SelectionDAGNodes.h revision 57fc00d5cf47343ba762493b8781ca0b14489c35
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/Support/DataTypes.h"
28#include <cassert>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class MachineConstantPoolValue;
36class SDNode;
37template <typename T> struct simplify_type;
38template <typename T> struct ilist_traits;
39template<typename NodeTy, typename Traits> class iplist;
40template<typename NodeTy> class ilist_iterator;
41
42/// SDVTList - This represents a list of ValueType's that has been intern'd by
43/// a SelectionDAG.  Instances of this simple value class are returned by
44/// SelectionDAG::getVTList(...).
45///
46struct SDVTList {
47  const MVT::ValueType *VTs;
48  unsigned short NumVTs;
49};
50
51/// ISD namespace - This namespace contains an enum which represents all of the
52/// SelectionDAG node types and value types.
53///
54namespace ISD {
55  namespace ParamFlags {
56  enum Flags {
57    NoFlagSet         = 0,
58    ZExt              = 1<<0,  ///< Parameter should be zero extended
59    ZExtOffs          = 0,
60    SExt              = 1<<1,  ///< Parameter should be sign extended
61    SExtOffs          = 1,
62    InReg             = 1<<2,  ///< Parameter should be passed in register
63    InRegOffs         = 2,
64    StructReturn      = 1<<3,  ///< Hidden struct-return pointer
65    StructReturnOffs  = 3,
66    OrigAlignment     = 0x1F<<27,
67    OrigAlignmentOffs = 27
68  };
69  }
70
71  //===--------------------------------------------------------------------===//
72  /// ISD::NodeType enum - This enum defines all of the operators valid in a
73  /// SelectionDAG.
74  ///
75  enum NodeType {
76    // DELETED_NODE - This is an illegal flag value that is used to catch
77    // errors.  This opcode is not a legal opcode for any node.
78    DELETED_NODE,
79
80    // EntryToken - This is the marker used to indicate the start of the region.
81    EntryToken,
82
83    // Token factor - This node takes multiple tokens as input and produces a
84    // single token result.  This is used to represent the fact that the operand
85    // operators are independent of each other.
86    TokenFactor,
87
88    // AssertSext, AssertZext - These nodes record if a register contains a
89    // value that has already been zero or sign extended from a narrower type.
90    // These nodes take two operands.  The first is the node that has already
91    // been extended, and the second is a value type node indicating the width
92    // of the extension
93    AssertSext, AssertZext,
94
95    // Various leaf nodes.
96    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
97    Constant, ConstantFP,
98    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
99
100    // The address of the GOT
101    GLOBAL_OFFSET_TABLE,
102
103    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
104    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
105    // of the frame or return address to return.  An index of zero corresponds
106    // to the current function's frame or return address, an index of one to the
107    // parent's frame or return address, and so on.
108    FRAMEADDR, RETURNADDR,
109
110    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
111    // address of the exception block on entry to an landing pad block.
112    EXCEPTIONADDR,
113
114    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
115    // the selection index of the exception thrown.
116    EHSELECTION,
117
118    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
119    // simplification of the constant.
120    TargetConstant,
121    TargetConstantFP,
122
123    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
124    // anything else with this node, and this is valid in the target-specific
125    // dag, turning into a GlobalAddress operand.
126    TargetGlobalAddress,
127    TargetFrameIndex,
128    TargetJumpTable,
129    TargetConstantPool,
130    TargetExternalSymbol,
131
132    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
133    /// This node represents a target intrinsic function with no side effects.
134    /// The first operand is the ID number of the intrinsic from the
135    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
136    /// node has returns the result of the intrinsic.
137    INTRINSIC_WO_CHAIN,
138
139    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
140    /// This node represents a target intrinsic function with side effects that
141    /// returns a result.  The first operand is a chain pointer.  The second is
142    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
143    /// operands to the intrinsic follow.  The node has two results, the result
144    /// of the intrinsic and an output chain.
145    INTRINSIC_W_CHAIN,
146
147    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
148    /// This node represents a target intrinsic function with side effects that
149    /// does not return a result.  The first operand is a chain pointer.  The
150    /// second is the ID number of the intrinsic from the llvm::Intrinsic
151    /// namespace.  The operands to the intrinsic follow.
152    INTRINSIC_VOID,
153
154    // CopyToReg - This node has three operands: a chain, a register number to
155    // set to this value, and a value.
156    CopyToReg,
157
158    // CopyFromReg - This node indicates that the input value is a virtual or
159    // physical register that is defined outside of the scope of this
160    // SelectionDAG.  The register is available from the RegSDNode object.
161    CopyFromReg,
162
163    // UNDEF - An undefined node
164    UNDEF,
165
166    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
167    /// represents the formal arguments for a function.  CC# is a Constant value
168    /// indicating the calling convention of the function, and ISVARARG is a
169    /// flag that indicates whether the function is varargs or not. This node
170    /// has one result value for each incoming argument, plus one for the output
171    /// chain. It must be custom legalized. See description of CALL node for
172    /// FLAG argument contents explanation.
173    ///
174    FORMAL_ARGUMENTS,
175
176    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
177    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
178    /// This node represents a fully general function call, before the legalizer
179    /// runs.  This has one result value for each argument / flag pair, plus
180    /// a chain result. It must be custom legalized. Flag argument indicates
181    /// misc. argument attributes. Currently:
182    /// Bit 0 - signness
183    /// Bit 1 - 'inreg' attribute
184    /// Bit 2 - 'sret' attribute
185    /// Bits 31:27 - argument ABI alignment in the first argument piece and
186    /// alignment '1' in other argument pieces.
187    CALL,
188
189    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
190    // a Constant, which is required to be operand #1), element of the aggregate
191    // value specified as operand #0.  This is only for use before legalization,
192    // for values that will be broken into multiple registers.
193    EXTRACT_ELEMENT,
194
195    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
196    // two values of the same integer value type, this produces a value twice as
197    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
198    BUILD_PAIR,
199
200    // MERGE_VALUES - This node takes multiple discrete operands and returns
201    // them all as its individual results.  This nodes has exactly the same
202    // number of inputs and outputs, and is only valid before legalization.
203    // This node is useful for some pieces of the code generator that want to
204    // think about a single node with multiple results, not multiple nodes.
205    MERGE_VALUES,
206
207    // Simple integer binary arithmetic operators.
208    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
209
210    // CARRY_FALSE - This node is used when folding other nodes,
211    // like ADDC/SUBC, which indicate the carry result is always false.
212    CARRY_FALSE,
213
214    // Carry-setting nodes for multiple precision addition and subtraction.
215    // These nodes take two operands of the same value type, and produce two
216    // results.  The first result is the normal add or sub result, the second
217    // result is the carry flag result.
218    ADDC, SUBC,
219
220    // Carry-using nodes for multiple precision addition and subtraction.  These
221    // nodes take three operands: The first two are the normal lhs and rhs to
222    // the add or sub, and the third is the input carry flag.  These nodes
223    // produce two results; the normal result of the add or sub, and the output
224    // carry flag.  These nodes both read and write a carry flag to allow them
225    // to them to be chained together for add and sub of arbitrarily large
226    // values.
227    ADDE, SUBE,
228
229    // Simple binary floating point operators.
230    FADD, FSUB, FMUL, FDIV, FREM,
231
232    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
233    // DAG node does not require that X and Y have the same type, just that they
234    // are both floating point.  X and the result must have the same type.
235    // FCOPYSIGN(f32, f64) is allowed.
236    FCOPYSIGN,
237
238    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
239    /// with the specified, possibly variable, elements.  The number of elements
240    /// is required to be a power of two.
241    VBUILD_VECTOR,
242
243    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
244    /// with the specified, possibly variable, elements.  The number of elements
245    /// is required to be a power of two.
246    BUILD_VECTOR,
247
248    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
249    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
250    /// return an vector with the specified element of VECTOR replaced with VAL.
251    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
252    VINSERT_VECTOR_ELT,
253
254    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
255    /// type) with the element at IDX replaced with VAL.
256    INSERT_VECTOR_ELT,
257
258    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
259    /// (an MVT::Vector value) identified by the (potentially variable) element
260    /// number IDX.
261    VEXTRACT_VECTOR_ELT,
262
263    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
264    /// (a legal vector type vector) identified by the (potentially variable)
265    /// element number IDX.
266    EXTRACT_VECTOR_ELT,
267
268    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
269    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
270    /// constant int values that indicate which value each result element will
271    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
272    /// similar to the Altivec 'vperm' instruction, except that the indices must
273    /// be constants and are in terms of the element size of VEC1/VEC2, not in
274    /// terms of bytes.
275    VVECTOR_SHUFFLE,
276
277    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
278    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
279    /// (regardless of whether its datatype is legal or not) that indicate
280    /// which value each result element will get.  The elements of VEC1/VEC2 are
281    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
282    /// instruction, except that the indices must be constants and are in terms
283    /// of the element size of VEC1/VEC2, not in terms of bytes.
284    VECTOR_SHUFFLE,
285
286    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
287    /// represents a conversion from or to an ISD::Vector type.
288    ///
289    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
290    /// The input and output are required to have the same size and at least one
291    /// is required to be a vector (if neither is a vector, just use
292    /// BIT_CONVERT).
293    ///
294    /// If the result is a vector, this takes three operands (like any other
295    /// vector producer) which indicate the size and type of the vector result.
296    /// Otherwise it takes one input.
297    VBIT_CONVERT,
298
299    /// BINOP(LHS, RHS,  COUNT,TYPE)
300    /// Simple abstract vector operators.  Unlike the integer and floating point
301    /// binary operators, these nodes also take two additional operands:
302    /// a constant element count, and a value type node indicating the type of
303    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
304    /// including VLOAD and VConstant must currently have count and type as
305    /// their last two operands.
306    VADD, VSUB, VMUL, VSDIV, VUDIV,
307    VAND, VOR, VXOR,
308
309    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
310    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
311    /// COND is false.
312    VSELECT,
313
314    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
315    /// scalar value into the low element of the resultant vector type.  The top
316    /// elements of the vector are undefined.
317    SCALAR_TO_VECTOR,
318
319    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
320    // an unsigned/signed value of type i[2*n], then return the top part.
321    MULHU, MULHS,
322
323    // Bitwise operators - logical and, logical or, logical xor, shift left,
324    // shift right algebraic (shift in sign bits), shift right logical (shift in
325    // zeroes), rotate left, rotate right, and byteswap.
326    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
327
328    // Counting operators
329    CTTZ, CTLZ, CTPOP,
330
331    // Select(COND, TRUEVAL, FALSEVAL)
332    SELECT,
333
334    // Select with condition operator - This selects between a true value and
335    // a false value (ops #2 and #3) based on the boolean result of comparing
336    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
337    // condition code in op #4, a CondCodeSDNode.
338    SELECT_CC,
339
340    // SetCC operator - This evaluates to a boolean (i1) true value if the
341    // condition is true.  The operands to this are the left and right operands
342    // to compare (ops #0, and #1) and the condition code to compare them with
343    // (op #2) as a CondCodeSDNode.
344    SETCC,
345
346    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
347    // integer shift operations, just like ADD/SUB_PARTS.  The operation
348    // ordering is:
349    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
350    SHL_PARTS, SRA_PARTS, SRL_PARTS,
351
352    // Conversion operators.  These are all single input single output
353    // operations.  For all of these, the result type must be strictly
354    // wider or narrower (depending on the operation) than the source
355    // type.
356
357    // SIGN_EXTEND - Used for integer types, replicating the sign bit
358    // into new bits.
359    SIGN_EXTEND,
360
361    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
362    ZERO_EXTEND,
363
364    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
365    ANY_EXTEND,
366
367    // TRUNCATE - Completely drop the high bits.
368    TRUNCATE,
369
370    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
371    // depends on the first letter) to floating point.
372    SINT_TO_FP,
373    UINT_TO_FP,
374
375    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
376    // sign extend a small value in a large integer register (e.g. sign
377    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
378    // with the 7th bit).  The size of the smaller type is indicated by the 1th
379    // operand, a ValueType node.
380    SIGN_EXTEND_INREG,
381
382    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
383    // integer.
384    FP_TO_SINT,
385    FP_TO_UINT,
386
387    // FP_ROUND - Perform a rounding operation from the current
388    // precision down to the specified precision (currently always 64->32).
389    FP_ROUND,
390
391    // FP_ROUND_INREG - This operator takes a floating point register, and
392    // rounds it to a floating point value.  It then promotes it and returns it
393    // in a register of the same size.  This operation effectively just discards
394    // excess precision.  The type to round down to is specified by the 1th
395    // operation, a VTSDNode (currently always 64->32->64).
396    FP_ROUND_INREG,
397
398    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
399    FP_EXTEND,
400
401    // BIT_CONVERT - Theis operator converts between integer and FP values, as
402    // if one was stored to memory as integer and the other was loaded from the
403    // same address (or equivalently for vector format conversions, etc).  The
404    // source and result are required to have the same bit size (e.g.
405    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
406    // conversions, but that is a noop, deleted by getNode().
407    BIT_CONVERT,
408
409    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point
410    // negation, absolute value, square root, sine and cosine, and powi
411    // operations.
412    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI,
413
414    // LOAD and STORE have token chains as their first operand, then the same
415    // operands as an LLVM load/store instruction, then an offset node that
416    // is added / subtracted from the base pointer to form the address (for
417    // indexed memory ops).
418    LOAD, STORE,
419
420    // Abstract vector version of LOAD.  VLOAD has a constant element count as
421    // the first operand, followed by a value type node indicating the type of
422    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
423    VLOAD,
424
425    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
426    // value and stores it to memory in one operation.  This can be used for
427    // either integer or floating point operands.  The first four operands of
428    // this are the same as a standard store.  The fifth is the ValueType to
429    // store it as (which will be smaller than the source value).
430    TRUNCSTORE,
431
432    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
433    // to a specified boundary.  This node always has two return values: a new
434    // stack pointer value and a chain. The first operand is the token chain,
435    // the second is the number of bytes to allocate, and the third is the
436    // alignment boundary.  The size is guaranteed to be a multiple of the stack
437    // alignment, and the alignment is guaranteed to be bigger than the stack
438    // alignment (if required) or 0 to get standard stack alignment.
439    DYNAMIC_STACKALLOC,
440
441    // Control flow instructions.  These all have token chains.
442
443    // BR - Unconditional branch.  The first operand is the chain
444    // operand, the second is the MBB to branch to.
445    BR,
446
447    // BRIND - Indirect branch.  The first operand is the chain, the second
448    // is the value to branch to, which must be of the same type as the target's
449    // pointer type.
450    BRIND,
451
452    // BR_JT - Jumptable branch. The first operand is the chain, the second
453    // is the jumptable index, the last one is the jumptable entry index.
454    BR_JT,
455
456    // BRCOND - Conditional branch.  The first operand is the chain,
457    // the second is the condition, the third is the block to branch
458    // to if the condition is true.
459    BRCOND,
460
461    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
462    // that the condition is represented as condition code, and two nodes to
463    // compare, rather than as a combined SetCC node.  The operands in order are
464    // chain, cc, lhs, rhs, block to branch to if condition is true.
465    BR_CC,
466
467    // RET - Return from function.  The first operand is the chain,
468    // and any subsequent operands are pairs of return value and return value
469    // signness for the function.  This operation can have variable number of
470    // operands.
471    RET,
472
473    // INLINEASM - Represents an inline asm block.  This node always has two
474    // return values: a chain and a flag result.  The inputs are as follows:
475    //   Operand #0   : Input chain.
476    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
477    //   Operand #2n+2: A RegisterNode.
478    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
479    //   Operand #last: Optional, an incoming flag.
480    INLINEASM,
481
482    // LABEL - Represents a label in mid basic block used to track
483    // locations needed for debug and exception handling tables.  This node
484    // returns a chain.
485    //   Operand #0 : input chain.
486    //   Operand #1 : module unique number use to identify the label.
487    LABEL,
488
489    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
490    // value, the same type as the pointer type for the system, and an output
491    // chain.
492    STACKSAVE,
493
494    // STACKRESTORE has two operands, an input chain and a pointer to restore to
495    // it returns an output chain.
496    STACKRESTORE,
497
498    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
499    // correspond to the operands of the LLVM intrinsic functions.  The only
500    // result is a token chain.  The alignment argument is guaranteed to be a
501    // Constant node.
502    MEMSET,
503    MEMMOVE,
504    MEMCPY,
505
506    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
507    // a call sequence, and carry arbitrary information that target might want
508    // to know.  The first operand is a chain, the rest are specified by the
509    // target and not touched by the DAG optimizers.
510    CALLSEQ_START,  // Beginning of a call sequence
511    CALLSEQ_END,    // End of a call sequence
512
513    // VAARG - VAARG has three operands: an input chain, a pointer, and a
514    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
515    VAARG,
516
517    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
518    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
519    // source.
520    VACOPY,
521
522    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
523    // pointer, and a SRCVALUE.
524    VAEND, VASTART,
525
526    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
527    // locations with their value.  This allows one use alias analysis
528    // information in the backend.
529    SRCVALUE,
530
531    // PCMARKER - This corresponds to the pcmarker intrinsic.
532    PCMARKER,
533
534    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
535    // The only operand is a chain and a value and a chain are produced.  The
536    // value is the contents of the architecture specific cycle counter like
537    // register (or other high accuracy low latency clock source)
538    READCYCLECOUNTER,
539
540    // HANDLENODE node - Used as a handle for various purposes.
541    HANDLENODE,
542
543    // LOCATION - This node is used to represent a source location for debug
544    // info.  It takes token chain as input, then a line number, then a column
545    // number, then a filename, then a working dir.  It produces a token chain
546    // as output.
547    LOCATION,
548
549    // DEBUG_LOC - This node is used to represent source line information
550    // embedded in the code.  It takes a token chain as input, then a line
551    // number, then a column then a file id (provided by MachineModuleInfo.) It
552    // produces a token chain as output.
553    DEBUG_LOC,
554
555    // BUILTIN_OP_END - This must be the last enum value in this list.
556    BUILTIN_OP_END
557  };
558
559  /// Node predicates
560
561  /// isBuildVectorAllOnes - Return true if the specified node is a
562  /// BUILD_VECTOR where all of the elements are ~0 or undef.
563  bool isBuildVectorAllOnes(const SDNode *N);
564
565  /// isBuildVectorAllZeros - Return true if the specified node is a
566  /// BUILD_VECTOR where all of the elements are 0 or undef.
567  bool isBuildVectorAllZeros(const SDNode *N);
568
569  //===--------------------------------------------------------------------===//
570  /// MemIndexedMode enum - This enum defines the load / store indexed
571  /// addressing modes.
572  ///
573  /// UNINDEXED    "Normal" load / store. The effective address is already
574  ///              computed and is available in the base pointer. The offset
575  ///              operand is always undefined. In addition to producing a
576  ///              chain, an unindexed load produces one value (result of the
577  ///              load); an unindexed store does not produces a value.
578  ///
579  /// PRE_INC      Similar to the unindexed mode where the effective address is
580  /// PRE_DEC      the value of the base pointer add / subtract the offset.
581  ///              It considers the computation as being folded into the load /
582  ///              store operation (i.e. the load / store does the address
583  ///              computation as well as performing the memory transaction).
584  ///              The base operand is always undefined. In addition to
585  ///              producing a chain, pre-indexed load produces two values
586  ///              (result of the load and the result of the address
587  ///              computation); a pre-indexed store produces one value (result
588  ///              of the address computation).
589  ///
590  /// POST_INC     The effective address is the value of the base pointer. The
591  /// POST_DEC     value of the offset operand is then added to / subtracted
592  ///              from the base after memory transaction. In addition to
593  ///              producing a chain, post-indexed load produces two values
594  ///              (the result of the load and the result of the base +/- offset
595  ///              computation); a post-indexed store produces one value (the
596  ///              the result of the base +/- offset computation).
597  ///
598  enum MemIndexedMode {
599    UNINDEXED = 0,
600    PRE_INC,
601    PRE_DEC,
602    POST_INC,
603    POST_DEC,
604    LAST_INDEXED_MODE
605  };
606
607  //===--------------------------------------------------------------------===//
608  /// LoadExtType enum - This enum defines the three variants of LOADEXT
609  /// (load with extension).
610  ///
611  /// SEXTLOAD loads the integer operand and sign extends it to a larger
612  ///          integer result type.
613  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
614  ///          integer result type.
615  /// EXTLOAD  is used for three things: floating point extending loads,
616  ///          integer extending loads [the top bits are undefined], and vector
617  ///          extending loads [load into low elt].
618  ///
619  enum LoadExtType {
620    NON_EXTLOAD = 0,
621    EXTLOAD,
622    SEXTLOAD,
623    ZEXTLOAD,
624    LAST_LOADX_TYPE
625  };
626
627  //===--------------------------------------------------------------------===//
628  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
629  /// below work out, when considering SETFALSE (something that never exists
630  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
631  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
632  /// to.  If the "N" column is 1, the result of the comparison is undefined if
633  /// the input is a NAN.
634  ///
635  /// All of these (except for the 'always folded ops') should be handled for
636  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
637  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
638  ///
639  /// Note that these are laid out in a specific order to allow bit-twiddling
640  /// to transform conditions.
641  enum CondCode {
642    // Opcode          N U L G E       Intuitive operation
643    SETFALSE,      //    0 0 0 0       Always false (always folded)
644    SETOEQ,        //    0 0 0 1       True if ordered and equal
645    SETOGT,        //    0 0 1 0       True if ordered and greater than
646    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
647    SETOLT,        //    0 1 0 0       True if ordered and less than
648    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
649    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
650    SETO,          //    0 1 1 1       True if ordered (no nans)
651    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
652    SETUEQ,        //    1 0 0 1       True if unordered or equal
653    SETUGT,        //    1 0 1 0       True if unordered or greater than
654    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
655    SETULT,        //    1 1 0 0       True if unordered or less than
656    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
657    SETUNE,        //    1 1 1 0       True if unordered or not equal
658    SETTRUE,       //    1 1 1 1       Always true (always folded)
659    // Don't care operations: undefined if the input is a nan.
660    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
661    SETEQ,         //  1 X 0 0 1       True if equal
662    SETGT,         //  1 X 0 1 0       True if greater than
663    SETGE,         //  1 X 0 1 1       True if greater than or equal
664    SETLT,         //  1 X 1 0 0       True if less than
665    SETLE,         //  1 X 1 0 1       True if less than or equal
666    SETNE,         //  1 X 1 1 0       True if not equal
667    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
668
669    SETCC_INVALID       // Marker value.
670  };
671
672  /// isSignedIntSetCC - Return true if this is a setcc instruction that
673  /// performs a signed comparison when used with integer operands.
674  inline bool isSignedIntSetCC(CondCode Code) {
675    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
676  }
677
678  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
679  /// performs an unsigned comparison when used with integer operands.
680  inline bool isUnsignedIntSetCC(CondCode Code) {
681    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
682  }
683
684  /// isTrueWhenEqual - Return true if the specified condition returns true if
685  /// the two operands to the condition are equal.  Note that if one of the two
686  /// operands is a NaN, this value is meaningless.
687  inline bool isTrueWhenEqual(CondCode Cond) {
688    return ((int)Cond & 1) != 0;
689  }
690
691  /// getUnorderedFlavor - This function returns 0 if the condition is always
692  /// false if an operand is a NaN, 1 if the condition is always true if the
693  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
694  /// NaN.
695  inline unsigned getUnorderedFlavor(CondCode Cond) {
696    return ((int)Cond >> 3) & 3;
697  }
698
699  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
700  /// 'op' is a valid SetCC operation.
701  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
702
703  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
704  /// when given the operation for (X op Y).
705  CondCode getSetCCSwappedOperands(CondCode Operation);
706
707  /// getSetCCOrOperation - Return the result of a logical OR between different
708  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
709  /// function returns SETCC_INVALID if it is not possible to represent the
710  /// resultant comparison.
711  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
712
713  /// getSetCCAndOperation - Return the result of a logical AND between
714  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
715  /// function returns SETCC_INVALID if it is not possible to represent the
716  /// resultant comparison.
717  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
718}  // end llvm::ISD namespace
719
720
721//===----------------------------------------------------------------------===//
722/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
723/// values as the result of a computation.  Many nodes return multiple values,
724/// from loads (which define a token and a return value) to ADDC (which returns
725/// a result and a carry value), to calls (which may return an arbitrary number
726/// of values).
727///
728/// As such, each use of a SelectionDAG computation must indicate the node that
729/// computes it as well as which return value to use from that node.  This pair
730/// of information is represented with the SDOperand value type.
731///
732class SDOperand {
733public:
734  SDNode *Val;        // The node defining the value we are using.
735  unsigned ResNo;     // Which return value of the node we are using.
736
737  SDOperand() : Val(0), ResNo(0) {}
738  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
739
740  bool operator==(const SDOperand &O) const {
741    return Val == O.Val && ResNo == O.ResNo;
742  }
743  bool operator!=(const SDOperand &O) const {
744    return !operator==(O);
745  }
746  bool operator<(const SDOperand &O) const {
747    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
748  }
749
750  SDOperand getValue(unsigned R) const {
751    return SDOperand(Val, R);
752  }
753
754  // isOperand - Return true if this node is an operand of N.
755  bool isOperand(SDNode *N) const;
756
757  /// getValueType - Return the ValueType of the referenced return value.
758  ///
759  inline MVT::ValueType getValueType() const;
760
761  // Forwarding methods - These forward to the corresponding methods in SDNode.
762  inline unsigned getOpcode() const;
763  inline unsigned getNumOperands() const;
764  inline const SDOperand &getOperand(unsigned i) const;
765  inline uint64_t getConstantOperandVal(unsigned i) const;
766  inline bool isTargetOpcode() const;
767  inline unsigned getTargetOpcode() const;
768
769  /// hasOneUse - Return true if there is exactly one operation using this
770  /// result value of the defining operator.
771  inline bool hasOneUse() const;
772};
773
774
775/// simplify_type specializations - Allow casting operators to work directly on
776/// SDOperands as if they were SDNode*'s.
777template<> struct simplify_type<SDOperand> {
778  typedef SDNode* SimpleType;
779  static SimpleType getSimplifiedValue(const SDOperand &Val) {
780    return static_cast<SimpleType>(Val.Val);
781  }
782};
783template<> struct simplify_type<const SDOperand> {
784  typedef SDNode* SimpleType;
785  static SimpleType getSimplifiedValue(const SDOperand &Val) {
786    return static_cast<SimpleType>(Val.Val);
787  }
788};
789
790
791/// SDNode - Represents one node in the SelectionDAG.
792///
793class SDNode : public FoldingSetNode {
794  /// NodeType - The operation that this node performs.
795  ///
796  unsigned short NodeType;
797
798  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
799  /// then they will be delete[]'d when the node is destroyed.
800  bool OperandsNeedDelete : 1;
801
802  /// NodeId - Unique id per SDNode in the DAG.
803  int NodeId;
804
805  /// OperandList - The values that are used by this operation.
806  ///
807  SDOperand *OperandList;
808
809  /// ValueList - The types of the values this node defines.  SDNode's may
810  /// define multiple values simultaneously.
811  const MVT::ValueType *ValueList;
812
813  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
814  unsigned short NumOperands, NumValues;
815
816  /// Prev/Next pointers - These pointers form the linked list of of the
817  /// AllNodes list in the current DAG.
818  SDNode *Prev, *Next;
819  friend struct ilist_traits<SDNode>;
820
821  /// Uses - These are all of the SDNode's that use a value produced by this
822  /// node.
823  SmallVector<SDNode*,3> Uses;
824
825  // Out-of-line virtual method to give class a home.
826  virtual void ANCHOR();
827public:
828  virtual ~SDNode() {
829    assert(NumOperands == 0 && "Operand list not cleared before deletion");
830    NodeType = ISD::DELETED_NODE;
831  }
832
833  //===--------------------------------------------------------------------===//
834  //  Accessors
835  //
836  unsigned getOpcode()  const { return NodeType; }
837  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
838  unsigned getTargetOpcode() const {
839    assert(isTargetOpcode() && "Not a target opcode!");
840    return NodeType - ISD::BUILTIN_OP_END;
841  }
842
843  size_t use_size() const { return Uses.size(); }
844  bool use_empty() const { return Uses.empty(); }
845  bool hasOneUse() const { return Uses.size() == 1; }
846
847  /// getNodeId - Return the unique node id.
848  ///
849  int getNodeId() const { return NodeId; }
850
851  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
852  use_iterator use_begin() const { return Uses.begin(); }
853  use_iterator use_end() const { return Uses.end(); }
854
855  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
856  /// indicated value.  This method ignores uses of other values defined by this
857  /// operation.
858  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
859
860  /// isOnlyUse - Return true if this node is the only use of N.
861  ///
862  bool isOnlyUse(SDNode *N) const;
863
864  /// isOperand - Return true if this node is an operand of N.
865  ///
866  bool isOperand(SDNode *N) const;
867
868  /// isPredecessor - Return true if this node is a predecessor of N. This node
869  /// is either an operand of N or it can be reached by recursively traversing
870  /// up the operands.
871  /// NOTE: this is an expensive method. Use it carefully.
872  bool isPredecessor(SDNode *N) const;
873
874  /// getNumOperands - Return the number of values used by this operation.
875  ///
876  unsigned getNumOperands() const { return NumOperands; }
877
878  /// getConstantOperandVal - Helper method returns the integer value of a
879  /// ConstantSDNode operand.
880  uint64_t getConstantOperandVal(unsigned Num) const;
881
882  const SDOperand &getOperand(unsigned Num) const {
883    assert(Num < NumOperands && "Invalid child # of SDNode!");
884    return OperandList[Num];
885  }
886
887  typedef const SDOperand* op_iterator;
888  op_iterator op_begin() const { return OperandList; }
889  op_iterator op_end() const { return OperandList+NumOperands; }
890
891
892  SDVTList getVTList() const {
893    SDVTList X = { ValueList, NumValues };
894    return X;
895  };
896
897  /// getNumValues - Return the number of values defined/returned by this
898  /// operator.
899  ///
900  unsigned getNumValues() const { return NumValues; }
901
902  /// getValueType - Return the type of a specified result.
903  ///
904  MVT::ValueType getValueType(unsigned ResNo) const {
905    assert(ResNo < NumValues && "Illegal result number!");
906    return ValueList[ResNo];
907  }
908
909  typedef const MVT::ValueType* value_iterator;
910  value_iterator value_begin() const { return ValueList; }
911  value_iterator value_end() const { return ValueList+NumValues; }
912
913  /// getOperationName - Return the opcode of this operation for printing.
914  ///
915  std::string getOperationName(const SelectionDAG *G = 0) const;
916  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
917  void dump() const;
918  void dump(const SelectionDAG *G) const;
919
920  static bool classof(const SDNode *) { return true; }
921
922  /// Profile - Gather unique data for the node.
923  ///
924  void Profile(FoldingSetNodeID &ID);
925
926protected:
927  friend class SelectionDAG;
928
929  /// getValueTypeList - Return a pointer to the specified value type.
930  ///
931  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
932  static SDVTList getSDVTList(MVT::ValueType VT) {
933    SDVTList Ret = { getValueTypeList(VT), 1 };
934    return Ret;
935  }
936
937  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
938    : NodeType(Opc), NodeId(-1) {
939    OperandsNeedDelete = true;
940    NumOperands = NumOps;
941    OperandList = NumOps ? new SDOperand[NumOperands] : 0;
942
943    for (unsigned i = 0; i != NumOps; ++i) {
944      OperandList[i] = Ops[i];
945      Ops[i].Val->Uses.push_back(this);
946    }
947
948    ValueList = VTs.VTs;
949    NumValues = VTs.NumVTs;
950    Prev = 0; Next = 0;
951  }
952  SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) {
953    OperandsNeedDelete = false;  // Operands set with InitOperands.
954    NumOperands = 0;
955    OperandList = 0;
956
957    ValueList = VTs.VTs;
958    NumValues = VTs.NumVTs;
959    Prev = 0; Next = 0;
960  }
961
962  /// InitOperands - Initialize the operands list of this node with the
963  /// specified values, which are part of the node (thus they don't need to be
964  /// copied in or allocated).
965  void InitOperands(SDOperand *Ops, unsigned NumOps) {
966    assert(OperandList == 0 && "Operands already set!");
967    NumOperands = NumOps;
968    OperandList = Ops;
969
970    for (unsigned i = 0; i != NumOps; ++i)
971      Ops[i].Val->Uses.push_back(this);
972  }
973
974  /// MorphNodeTo - This frees the operands of the current node, resets the
975  /// opcode, types, and operands to the specified value.  This should only be
976  /// used by the SelectionDAG class.
977  void MorphNodeTo(unsigned Opc, SDVTList L,
978                   const SDOperand *Ops, unsigned NumOps);
979
980  void addUser(SDNode *User) {
981    Uses.push_back(User);
982  }
983  void removeUser(SDNode *User) {
984    // Remove this user from the operand's use list.
985    for (unsigned i = Uses.size(); ; --i) {
986      assert(i != 0 && "Didn't find user!");
987      if (Uses[i-1] == User) {
988        Uses[i-1] = Uses.back();
989        Uses.pop_back();
990        return;
991      }
992    }
993  }
994
995  void setNodeId(int Id) {
996    NodeId = Id;
997  }
998};
999
1000
1001// Define inline functions from the SDOperand class.
1002
1003inline unsigned SDOperand::getOpcode() const {
1004  return Val->getOpcode();
1005}
1006inline MVT::ValueType SDOperand::getValueType() const {
1007  return Val->getValueType(ResNo);
1008}
1009inline unsigned SDOperand::getNumOperands() const {
1010  return Val->getNumOperands();
1011}
1012inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1013  return Val->getOperand(i);
1014}
1015inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1016  return Val->getConstantOperandVal(i);
1017}
1018inline bool SDOperand::isTargetOpcode() const {
1019  return Val->isTargetOpcode();
1020}
1021inline unsigned SDOperand::getTargetOpcode() const {
1022  return Val->getTargetOpcode();
1023}
1024inline bool SDOperand::hasOneUse() const {
1025  return Val->hasNUsesOfValue(1, ResNo);
1026}
1027
1028/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1029/// to allow co-allocation of node operands with the node itself.
1030class UnarySDNode : public SDNode {
1031  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1032  SDOperand Op;
1033public:
1034  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1035    : SDNode(Opc, VTs), Op(X) {
1036    InitOperands(&Op, 1);
1037  }
1038};
1039
1040/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1041/// to allow co-allocation of node operands with the node itself.
1042class BinarySDNode : public SDNode {
1043  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1044  SDOperand Ops[2];
1045public:
1046  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1047    : SDNode(Opc, VTs) {
1048    Ops[0] = X;
1049    Ops[1] = Y;
1050    InitOperands(Ops, 2);
1051  }
1052};
1053
1054/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1055/// to allow co-allocation of node operands with the node itself.
1056class TernarySDNode : public SDNode {
1057  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1058  SDOperand Ops[3];
1059public:
1060  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1061                SDOperand Z)
1062    : SDNode(Opc, VTs) {
1063    Ops[0] = X;
1064    Ops[1] = Y;
1065    Ops[2] = Z;
1066    InitOperands(Ops, 3);
1067  }
1068};
1069
1070
1071/// HandleSDNode - This class is used to form a handle around another node that
1072/// is persistant and is updated across invocations of replaceAllUsesWith on its
1073/// operand.  This node should be directly created by end-users and not added to
1074/// the AllNodes list.
1075class HandleSDNode : public SDNode {
1076  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1077  SDOperand Op;
1078public:
1079  explicit HandleSDNode(SDOperand X)
1080    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
1081    InitOperands(&Op, 1);
1082  }
1083  ~HandleSDNode();
1084  SDOperand getValue() const { return Op; }
1085};
1086
1087class StringSDNode : public SDNode {
1088  std::string Value;
1089  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1090protected:
1091  friend class SelectionDAG;
1092  explicit StringSDNode(const std::string &val)
1093    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1094  }
1095public:
1096  const std::string &getValue() const { return Value; }
1097  static bool classof(const StringSDNode *) { return true; }
1098  static bool classof(const SDNode *N) {
1099    return N->getOpcode() == ISD::STRING;
1100  }
1101};
1102
1103class ConstantSDNode : public SDNode {
1104  uint64_t Value;
1105  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1106protected:
1107  friend class SelectionDAG;
1108  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1109    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1110      Value(val) {
1111  }
1112public:
1113
1114  uint64_t getValue() const { return Value; }
1115
1116  int64_t getSignExtended() const {
1117    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1118    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1119  }
1120
1121  bool isNullValue() const { return Value == 0; }
1122  bool isAllOnesValue() const {
1123    return Value == MVT::getIntVTBitMask(getValueType(0));
1124  }
1125
1126  static bool classof(const ConstantSDNode *) { return true; }
1127  static bool classof(const SDNode *N) {
1128    return N->getOpcode() == ISD::Constant ||
1129           N->getOpcode() == ISD::TargetConstant;
1130  }
1131};
1132
1133class ConstantFPSDNode : public SDNode {
1134  double Value;
1135  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1136protected:
1137  friend class SelectionDAG;
1138  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1139    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1140             getSDVTList(VT)), Value(val) {
1141  }
1142public:
1143
1144  double getValue() const { return Value; }
1145
1146  /// isExactlyValue - We don't rely on operator== working on double values, as
1147  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1148  /// As such, this method can be used to do an exact bit-for-bit comparison of
1149  /// two floating point values.
1150  bool isExactlyValue(double V) const;
1151
1152  static bool classof(const ConstantFPSDNode *) { return true; }
1153  static bool classof(const SDNode *N) {
1154    return N->getOpcode() == ISD::ConstantFP ||
1155           N->getOpcode() == ISD::TargetConstantFP;
1156  }
1157};
1158
1159class GlobalAddressSDNode : public SDNode {
1160  GlobalValue *TheGlobal;
1161  int Offset;
1162  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1163protected:
1164  friend class SelectionDAG;
1165  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1166                      int o = 0)
1167    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress,
1168             getSDVTList(VT)), Offset(o) {
1169    TheGlobal = const_cast<GlobalValue*>(GA);
1170  }
1171public:
1172
1173  GlobalValue *getGlobal() const { return TheGlobal; }
1174  int getOffset() const { return Offset; }
1175
1176  static bool classof(const GlobalAddressSDNode *) { return true; }
1177  static bool classof(const SDNode *N) {
1178    return N->getOpcode() == ISD::GlobalAddress ||
1179           N->getOpcode() == ISD::TargetGlobalAddress;
1180  }
1181};
1182
1183
1184class FrameIndexSDNode : public SDNode {
1185  int FI;
1186  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1187protected:
1188  friend class SelectionDAG;
1189  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1190    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1191      FI(fi) {
1192  }
1193public:
1194
1195  int getIndex() const { return FI; }
1196
1197  static bool classof(const FrameIndexSDNode *) { return true; }
1198  static bool classof(const SDNode *N) {
1199    return N->getOpcode() == ISD::FrameIndex ||
1200           N->getOpcode() == ISD::TargetFrameIndex;
1201  }
1202};
1203
1204class JumpTableSDNode : public SDNode {
1205  int JTI;
1206  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1207protected:
1208  friend class SelectionDAG;
1209  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1210    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1211      JTI(jti) {
1212  }
1213public:
1214
1215    int getIndex() const { return JTI; }
1216
1217  static bool classof(const JumpTableSDNode *) { return true; }
1218  static bool classof(const SDNode *N) {
1219    return N->getOpcode() == ISD::JumpTable ||
1220           N->getOpcode() == ISD::TargetJumpTable;
1221  }
1222};
1223
1224class ConstantPoolSDNode : public SDNode {
1225  union {
1226    Constant *ConstVal;
1227    MachineConstantPoolValue *MachineCPVal;
1228  } Val;
1229  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1230  unsigned Alignment;
1231  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1232protected:
1233  friend class SelectionDAG;
1234  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1235                     int o=0)
1236    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1237             getSDVTList(VT)), Offset(o), Alignment(0) {
1238    assert((int)Offset >= 0 && "Offset is too large");
1239    Val.ConstVal = c;
1240  }
1241  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1242                     unsigned Align)
1243    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1244             getSDVTList(VT)), Offset(o), Alignment(Align) {
1245    assert((int)Offset >= 0 && "Offset is too large");
1246    Val.ConstVal = c;
1247  }
1248  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1249                     MVT::ValueType VT, int o=0)
1250    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1251             getSDVTList(VT)), Offset(o), Alignment(0) {
1252    assert((int)Offset >= 0 && "Offset is too large");
1253    Val.MachineCPVal = v;
1254    Offset |= 1 << (sizeof(unsigned)*8-1);
1255  }
1256  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1257                     MVT::ValueType VT, int o, unsigned Align)
1258    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1259             getSDVTList(VT)), Offset(o), Alignment(Align) {
1260    assert((int)Offset >= 0 && "Offset is too large");
1261    Val.MachineCPVal = v;
1262    Offset |= 1 << (sizeof(unsigned)*8-1);
1263  }
1264public:
1265
1266  bool isMachineConstantPoolEntry() const {
1267    return (int)Offset < 0;
1268  }
1269
1270  Constant *getConstVal() const {
1271    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1272    return Val.ConstVal;
1273  }
1274
1275  MachineConstantPoolValue *getMachineCPVal() const {
1276    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1277    return Val.MachineCPVal;
1278  }
1279
1280  int getOffset() const {
1281    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1282  }
1283
1284  // Return the alignment of this constant pool object, which is either 0 (for
1285  // default alignment) or log2 of the desired value.
1286  unsigned getAlignment() const { return Alignment; }
1287
1288  const Type *getType() const;
1289
1290  static bool classof(const ConstantPoolSDNode *) { return true; }
1291  static bool classof(const SDNode *N) {
1292    return N->getOpcode() == ISD::ConstantPool ||
1293           N->getOpcode() == ISD::TargetConstantPool;
1294  }
1295};
1296
1297class BasicBlockSDNode : public SDNode {
1298  MachineBasicBlock *MBB;
1299  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1300protected:
1301  friend class SelectionDAG;
1302  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1303    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1304  }
1305public:
1306
1307  MachineBasicBlock *getBasicBlock() const { return MBB; }
1308
1309  static bool classof(const BasicBlockSDNode *) { return true; }
1310  static bool classof(const SDNode *N) {
1311    return N->getOpcode() == ISD::BasicBlock;
1312  }
1313};
1314
1315class SrcValueSDNode : public SDNode {
1316  const Value *V;
1317  int offset;
1318  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1319protected:
1320  friend class SelectionDAG;
1321  SrcValueSDNode(const Value* v, int o)
1322    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v), offset(o) {
1323  }
1324
1325public:
1326  const Value *getValue() const { return V; }
1327  int getOffset() const { return offset; }
1328
1329  static bool classof(const SrcValueSDNode *) { return true; }
1330  static bool classof(const SDNode *N) {
1331    return N->getOpcode() == ISD::SRCVALUE;
1332  }
1333};
1334
1335
1336class RegisterSDNode : public SDNode {
1337  unsigned Reg;
1338  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1339protected:
1340  friend class SelectionDAG;
1341  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1342    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1343  }
1344public:
1345
1346  unsigned getReg() const { return Reg; }
1347
1348  static bool classof(const RegisterSDNode *) { return true; }
1349  static bool classof(const SDNode *N) {
1350    return N->getOpcode() == ISD::Register;
1351  }
1352};
1353
1354class ExternalSymbolSDNode : public SDNode {
1355  const char *Symbol;
1356  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1357protected:
1358  friend class SelectionDAG;
1359  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1360    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1361             getSDVTList(VT)), Symbol(Sym) {
1362  }
1363public:
1364
1365  const char *getSymbol() const { return Symbol; }
1366
1367  static bool classof(const ExternalSymbolSDNode *) { return true; }
1368  static bool classof(const SDNode *N) {
1369    return N->getOpcode() == ISD::ExternalSymbol ||
1370           N->getOpcode() == ISD::TargetExternalSymbol;
1371  }
1372};
1373
1374class CondCodeSDNode : public SDNode {
1375  ISD::CondCode Condition;
1376  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1377protected:
1378  friend class SelectionDAG;
1379  explicit CondCodeSDNode(ISD::CondCode Cond)
1380    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1381  }
1382public:
1383
1384  ISD::CondCode get() const { return Condition; }
1385
1386  static bool classof(const CondCodeSDNode *) { return true; }
1387  static bool classof(const SDNode *N) {
1388    return N->getOpcode() == ISD::CONDCODE;
1389  }
1390};
1391
1392/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1393/// to parameterize some operations.
1394class VTSDNode : public SDNode {
1395  MVT::ValueType ValueType;
1396  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1397protected:
1398  friend class SelectionDAG;
1399  explicit VTSDNode(MVT::ValueType VT)
1400    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1401  }
1402public:
1403
1404  MVT::ValueType getVT() const { return ValueType; }
1405
1406  static bool classof(const VTSDNode *) { return true; }
1407  static bool classof(const SDNode *N) {
1408    return N->getOpcode() == ISD::VALUETYPE;
1409  }
1410};
1411
1412/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1413///
1414class LoadSDNode : public SDNode {
1415  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1416  SDOperand Ops[3];
1417
1418  // AddrMode - unindexed, pre-indexed, post-indexed.
1419  ISD::MemIndexedMode AddrMode;
1420
1421  // ExtType - non-ext, anyext, sext, zext.
1422  ISD::LoadExtType ExtType;
1423
1424  // LoadedVT - VT of loaded value before extension.
1425  MVT::ValueType LoadedVT;
1426
1427  // SrcValue - Memory location for alias analysis.
1428  const Value *SrcValue;
1429
1430  // SVOffset - Memory location offset.
1431  int SVOffset;
1432
1433  // Alignment - Alignment of memory location in bytes.
1434  unsigned Alignment;
1435
1436  // IsVolatile - True if the load is volatile.
1437  bool IsVolatile;
1438protected:
1439  friend class SelectionDAG;
1440  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
1441             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1442             const Value *SV, int O=0, unsigned Align=1, bool Vol=false)
1443    : SDNode(ISD::LOAD, VTs),
1444      AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
1445      Alignment(Align), IsVolatile(Vol) {
1446    Ops[0] = ChainPtrOff[0]; // Chain
1447    Ops[1] = ChainPtrOff[1]; // Ptr
1448    Ops[2] = ChainPtrOff[2]; // Off
1449    InitOperands(Ops, 3);
1450    assert((getOffset().getOpcode() == ISD::UNDEF ||
1451            AddrMode != ISD::UNINDEXED) &&
1452           "Only indexed load has a non-undef offset operand");
1453  }
1454public:
1455
1456  const SDOperand getChain() const { return getOperand(0); }
1457  const SDOperand getBasePtr() const { return getOperand(1); }
1458  const SDOperand getOffset() const { return getOperand(2); }
1459  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1460  ISD::LoadExtType getExtensionType() const { return ExtType; }
1461  MVT::ValueType getLoadedVT() const { return LoadedVT; }
1462  const Value *getSrcValue() const { return SrcValue; }
1463  int getSrcValueOffset() const { return SVOffset; }
1464  unsigned getAlignment() const { return Alignment; }
1465  bool isVolatile() const { return IsVolatile; }
1466
1467  static bool classof(const LoadSDNode *) { return true; }
1468  static bool classof(const SDNode *N) {
1469    return N->getOpcode() == ISD::LOAD;
1470  }
1471};
1472
1473/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1474///
1475class StoreSDNode : public SDNode {
1476  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1477  SDOperand Ops[4];
1478
1479  // AddrMode - unindexed, pre-indexed, post-indexed.
1480  ISD::MemIndexedMode AddrMode;
1481
1482  // IsTruncStore - True is the op does a truncation before store.
1483  bool IsTruncStore;
1484
1485  // StoredVT - VT of the value after truncation.
1486  MVT::ValueType StoredVT;
1487
1488  // SrcValue - Memory location for alias analysis.
1489  const Value *SrcValue;
1490
1491  // SVOffset - Memory location offset.
1492  int SVOffset;
1493
1494  // Alignment - Alignment of memory location in bytes.
1495  unsigned Alignment;
1496
1497  // IsVolatile - True if the store is volatile.
1498  bool IsVolatile;
1499protected:
1500  friend class SelectionDAG;
1501  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
1502              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1503              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1504    : SDNode(ISD::STORE, VTs),
1505      AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
1506      SVOffset(O), Alignment(Align), IsVolatile(Vol) {
1507    Ops[0] = ChainValuePtrOff[0]; // Chain
1508    Ops[1] = ChainValuePtrOff[1]; // Value
1509    Ops[2] = ChainValuePtrOff[2]; // Ptr
1510    Ops[3] = ChainValuePtrOff[3]; // Off
1511    InitOperands(Ops, 4);
1512    assert((getOffset().getOpcode() == ISD::UNDEF ||
1513            AddrMode != ISD::UNINDEXED) &&
1514           "Only indexed store has a non-undef offset operand");
1515  }
1516public:
1517
1518  const SDOperand getChain() const { return getOperand(0); }
1519  const SDOperand getValue() const { return getOperand(1); }
1520  const SDOperand getBasePtr() const { return getOperand(2); }
1521  const SDOperand getOffset() const { return getOperand(3); }
1522  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1523  bool isTruncatingStore() const { return IsTruncStore; }
1524  MVT::ValueType getStoredVT() const { return StoredVT; }
1525  const Value *getSrcValue() const { return SrcValue; }
1526  int getSrcValueOffset() const { return SVOffset; }
1527  unsigned getAlignment() const { return Alignment; }
1528  bool isVolatile() const { return IsVolatile; }
1529
1530  static bool classof(const StoreSDNode *) { return true; }
1531  static bool classof(const SDNode *N) {
1532    return N->getOpcode() == ISD::STORE;
1533  }
1534};
1535
1536
1537class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1538  SDNode *Node;
1539  unsigned Operand;
1540
1541  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1542public:
1543  bool operator==(const SDNodeIterator& x) const {
1544    return Operand == x.Operand;
1545  }
1546  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1547
1548  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1549    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1550    Operand = I.Operand;
1551    return *this;
1552  }
1553
1554  pointer operator*() const {
1555    return Node->getOperand(Operand).Val;
1556  }
1557  pointer operator->() const { return operator*(); }
1558
1559  SDNodeIterator& operator++() {                // Preincrement
1560    ++Operand;
1561    return *this;
1562  }
1563  SDNodeIterator operator++(int) { // Postincrement
1564    SDNodeIterator tmp = *this; ++*this; return tmp;
1565  }
1566
1567  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1568  static SDNodeIterator end  (SDNode *N) {
1569    return SDNodeIterator(N, N->getNumOperands());
1570  }
1571
1572  unsigned getOperand() const { return Operand; }
1573  const SDNode *getNode() const { return Node; }
1574};
1575
1576template <> struct GraphTraits<SDNode*> {
1577  typedef SDNode NodeType;
1578  typedef SDNodeIterator ChildIteratorType;
1579  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1580  static inline ChildIteratorType child_begin(NodeType *N) {
1581    return SDNodeIterator::begin(N);
1582  }
1583  static inline ChildIteratorType child_end(NodeType *N) {
1584    return SDNodeIterator::end(N);
1585  }
1586};
1587
1588template<>
1589struct ilist_traits<SDNode> {
1590  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1591  static SDNode *getNext(const SDNode *N) { return N->Next; }
1592
1593  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1594  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1595
1596  static SDNode *createSentinel() {
1597    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
1598  }
1599  static void destroySentinel(SDNode *N) { delete N; }
1600  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1601
1602
1603  void addNodeToList(SDNode *NTy) {}
1604  void removeNodeFromList(SDNode *NTy) {}
1605  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1606                             const ilist_iterator<SDNode> &X,
1607                             const ilist_iterator<SDNode> &Y) {}
1608};
1609
1610namespace ISD {
1611  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1612  /// load.
1613  inline bool isNON_EXTLoad(const SDNode *N) {
1614    return N->getOpcode() == ISD::LOAD &&
1615      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1616  }
1617
1618  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1619  ///
1620  inline bool isEXTLoad(const SDNode *N) {
1621    return N->getOpcode() == ISD::LOAD &&
1622      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1623  }
1624
1625  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1626  ///
1627  inline bool isSEXTLoad(const SDNode *N) {
1628    return N->getOpcode() == ISD::LOAD &&
1629      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1630  }
1631
1632  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1633  ///
1634  inline bool isZEXTLoad(const SDNode *N) {
1635    return N->getOpcode() == ISD::LOAD &&
1636      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1637  }
1638
1639  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
1640  ///
1641  inline bool isUNINDEXEDLoad(const SDNode *N) {
1642    return N->getOpcode() == ISD::LOAD &&
1643      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
1644  }
1645
1646  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1647  /// store.
1648  inline bool isNON_TRUNCStore(const SDNode *N) {
1649    return N->getOpcode() == ISD::STORE &&
1650      !cast<StoreSDNode>(N)->isTruncatingStore();
1651  }
1652
1653  /// isTRUNCStore - Returns true if the specified node is a truncating
1654  /// store.
1655  inline bool isTRUNCStore(const SDNode *N) {
1656    return N->getOpcode() == ISD::STORE &&
1657      cast<StoreSDNode>(N)->isTruncatingStore();
1658  }
1659}
1660
1661
1662} // end llvm namespace
1663
1664#endif
1665