SelectionDAGNodes.h revision 55e34eb31741f7902445cfa94fddde7a6910c408
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/Support/DataTypes.h"
28#include <cassert>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class MachineConstantPoolValue;
36class SDNode;
37template <typename T> struct simplify_type;
38template <typename T> struct ilist_traits;
39template<typename NodeTy, typename Traits> class iplist;
40template<typename NodeTy> class ilist_iterator;
41
42/// SDVTList - This represents a list of ValueType's that has been intern'd by
43/// a SelectionDAG.  Instances of this simple value class are returned by
44/// SelectionDAG::getVTList(...).
45///
46struct SDVTList {
47  const MVT::ValueType *VTs;
48  unsigned short NumVTs;
49};
50
51
52/// ISD namespace - This namespace contains an enum which represents all of the
53/// SelectionDAG node types and value types.
54///
55namespace ISD {
56  //===--------------------------------------------------------------------===//
57  /// ISD::NodeType enum - This enum defines all of the operators valid in a
58  /// SelectionDAG.
59  ///
60  enum NodeType {
61    // DELETED_NODE - This is an illegal flag value that is used to catch
62    // errors.  This opcode is not a legal opcode for any node.
63    DELETED_NODE,
64
65    // EntryToken - This is the marker used to indicate the start of the region.
66    EntryToken,
67
68    // Token factor - This node takes multiple tokens as input and produces a
69    // single token result.  This is used to represent the fact that the operand
70    // operators are independent of each other.
71    TokenFactor,
72
73    // AssertSext, AssertZext - These nodes record if a register contains a
74    // value that has already been zero or sign extended from a narrower type.
75    // These nodes take two operands.  The first is the node that has already
76    // been extended, and the second is a value type node indicating the width
77    // of the extension
78    AssertSext, AssertZext,
79
80    // Various leaf nodes.
81    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
82    Constant, ConstantFP,
83    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
84
85    // The address of the GOT
86    GLOBAL_OFFSET_TABLE,
87
88    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
89    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
90    // of the frame or return address to return.  An index of zero corresponds
91    // to the current function's frame or return address, an index of one to the
92    // parent's frame or return address, and so on.
93    FRAMEADDR, RETURNADDR,
94
95    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
96    // address of the exception block on entry to an landing pad block.
97    EXCEPTIONADDR,
98
99    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
100    // the selection index of the exception thrown.
101    EHSELECTION,
102
103    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
104    // simplification of the constant.
105    TargetConstant,
106    TargetConstantFP,
107
108    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
109    // anything else with this node, and this is valid in the target-specific
110    // dag, turning into a GlobalAddress operand.
111    TargetGlobalAddress,
112    TargetFrameIndex,
113    TargetJumpTable,
114    TargetConstantPool,
115    TargetExternalSymbol,
116
117    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
118    /// This node represents a target intrinsic function with no side effects.
119    /// The first operand is the ID number of the intrinsic from the
120    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
121    /// node has returns the result of the intrinsic.
122    INTRINSIC_WO_CHAIN,
123
124    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
125    /// This node represents a target intrinsic function with side effects that
126    /// returns a result.  The first operand is a chain pointer.  The second is
127    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
128    /// operands to the intrinsic follow.  The node has two results, the result
129    /// of the intrinsic and an output chain.
130    INTRINSIC_W_CHAIN,
131
132    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
133    /// This node represents a target intrinsic function with side effects that
134    /// does not return a result.  The first operand is a chain pointer.  The
135    /// second is the ID number of the intrinsic from the llvm::Intrinsic
136    /// namespace.  The operands to the intrinsic follow.
137    INTRINSIC_VOID,
138
139    // CopyToReg - This node has three operands: a chain, a register number to
140    // set to this value, and a value.
141    CopyToReg,
142
143    // CopyFromReg - This node indicates that the input value is a virtual or
144    // physical register that is defined outside of the scope of this
145    // SelectionDAG.  The register is available from the RegSDNode object.
146    CopyFromReg,
147
148    // UNDEF - An undefined node
149    UNDEF,
150
151    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
152    /// represents the formal arguments for a function.  CC# is a Constant value
153    /// indicating the calling convention of the function, and ISVARARG is a
154    /// flag that indicates whether the function is varargs or not. This node
155    /// has one result value for each incoming argument, plus one for the output
156    /// chain. It must be custom legalized. See description of CALL node for
157    /// FLAG argument contents explanation.
158    ///
159    FORMAL_ARGUMENTS,
160
161    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
162    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
163    /// This node represents a fully general function call, before the legalizer
164    /// runs.  This has one result value for each argument / flag pair, plus
165    /// a chain result. It must be custom legalized. Flag argument indicates
166    /// misc. argument attributes. Currently:
167    /// Bit 0 - signness
168    /// Bit 1 - 'inreg' attribute
169    /// Bit 2 - 'sret' attribute
170    /// Bits 31:27 - argument ABI alignment in the first argument piece and
171    /// alignment '1' in other argument pieces.
172    CALL,
173
174    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
175    // a Constant, which is required to be operand #1), element of the aggregate
176    // value specified as operand #0.  This is only for use before legalization,
177    // for values that will be broken into multiple registers.
178    EXTRACT_ELEMENT,
179
180    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
181    // two values of the same integer value type, this produces a value twice as
182    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
183    BUILD_PAIR,
184
185    // MERGE_VALUES - This node takes multiple discrete operands and returns
186    // them all as its individual results.  This nodes has exactly the same
187    // number of inputs and outputs, and is only valid before legalization.
188    // This node is useful for some pieces of the code generator that want to
189    // think about a single node with multiple results, not multiple nodes.
190    MERGE_VALUES,
191
192    // Simple integer binary arithmetic operators.
193    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
194
195    // CARRY_FALSE - This node is used when folding other nodes,
196    // like ADDC/SUBC, which indicate the carry result is always false.
197    CARRY_FALSE,
198
199    // Carry-setting nodes for multiple precision addition and subtraction.
200    // These nodes take two operands of the same value type, and produce two
201    // results.  The first result is the normal add or sub result, the second
202    // result is the carry flag result.
203    ADDC, SUBC,
204
205    // Carry-using nodes for multiple precision addition and subtraction.  These
206    // nodes take three operands: The first two are the normal lhs and rhs to
207    // the add or sub, and the third is the input carry flag.  These nodes
208    // produce two results; the normal result of the add or sub, and the output
209    // carry flag.  These nodes both read and write a carry flag to allow them
210    // to them to be chained together for add and sub of arbitrarily large
211    // values.
212    ADDE, SUBE,
213
214    // Simple binary floating point operators.
215    FADD, FSUB, FMUL, FDIV, FREM,
216
217    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
218    // DAG node does not require that X and Y have the same type, just that they
219    // are both floating point.  X and the result must have the same type.
220    // FCOPYSIGN(f32, f64) is allowed.
221    FCOPYSIGN,
222
223    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
224    /// with the specified, possibly variable, elements.  The number of elements
225    /// is required to be a power of two.
226    VBUILD_VECTOR,
227
228    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
229    /// with the specified, possibly variable, elements.  The number of elements
230    /// is required to be a power of two.
231    BUILD_VECTOR,
232
233    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
234    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
235    /// return an vector with the specified element of VECTOR replaced with VAL.
236    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
237    VINSERT_VECTOR_ELT,
238
239    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
240    /// type) with the element at IDX replaced with VAL.
241    INSERT_VECTOR_ELT,
242
243    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
244    /// (an MVT::Vector value) identified by the (potentially variable) element
245    /// number IDX.
246    VEXTRACT_VECTOR_ELT,
247
248    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
249    /// (a legal vector type vector) identified by the (potentially variable)
250    /// element number IDX.
251    EXTRACT_VECTOR_ELT,
252
253    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
254    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
255    /// constant int values that indicate which value each result element will
256    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
257    /// similar to the Altivec 'vperm' instruction, except that the indices must
258    /// be constants and are in terms of the element size of VEC1/VEC2, not in
259    /// terms of bytes.
260    VVECTOR_SHUFFLE,
261
262    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
263    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
264    /// (regardless of whether its datatype is legal or not) that indicate
265    /// which value each result element will get.  The elements of VEC1/VEC2 are
266    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
267    /// instruction, except that the indices must be constants and are in terms
268    /// of the element size of VEC1/VEC2, not in terms of bytes.
269    VECTOR_SHUFFLE,
270
271    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
272    /// represents a conversion from or to an ISD::Vector type.
273    ///
274    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
275    /// The input and output are required to have the same size and at least one
276    /// is required to be a vector (if neither is a vector, just use
277    /// BIT_CONVERT).
278    ///
279    /// If the result is a vector, this takes three operands (like any other
280    /// vector producer) which indicate the size and type of the vector result.
281    /// Otherwise it takes one input.
282    VBIT_CONVERT,
283
284    /// BINOP(LHS, RHS,  COUNT,TYPE)
285    /// Simple abstract vector operators.  Unlike the integer and floating point
286    /// binary operators, these nodes also take two additional operands:
287    /// a constant element count, and a value type node indicating the type of
288    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
289    /// including VLOAD and VConstant must currently have count and type as
290    /// their last two operands.
291    VADD, VSUB, VMUL, VSDIV, VUDIV,
292    VAND, VOR, VXOR,
293
294    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
295    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
296    /// COND is false.
297    VSELECT,
298
299    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
300    /// scalar value into the low element of the resultant vector type.  The top
301    /// elements of the vector are undefined.
302    SCALAR_TO_VECTOR,
303
304    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
305    // an unsigned/signed value of type i[2*n], then return the top part.
306    MULHU, MULHS,
307
308    // Bitwise operators - logical and, logical or, logical xor, shift left,
309    // shift right algebraic (shift in sign bits), shift right logical (shift in
310    // zeroes), rotate left, rotate right, and byteswap.
311    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
312
313    // Counting operators
314    CTTZ, CTLZ, CTPOP,
315
316    // Select(COND, TRUEVAL, FALSEVAL)
317    SELECT,
318
319    // Select with condition operator - This selects between a true value and
320    // a false value (ops #2 and #3) based on the boolean result of comparing
321    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
322    // condition code in op #4, a CondCodeSDNode.
323    SELECT_CC,
324
325    // SetCC operator - This evaluates to a boolean (i1) true value if the
326    // condition is true.  The operands to this are the left and right operands
327    // to compare (ops #0, and #1) and the condition code to compare them with
328    // (op #2) as a CondCodeSDNode.
329    SETCC,
330
331    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
332    // integer shift operations, just like ADD/SUB_PARTS.  The operation
333    // ordering is:
334    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
335    SHL_PARTS, SRA_PARTS, SRL_PARTS,
336
337    // Conversion operators.  These are all single input single output
338    // operations.  For all of these, the result type must be strictly
339    // wider or narrower (depending on the operation) than the source
340    // type.
341
342    // SIGN_EXTEND - Used for integer types, replicating the sign bit
343    // into new bits.
344    SIGN_EXTEND,
345
346    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
347    ZERO_EXTEND,
348
349    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
350    ANY_EXTEND,
351
352    // TRUNCATE - Completely drop the high bits.
353    TRUNCATE,
354
355    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
356    // depends on the first letter) to floating point.
357    SINT_TO_FP,
358    UINT_TO_FP,
359
360    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
361    // sign extend a small value in a large integer register (e.g. sign
362    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
363    // with the 7th bit).  The size of the smaller type is indicated by the 1th
364    // operand, a ValueType node.
365    SIGN_EXTEND_INREG,
366
367    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
368    // integer.
369    FP_TO_SINT,
370    FP_TO_UINT,
371
372    // FP_ROUND - Perform a rounding operation from the current
373    // precision down to the specified precision (currently always 64->32).
374    FP_ROUND,
375
376    // FP_ROUND_INREG - This operator takes a floating point register, and
377    // rounds it to a floating point value.  It then promotes it and returns it
378    // in a register of the same size.  This operation effectively just discards
379    // excess precision.  The type to round down to is specified by the 1th
380    // operation, a VTSDNode (currently always 64->32->64).
381    FP_ROUND_INREG,
382
383    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
384    FP_EXTEND,
385
386    // BIT_CONVERT - Theis operator converts between integer and FP values, as
387    // if one was stored to memory as integer and the other was loaded from the
388    // same address (or equivalently for vector format conversions, etc).  The
389    // source and result are required to have the same bit size (e.g.
390    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
391    // conversions, but that is a noop, deleted by getNode().
392    BIT_CONVERT,
393
394    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point
395    // negation, absolute value, square root, sine and cosine, and powi
396    // operations.
397    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI,
398
399    // LOAD and STORE have token chains as their first operand, then the same
400    // operands as an LLVM load/store instruction, then an offset node that
401    // is added / subtracted from the base pointer to form the address (for
402    // indexed memory ops).
403    LOAD, STORE,
404
405    // Abstract vector version of LOAD.  VLOAD has a constant element count as
406    // the first operand, followed by a value type node indicating the type of
407    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
408    VLOAD,
409
410    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
411    // value and stores it to memory in one operation.  This can be used for
412    // either integer or floating point operands.  The first four operands of
413    // this are the same as a standard store.  The fifth is the ValueType to
414    // store it as (which will be smaller than the source value).
415    TRUNCSTORE,
416
417    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
418    // to a specified boundary.  The first operand is the token chain, the
419    // second is the number of bytes to allocate, and the third is the alignment
420    // boundary.  The size is guaranteed to be a multiple of the stack
421    // alignment, and the alignment is guaranteed to be bigger than the stack
422    // alignment (if required) or 0 to get standard stack alignment.
423    DYNAMIC_STACKALLOC,
424
425    // Control flow instructions.  These all have token chains.
426
427    // BR - Unconditional branch.  The first operand is the chain
428    // operand, the second is the MBB to branch to.
429    BR,
430
431    // BRIND - Indirect branch.  The first operand is the chain, the second
432    // is the value to branch to, which must be of the same type as the target's
433    // pointer type.
434    BRIND,
435
436    // BR_JT - Jumptable branch. The first operand is the chain, the second
437    // is the jumptable index, the last one is the jumptable entry index.
438    BR_JT,
439
440    // BRCOND - Conditional branch.  The first operand is the chain,
441    // the second is the condition, the third is the block to branch
442    // to if the condition is true.
443    BRCOND,
444
445    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
446    // that the condition is represented as condition code, and two nodes to
447    // compare, rather than as a combined SetCC node.  The operands in order are
448    // chain, cc, lhs, rhs, block to branch to if condition is true.
449    BR_CC,
450
451    // RET - Return from function.  The first operand is the chain,
452    // and any subsequent operands are pairs of return value and return value
453    // signness for the function.  This operation can have variable number of
454    // operands.
455    RET,
456
457    // INLINEASM - Represents an inline asm block.  This node always has two
458    // return values: a chain and a flag result.  The inputs are as follows:
459    //   Operand #0   : Input chain.
460    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
461    //   Operand #2n+2: A RegisterNode.
462    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
463    //   Operand #last: Optional, an incoming flag.
464    INLINEASM,
465
466    // LABEL - Represents a label in mid basic block used to track
467    // locations needed for debug and exception handling tables.  This node
468    // returns a chain.
469    //   Operand #0 : input chain.
470    //   Operand #1 : module unique number use to identify the label.
471    LABEL,
472
473    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
474    // value, the same type as the pointer type for the system, and an output
475    // chain.
476    STACKSAVE,
477
478    // STACKRESTORE has two operands, an input chain and a pointer to restore to
479    // it returns an output chain.
480    STACKRESTORE,
481
482    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
483    // correspond to the operands of the LLVM intrinsic functions.  The only
484    // result is a token chain.  The alignment argument is guaranteed to be a
485    // Constant node.
486    MEMSET,
487    MEMMOVE,
488    MEMCPY,
489
490    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
491    // a call sequence, and carry arbitrary information that target might want
492    // to know.  The first operand is a chain, the rest are specified by the
493    // target and not touched by the DAG optimizers.
494    CALLSEQ_START,  // Beginning of a call sequence
495    CALLSEQ_END,    // End of a call sequence
496
497    // VAARG - VAARG has three operands: an input chain, a pointer, and a
498    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
499    VAARG,
500
501    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
502    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
503    // source.
504    VACOPY,
505
506    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
507    // pointer, and a SRCVALUE.
508    VAEND, VASTART,
509
510    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
511    // locations with their value.  This allows one use alias analysis
512    // information in the backend.
513    SRCVALUE,
514
515    // PCMARKER - This corresponds to the pcmarker intrinsic.
516    PCMARKER,
517
518    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
519    // The only operand is a chain and a value and a chain are produced.  The
520    // value is the contents of the architecture specific cycle counter like
521    // register (or other high accuracy low latency clock source)
522    READCYCLECOUNTER,
523
524    // HANDLENODE node - Used as a handle for various purposes.
525    HANDLENODE,
526
527    // LOCATION - This node is used to represent a source location for debug
528    // info.  It takes token chain as input, then a line number, then a column
529    // number, then a filename, then a working dir.  It produces a token chain
530    // as output.
531    LOCATION,
532
533    // DEBUG_LOC - This node is used to represent source line information
534    // embedded in the code.  It takes a token chain as input, then a line
535    // number, then a column then a file id (provided by MachineModuleInfo.) It
536    // produces a token chain as output.
537    DEBUG_LOC,
538
539    // BUILTIN_OP_END - This must be the last enum value in this list.
540    BUILTIN_OP_END
541  };
542
543  /// Node predicates
544
545  /// isBuildVectorAllOnes - Return true if the specified node is a
546  /// BUILD_VECTOR where all of the elements are ~0 or undef.
547  bool isBuildVectorAllOnes(const SDNode *N);
548
549  /// isBuildVectorAllZeros - Return true if the specified node is a
550  /// BUILD_VECTOR where all of the elements are 0 or undef.
551  bool isBuildVectorAllZeros(const SDNode *N);
552
553  //===--------------------------------------------------------------------===//
554  /// MemIndexedMode enum - This enum defines the load / store indexed
555  /// addressing modes.
556  ///
557  /// UNINDEXED    "Normal" load / store. The effective address is already
558  ///              computed and is available in the base pointer. The offset
559  ///              operand is always undefined. In addition to producing a
560  ///              chain, an unindexed load produces one value (result of the
561  ///              load); an unindexed store does not produces a value.
562  ///
563  /// PRE_INC      Similar to the unindexed mode where the effective address is
564  /// PRE_DEC      the value of the base pointer add / subtract the offset.
565  ///              It considers the computation as being folded into the load /
566  ///              store operation (i.e. the load / store does the address
567  ///              computation as well as performing the memory transaction).
568  ///              The base operand is always undefined. In addition to
569  ///              producing a chain, pre-indexed load produces two values
570  ///              (result of the load and the result of the address
571  ///              computation); a pre-indexed store produces one value (result
572  ///              of the address computation).
573  ///
574  /// POST_INC     The effective address is the value of the base pointer. The
575  /// POST_DEC     value of the offset operand is then added to / subtracted
576  ///              from the base after memory transaction. In addition to
577  ///              producing a chain, post-indexed load produces two values
578  ///              (the result of the load and the result of the base +/- offset
579  ///              computation); a post-indexed store produces one value (the
580  ///              the result of the base +/- offset computation).
581  ///
582  enum MemIndexedMode {
583    UNINDEXED = 0,
584    PRE_INC,
585    PRE_DEC,
586    POST_INC,
587    POST_DEC,
588    LAST_INDEXED_MODE
589  };
590
591  //===--------------------------------------------------------------------===//
592  /// LoadExtType enum - This enum defines the three variants of LOADEXT
593  /// (load with extension).
594  ///
595  /// SEXTLOAD loads the integer operand and sign extends it to a larger
596  ///          integer result type.
597  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
598  ///          integer result type.
599  /// EXTLOAD  is used for three things: floating point extending loads,
600  ///          integer extending loads [the top bits are undefined], and vector
601  ///          extending loads [load into low elt].
602  ///
603  enum LoadExtType {
604    NON_EXTLOAD = 0,
605    EXTLOAD,
606    SEXTLOAD,
607    ZEXTLOAD,
608    LAST_LOADX_TYPE
609  };
610
611  //===--------------------------------------------------------------------===//
612  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
613  /// below work out, when considering SETFALSE (something that never exists
614  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
615  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
616  /// to.  If the "N" column is 1, the result of the comparison is undefined if
617  /// the input is a NAN.
618  ///
619  /// All of these (except for the 'always folded ops') should be handled for
620  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
621  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
622  ///
623  /// Note that these are laid out in a specific order to allow bit-twiddling
624  /// to transform conditions.
625  enum CondCode {
626    // Opcode          N U L G E       Intuitive operation
627    SETFALSE,      //    0 0 0 0       Always false (always folded)
628    SETOEQ,        //    0 0 0 1       True if ordered and equal
629    SETOGT,        //    0 0 1 0       True if ordered and greater than
630    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
631    SETOLT,        //    0 1 0 0       True if ordered and less than
632    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
633    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
634    SETO,          //    0 1 1 1       True if ordered (no nans)
635    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
636    SETUEQ,        //    1 0 0 1       True if unordered or equal
637    SETUGT,        //    1 0 1 0       True if unordered or greater than
638    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
639    SETULT,        //    1 1 0 0       True if unordered or less than
640    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
641    SETUNE,        //    1 1 1 0       True if unordered or not equal
642    SETTRUE,       //    1 1 1 1       Always true (always folded)
643    // Don't care operations: undefined if the input is a nan.
644    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
645    SETEQ,         //  1 X 0 0 1       True if equal
646    SETGT,         //  1 X 0 1 0       True if greater than
647    SETGE,         //  1 X 0 1 1       True if greater than or equal
648    SETLT,         //  1 X 1 0 0       True if less than
649    SETLE,         //  1 X 1 0 1       True if less than or equal
650    SETNE,         //  1 X 1 1 0       True if not equal
651    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
652
653    SETCC_INVALID       // Marker value.
654  };
655
656  /// isSignedIntSetCC - Return true if this is a setcc instruction that
657  /// performs a signed comparison when used with integer operands.
658  inline bool isSignedIntSetCC(CondCode Code) {
659    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
660  }
661
662  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
663  /// performs an unsigned comparison when used with integer operands.
664  inline bool isUnsignedIntSetCC(CondCode Code) {
665    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
666  }
667
668  /// isTrueWhenEqual - Return true if the specified condition returns true if
669  /// the two operands to the condition are equal.  Note that if one of the two
670  /// operands is a NaN, this value is meaningless.
671  inline bool isTrueWhenEqual(CondCode Cond) {
672    return ((int)Cond & 1) != 0;
673  }
674
675  /// getUnorderedFlavor - This function returns 0 if the condition is always
676  /// false if an operand is a NaN, 1 if the condition is always true if the
677  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
678  /// NaN.
679  inline unsigned getUnorderedFlavor(CondCode Cond) {
680    return ((int)Cond >> 3) & 3;
681  }
682
683  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
684  /// 'op' is a valid SetCC operation.
685  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
686
687  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
688  /// when given the operation for (X op Y).
689  CondCode getSetCCSwappedOperands(CondCode Operation);
690
691  /// getSetCCOrOperation - Return the result of a logical OR between different
692  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
693  /// function returns SETCC_INVALID if it is not possible to represent the
694  /// resultant comparison.
695  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
696
697  /// getSetCCAndOperation - Return the result of a logical AND between
698  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
699  /// function returns SETCC_INVALID if it is not possible to represent the
700  /// resultant comparison.
701  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
702}  // end llvm::ISD namespace
703
704
705//===----------------------------------------------------------------------===//
706/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
707/// values as the result of a computation.  Many nodes return multiple values,
708/// from loads (which define a token and a return value) to ADDC (which returns
709/// a result and a carry value), to calls (which may return an arbitrary number
710/// of values).
711///
712/// As such, each use of a SelectionDAG computation must indicate the node that
713/// computes it as well as which return value to use from that node.  This pair
714/// of information is represented with the SDOperand value type.
715///
716class SDOperand {
717public:
718  SDNode *Val;        // The node defining the value we are using.
719  unsigned ResNo;     // Which return value of the node we are using.
720
721  SDOperand() : Val(0), ResNo(0) {}
722  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
723
724  bool operator==(const SDOperand &O) const {
725    return Val == O.Val && ResNo == O.ResNo;
726  }
727  bool operator!=(const SDOperand &O) const {
728    return !operator==(O);
729  }
730  bool operator<(const SDOperand &O) const {
731    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
732  }
733
734  SDOperand getValue(unsigned R) const {
735    return SDOperand(Val, R);
736  }
737
738  // isOperand - Return true if this node is an operand of N.
739  bool isOperand(SDNode *N) const;
740
741  /// getValueType - Return the ValueType of the referenced return value.
742  ///
743  inline MVT::ValueType getValueType() const;
744
745  // Forwarding methods - These forward to the corresponding methods in SDNode.
746  inline unsigned getOpcode() const;
747  inline unsigned getNumOperands() const;
748  inline const SDOperand &getOperand(unsigned i) const;
749  inline uint64_t getConstantOperandVal(unsigned i) const;
750  inline bool isTargetOpcode() const;
751  inline unsigned getTargetOpcode() const;
752
753  /// hasOneUse - Return true if there is exactly one operation using this
754  /// result value of the defining operator.
755  inline bool hasOneUse() const;
756};
757
758
759/// simplify_type specializations - Allow casting operators to work directly on
760/// SDOperands as if they were SDNode*'s.
761template<> struct simplify_type<SDOperand> {
762  typedef SDNode* SimpleType;
763  static SimpleType getSimplifiedValue(const SDOperand &Val) {
764    return static_cast<SimpleType>(Val.Val);
765  }
766};
767template<> struct simplify_type<const SDOperand> {
768  typedef SDNode* SimpleType;
769  static SimpleType getSimplifiedValue(const SDOperand &Val) {
770    return static_cast<SimpleType>(Val.Val);
771  }
772};
773
774
775/// SDNode - Represents one node in the SelectionDAG.
776///
777class SDNode : public FoldingSetNode {
778  /// NodeType - The operation that this node performs.
779  ///
780  unsigned short NodeType;
781
782  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
783  /// then they will be delete[]'d when the node is destroyed.
784  bool OperandsNeedDelete : 1;
785
786  /// NodeId - Unique id per SDNode in the DAG.
787  int NodeId;
788
789  /// OperandList - The values that are used by this operation.
790  ///
791  SDOperand *OperandList;
792
793  /// ValueList - The types of the values this node defines.  SDNode's may
794  /// define multiple values simultaneously.
795  const MVT::ValueType *ValueList;
796
797  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
798  unsigned short NumOperands, NumValues;
799
800  /// Prev/Next pointers - These pointers form the linked list of of the
801  /// AllNodes list in the current DAG.
802  SDNode *Prev, *Next;
803  friend struct ilist_traits<SDNode>;
804
805  /// Uses - These are all of the SDNode's that use a value produced by this
806  /// node.
807  SmallVector<SDNode*,3> Uses;
808
809  // Out-of-line virtual method to give class a home.
810  virtual void ANCHOR();
811public:
812  virtual ~SDNode() {
813    assert(NumOperands == 0 && "Operand list not cleared before deletion");
814    NodeType = ISD::DELETED_NODE;
815  }
816
817  //===--------------------------------------------------------------------===//
818  //  Accessors
819  //
820  unsigned getOpcode()  const { return NodeType; }
821  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
822  unsigned getTargetOpcode() const {
823    assert(isTargetOpcode() && "Not a target opcode!");
824    return NodeType - ISD::BUILTIN_OP_END;
825  }
826
827  size_t use_size() const { return Uses.size(); }
828  bool use_empty() const { return Uses.empty(); }
829  bool hasOneUse() const { return Uses.size() == 1; }
830
831  /// getNodeId - Return the unique node id.
832  ///
833  int getNodeId() const { return NodeId; }
834
835  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
836  use_iterator use_begin() const { return Uses.begin(); }
837  use_iterator use_end() const { return Uses.end(); }
838
839  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
840  /// indicated value.  This method ignores uses of other values defined by this
841  /// operation.
842  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
843
844  /// isOnlyUse - Return true if this node is the only use of N.
845  ///
846  bool isOnlyUse(SDNode *N) const;
847
848  /// isOperand - Return true if this node is an operand of N.
849  ///
850  bool isOperand(SDNode *N) const;
851
852  /// isPredecessor - Return true if this node is a predecessor of N. This node
853  /// is either an operand of N or it can be reached by recursively traversing
854  /// up the operands.
855  /// NOTE: this is an expensive method. Use it carefully.
856  bool isPredecessor(SDNode *N) const;
857
858  /// getNumOperands - Return the number of values used by this operation.
859  ///
860  unsigned getNumOperands() const { return NumOperands; }
861
862  /// getConstantOperandVal - Helper method returns the integer value of a
863  /// ConstantSDNode operand.
864  uint64_t getConstantOperandVal(unsigned Num) const;
865
866  const SDOperand &getOperand(unsigned Num) const {
867    assert(Num < NumOperands && "Invalid child # of SDNode!");
868    return OperandList[Num];
869  }
870
871  typedef const SDOperand* op_iterator;
872  op_iterator op_begin() const { return OperandList; }
873  op_iterator op_end() const { return OperandList+NumOperands; }
874
875
876  SDVTList getVTList() const {
877    SDVTList X = { ValueList, NumValues };
878    return X;
879  };
880
881  /// getNumValues - Return the number of values defined/returned by this
882  /// operator.
883  ///
884  unsigned getNumValues() const { return NumValues; }
885
886  /// getValueType - Return the type of a specified result.
887  ///
888  MVT::ValueType getValueType(unsigned ResNo) const {
889    assert(ResNo < NumValues && "Illegal result number!");
890    return ValueList[ResNo];
891  }
892
893  typedef const MVT::ValueType* value_iterator;
894  value_iterator value_begin() const { return ValueList; }
895  value_iterator value_end() const { return ValueList+NumValues; }
896
897  /// getOperationName - Return the opcode of this operation for printing.
898  ///
899  const char* getOperationName(const SelectionDAG *G = 0) const;
900  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
901  void dump() const;
902  void dump(const SelectionDAG *G) const;
903
904  static bool classof(const SDNode *) { return true; }
905
906  /// Profile - Gather unique data for the node.
907  ///
908  void Profile(FoldingSetNodeID &ID);
909
910protected:
911  friend class SelectionDAG;
912
913  /// getValueTypeList - Return a pointer to the specified value type.
914  ///
915  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
916  static SDVTList getSDVTList(MVT::ValueType VT) {
917    SDVTList Ret = { getValueTypeList(VT), 1 };
918    return Ret;
919  }
920
921  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
922    : NodeType(Opc), NodeId(-1) {
923    OperandsNeedDelete = true;
924    NumOperands = NumOps;
925    OperandList = NumOps ? new SDOperand[NumOperands] : 0;
926
927    for (unsigned i = 0; i != NumOps; ++i) {
928      OperandList[i] = Ops[i];
929      Ops[i].Val->Uses.push_back(this);
930    }
931
932    ValueList = VTs.VTs;
933    NumValues = VTs.NumVTs;
934    Prev = 0; Next = 0;
935  }
936  SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) {
937    OperandsNeedDelete = false;  // Operands set with InitOperands.
938    NumOperands = 0;
939    OperandList = 0;
940
941    ValueList = VTs.VTs;
942    NumValues = VTs.NumVTs;
943    Prev = 0; Next = 0;
944  }
945
946  /// InitOperands - Initialize the operands list of this node with the
947  /// specified values, which are part of the node (thus they don't need to be
948  /// copied in or allocated).
949  void InitOperands(SDOperand *Ops, unsigned NumOps) {
950    assert(OperandList == 0 && "Operands already set!");
951    NumOperands = NumOps;
952    OperandList = Ops;
953
954    for (unsigned i = 0; i != NumOps; ++i)
955      Ops[i].Val->Uses.push_back(this);
956  }
957
958  /// MorphNodeTo - This frees the operands of the current node, resets the
959  /// opcode, types, and operands to the specified value.  This should only be
960  /// used by the SelectionDAG class.
961  void MorphNodeTo(unsigned Opc, SDVTList L,
962                   const SDOperand *Ops, unsigned NumOps);
963
964  void addUser(SDNode *User) {
965    Uses.push_back(User);
966  }
967  void removeUser(SDNode *User) {
968    // Remove this user from the operand's use list.
969    for (unsigned i = Uses.size(); ; --i) {
970      assert(i != 0 && "Didn't find user!");
971      if (Uses[i-1] == User) {
972        Uses[i-1] = Uses.back();
973        Uses.pop_back();
974        return;
975      }
976    }
977  }
978
979  void setNodeId(int Id) {
980    NodeId = Id;
981  }
982};
983
984
985// Define inline functions from the SDOperand class.
986
987inline unsigned SDOperand::getOpcode() const {
988  return Val->getOpcode();
989}
990inline MVT::ValueType SDOperand::getValueType() const {
991  return Val->getValueType(ResNo);
992}
993inline unsigned SDOperand::getNumOperands() const {
994  return Val->getNumOperands();
995}
996inline const SDOperand &SDOperand::getOperand(unsigned i) const {
997  return Val->getOperand(i);
998}
999inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1000  return Val->getConstantOperandVal(i);
1001}
1002inline bool SDOperand::isTargetOpcode() const {
1003  return Val->isTargetOpcode();
1004}
1005inline unsigned SDOperand::getTargetOpcode() const {
1006  return Val->getTargetOpcode();
1007}
1008inline bool SDOperand::hasOneUse() const {
1009  return Val->hasNUsesOfValue(1, ResNo);
1010}
1011
1012/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1013/// to allow co-allocation of node operands with the node itself.
1014class UnarySDNode : public SDNode {
1015  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1016  SDOperand Op;
1017public:
1018  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1019    : SDNode(Opc, VTs), Op(X) {
1020    InitOperands(&Op, 1);
1021  }
1022};
1023
1024/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1025/// to allow co-allocation of node operands with the node itself.
1026class BinarySDNode : public SDNode {
1027  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1028  SDOperand Ops[2];
1029public:
1030  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1031    : SDNode(Opc, VTs) {
1032    Ops[0] = X;
1033    Ops[1] = Y;
1034    InitOperands(Ops, 2);
1035  }
1036};
1037
1038/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1039/// to allow co-allocation of node operands with the node itself.
1040class TernarySDNode : public SDNode {
1041  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1042  SDOperand Ops[3];
1043public:
1044  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1045                SDOperand Z)
1046    : SDNode(Opc, VTs) {
1047    Ops[0] = X;
1048    Ops[1] = Y;
1049    Ops[2] = Z;
1050    InitOperands(Ops, 3);
1051  }
1052};
1053
1054
1055/// HandleSDNode - This class is used to form a handle around another node that
1056/// is persistant and is updated across invocations of replaceAllUsesWith on its
1057/// operand.  This node should be directly created by end-users and not added to
1058/// the AllNodes list.
1059class HandleSDNode : public SDNode {
1060  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1061  SDOperand Op;
1062public:
1063  HandleSDNode(SDOperand X)
1064    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
1065    InitOperands(&Op, 1);
1066  }
1067  ~HandleSDNode();
1068  SDOperand getValue() const { return Op; }
1069};
1070
1071class StringSDNode : public SDNode {
1072  std::string Value;
1073  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1074protected:
1075  friend class SelectionDAG;
1076  StringSDNode(const std::string &val)
1077    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1078  }
1079public:
1080  const std::string &getValue() const { return Value; }
1081  static bool classof(const StringSDNode *) { return true; }
1082  static bool classof(const SDNode *N) {
1083    return N->getOpcode() == ISD::STRING;
1084  }
1085};
1086
1087class ConstantSDNode : public SDNode {
1088  uint64_t Value;
1089  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1090protected:
1091  friend class SelectionDAG;
1092  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1093    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1094      Value(val) {
1095  }
1096public:
1097
1098  uint64_t getValue() const { return Value; }
1099
1100  int64_t getSignExtended() const {
1101    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1102    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1103  }
1104
1105  bool isNullValue() const { return Value == 0; }
1106  bool isAllOnesValue() const {
1107    return Value == MVT::getIntVTBitMask(getValueType(0));
1108  }
1109
1110  static bool classof(const ConstantSDNode *) { return true; }
1111  static bool classof(const SDNode *N) {
1112    return N->getOpcode() == ISD::Constant ||
1113           N->getOpcode() == ISD::TargetConstant;
1114  }
1115};
1116
1117class ConstantFPSDNode : public SDNode {
1118  double Value;
1119  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1120protected:
1121  friend class SelectionDAG;
1122  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1123    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1124             getSDVTList(VT)), Value(val) {
1125  }
1126public:
1127
1128  double getValue() const { return Value; }
1129
1130  /// isExactlyValue - We don't rely on operator== working on double values, as
1131  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1132  /// As such, this method can be used to do an exact bit-for-bit comparison of
1133  /// two floating point values.
1134  bool isExactlyValue(double V) const;
1135
1136  static bool classof(const ConstantFPSDNode *) { return true; }
1137  static bool classof(const SDNode *N) {
1138    return N->getOpcode() == ISD::ConstantFP ||
1139           N->getOpcode() == ISD::TargetConstantFP;
1140  }
1141};
1142
1143class GlobalAddressSDNode : public SDNode {
1144  GlobalValue *TheGlobal;
1145  int Offset;
1146  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1147protected:
1148  friend class SelectionDAG;
1149  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1150                      int o = 0)
1151    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress,
1152             getSDVTList(VT)), Offset(o) {
1153    TheGlobal = const_cast<GlobalValue*>(GA);
1154  }
1155public:
1156
1157  GlobalValue *getGlobal() const { return TheGlobal; }
1158  int getOffset() const { return Offset; }
1159
1160  static bool classof(const GlobalAddressSDNode *) { return true; }
1161  static bool classof(const SDNode *N) {
1162    return N->getOpcode() == ISD::GlobalAddress ||
1163           N->getOpcode() == ISD::TargetGlobalAddress;
1164  }
1165};
1166
1167
1168class FrameIndexSDNode : public SDNode {
1169  int FI;
1170  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1171protected:
1172  friend class SelectionDAG;
1173  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1174    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1175      FI(fi) {
1176  }
1177public:
1178
1179  int getIndex() const { return FI; }
1180
1181  static bool classof(const FrameIndexSDNode *) { return true; }
1182  static bool classof(const SDNode *N) {
1183    return N->getOpcode() == ISD::FrameIndex ||
1184           N->getOpcode() == ISD::TargetFrameIndex;
1185  }
1186};
1187
1188class JumpTableSDNode : public SDNode {
1189  int JTI;
1190  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1191protected:
1192  friend class SelectionDAG;
1193  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1194    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1195      JTI(jti) {
1196  }
1197public:
1198
1199    int getIndex() const { return JTI; }
1200
1201  static bool classof(const JumpTableSDNode *) { return true; }
1202  static bool classof(const SDNode *N) {
1203    return N->getOpcode() == ISD::JumpTable ||
1204           N->getOpcode() == ISD::TargetJumpTable;
1205  }
1206};
1207
1208class ConstantPoolSDNode : public SDNode {
1209  union {
1210    Constant *ConstVal;
1211    MachineConstantPoolValue *MachineCPVal;
1212  } Val;
1213  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1214  unsigned Alignment;
1215  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1216protected:
1217  friend class SelectionDAG;
1218  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1219                     int o=0)
1220    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1221             getSDVTList(VT)), Offset(o), Alignment(0) {
1222    assert((int)Offset >= 0 && "Offset is too large");
1223    Val.ConstVal = c;
1224  }
1225  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1226                     unsigned Align)
1227    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1228             getSDVTList(VT)), Offset(o), Alignment(Align) {
1229    assert((int)Offset >= 0 && "Offset is too large");
1230    Val.ConstVal = c;
1231  }
1232  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1233                     MVT::ValueType VT, int o=0)
1234    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1235             getSDVTList(VT)), Offset(o), Alignment(0) {
1236    assert((int)Offset >= 0 && "Offset is too large");
1237    Val.MachineCPVal = v;
1238    Offset |= 1 << (sizeof(unsigned)*8-1);
1239  }
1240  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1241                     MVT::ValueType VT, int o, unsigned Align)
1242    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1243             getSDVTList(VT)), Offset(o), Alignment(Align) {
1244    assert((int)Offset >= 0 && "Offset is too large");
1245    Val.MachineCPVal = v;
1246    Offset |= 1 << (sizeof(unsigned)*8-1);
1247  }
1248public:
1249
1250  bool isMachineConstantPoolEntry() const {
1251    return (int)Offset < 0;
1252  }
1253
1254  Constant *getConstVal() const {
1255    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1256    return Val.ConstVal;
1257  }
1258
1259  MachineConstantPoolValue *getMachineCPVal() const {
1260    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1261    return Val.MachineCPVal;
1262  }
1263
1264  int getOffset() const {
1265    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1266  }
1267
1268  // Return the alignment of this constant pool object, which is either 0 (for
1269  // default alignment) or log2 of the desired value.
1270  unsigned getAlignment() const { return Alignment; }
1271
1272  const Type *getType() const;
1273
1274  static bool classof(const ConstantPoolSDNode *) { return true; }
1275  static bool classof(const SDNode *N) {
1276    return N->getOpcode() == ISD::ConstantPool ||
1277           N->getOpcode() == ISD::TargetConstantPool;
1278  }
1279};
1280
1281class BasicBlockSDNode : public SDNode {
1282  MachineBasicBlock *MBB;
1283  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1284protected:
1285  friend class SelectionDAG;
1286  BasicBlockSDNode(MachineBasicBlock *mbb)
1287    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1288  }
1289public:
1290
1291  MachineBasicBlock *getBasicBlock() const { return MBB; }
1292
1293  static bool classof(const BasicBlockSDNode *) { return true; }
1294  static bool classof(const SDNode *N) {
1295    return N->getOpcode() == ISD::BasicBlock;
1296  }
1297};
1298
1299class SrcValueSDNode : public SDNode {
1300  const Value *V;
1301  int offset;
1302  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1303protected:
1304  friend class SelectionDAG;
1305  SrcValueSDNode(const Value* v, int o)
1306    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v), offset(o) {
1307  }
1308
1309public:
1310  const Value *getValue() const { return V; }
1311  int getOffset() const { return offset; }
1312
1313  static bool classof(const SrcValueSDNode *) { return true; }
1314  static bool classof(const SDNode *N) {
1315    return N->getOpcode() == ISD::SRCVALUE;
1316  }
1317};
1318
1319
1320class RegisterSDNode : public SDNode {
1321  unsigned Reg;
1322  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1323protected:
1324  friend class SelectionDAG;
1325  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1326    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1327  }
1328public:
1329
1330  unsigned getReg() const { return Reg; }
1331
1332  static bool classof(const RegisterSDNode *) { return true; }
1333  static bool classof(const SDNode *N) {
1334    return N->getOpcode() == ISD::Register;
1335  }
1336};
1337
1338class ExternalSymbolSDNode : public SDNode {
1339  const char *Symbol;
1340  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1341protected:
1342  friend class SelectionDAG;
1343  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1344    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1345             getSDVTList(VT)), Symbol(Sym) {
1346  }
1347public:
1348
1349  const char *getSymbol() const { return Symbol; }
1350
1351  static bool classof(const ExternalSymbolSDNode *) { return true; }
1352  static bool classof(const SDNode *N) {
1353    return N->getOpcode() == ISD::ExternalSymbol ||
1354           N->getOpcode() == ISD::TargetExternalSymbol;
1355  }
1356};
1357
1358class CondCodeSDNode : public SDNode {
1359  ISD::CondCode Condition;
1360  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1361protected:
1362  friend class SelectionDAG;
1363  CondCodeSDNode(ISD::CondCode Cond)
1364    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1365  }
1366public:
1367
1368  ISD::CondCode get() const { return Condition; }
1369
1370  static bool classof(const CondCodeSDNode *) { return true; }
1371  static bool classof(const SDNode *N) {
1372    return N->getOpcode() == ISD::CONDCODE;
1373  }
1374};
1375
1376/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1377/// to parameterize some operations.
1378class VTSDNode : public SDNode {
1379  MVT::ValueType ValueType;
1380  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1381protected:
1382  friend class SelectionDAG;
1383  VTSDNode(MVT::ValueType VT)
1384    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1385  }
1386public:
1387
1388  MVT::ValueType getVT() const { return ValueType; }
1389
1390  static bool classof(const VTSDNode *) { return true; }
1391  static bool classof(const SDNode *N) {
1392    return N->getOpcode() == ISD::VALUETYPE;
1393  }
1394};
1395
1396/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1397///
1398class LoadSDNode : public SDNode {
1399  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1400  SDOperand Ops[3];
1401
1402  // AddrMode - unindexed, pre-indexed, post-indexed.
1403  ISD::MemIndexedMode AddrMode;
1404
1405  // ExtType - non-ext, anyext, sext, zext.
1406  ISD::LoadExtType ExtType;
1407
1408  // LoadedVT - VT of loaded value before extension.
1409  MVT::ValueType LoadedVT;
1410
1411  // SrcValue - Memory location for alias analysis.
1412  const Value *SrcValue;
1413
1414  // SVOffset - Memory location offset.
1415  int SVOffset;
1416
1417  // Alignment - Alignment of memory location in bytes.
1418  unsigned Alignment;
1419
1420  // IsVolatile - True if the load is volatile.
1421  bool IsVolatile;
1422protected:
1423  friend class SelectionDAG;
1424  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
1425             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1426             const Value *SV, int O=0, unsigned Align=1, bool Vol=false)
1427    : SDNode(ISD::LOAD, VTs),
1428      AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
1429      Alignment(Align), IsVolatile(Vol) {
1430    Ops[0] = ChainPtrOff[0]; // Chain
1431    Ops[1] = ChainPtrOff[1]; // Ptr
1432    Ops[2] = ChainPtrOff[2]; // Off
1433    InitOperands(Ops, 3);
1434    assert((getOffset().getOpcode() == ISD::UNDEF ||
1435            AddrMode != ISD::UNINDEXED) &&
1436           "Only indexed load has a non-undef offset operand");
1437  }
1438public:
1439
1440  const SDOperand getChain() const { return getOperand(0); }
1441  const SDOperand getBasePtr() const { return getOperand(1); }
1442  const SDOperand getOffset() const { return getOperand(2); }
1443  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1444  ISD::LoadExtType getExtensionType() const { return ExtType; }
1445  MVT::ValueType getLoadedVT() const { return LoadedVT; }
1446  const Value *getSrcValue() const { return SrcValue; }
1447  int getSrcValueOffset() const { return SVOffset; }
1448  unsigned getAlignment() const { return Alignment; }
1449  bool isVolatile() const { return IsVolatile; }
1450
1451  static bool classof(const LoadSDNode *) { return true; }
1452  static bool classof(const SDNode *N) {
1453    return N->getOpcode() == ISD::LOAD;
1454  }
1455};
1456
1457/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1458///
1459class StoreSDNode : public SDNode {
1460  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1461  SDOperand Ops[4];
1462
1463  // AddrMode - unindexed, pre-indexed, post-indexed.
1464  ISD::MemIndexedMode AddrMode;
1465
1466  // IsTruncStore - True is the op does a truncation before store.
1467  bool IsTruncStore;
1468
1469  // StoredVT - VT of the value after truncation.
1470  MVT::ValueType StoredVT;
1471
1472  // SrcValue - Memory location for alias analysis.
1473  const Value *SrcValue;
1474
1475  // SVOffset - Memory location offset.
1476  int SVOffset;
1477
1478  // Alignment - Alignment of memory location in bytes.
1479  unsigned Alignment;
1480
1481  // IsVolatile - True if the store is volatile.
1482  bool IsVolatile;
1483protected:
1484  friend class SelectionDAG;
1485  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
1486              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1487              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1488    : SDNode(ISD::STORE, VTs),
1489      AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
1490      SVOffset(O), Alignment(Align), IsVolatile(Vol) {
1491    Ops[0] = ChainValuePtrOff[0]; // Chain
1492    Ops[1] = ChainValuePtrOff[1]; // Value
1493    Ops[2] = ChainValuePtrOff[2]; // Ptr
1494    Ops[3] = ChainValuePtrOff[3]; // Off
1495    InitOperands(Ops, 4);
1496    assert((getOffset().getOpcode() == ISD::UNDEF ||
1497            AddrMode != ISD::UNINDEXED) &&
1498           "Only indexed store has a non-undef offset operand");
1499  }
1500public:
1501
1502  const SDOperand getChain() const { return getOperand(0); }
1503  const SDOperand getValue() const { return getOperand(1); }
1504  const SDOperand getBasePtr() const { return getOperand(2); }
1505  const SDOperand getOffset() const { return getOperand(3); }
1506  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1507  bool isTruncatingStore() const { return IsTruncStore; }
1508  MVT::ValueType getStoredVT() const { return StoredVT; }
1509  const Value *getSrcValue() const { return SrcValue; }
1510  int getSrcValueOffset() const { return SVOffset; }
1511  unsigned getAlignment() const { return Alignment; }
1512  bool isVolatile() const { return IsVolatile; }
1513
1514  static bool classof(const StoreSDNode *) { return true; }
1515  static bool classof(const SDNode *N) {
1516    return N->getOpcode() == ISD::STORE;
1517  }
1518};
1519
1520
1521class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1522  SDNode *Node;
1523  unsigned Operand;
1524
1525  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1526public:
1527  bool operator==(const SDNodeIterator& x) const {
1528    return Operand == x.Operand;
1529  }
1530  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1531
1532  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1533    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1534    Operand = I.Operand;
1535    return *this;
1536  }
1537
1538  pointer operator*() const {
1539    return Node->getOperand(Operand).Val;
1540  }
1541  pointer operator->() const { return operator*(); }
1542
1543  SDNodeIterator& operator++() {                // Preincrement
1544    ++Operand;
1545    return *this;
1546  }
1547  SDNodeIterator operator++(int) { // Postincrement
1548    SDNodeIterator tmp = *this; ++*this; return tmp;
1549  }
1550
1551  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1552  static SDNodeIterator end  (SDNode *N) {
1553    return SDNodeIterator(N, N->getNumOperands());
1554  }
1555
1556  unsigned getOperand() const { return Operand; }
1557  const SDNode *getNode() const { return Node; }
1558};
1559
1560template <> struct GraphTraits<SDNode*> {
1561  typedef SDNode NodeType;
1562  typedef SDNodeIterator ChildIteratorType;
1563  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1564  static inline ChildIteratorType child_begin(NodeType *N) {
1565    return SDNodeIterator::begin(N);
1566  }
1567  static inline ChildIteratorType child_end(NodeType *N) {
1568    return SDNodeIterator::end(N);
1569  }
1570};
1571
1572template<>
1573struct ilist_traits<SDNode> {
1574  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1575  static SDNode *getNext(const SDNode *N) { return N->Next; }
1576
1577  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1578  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1579
1580  static SDNode *createSentinel() {
1581    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
1582  }
1583  static void destroySentinel(SDNode *N) { delete N; }
1584  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1585
1586
1587  void addNodeToList(SDNode *NTy) {}
1588  void removeNodeFromList(SDNode *NTy) {}
1589  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1590                             const ilist_iterator<SDNode> &X,
1591                             const ilist_iterator<SDNode> &Y) {}
1592};
1593
1594namespace ISD {
1595  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1596  /// load.
1597  inline bool isNON_EXTLoad(const SDNode *N) {
1598    return N->getOpcode() == ISD::LOAD &&
1599      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1600  }
1601
1602  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1603  ///
1604  inline bool isEXTLoad(const SDNode *N) {
1605    return N->getOpcode() == ISD::LOAD &&
1606      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1607  }
1608
1609  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1610  ///
1611  inline bool isSEXTLoad(const SDNode *N) {
1612    return N->getOpcode() == ISD::LOAD &&
1613      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1614  }
1615
1616  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1617  ///
1618  inline bool isZEXTLoad(const SDNode *N) {
1619    return N->getOpcode() == ISD::LOAD &&
1620      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1621  }
1622
1623  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1624  /// store.
1625  inline bool isNON_TRUNCStore(const SDNode *N) {
1626    return N->getOpcode() == ISD::STORE &&
1627      !cast<StoreSDNode>(N)->isTruncatingStore();
1628  }
1629
1630  /// isTRUNCStore - Returns true if the specified node is a truncating
1631  /// store.
1632  inline bool isTRUNCStore(const SDNode *N) {
1633    return N->getOpcode() == ISD::STORE &&
1634      cast<StoreSDNode>(N)->isTruncatingStore();
1635  }
1636}
1637
1638
1639} // end llvm namespace
1640
1641#endif
1642