDOperand Chain, SDOperand Src, unsigned reg)
727    : SDNode(Opc, Chain, Src), Reg(reg) {
728  }
729  RegSDNode(unsigned Opc, SDOperand Chain, unsigned reg)
730    : SDNode(Opc, Chain), Reg(reg) {}
731public:
732
733  unsigned getReg() const { return Reg; }
734
735  static bool classof(const RegSDNode *) { return true; }
736  static bool classof(const SDNode *N) {
737    return N->getOpcode() == ISD::CopyToReg ||
738           N->getOpcode() == ISD::CopyFromReg ||
739           N->getOpcode() == ISD::ImplicitDef;
740  }
741};
742
743class ExternalSymbolSDNode : public SDNode {
744  const char *Symbol;
745protected:
746  friend class SelectionDAG;
747  ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
748    : SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
749    }
750public:
751
752  const char *getSymbol() const { return Symbol; }
753
754  static bool classof(const ExternalSymbolSDNode *) { return true; }
755  static bool classof(const SDNode *N) {
756    return N->getOpcode() == ISD::ExternalSymbol;
757  }
758};
759
760class SetCCSDNode : public SDNode {
761  ISD::CondCode Condition;
762protected:
763  friend class SelectionDAG;
764  SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS)
765    : SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) {
766  }
767public:
768
769  ISD::CondCode getCondition() const { return Condition; }
770
771  static bool classof(const SetCCSDNode *) { return true; }
772  static bool classof(const SDNode *N) {
773    return N->getOpcode() == ISD::SETCC;
774  }
775};
776
777/// MVTSDNode - This class is used for operators that require an extra
778/// value-type to be kept with the node.
779class MVTSDNode : public SDNode {
780  MVT::ValueType ExtraValueType;
781protected:
782  friend class SelectionDAG;
783  MVTSDNode(unsigned Opc, MVT::ValueType VT1, SDOperand Op0, MVT::ValueType EVT)
784    : SDNode(Opc, Op0), ExtraValueType(EVT) {
785    setValueTypes(VT1);
786  }
787  MVTSDNode(unsigned Opc, MVT::ValueType VT1, MVT::ValueType VT2,
788            SDOperand Op0, SDOperand Op1, MVT::ValueType EVT)
789    : SDNode(Opc, Op0, Op1), ExtraValueType(EVT) {
790    setValueTypes(VT1, VT2);
791  }
792  MVTSDNode(unsigned Opc, MVT::ValueType VT,
793            SDOperand Op0, SDOperand Op1, SDOperand Op2, MVT::ValueType EVT)
794    : SDNode(Opc, Op0, Op1, Op2), ExtraValueType(EVT) {
795    setValueTypes(VT);
796  }
797public:
798
799  MVT::ValueType getExtraValueType() const { return ExtraValueType; }
800
801  static bool classof(const MVTSDNode *) { return true; }
802  static bool classof(const SDNode *N) {
803    return
804      N->getOpcode() == ISD::SIGN_EXTEND_INREG ||
805      N->getOpcode() == ISD::ZERO_EXTEND_INREG ||
806      N->getOpcode() == ISD::FP_ROUND_INREG ||
807      N->getOpcode() == ISD::EXTLOAD  ||
808      N->getOpcode() == ISD::SEXTLOAD ||
809      N->getOpcode() == ISD::ZEXTLOAD ||
810      N->getOpcode() == ISD::TRUNCSTORE;
811  }
812};
813
814class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
815  SDNode *Node;
816  unsigned Operand;
817
818  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
819public:
820  bool operator==(const SDNodeIterator& x) const {
821    return Operand == x.Operand;
822  }
823  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
824
825  const SDNodeIterator &operator=(const SDNodeIterator &I) {
826    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
827    Operand = I.Operand;
828    return *this;
829  }
830
831  pointer operator*() const {
832    return Node->getOperand(Operand).Val;
833  }
834  pointer operator->() const { return operator*(); }
835
836  SDNodeIterator& operator++() {                // Preincrement
837    ++Operand;
838    return *this;
839  }
840  SDNodeIterator operator++(int) { // Postincrement
841    SDNodeIterator tmp = *this; ++*this; return tmp;
842  }
843
844  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
845  static SDNodeIterator end  (SDNode *N) {
846    return SDNodeIterator(N, N->getNumOperands());
847  }
848
849  unsigned getOperand() const { return Operand; }
850  const SDNode *getNode() const { return Node; }
851};
852
853template <> struct GraphTraits<SDNode*> {
854  typedef SDNode NodeType;
855  typedef SDNodeIterator ChildIteratorType;
856  static inline NodeType *getEntryNode(SDNode *N) { return N; }
857  static inline ChildIteratorType child_begin(NodeType *N) {
858    return SDNodeIterator::begin(N);
859  }
860  static inline ChildIteratorType child_end(NodeType *N) {
861    return SDNodeIterator::end(N);
862  }
863};
864
865
866
867
868} // end llvm namespace
869
870#endif
871