SelectionDAGNodes.h revision 30c0fc23c548f75d4e501c39be4be597089d516f
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37
38/// ISD namespace - This namespace contains an enum which represents all of the
39/// SelectionDAG node types and value types.
40///
41namespace ISD {
42  //===--------------------------------------------------------------------===//
43  /// ISD::NodeType enum - This enum defines all of the operators valid in a
44  /// SelectionDAG.
45  ///
46  enum NodeType {
47    // EntryToken - This is the marker used to indicate the start of the region.
48    EntryToken,
49
50    // Token factor - This node is takes multiple tokens as input and produces a
51    // single token result.  This is used to represent the fact that the operand
52    // operators are independent of each other.
53    TokenFactor,
54
55    // Various leaf nodes.
56    Constant, ConstantFP, GlobalAddress, FrameIndex, ConstantPool,
57    BasicBlock, ExternalSymbol,
58
59    // CopyToReg - This node has chain and child nodes, and an associated
60    // register number.  The instruction selector must guarantee that the value
61    // of the value node is available in the register stored in the RegSDNode
62    // object.
63    CopyToReg,
64
65    // CopyFromReg - This node indicates that the input value is a virtual or
66    // physical register that is defined outside of the scope of this
67    // SelectionDAG.  The register is available from the RegSDNode object.
68    CopyFromReg,
69
70    // ImplicitDef - This node indicates that the specified register is
71    // implicitly defined by some operation (e.g. its a live-in argument).  This
72    // register is indicated in the RegSDNode object.  The only operand to this
73    // is the token chain coming in, the only result is the token chain going
74    // out.
75    ImplicitDef,
76
77    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
78    // a Constant, which is required to be operand #1), element of the aggregate
79    // value specified as operand #0.  This is only for use before legalization,
80    // for values that will be broken into multiple registers.
81    EXTRACT_ELEMENT,
82
83    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
84    // two values of the same integer value type, this produces a value twice as
85    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
86    BUILD_PAIR,
87
88
89    // Simple binary arithmetic operators.
90    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
91
92    // Bitwise operators.
93    AND, OR, XOR, SHL, SRA, SRL,
94
95    // Select operator.
96    SELECT,
97
98    // SetCC operator - This evaluates to a boolean (i1) true value if the
99    // condition is true.  These nodes are instances of the
100    // SetCCSDNode class, which contains the condition code as extra
101    // state.
102    SETCC,
103
104    // addc - Three input, two output operator: (X, Y, C) -> (X+Y+C,
105    // Cout).  X,Y are integer inputs of agreeing size, C is a one bit
106    // value, and two values are produced: the sum and a carry out.
107    ADDC, SUBB,
108
109    // Conversion operators.  These are all single input single output
110    // operations.  For all of these, the result type must be strictly
111    // wider or narrower (depending on the operation) than the source
112    // type.
113
114    // SIGN_EXTEND - Used for integer types, replicating the sign bit
115    // into new bits.
116    SIGN_EXTEND,
117
118    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
119    ZERO_EXTEND,
120
121    // TRUNCATE - Completely drop the high bits.
122    TRUNCATE,
123
124    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
125    // depends on the first letter) to floating point.
126    SINT_TO_FP,
127    UINT_TO_FP,
128
129    // SIGN_EXTEND_INREG/ZERO_EXTEND_INREG - These operators atomically performs
130    // a SHL/(SRA|SHL) pair to (sign|zero) extend a small value in a large
131    // integer register (e.g. sign extending the low 8 bits of a 32-bit register
132    // to fill the top 24 bits with the 7th bit).  The size of the smaller type
133    // is indicated by the ExtraValueType in the MVTSDNode for the operator.
134    SIGN_EXTEND_INREG,
135    ZERO_EXTEND_INREG,
136
137    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
138    // integer.
139    FP_TO_SINT,
140    FP_TO_UINT,
141
142    // FP_ROUND - Perform a rounding operation from the current
143    // precision down to the specified precision (currently always 64->32).
144    FP_ROUND,
145
146    // FP_ROUND_INREG - This operator takes a floating point register, and
147    // rounds it to a floating point value.  It then promotes it and returns it
148    // in a register of the same size.  This operation effectively just discards
149    // excess precision.  The type to round down to is specified by the
150    // ExtraValueType in the MVTSDNode (currently always 64->32->64).
151    FP_ROUND_INREG,
152
153    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
154    FP_EXTEND,
155
156    // Other operators.  LOAD and STORE have token chains as their first
157    // operand, then the same operands as an LLVM load/store instruction.
158    LOAD, STORE,
159
160    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators are instances of the
161    // MVTSDNode.  All of these load a value from memory and extend them to a
162    // larger value (e.g. load a byte into a word register).  All three of these
163    // have two operands, a chain and a pointer to load from.  The extra value
164    // type is the source type being loaded.
165    //
166    // SEXTLOAD loads the integer operand and sign extends it to a larger
167    //          integer result type.
168    // ZEXTLOAD loads the integer operand and zero extends it to a larger
169    //          integer result type.
170    // EXTLOAD  is used for two things: floating point extending loads, and
171    //          integer extending loads where it doesn't matter what the high
172    //          bits are set to.  The code generator is allowed to codegen this
173    //          into whichever operation is more efficient.
174    EXTLOAD, SEXTLOAD, ZEXTLOAD,
175
176    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
177    // value and stores it to memory in one operation.  This can be used for
178    // either integer or floating point operands, and the stored type
179    // represented as the 'extra' value type in the MVTSDNode representing the
180    // operator.  This node has the same three operands as a standard store.
181    TRUNCSTORE,
182
183    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
184    // to a specified boundary.  The first operand is the token chain, the
185    // second is the number of bytes to allocate, and the third is the alignment
186    // boundary.
187    DYNAMIC_STACKALLOC,
188
189    // Control flow instructions.  These all have token chains.
190
191    // BR - Unconditional branch.  The first operand is the chain
192    // operand, the second is the MBB to branch to.
193    BR,
194
195    // BRCOND - Conditional branch.  The first operand is the chain,
196    // the second is the condition, the third is the block to branch
197    // to if the condition is true.
198    BRCOND,
199
200    // RET - Return from function.  The first operand is the chain,
201    // and any subsequent operands are the return values for the
202    // function.  This operation can have variable number of operands.
203    RET,
204
205    // CALL - Call to a function pointer.  The first operand is the chain, the
206    // second is the destination function pointer (a GlobalAddress for a direct
207    // call).  Arguments have already been lowered to explicit DAGs according to
208    // the calling convention in effect here.
209    CALL,
210
211    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
212    // correspond to the operands of the LLVM intrinsic functions.  The only
213    // result is a token chain.  The alignment argument is guaranteed to be a
214    // Constant node.
215    MEMSET,
216    MEMMOVE,
217    MEMCPY,
218
219    // ADJCALLSTACKDOWN/ADJCALLSTACKUP - These operators mark the beginning and
220    // end of a call sequence and indicate how much the stack pointer needs to
221    // be adjusted for that particular call.  The first operand is a chain, the
222    // second is a ConstantSDNode of intptr type.
223    ADJCALLSTACKDOWN,  // Beginning of a call sequence
224    ADJCALLSTACKUP,    // End of a call sequence
225
226
227    // BUILTIN_OP_END - This must be the last enum value in this list.
228    BUILTIN_OP_END,
229  };
230
231  //===--------------------------------------------------------------------===//
232  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
233  /// below work out, when considering SETFALSE (something that never exists
234  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
235  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
236  /// to.  If the "N" column is 1, the result of the comparison is undefined if
237  /// the input is a NAN.
238  ///
239  /// All of these (except for the 'always folded ops') should be handled for
240  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
241  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
242  ///
243  /// Note that these are laid out in a specific order to allow bit-twiddling
244  /// to transform conditions.
245  enum CondCode {
246    // Opcode          N U L G E       Intuitive operation
247    SETFALSE,      //    0 0 0 0       Always false (always folded)
248    SETOEQ,        //    0 0 0 1       True if ordered and equal
249    SETOGT,        //    0 0 1 0       True if ordered and greater than
250    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
251    SETOLT,        //    0 1 0 0       True if ordered and less than
252    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
253    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
254    SETO,          //    0 1 1 1       True if ordered (no nans)
255    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
256    SETUEQ,        //    1 0 0 1       True if unordered or equal
257    SETUGT,        //    1 0 1 0       True if unordered or greater than
258    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
259    SETULT,        //    1 1 0 0       True if unordered or less than
260    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
261    SETUNE,        //    1 1 1 0       True if unordered or not equal
262    SETTRUE,       //    1 1 1 1       Always true (always folded)
263    // Don't care operations: undefined if the input is a nan.
264    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
265    SETEQ,         //  1 X 0 0 1       True if equal
266    SETGT,         //  1 X 0 1 0       True if greater than
267    SETGE,         //  1 X 0 1 1       True if greater than or equal
268    SETLT,         //  1 X 1 0 0       True if less than
269    SETLE,         //  1 X 1 0 1       True if less than or equal
270    SETNE,         //  1 X 1 1 0       True if not equal
271    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
272
273    SETCC_INVALID,      // Marker value.
274  };
275
276  /// isSignedIntSetCC - Return true if this is a setcc instruction that
277  /// performs a signed comparison when used with integer operands.
278  inline bool isSignedIntSetCC(CondCode Code) {
279    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
280  }
281
282  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
283  /// performs an unsigned comparison when used with integer operands.
284  inline bool isUnsignedIntSetCC(CondCode Code) {
285    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
286  }
287
288  /// isTrueWhenEqual - Return true if the specified condition returns true if
289  /// the two operands to the condition are equal.  Note that if one of the two
290  /// operands is a NaN, this value is meaningless.
291  inline bool isTrueWhenEqual(CondCode Cond) {
292    return ((int)Cond & 1) != 0;
293  }
294
295  /// getUnorderedFlavor - This function returns 0 if the condition is always
296  /// false if an operand is a NaN, 1 if the condition is always true if the
297  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
298  /// NaN.
299  inline unsigned getUnorderedFlavor(CondCode Cond) {
300    return ((int)Cond >> 3) & 3;
301  }
302
303  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
304  /// 'op' is a valid SetCC operation.
305  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
306
307  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
308  /// when given the operation for (X op Y).
309  CondCode getSetCCSwappedOperands(CondCode Operation);
310
311  /// getSetCCOrOperation - Return the result of a logical OR between different
312  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
313  /// function returns SETCC_INVALID if it is not possible to represent the
314  /// resultant comparison.
315  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
316
317  /// getSetCCAndOperation - Return the result of a logical AND between
318  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
319  /// function returns SETCC_INVALID if it is not possible to represent the
320  /// resultant comparison.
321  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
322}  // end llvm::ISD namespace
323
324
325//===----------------------------------------------------------------------===//
326/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
327/// values as the result of a computation.  Many nodes return multiple values,
328/// from loads (which define a token and a return value) to ADDC (which returns
329/// a result and a carry value), to calls (which may return an arbitrary number
330/// of values).
331///
332/// As such, each use of a SelectionDAG computation must indicate the node that
333/// computes it as well as which return value to use from that node.  This pair
334/// of information is represented with the SDOperand value type.
335///
336class SDOperand {
337public:
338  SDNode *Val;        // The node defining the value we are using.
339  unsigned ResNo;     // Which return value of the node we are using.
340
341  SDOperand() : Val(0) {}
342  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
343
344  bool operator==(const SDOperand &O) const {
345    return Val == O.Val && ResNo == O.ResNo;
346  }
347  bool operator!=(const SDOperand &O) const {
348    return !operator==(O);
349  }
350  bool operator<(const SDOperand &O) const {
351    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
352  }
353
354  SDOperand getValue(unsigned R) const {
355    return SDOperand(Val, R);
356  }
357
358  /// getValueType - Return the ValueType of the referenced return value.
359  ///
360  inline MVT::ValueType getValueType() const;
361
362  // Forwarding methods - These forward to the corresponding methods in SDNode.
363  inline unsigned getOpcode() const;
364  inline unsigned getNumOperands() const;
365  inline const SDOperand &getOperand(unsigned i) const;
366
367  /// hasOneUse - Return true if there is exactly one operation using this
368  /// result value of the defining operator.
369  inline bool hasOneUse() const;
370};
371
372
373/// simplify_type specializations - Allow casting operators to work directly on
374/// SDOperands as if they were SDNode*'s.
375template<> struct simplify_type<SDOperand> {
376  typedef SDNode* SimpleType;
377  static SimpleType getSimplifiedValue(const SDOperand &Val) {
378    return static_cast<SimpleType>(Val.Val);
379  }
380};
381template<> struct simplify_type<const SDOperand> {
382  typedef SDNode* SimpleType;
383  static SimpleType getSimplifiedValue(const SDOperand &Val) {
384    return static_cast<SimpleType>(Val.Val);
385  }
386};
387
388
389/// SDNode - Represents one node in the SelectionDAG.
390///
391class SDNode {
392  unsigned NodeType;
393  std::vector<SDOperand> Operands;
394
395  /// Values - The types of the values this node defines.  SDNode's may define
396  /// multiple values simultaneously.
397  std::vector<MVT::ValueType> Values;
398
399  /// Uses - These are all of the SDNode's that use a value produced by this
400  /// node.
401  std::vector<SDNode*> Uses;
402public:
403
404  //===--------------------------------------------------------------------===//
405  //  Accessors
406  //
407  unsigned getOpcode()  const { return NodeType; }
408
409  size_t use_size() const { return Uses.size(); }
410  bool use_empty() const { return Uses.empty(); }
411  bool hasOneUse() const { return Uses.size() == 1; }
412
413  typedef std::vector<SDNode*>::const_iterator use_iterator;
414  use_iterator use_begin() const { return Uses.begin(); }
415  use_iterator use_end() const { return Uses.end(); }
416
417  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
418  /// indicated value.  This method ignores uses of other values defined by this
419  /// operation.
420  bool hasNUsesOfValue(unsigned NUses, unsigned Value);
421
422  /// getNumOperands - Return the number of values used by this operation.
423  ///
424  unsigned getNumOperands() const { return Operands.size(); }
425
426  const SDOperand &getOperand(unsigned Num) {
427    assert(Num < Operands.size() && "Invalid child # of SDNode!");
428    return Operands[Num];
429  }
430
431  const SDOperand &getOperand(unsigned Num) const {
432    assert(Num < Operands.size() && "Invalid child # of SDNode!");
433    return Operands[Num];
434  }
435
436  /// getNumValues - Return the number of values defined/returned by this
437  /// operator.
438  ///
439  unsigned getNumValues() const { return Values.size(); }
440
441  /// getValueType - Return the type of a specified result.
442  ///
443  MVT::ValueType getValueType(unsigned ResNo) const {
444    assert(ResNo < Values.size() && "Illegal result number!");
445    return Values[ResNo];
446  }
447
448  /// getOperationName - Return the opcode of this operation for printing.
449  ///
450  const char* getOperationName() const;
451  void dump() const;
452
453  static bool classof(const SDNode *) { return true; }
454
455protected:
456  friend class SelectionDAG;
457
458  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT) {
459    Values.reserve(1);
460    Values.push_back(VT);
461  }
462
463  SDNode(unsigned NT, SDOperand Op)
464    : NodeType(NT) {
465    Operands.reserve(1); Operands.push_back(Op);
466    Op.Val->Uses.push_back(this);
467  }
468  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
469    : NodeType(NT) {
470    Operands.reserve(2); Operands.push_back(N1); Operands.push_back(N2);
471    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
472  }
473  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
474    : NodeType(NT) {
475    Operands.reserve(3); Operands.push_back(N1); Operands.push_back(N2);
476    Operands.push_back(N3);
477    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
478    N3.Val->Uses.push_back(this);
479  }
480  SDNode(unsigned NT, std::vector<SDOperand> &Nodes) : NodeType(NT) {
481    Operands.swap(Nodes);
482    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
483      Operands[i].Val->Uses.push_back(this);
484  }
485
486  virtual ~SDNode() {
487    // FIXME: Drop uses.
488  }
489
490  void setValueTypes(MVT::ValueType VT) {
491    Values.reserve(1);
492    Values.push_back(VT);
493  }
494  void setValueTypes(MVT::ValueType VT1, MVT::ValueType VT2) {
495    Values.reserve(2);
496    Values.push_back(VT1);
497    Values.push_back(VT2);
498  }
499  /// Note: this method destroys the vector passed in.
500  void setValueTypes(std::vector<MVT::ValueType> &VTs) {
501    std::swap(Values, VTs);
502  }
503
504  void removeUser(SDNode *User) {
505    // Remove this user from the operand's use list.
506    for (unsigned i = Uses.size(); ; --i) {
507      assert(i != 0 && "Didn't find user!");
508      if (Uses[i-1] == User) {
509        Uses.erase(Uses.begin()+i-1);
510        break;
511      }
512    }
513  }
514};
515
516
517// Define inline functions from the SDOperand class.
518
519inline unsigned SDOperand::getOpcode() const {
520  return Val->getOpcode();
521}
522inline MVT::ValueType SDOperand::getValueType() const {
523  return Val->getValueType(ResNo);
524}
525inline unsigned SDOperand::getNumOperands() const {
526  return Val->getNumOperands();
527}
528inline const SDOperand &SDOperand::getOperand(unsigned i) const {
529  return Val->getOperand(i);
530}
531inline bool SDOperand::hasOneUse() const {
532  return Val->hasNUsesOfValue(1, ResNo);
533}
534
535
536class ConstantSDNode : public SDNode {
537  uint64_t Value;
538protected:
539  friend class SelectionDAG;
540  ConstantSDNode(uint64_t val, MVT::ValueType VT)
541    : SDNode(ISD::Constant, VT), Value(val) {
542  }
543public:
544
545  uint64_t getValue() const { return Value; }
546
547  int64_t getSignExtended() const {
548    unsigned Bits = MVT::getSizeInBits(getValueType(0));
549    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
550  }
551
552  bool isNullValue() const { return Value == 0; }
553  bool isAllOnesValue() const {
554    return Value == (1ULL << MVT::getSizeInBits(getValueType(0)))-1;
555  }
556
557  static bool classof(const ConstantSDNode *) { return true; }
558  static bool classof(const SDNode *N) {
559    return N->getOpcode() == ISD::Constant;
560  }
561};
562
563class ConstantFPSDNode : public SDNode {
564  double Value;
565protected:
566  friend class SelectionDAG;
567  ConstantFPSDNode(double val, MVT::ValueType VT)
568    : SDNode(ISD::ConstantFP, VT), Value(val) {
569  }
570public:
571
572  double getValue() const { return Value; }
573
574  /// isExactlyValue - We don't rely on operator== working on double values, as
575  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
576  /// As such, this method can be used to do an exact bit-for-bit comparison of
577  /// two floating point values.
578  bool isExactlyValue(double V) const {
579    union {
580      double V;
581      uint64_t I;
582    } T1;
583    T1.V = Value;
584    union {
585      double V;
586      uint64_t I;
587    } T2;
588    T2.V = V;
589    return T1.I == T2.I;
590  }
591
592  static bool classof(const ConstantFPSDNode *) { return true; }
593  static bool classof(const SDNode *N) {
594    return N->getOpcode() == ISD::ConstantFP;
595  }
596};
597
598class GlobalAddressSDNode : public SDNode {
599  GlobalValue *TheGlobal;
600protected:
601  friend class SelectionDAG;
602  GlobalAddressSDNode(const GlobalValue *GA, MVT::ValueType VT)
603    : SDNode(ISD::GlobalAddress, VT) {
604    TheGlobal = const_cast<GlobalValue*>(GA);
605  }
606public:
607
608  GlobalValue *getGlobal() const { return TheGlobal; }
609
610  static bool classof(const GlobalAddressSDNode *) { return true; }
611  static bool classof(const SDNode *N) {
612    return N->getOpcode() == ISD::GlobalAddress;
613  }
614};
615
616
617class FrameIndexSDNode : public SDNode {
618  int FI;
619protected:
620  friend class SelectionDAG;
621  FrameIndexSDNode(int fi, MVT::ValueType VT)
622    : SDNode(ISD::FrameIndex, VT), FI(fi) {}
623public:
624
625  int getIndex() const { return FI; }
626
627  static bool classof(const FrameIndexSDNode *) { return true; }
628  static bool classof(const SDNode *N) {
629    return N->getOpcode() == ISD::FrameIndex;
630  }
631};
632
633class ConstantPoolSDNode : public SDNode {
634  unsigned CPI;
635protected:
636  friend class SelectionDAG;
637  ConstantPoolSDNode(unsigned cpi, MVT::ValueType VT)
638    : SDNode(ISD::ConstantPool, VT), CPI(cpi) {}
639public:
640
641  unsigned getIndex() const { return CPI; }
642
643  static bool classof(const ConstantPoolSDNode *) { return true; }
644  static bool classof(const SDNode *N) {
645    return N->getOpcode() == ISD::ConstantPool;
646  }
647};
648
649class BasicBlockSDNode : public SDNode {
650  MachineBasicBlock *MBB;
651protected:
652  friend class SelectionDAG;
653  BasicBlockSDNode(MachineBasicBlock *mbb)
654    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
655public:
656
657  MachineBasicBlock *getBasicBlock() const { return MBB; }
658
659  static bool classof(const BasicBlockSDNode *) { return true; }
660  static bool classof(const SDNode *N) {
661    return N->getOpcode() == ISD::BasicBlock;
662  }
663};
664
665
666class RegSDNode : public SDNode {
667  unsigned Reg;
668protected:
669  friend class SelectionDAG;
670  RegSDNode(unsigned Opc, SDOperand Chain, SDOperand Src, unsigned reg)
671    : SDNode(Opc, Chain, Src), Reg(reg) {
672  }
673  RegSDNode(unsigned Opc, SDOperand Chain, unsigned reg)
674    : SDNode(Opc, Chain), Reg(reg) {}
675public:
676
677  unsigned getReg() const { return Reg; }
678
679  static bool classof(const RegSDNode *) { return true; }
680  static bool classof(const SDNode *N) {
681    return N->getOpcode() == ISD::CopyToReg ||
682           N->getOpcode() == ISD::CopyFromReg ||
683           N->getOpcode() == ISD::ImplicitDef;
684  }
685};
686
687class ExternalSymbolSDNode : public SDNode {
688  const char *Symbol;
689protected:
690  friend class SelectionDAG;
691  ExternalSymbolSDNode(const char *Sym, MVT::ValueType VT)
692    : SDNode(ISD::ExternalSymbol, VT), Symbol(Sym) {
693    }
694public:
695
696  const char *getSymbol() const { return Symbol; }
697
698  static bool classof(const ExternalSymbolSDNode *) { return true; }
699  static bool classof(const SDNode *N) {
700    return N->getOpcode() == ISD::ExternalSymbol;
701  }
702};
703
704class SetCCSDNode : public SDNode {
705  ISD::CondCode Condition;
706protected:
707  friend class SelectionDAG;
708  SetCCSDNode(ISD::CondCode Cond, SDOperand LHS, SDOperand RHS)
709    : SDNode(ISD::SETCC, LHS, RHS), Condition(Cond) {
710  }
711public:
712
713  ISD::CondCode getCondition() const { return Condition; }
714
715  static bool classof(const SetCCSDNode *) { return true; }
716  static bool classof(const SDNode *N) {
717    return N->getOpcode() == ISD::SETCC;
718  }
719};
720
721/// MVTSDNode - This class is used for operators that require an extra
722/// value-type to be kept with the node.
723class MVTSDNode : public SDNode {
724  MVT::ValueType ExtraValueType;
725protected:
726  friend class SelectionDAG;
727  MVTSDNode(unsigned Opc, MVT::ValueType VT1, SDOperand Op0, MVT::ValueType EVT)
728    : SDNode(Opc, Op0), ExtraValueType(EVT) {
729    setValueTypes(VT1);
730  }
731  MVTSDNode(unsigned Opc, MVT::ValueType VT1, MVT::ValueType VT2,
732            SDOperand Op0, SDOperand Op1, MVT::ValueType EVT)
733    : SDNode(Opc, Op0, Op1), ExtraValueType(EVT) {
734    setValueTypes(VT1, VT2);
735  }
736  MVTSDNode(unsigned Opc, MVT::ValueType VT,
737            SDOperand Op0, SDOperand Op1, SDOperand Op2, MVT::ValueType EVT)
738    : SDNode(Opc, Op0, Op1, Op2), ExtraValueType(EVT) {
739    setValueTypes(VT);
740  }
741public:
742
743  MVT::ValueType getExtraValueType() const { return ExtraValueType; }
744
745  static bool classof(const MVTSDNode *) { return true; }
746  static bool classof(const SDNode *N) {
747    return
748      N->getOpcode() == ISD::SIGN_EXTEND_INREG ||
749      N->getOpcode() == ISD::ZERO_EXTEND_INREG ||
750      N->getOpcode() == ISD::FP_ROUND_INREG ||
751      N->getOpcode() == ISD::EXTLOAD  ||
752      N->getOpcode() == ISD::SEXTLOAD ||
753      N->getOpcode() == ISD::ZEXTLOAD ||
754      N->getOpcode() == ISD::TRUNCSTORE;
755  }
756};
757
758class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
759  SDNode *Node;
760  unsigned Operand;
761
762  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
763public:
764  bool operator==(const SDNodeIterator& x) const {
765    return Operand == x.Operand;
766  }
767  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
768
769  const SDNodeIterator &operator=(const SDNodeIterator &I) {
770    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
771    Operand = I.Operand;
772    return *this;
773  }
774
775  pointer operator*() const {
776    return Node->getOperand(Operand).Val;
777  }
778  pointer operator->() const { return operator*(); }
779
780  SDNodeIterator& operator++() {                // Preincrement
781    ++Operand;
782    return *this;
783  }
784  SDNodeIterator operator++(int) { // Postincrement
785    SDNodeIterator tmp = *this; ++*this; return tmp;
786  }
787
788  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
789  static SDNodeIterator end  (SDNode *N) {
790    return SDNodeIterator(N, N->getNumOperands());
791  }
792
793  unsigned getOperand() const { return Operand; }
794  const SDNode *getNode() const { return Node; }
795};
796
797template <> struct GraphTraits<SDNode*> {
798  typedef SDNode NodeType;
799  typedef SDNodeIterator ChildIteratorType;
800  static inline NodeType *getEntryNode(SDNode *N) { return N; }
801  static inline ChildIteratorType child_begin(NodeType *N) {
802    return SDNodeIterator::begin(N);
803  }
804  static inline ChildIteratorType child_end(NodeType *N) {
805    return SDNodeIterator::end(N);
806  }
807};
808
809
810
811
812} // end llvm namespace
813
814#endif
815