SelectionDAGNodes.h revision 63307c335aa08b0d6a75f81d64d79af7e90eb78b
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APInt.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/Support/DataTypes.h"
31#include <cassert>
32
33namespace llvm {
34
35class SelectionDAG;
36class GlobalValue;
37class MachineBasicBlock;
38class MachineConstantPoolValue;
39class SDNode;
40template <typename T> struct DenseMapInfo;
41template <typename T> struct simplify_type;
42template <typename T> struct ilist_traits;
43template<typename NodeTy, typename Traits> class iplist;
44template<typename NodeTy> class ilist_iterator;
45
46/// SDVTList - This represents a list of ValueType's that has been intern'd by
47/// a SelectionDAG.  Instances of this simple value class are returned by
48/// SelectionDAG::getVTList(...).
49///
50struct SDVTList {
51  const MVT::ValueType *VTs;
52  unsigned short NumVTs;
53};
54
55/// ISD namespace - This namespace contains an enum which represents all of the
56/// SelectionDAG node types and value types.
57///
58namespace ISD {
59
60  //===--------------------------------------------------------------------===//
61  /// ISD::NodeType enum - This enum defines all of the operators valid in a
62  /// SelectionDAG.
63  ///
64  enum NodeType {
65    // DELETED_NODE - This is an illegal flag value that is used to catch
66    // errors.  This opcode is not a legal opcode for any node.
67    DELETED_NODE,
68
69    // EntryToken - This is the marker used to indicate the start of the region.
70    EntryToken,
71
72    // Token factor - This node takes multiple tokens as input and produces a
73    // single token result.  This is used to represent the fact that the operand
74    // operators are independent of each other.
75    TokenFactor,
76
77    // AssertSext, AssertZext - These nodes record if a register contains a
78    // value that has already been zero or sign extended from a narrower type.
79    // These nodes take two operands.  The first is the node that has already
80    // been extended, and the second is a value type node indicating the width
81    // of the extension
82    AssertSext, AssertZext,
83
84    // Various leaf nodes.
85    STRING, BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
86    Constant, ConstantFP,
87    GlobalAddress, GlobalTLSAddress, FrameIndex,
88    JumpTable, ConstantPool, ExternalSymbol,
89
90    // The address of the GOT
91    GLOBAL_OFFSET_TABLE,
92
93    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
94    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
95    // of the frame or return address to return.  An index of zero corresponds
96    // to the current function's frame or return address, an index of one to the
97    // parent's frame or return address, and so on.
98    FRAMEADDR, RETURNADDR,
99
100    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
101    // first (possible) on-stack argument. This is needed for correct stack
102    // adjustment during unwind.
103    FRAME_TO_ARGS_OFFSET,
104
105    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
106    // address of the exception block on entry to an landing pad block.
107    EXCEPTIONADDR,
108
109    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
110    // the selection index of the exception thrown.
111    EHSELECTION,
112
113    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
114    // 'eh_return' gcc dwarf builtin, which is used to return from
115    // exception. The general meaning is: adjust stack by OFFSET and pass
116    // execution to HANDLER. Many platform-related details also :)
117    EH_RETURN,
118
119    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
120    // simplification of the constant.
121    TargetConstant,
122    TargetConstantFP,
123
124    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
125    // anything else with this node, and this is valid in the target-specific
126    // dag, turning into a GlobalAddress operand.
127    TargetGlobalAddress,
128    TargetGlobalTLSAddress,
129    TargetFrameIndex,
130    TargetJumpTable,
131    TargetConstantPool,
132    TargetExternalSymbol,
133
134    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
135    /// This node represents a target intrinsic function with no side effects.
136    /// The first operand is the ID number of the intrinsic from the
137    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
138    /// node has returns the result of the intrinsic.
139    INTRINSIC_WO_CHAIN,
140
141    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
142    /// This node represents a target intrinsic function with side effects that
143    /// returns a result.  The first operand is a chain pointer.  The second is
144    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
145    /// operands to the intrinsic follow.  The node has two results, the result
146    /// of the intrinsic and an output chain.
147    INTRINSIC_W_CHAIN,
148
149    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
150    /// This node represents a target intrinsic function with side effects that
151    /// does not return a result.  The first operand is a chain pointer.  The
152    /// second is the ID number of the intrinsic from the llvm::Intrinsic
153    /// namespace.  The operands to the intrinsic follow.
154    INTRINSIC_VOID,
155
156    // CopyToReg - This node has three operands: a chain, a register number to
157    // set to this value, and a value.
158    CopyToReg,
159
160    // CopyFromReg - This node indicates that the input value is a virtual or
161    // physical register that is defined outside of the scope of this
162    // SelectionDAG.  The register is available from the RegisterSDNode object.
163    CopyFromReg,
164
165    // UNDEF - An undefined node
166    UNDEF,
167
168    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
169    /// represents the formal arguments for a function.  CC# is a Constant value
170    /// indicating the calling convention of the function, and ISVARARG is a
171    /// flag that indicates whether the function is varargs or not. This node
172    /// has one result value for each incoming argument, plus one for the output
173    /// chain. It must be custom legalized. See description of CALL node for
174    /// FLAG argument contents explanation.
175    ///
176    FORMAL_ARGUMENTS,
177
178    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
179    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
180    /// This node represents a fully general function call, before the legalizer
181    /// runs.  This has one result value for each argument / flag pair, plus
182    /// a chain result. It must be custom legalized. Flag argument indicates
183    /// misc. argument attributes. Currently:
184    /// Bit 0 - signness
185    /// Bit 1 - 'inreg' attribute
186    /// Bit 2 - 'sret' attribute
187    /// Bit 4 - 'byval' attribute
188    /// Bit 5 - 'nest' attribute
189    /// Bit 6-9 - alignment of byval structures
190    /// Bit 10-26 - size of byval structures
191    /// Bits 31:27 - argument ABI alignment in the first argument piece and
192    /// alignment '1' in other argument pieces.
193    CALL,
194
195    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
196    // a Constant, which is required to be operand #1) half of the integer value
197    // specified as operand #0.  This is only for use before legalization, for
198    // values that will be broken into multiple registers.
199    EXTRACT_ELEMENT,
200
201    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
202    // two values of the same integer value type, this produces a value twice as
203    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
204    BUILD_PAIR,
205
206    // MERGE_VALUES - This node takes multiple discrete operands and returns
207    // them all as its individual results.  This nodes has exactly the same
208    // number of inputs and outputs, and is only valid before legalization.
209    // This node is useful for some pieces of the code generator that want to
210    // think about a single node with multiple results, not multiple nodes.
211    MERGE_VALUES,
212
213    // Simple integer binary arithmetic operators.
214    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
215
216    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
217    // a signed/unsigned value of type i[2*N], and return the full value as
218    // two results, each of type iN.
219    SMUL_LOHI, UMUL_LOHI,
220
221    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
222    // remainder result.
223    SDIVREM, UDIVREM,
224
225    // CARRY_FALSE - This node is used when folding other nodes,
226    // like ADDC/SUBC, which indicate the carry result is always false.
227    CARRY_FALSE,
228
229    // Carry-setting nodes for multiple precision addition and subtraction.
230    // These nodes take two operands of the same value type, and produce two
231    // results.  The first result is the normal add or sub result, the second
232    // result is the carry flag result.
233    ADDC, SUBC,
234
235    // Carry-using nodes for multiple precision addition and subtraction.  These
236    // nodes take three operands: The first two are the normal lhs and rhs to
237    // the add or sub, and the third is the input carry flag.  These nodes
238    // produce two results; the normal result of the add or sub, and the output
239    // carry flag.  These nodes both read and write a carry flag to allow them
240    // to them to be chained together for add and sub of arbitrarily large
241    // values.
242    ADDE, SUBE,
243
244    // Simple binary floating point operators.
245    FADD, FSUB, FMUL, FDIV, FREM,
246
247    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
248    // DAG node does not require that X and Y have the same type, just that they
249    // are both floating point.  X and the result must have the same type.
250    // FCOPYSIGN(f32, f64) is allowed.
251    FCOPYSIGN,
252
253    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
254    // value as an integer 0/1 value.
255    FGETSIGN,
256
257    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
258    /// with the specified, possibly variable, elements.  The number of elements
259    /// is required to be a power of two.
260    BUILD_VECTOR,
261
262    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
263    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
264    /// element type then VAL is truncated before replacement.
265    INSERT_VECTOR_ELT,
266
267    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
268    /// identified by the (potentially variable) element number IDX.
269    EXTRACT_VECTOR_ELT,
270
271    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
272    /// vector type with the same length and element type, this produces a
273    /// concatenated vector result value, with length equal to the sum of the
274    /// lengths of the input vectors.
275    CONCAT_VECTORS,
276
277    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
278    /// vector value) starting with the (potentially variable) element number
279    /// IDX, which must be a multiple of the result vector length.
280    EXTRACT_SUBVECTOR,
281
282    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
283    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
284    /// (maybe of an illegal datatype) or undef that indicate which value each
285    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
286    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
287    /// that the indices must be constants and are in terms of the element size
288    /// of VEC1/VEC2, not in terms of bytes.
289    VECTOR_SHUFFLE,
290
291    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
292    /// scalar value into element 0 of the resultant vector type.  The top
293    /// elements 1 to N-1 of the N-element vector are undefined.
294    SCALAR_TO_VECTOR,
295
296    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
297    // This node takes a superreg and a constant sub-register index as operands.
298    // Note sub-register indices must be increasing. That is, if the
299    // sub-register index of a 8-bit sub-register is N, then the index for a
300    // 16-bit sub-register must be at least N+1.
301    EXTRACT_SUBREG,
302
303    // INSERT_SUBREG - This node is used to insert a sub-register value.
304    // This node takes a superreg, a subreg value, and a constant sub-register
305    // index as operands.
306    INSERT_SUBREG,
307
308    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
309    // an unsigned/signed value of type i[2*N], then return the top part.
310    MULHU, MULHS,
311
312    // Bitwise operators - logical and, logical or, logical xor, shift left,
313    // shift right algebraic (shift in sign bits), shift right logical (shift in
314    // zeroes), rotate left, rotate right, and byteswap.
315    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
316
317    // Counting operators
318    CTTZ, CTLZ, CTPOP,
319
320    // Select(COND, TRUEVAL, FALSEVAL)
321    SELECT,
322
323    // Select with condition operator - This selects between a true value and
324    // a false value (ops #2 and #3) based on the boolean result of comparing
325    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
326    // condition code in op #4, a CondCodeSDNode.
327    SELECT_CC,
328
329    // SetCC operator - This evaluates to a boolean (i1) true value if the
330    // condition is true.  The operands to this are the left and right operands
331    // to compare (ops #0, and #1) and the condition code to compare them with
332    // (op #2) as a CondCodeSDNode.
333    SETCC,
334
335    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
336    // integer shift operations, just like ADD/SUB_PARTS.  The operation
337    // ordering is:
338    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
339    SHL_PARTS, SRA_PARTS, SRL_PARTS,
340
341    // Conversion operators.  These are all single input single output
342    // operations.  For all of these, the result type must be strictly
343    // wider or narrower (depending on the operation) than the source
344    // type.
345
346    // SIGN_EXTEND - Used for integer types, replicating the sign bit
347    // into new bits.
348    SIGN_EXTEND,
349
350    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
351    ZERO_EXTEND,
352
353    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
354    ANY_EXTEND,
355
356    // TRUNCATE - Completely drop the high bits.
357    TRUNCATE,
358
359    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
360    // depends on the first letter) to floating point.
361    SINT_TO_FP,
362    UINT_TO_FP,
363
364    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
365    // sign extend a small value in a large integer register (e.g. sign
366    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
367    // with the 7th bit).  The size of the smaller type is indicated by the 1th
368    // operand, a ValueType node.
369    SIGN_EXTEND_INREG,
370
371    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
372    /// integer.
373    FP_TO_SINT,
374    FP_TO_UINT,
375
376    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
377    /// down to the precision of the destination VT.  TRUNC is a flag, which is
378    /// always an integer that is zero or one.  If TRUNC is 0, this is a
379    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
380    /// value of Y.
381    ///
382    /// The TRUNC = 1 case is used in cases where we know that the value will
383    /// not be modified by the node, because Y is not using any of the extra
384    /// precision of source type.  This allows certain transformations like
385    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
386    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
387    FP_ROUND,
388
389    // FLT_ROUNDS_ - Returns current rounding mode:
390    // -1 Undefined
391    //  0 Round to 0
392    //  1 Round to nearest
393    //  2 Round to +inf
394    //  3 Round to -inf
395    FLT_ROUNDS_,
396
397    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
398    /// rounds it to a floating point value.  It then promotes it and returns it
399    /// in a register of the same size.  This operation effectively just
400    /// discards excess precision.  The type to round down to is specified by
401    /// the VT operand, a VTSDNode.
402    FP_ROUND_INREG,
403
404    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
405    FP_EXTEND,
406
407    // BIT_CONVERT - Theis operator converts between integer and FP values, as
408    // if one was stored to memory as integer and the other was loaded from the
409    // same address (or equivalently for vector format conversions, etc).  The
410    // source and result are required to have the same bit size (e.g.
411    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
412    // conversions, but that is a noop, deleted by getNode().
413    BIT_CONVERT,
414
415    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
416    // negation, absolute value, square root, sine and cosine, powi, and pow
417    // operations.
418    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
419
420    // LOAD and STORE have token chains as their first operand, then the same
421    // operands as an LLVM load/store instruction, then an offset node that
422    // is added / subtracted from the base pointer to form the address (for
423    // indexed memory ops).
424    LOAD, STORE,
425
426    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
427    // to a specified boundary.  This node always has two return values: a new
428    // stack pointer value and a chain. The first operand is the token chain,
429    // the second is the number of bytes to allocate, and the third is the
430    // alignment boundary.  The size is guaranteed to be a multiple of the stack
431    // alignment, and the alignment is guaranteed to be bigger than the stack
432    // alignment (if required) or 0 to get standard stack alignment.
433    DYNAMIC_STACKALLOC,
434
435    // Control flow instructions.  These all have token chains.
436
437    // BR - Unconditional branch.  The first operand is the chain
438    // operand, the second is the MBB to branch to.
439    BR,
440
441    // BRIND - Indirect branch.  The first operand is the chain, the second
442    // is the value to branch to, which must be of the same type as the target's
443    // pointer type.
444    BRIND,
445
446    // BR_JT - Jumptable branch. The first operand is the chain, the second
447    // is the jumptable index, the last one is the jumptable entry index.
448    BR_JT,
449
450    // BRCOND - Conditional branch.  The first operand is the chain,
451    // the second is the condition, the third is the block to branch
452    // to if the condition is true.
453    BRCOND,
454
455    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
456    // that the condition is represented as condition code, and two nodes to
457    // compare, rather than as a combined SetCC node.  The operands in order are
458    // chain, cc, lhs, rhs, block to branch to if condition is true.
459    BR_CC,
460
461    // RET - Return from function.  The first operand is the chain,
462    // and any subsequent operands are pairs of return value and return value
463    // signness for the function.  This operation can have variable number of
464    // operands.
465    RET,
466
467    // INLINEASM - Represents an inline asm block.  This node always has two
468    // return values: a chain and a flag result.  The inputs are as follows:
469    //   Operand #0   : Input chain.
470    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
471    //   Operand #2n+2: A RegisterNode.
472    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
473    //   Operand #last: Optional, an incoming flag.
474    INLINEASM,
475
476    // LABEL - Represents a label in mid basic block used to track
477    // locations needed for debug and exception handling tables.  This node
478    // returns a chain.
479    //   Operand #0 : input chain.
480    //   Operand #1 : module unique number use to identify the label.
481    //   Operand #2 : 0 indicates a debug label (e.g. stoppoint), 1 indicates
482    //                a EH label, 2 indicates unknown label type.
483    LABEL,
484
485    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
486    // local variable declarations for debugging information. First operand is
487    // a chain, while the next two operands are first two arguments (address
488    // and variable) of a llvm.dbg.declare instruction.
489    DECLARE,
490
491    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
492    // value, the same type as the pointer type for the system, and an output
493    // chain.
494    STACKSAVE,
495
496    // STACKRESTORE has two operands, an input chain and a pointer to restore to
497    // it returns an output chain.
498    STACKRESTORE,
499
500    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
501    // a call sequence, and carry arbitrary information that target might want
502    // to know.  The first operand is a chain, the rest are specified by the
503    // target and not touched by the DAG optimizers.
504    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
505    CALLSEQ_START,  // Beginning of a call sequence
506    CALLSEQ_END,    // End of a call sequence
507
508    // VAARG - VAARG has three operands: an input chain, a pointer, and a
509    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
510    VAARG,
511
512    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
513    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
514    // source.
515    VACOPY,
516
517    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
518    // pointer, and a SRCVALUE.
519    VAEND, VASTART,
520
521    // SRCVALUE - This is a node type that holds a Value* that is used to
522    // make reference to a value in the LLVM IR.
523    SRCVALUE,
524
525    // MEMOPERAND - This is a node that contains a MachineMemOperand which
526    // records information about a memory reference. This is used to make
527    // AliasAnalysis queries from the backend.
528    MEMOPERAND,
529
530    // PCMARKER - This corresponds to the pcmarker intrinsic.
531    PCMARKER,
532
533    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
534    // The only operand is a chain and a value and a chain are produced.  The
535    // value is the contents of the architecture specific cycle counter like
536    // register (or other high accuracy low latency clock source)
537    READCYCLECOUNTER,
538
539    // HANDLENODE node - Used as a handle for various purposes.
540    HANDLENODE,
541
542    // LOCATION - This node is used to represent a source location for debug
543    // info.  It takes token chain as input, then a line number, then a column
544    // number, then a filename, then a working dir.  It produces a token chain
545    // as output.
546    LOCATION,
547
548    // DEBUG_LOC - This node is used to represent source line information
549    // embedded in the code.  It takes a token chain as input, then a line
550    // number, then a column then a file id (provided by MachineModuleInfo.) It
551    // produces a token chain as output.
552    DEBUG_LOC,
553
554    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
555    // It takes as input a token chain, the pointer to the trampoline,
556    // the pointer to the nested function, the pointer to pass for the
557    // 'nest' parameter, a SRCVALUE for the trampoline and another for
558    // the nested function (allowing targets to access the original
559    // Function*).  It produces the result of the intrinsic and a token
560    // chain as output.
561    TRAMPOLINE,
562
563    // TRAP - Trapping instruction
564    TRAP,
565
566    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
567    // their first operand. The other operands are the address to prefetch,
568    // read / write specifier, and locality specifier.
569    PREFETCH,
570
571    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
572    //                       store-store, device)
573    // This corresponds to the memory.barrier intrinsic.
574    // it takes an input chain, 4 operands to specify the type of barrier, an
575    // operand specifying if the barrier applies to device and uncached memory
576    // and produces an output chain.
577    MEMBARRIER,
578
579    // Val, OUTCHAIN = ATOMIC_LCS(INCHAIN, ptr, cmp, swap)
580    // this corresponds to the atomic.lcs intrinsic.
581    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
582    // the return is always the original value in *ptr
583    ATOMIC_LCS,
584
585    // Val, OUTCHAIN = ATOMIC_LAS(INCHAIN, ptr, amt)
586    // this corresponds to the atomic.las intrinsic.
587    // *ptr + amt is stored to *ptr atomically.
588    // the return is always the original value in *ptr
589    ATOMIC_LAS,
590
591    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
592    // this corresponds to the atomic.swap intrinsic.
593    // amt is stored to *ptr atomically.
594    // the return is always the original value in *ptr
595    ATOMIC_SWAP,
596
597    // Val, OUTCHAIN = ATOMIC_LSS(INCHAIN, ptr, amt)
598    // this corresponds to the atomic.lss intrinsic.
599    // *ptr - amt is stored to *ptr atomically.
600    // the return is always the original value in *ptr
601    ATOMIC_LSS,
602
603    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
604    // this corresponds to the atomic.[OpName] intrinsic.
605    // op(*ptr, amt) is stored to *ptr atomically.
606    // the return is always the original value in *ptr
607    ATOMIC_LOAD_AND,
608    ATOMIC_LOAD_OR,
609    ATOMIC_LOAD_XOR,
610    ATOMIC_LOAD_MIN,
611    ATOMIC_LOAD_MAX,
612    ATOMIC_LOAD_UMIN,
613    ATOMIC_LOAD_UMAX,
614
615    // BUILTIN_OP_END - This must be the last enum value in this list.
616    BUILTIN_OP_END
617  };
618
619  /// Node predicates
620
621  /// isBuildVectorAllOnes - Return true if the specified node is a
622  /// BUILD_VECTOR where all of the elements are ~0 or undef.
623  bool isBuildVectorAllOnes(const SDNode *N);
624
625  /// isBuildVectorAllZeros - Return true if the specified node is a
626  /// BUILD_VECTOR where all of the elements are 0 or undef.
627  bool isBuildVectorAllZeros(const SDNode *N);
628
629  /// isScalarToVector - Return true if the specified node is a
630  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
631  /// element is not an undef.
632  bool isScalarToVector(const SDNode *N);
633
634  /// isDebugLabel - Return true if the specified node represents a debug
635  /// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
636  /// is 0).
637  bool isDebugLabel(const SDNode *N);
638
639  //===--------------------------------------------------------------------===//
640  /// MemIndexedMode enum - This enum defines the load / store indexed
641  /// addressing modes.
642  ///
643  /// UNINDEXED    "Normal" load / store. The effective address is already
644  ///              computed and is available in the base pointer. The offset
645  ///              operand is always undefined. In addition to producing a
646  ///              chain, an unindexed load produces one value (result of the
647  ///              load); an unindexed store does not produce a value.
648  ///
649  /// PRE_INC      Similar to the unindexed mode where the effective address is
650  /// PRE_DEC      the value of the base pointer add / subtract the offset.
651  ///              It considers the computation as being folded into the load /
652  ///              store operation (i.e. the load / store does the address
653  ///              computation as well as performing the memory transaction).
654  ///              The base operand is always undefined. In addition to
655  ///              producing a chain, pre-indexed load produces two values
656  ///              (result of the load and the result of the address
657  ///              computation); a pre-indexed store produces one value (result
658  ///              of the address computation).
659  ///
660  /// POST_INC     The effective address is the value of the base pointer. The
661  /// POST_DEC     value of the offset operand is then added to / subtracted
662  ///              from the base after memory transaction. In addition to
663  ///              producing a chain, post-indexed load produces two values
664  ///              (the result of the load and the result of the base +/- offset
665  ///              computation); a post-indexed store produces one value (the
666  ///              the result of the base +/- offset computation).
667  ///
668  enum MemIndexedMode {
669    UNINDEXED = 0,
670    PRE_INC,
671    PRE_DEC,
672    POST_INC,
673    POST_DEC,
674    LAST_INDEXED_MODE
675  };
676
677  //===--------------------------------------------------------------------===//
678  /// LoadExtType enum - This enum defines the three variants of LOADEXT
679  /// (load with extension).
680  ///
681  /// SEXTLOAD loads the integer operand and sign extends it to a larger
682  ///          integer result type.
683  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
684  ///          integer result type.
685  /// EXTLOAD  is used for three things: floating point extending loads,
686  ///          integer extending loads [the top bits are undefined], and vector
687  ///          extending loads [load into low elt].
688  ///
689  enum LoadExtType {
690    NON_EXTLOAD = 0,
691    EXTLOAD,
692    SEXTLOAD,
693    ZEXTLOAD,
694    LAST_LOADX_TYPE
695  };
696
697  //===--------------------------------------------------------------------===//
698  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
699  /// below work out, when considering SETFALSE (something that never exists
700  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
701  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
702  /// to.  If the "N" column is 1, the result of the comparison is undefined if
703  /// the input is a NAN.
704  ///
705  /// All of these (except for the 'always folded ops') should be handled for
706  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
707  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
708  ///
709  /// Note that these are laid out in a specific order to allow bit-twiddling
710  /// to transform conditions.
711  enum CondCode {
712    // Opcode          N U L G E       Intuitive operation
713    SETFALSE,      //    0 0 0 0       Always false (always folded)
714    SETOEQ,        //    0 0 0 1       True if ordered and equal
715    SETOGT,        //    0 0 1 0       True if ordered and greater than
716    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
717    SETOLT,        //    0 1 0 0       True if ordered and less than
718    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
719    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
720    SETO,          //    0 1 1 1       True if ordered (no nans)
721    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
722    SETUEQ,        //    1 0 0 1       True if unordered or equal
723    SETUGT,        //    1 0 1 0       True if unordered or greater than
724    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
725    SETULT,        //    1 1 0 0       True if unordered or less than
726    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
727    SETUNE,        //    1 1 1 0       True if unordered or not equal
728    SETTRUE,       //    1 1 1 1       Always true (always folded)
729    // Don't care operations: undefined if the input is a nan.
730    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
731    SETEQ,         //  1 X 0 0 1       True if equal
732    SETGT,         //  1 X 0 1 0       True if greater than
733    SETGE,         //  1 X 0 1 1       True if greater than or equal
734    SETLT,         //  1 X 1 0 0       True if less than
735    SETLE,         //  1 X 1 0 1       True if less than or equal
736    SETNE,         //  1 X 1 1 0       True if not equal
737    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
738
739    SETCC_INVALID       // Marker value.
740  };
741
742  /// isSignedIntSetCC - Return true if this is a setcc instruction that
743  /// performs a signed comparison when used with integer operands.
744  inline bool isSignedIntSetCC(CondCode Code) {
745    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
746  }
747
748  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
749  /// performs an unsigned comparison when used with integer operands.
750  inline bool isUnsignedIntSetCC(CondCode Code) {
751    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
752  }
753
754  /// isTrueWhenEqual - Return true if the specified condition returns true if
755  /// the two operands to the condition are equal.  Note that if one of the two
756  /// operands is a NaN, this value is meaningless.
757  inline bool isTrueWhenEqual(CondCode Cond) {
758    return ((int)Cond & 1) != 0;
759  }
760
761  /// getUnorderedFlavor - This function returns 0 if the condition is always
762  /// false if an operand is a NaN, 1 if the condition is always true if the
763  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
764  /// NaN.
765  inline unsigned getUnorderedFlavor(CondCode Cond) {
766    return ((int)Cond >> 3) & 3;
767  }
768
769  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
770  /// 'op' is a valid SetCC operation.
771  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
772
773  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
774  /// when given the operation for (X op Y).
775  CondCode getSetCCSwappedOperands(CondCode Operation);
776
777  /// getSetCCOrOperation - Return the result of a logical OR between different
778  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
779  /// function returns SETCC_INVALID if it is not possible to represent the
780  /// resultant comparison.
781  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
782
783  /// getSetCCAndOperation - Return the result of a logical AND between
784  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
785  /// function returns SETCC_INVALID if it is not possible to represent the
786  /// resultant comparison.
787  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
788}  // end llvm::ISD namespace
789
790
791//===----------------------------------------------------------------------===//
792/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
793/// values as the result of a computation.  Many nodes return multiple values,
794/// from loads (which define a token and a return value) to ADDC (which returns
795/// a result and a carry value), to calls (which may return an arbitrary number
796/// of values).
797///
798/// As such, each use of a SelectionDAG computation must indicate the node that
799/// computes it as well as which return value to use from that node.  This pair
800/// of information is represented with the SDOperand value type.
801///
802class SDOperand {
803public:
804  SDNode *Val;        // The node defining the value we are using.
805  unsigned ResNo;     // Which return value of the node we are using.
806
807  SDOperand() : Val(0), ResNo(0) {}
808  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
809
810  bool operator==(const SDOperand &O) const {
811    return Val == O.Val && ResNo == O.ResNo;
812  }
813  bool operator!=(const SDOperand &O) const {
814    return !operator==(O);
815  }
816  bool operator<(const SDOperand &O) const {
817    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
818  }
819
820  SDOperand getValue(unsigned R) const {
821    return SDOperand(Val, R);
822  }
823
824  // isOperandOf - Return true if this node is an operand of N.
825  bool isOperandOf(SDNode *N) const;
826
827  /// getValueType - Return the ValueType of the referenced return value.
828  ///
829  inline MVT::ValueType getValueType() const;
830
831  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType()).
832  ///
833  unsigned getValueSizeInBits() const {
834    return MVT::getSizeInBits(getValueType());
835  }
836
837  // Forwarding methods - These forward to the corresponding methods in SDNode.
838  inline unsigned getOpcode() const;
839  inline unsigned getNumOperands() const;
840  inline const SDOperand &getOperand(unsigned i) const;
841  inline uint64_t getConstantOperandVal(unsigned i) const;
842  inline bool isTargetOpcode() const;
843  inline unsigned getTargetOpcode() const;
844
845
846  /// reachesChainWithoutSideEffects - Return true if this operand (which must
847  /// be a chain) reaches the specified operand without crossing any
848  /// side-effecting instructions.  In practice, this looks through token
849  /// factors and non-volatile loads.  In order to remain efficient, this only
850  /// looks a couple of nodes in, it does not do an exhaustive search.
851  bool reachesChainWithoutSideEffects(SDOperand Dest,
852                                      unsigned Depth = 2) const;
853
854  /// hasOneUse - Return true if there is exactly one operation using this
855  /// result value of the defining operator.
856  inline bool hasOneUse() const;
857
858  /// use_empty - Return true if there are no operations using this
859  /// result value of the defining operator.
860  inline bool use_empty() const;
861};
862
863
864template<> struct DenseMapInfo<SDOperand> {
865  static inline SDOperand getEmptyKey() {
866    return SDOperand((SDNode*)-1, -1U);
867  }
868  static inline SDOperand getTombstoneKey() {
869    return SDOperand((SDNode*)-1, 0);
870  }
871  static unsigned getHashValue(const SDOperand &Val) {
872    return ((unsigned)((uintptr_t)Val.Val >> 4) ^
873            (unsigned)((uintptr_t)Val.Val >> 9)) + Val.ResNo;
874  }
875  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
876    return LHS == RHS;
877  }
878  static bool isPod() { return true; }
879};
880
881/// simplify_type specializations - Allow casting operators to work directly on
882/// SDOperands as if they were SDNode*'s.
883template<> struct simplify_type<SDOperand> {
884  typedef SDNode* SimpleType;
885  static SimpleType getSimplifiedValue(const SDOperand &Val) {
886    return static_cast<SimpleType>(Val.Val);
887  }
888};
889template<> struct simplify_type<const SDOperand> {
890  typedef SDNode* SimpleType;
891  static SimpleType getSimplifiedValue(const SDOperand &Val) {
892    return static_cast<SimpleType>(Val.Val);
893  }
894};
895
896/// SDUse - Represents a use of the SDNode referred by
897/// the SDOperand.
898class SDUse {
899  SDOperand Operand;
900  /// User - Parent node of this operand.
901  SDNode    *User;
902  /// Prev, next - Pointers to the uses list of the SDNode referred by
903  /// this operand.
904  SDUse **Prev, *Next;
905public:
906  friend class SDNode;
907  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}
908
909  SDUse(SDNode *val, unsigned resno) :
910    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}
911
912  SDUse& operator= (const SDOperand& Op) {
913      Operand = Op;
914      Next = NULL;
915      Prev = NULL;
916      return *this;
917  }
918
919  SDUse& operator= (const SDUse& Op) {
920      Operand = Op;
921      Next = NULL;
922      Prev = NULL;
923      return *this;
924  }
925
926  SDUse * getNext() { return Next; }
927
928  SDNode *getUser() { return User; }
929
930  void setUser(SDNode *p) { User = p; }
931
932  operator SDOperand() const { return Operand; }
933
934  const SDOperand& getSDOperand() const { return Operand; }
935
936  SDNode* &getVal () { return Operand.Val; }
937
938  bool operator==(const SDOperand &O) const {
939    return Operand == O;
940  }
941
942  bool operator!=(const SDOperand &O) const {
943    return !(Operand == O);
944  }
945
946  bool operator<(const SDOperand &O) const {
947    return Operand < O;
948  }
949
950protected:
951  void addToList(SDUse **List) {
952    Next = *List;
953    if (Next) Next->Prev = &Next;
954    Prev = List;
955    *List = this;
956  }
957
958  void removeFromList() {
959    *Prev = Next;
960    if (Next) Next->Prev = Prev;
961  }
962};
963
964
965/// simplify_type specializations - Allow casting operators to work directly on
966/// SDOperands as if they were SDNode*'s.
967template<> struct simplify_type<SDUse> {
968  typedef SDNode* SimpleType;
969  static SimpleType getSimplifiedValue(const SDUse &Val) {
970    return static_cast<SimpleType>(Val.getSDOperand().Val);
971  }
972};
973template<> struct simplify_type<const SDUse> {
974  typedef SDNode* SimpleType;
975  static SimpleType getSimplifiedValue(const SDUse &Val) {
976    return static_cast<SimpleType>(Val.getSDOperand().Val);
977  }
978};
979
980
981/// SDOperandPtr - A helper SDOperand pointer class, that can handle
982/// arrays of SDUse and arrays of SDOperand objects. This is required
983/// in many places inside the SelectionDAG.
984///
985class SDOperandPtr {
986  const SDOperand *ptr; // The pointer to the SDOperand object
987  int object_size;      // The size of the object containg the SDOperand
988public:
989  SDOperandPtr() : ptr(0), object_size(0) {}
990
991  SDOperandPtr(SDUse * use_ptr) {
992    ptr = &use_ptr->getSDOperand();
993    object_size = (int)sizeof(SDUse);
994  }
995
996  SDOperandPtr(const SDOperand * op_ptr) {
997    ptr = op_ptr;
998    object_size = (int)sizeof(SDOperand);
999  }
1000
1001  const SDOperand operator *() { return *ptr; }
1002  const SDOperand *operator ->() { return ptr; }
1003  SDOperandPtr operator ++ () {
1004    ptr = (SDOperand*)((char *)ptr + object_size);
1005    return *this;
1006  }
1007
1008  SDOperandPtr operator ++ (int) {
1009    SDOperandPtr tmp = *this;
1010    ptr = (SDOperand*)((char *)ptr + object_size);
1011    return tmp;
1012  }
1013
1014  SDOperand operator[] (int idx) const {
1015    return *(SDOperand*)((char*) ptr + object_size * idx);
1016  }
1017};
1018
1019/// SDNode - Represents one node in the SelectionDAG.
1020///
1021class SDNode : public FoldingSetNode {
1022private:
1023  /// NodeType - The operation that this node performs.
1024  ///
1025  unsigned short NodeType;
1026
1027  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1028  /// then they will be delete[]'d when the node is destroyed.
1029  bool OperandsNeedDelete : 1;
1030
1031  /// NodeId - Unique id per SDNode in the DAG.
1032  int NodeId;
1033
1034  /// OperandList - The values that are used by this operation.
1035  ///
1036  SDUse *OperandList;
1037
1038  /// ValueList - The types of the values this node defines.  SDNode's may
1039  /// define multiple values simultaneously.
1040  const MVT::ValueType *ValueList;
1041
1042  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1043  unsigned short NumOperands, NumValues;
1044
1045  /// Prev/Next pointers - These pointers form the linked list of of the
1046  /// AllNodes list in the current DAG.
1047  SDNode *Prev, *Next;
1048  friend struct ilist_traits<SDNode>;
1049
1050  /// UsesSize - The size of the uses list.
1051  unsigned UsesSize;
1052
1053  /// Uses - List of uses for this SDNode.
1054  SDUse *Uses;
1055
1056  /// addUse - add SDUse to the list of uses.
1057  void addUse(SDUse &U) { U.addToList(&Uses); }
1058
1059  // Out-of-line virtual method to give class a home.
1060  virtual void ANCHOR();
1061public:
1062  virtual ~SDNode() {
1063    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1064    NodeType = ISD::DELETED_NODE;
1065  }
1066
1067  //===--------------------------------------------------------------------===//
1068  //  Accessors
1069  //
1070  unsigned getOpcode()  const { return NodeType; }
1071  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1072  unsigned getTargetOpcode() const {
1073    assert(isTargetOpcode() && "Not a target opcode!");
1074    return NodeType - ISD::BUILTIN_OP_END;
1075  }
1076
1077  size_t use_size() const { return UsesSize; }
1078  bool use_empty() const { return Uses == NULL; }
1079  bool hasOneUse() const { return use_size() == 1; }
1080
1081  /// getNodeId - Return the unique node id.
1082  ///
1083  int getNodeId() const { return NodeId; }
1084
1085  /// setNodeId - Set unique node id.
1086  void setNodeId(int Id) { NodeId = Id; }
1087
1088  /// use_iterator - This class provides iterator support for SDUse
1089  /// operands that use a specific SDNode.
1090  class use_iterator
1091    : public forward_iterator<SDUse, ptrdiff_t> {
1092    SDUse *Op;
1093    explicit use_iterator(SDUse *op) : Op(op) {
1094    }
1095    friend class SDNode;
1096  public:
1097    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1098    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1099
1100    use_iterator(const use_iterator &I) : Op(I.Op) {}
1101    use_iterator() : Op(0) {}
1102
1103    bool operator==(const use_iterator &x) const {
1104      return Op == x.Op;
1105    }
1106    bool operator!=(const use_iterator &x) const {
1107      return !operator==(x);
1108    }
1109
1110    /// atEnd - return true if this iterator is at the end of uses list.
1111    bool atEnd() const { return Op == 0; }
1112
1113    // Iterator traversal: forward iteration only.
1114    use_iterator &operator++() {          // Preincrement
1115      assert(Op && "Cannot increment end iterator!");
1116      Op = Op->getNext();
1117      return *this;
1118    }
1119
1120    use_iterator operator++(int) {        // Postincrement
1121      use_iterator tmp = *this; ++*this; return tmp;
1122    }
1123
1124
1125    /// getOperandNum - Retrive a number of a current operand.
1126    unsigned getOperandNum() const {
1127      assert(Op && "Cannot dereference end iterator!");
1128      return (unsigned)(Op - Op->getUser()->OperandList);
1129    }
1130
1131    /// Retrieve a reference to the current operand.
1132    SDUse &operator*() const {
1133      assert(Op && "Cannot dereference end iterator!");
1134      return *Op;
1135    }
1136
1137    /// Retrieve a pointer to the current operand.
1138    SDUse *operator->() const {
1139      assert(Op && "Cannot dereference end iterator!");
1140      return Op;
1141    }
1142  };
1143
1144  /// use_begin/use_end - Provide iteration support to walk over all uses
1145  /// of an SDNode.
1146
1147  use_iterator use_begin(SDNode *node) const {
1148    return use_iterator(node->Uses);
1149  }
1150
1151  use_iterator use_begin() const {
1152    return use_iterator(Uses);
1153  }
1154
1155  static use_iterator use_end() { return use_iterator(0); }
1156
1157
1158  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1159  /// indicated value.  This method ignores uses of other values defined by this
1160  /// operation.
1161  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1162
1163  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1164  /// value. This method ignores uses of other values defined by this operation.
1165  bool hasAnyUseOfValue(unsigned Value) const;
1166
1167  /// isOnlyUseOf - Return true if this node is the only use of N.
1168  ///
1169  bool isOnlyUseOf(SDNode *N) const;
1170
1171  /// isOperandOf - Return true if this node is an operand of N.
1172  ///
1173  bool isOperandOf(SDNode *N) const;
1174
1175  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1176  /// node is either an operand of N or it can be reached by recursively
1177  /// traversing up the operands.
1178  /// NOTE: this is an expensive method. Use it carefully.
1179  bool isPredecessorOf(SDNode *N) const;
1180
1181  /// getNumOperands - Return the number of values used by this operation.
1182  ///
1183  unsigned getNumOperands() const { return NumOperands; }
1184
1185  /// getConstantOperandVal - Helper method returns the integer value of a
1186  /// ConstantSDNode operand.
1187  uint64_t getConstantOperandVal(unsigned Num) const;
1188
1189  const SDOperand &getOperand(unsigned Num) const {
1190    assert(Num < NumOperands && "Invalid child # of SDNode!");
1191    return OperandList[Num].getSDOperand();
1192  }
1193
1194  typedef SDUse* op_iterator;
1195  op_iterator op_begin() const { return OperandList; }
1196  op_iterator op_end() const { return OperandList+NumOperands; }
1197
1198
1199  SDVTList getVTList() const {
1200    SDVTList X = { ValueList, NumValues };
1201    return X;
1202  };
1203
1204  /// getNumValues - Return the number of values defined/returned by this
1205  /// operator.
1206  ///
1207  unsigned getNumValues() const { return NumValues; }
1208
1209  /// getValueType - Return the type of a specified result.
1210  ///
1211  MVT::ValueType getValueType(unsigned ResNo) const {
1212    assert(ResNo < NumValues && "Illegal result number!");
1213    return ValueList[ResNo];
1214  }
1215
1216  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1217  ///
1218  unsigned getValueSizeInBits(unsigned ResNo) const {
1219    return MVT::getSizeInBits(getValueType(ResNo));
1220  }
1221
1222  typedef const MVT::ValueType* value_iterator;
1223  value_iterator value_begin() const { return ValueList; }
1224  value_iterator value_end() const { return ValueList+NumValues; }
1225
1226  /// getOperationName - Return the opcode of this operation for printing.
1227  ///
1228  std::string getOperationName(const SelectionDAG *G = 0) const;
1229  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1230  void dump() const;
1231  void dump(const SelectionDAG *G) const;
1232
1233  static bool classof(const SDNode *) { return true; }
1234
1235  /// Profile - Gather unique data for the node.
1236  ///
1237  void Profile(FoldingSetNodeID &ID);
1238
1239protected:
1240  friend class SelectionDAG;
1241
1242  /// getValueTypeList - Return a pointer to the specified value type.
1243  ///
1244  static const MVT::ValueType *getValueTypeList(MVT::ValueType VT);
1245  static SDVTList getSDVTList(MVT::ValueType VT) {
1246    SDVTList Ret = { getValueTypeList(VT), 1 };
1247    return Ret;
1248  }
1249
1250  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
1251    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1252    OperandsNeedDelete = true;
1253    NumOperands = NumOps;
1254    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1255
1256    for (unsigned i = 0; i != NumOps; ++i) {
1257      OperandList[i] = Ops[i];
1258      OperandList[i].setUser(this);
1259      Ops[i].Val->addUse(OperandList[i]);
1260      ++Ops[i].Val->UsesSize;
1261    }
1262
1263    ValueList = VTs.VTs;
1264    NumValues = VTs.NumVTs;
1265    Prev = 0; Next = 0;
1266  }
1267
1268  SDNode(unsigned Opc, SDVTList VTs, SDOperandPtr Ops, unsigned NumOps)
1269    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1270    OperandsNeedDelete = true;
1271    NumOperands = NumOps;
1272    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1273
1274    for (unsigned i = 0; i != NumOps; ++i) {
1275      OperandList[i] = Ops[i];
1276      OperandList[i].setUser(this);
1277      Ops[i].Val->addUse(OperandList[i]);
1278      ++Ops[i].Val->UsesSize;
1279    }
1280
1281    ValueList = VTs.VTs;
1282    NumValues = VTs.NumVTs;
1283    Prev = 0; Next = 0;
1284  }
1285
1286  SDNode(unsigned Opc, SDVTList VTs)
1287    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1288    OperandsNeedDelete = false;  // Operands set with InitOperands.
1289    NumOperands = 0;
1290    OperandList = 0;
1291    ValueList = VTs.VTs;
1292    NumValues = VTs.NumVTs;
1293    Prev = 0; Next = 0;
1294  }
1295
1296  /// InitOperands - Initialize the operands list of this node with the
1297  /// specified values, which are part of the node (thus they don't need to be
1298  /// copied in or allocated).
1299  void InitOperands(SDUse *Ops, unsigned NumOps) {
1300    assert(OperandList == 0 && "Operands already set!");
1301    NumOperands = NumOps;
1302    OperandList = Ops;
1303    UsesSize = 0;
1304    Uses = NULL;
1305
1306    for (unsigned i = 0; i != NumOps; ++i) {
1307      OperandList[i].setUser(this);
1308      Ops[i].getVal()->addUse(OperandList[i]);
1309      ++Ops[i].getVal()->UsesSize;
1310    }
1311  }
1312
1313  /// MorphNodeTo - This frees the operands of the current node, resets the
1314  /// opcode, types, and operands to the specified value.  This should only be
1315  /// used by the SelectionDAG class.
1316  void MorphNodeTo(unsigned Opc, SDVTList L,
1317                   SDOperandPtr Ops, unsigned NumOps);
1318
1319  void addUser(unsigned i, SDNode *User) {
1320    assert(User->OperandList[i].getUser() && "Node without parent");
1321    addUse(User->OperandList[i]);
1322    ++UsesSize;
1323  }
1324
1325  void removeUser(unsigned i, SDNode *User) {
1326    assert(User->OperandList[i].getUser() && "Node without parent");
1327    SDUse &Op = User->OperandList[i];
1328    Op.removeFromList();
1329    --UsesSize;
1330  }
1331};
1332
1333
1334// Define inline functions from the SDOperand class.
1335
1336inline unsigned SDOperand::getOpcode() const {
1337  return Val->getOpcode();
1338}
1339inline MVT::ValueType SDOperand::getValueType() const {
1340  return Val->getValueType(ResNo);
1341}
1342inline unsigned SDOperand::getNumOperands() const {
1343  return Val->getNumOperands();
1344}
1345inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1346  return Val->getOperand(i);
1347}
1348inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1349  return Val->getConstantOperandVal(i);
1350}
1351inline bool SDOperand::isTargetOpcode() const {
1352  return Val->isTargetOpcode();
1353}
1354inline unsigned SDOperand::getTargetOpcode() const {
1355  return Val->getTargetOpcode();
1356}
1357inline bool SDOperand::hasOneUse() const {
1358  return Val->hasNUsesOfValue(1, ResNo);
1359}
1360inline bool SDOperand::use_empty() const {
1361  return !Val->hasAnyUseOfValue(ResNo);
1362}
1363
1364/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1365/// to allow co-allocation of node operands with the node itself.
1366class UnarySDNode : public SDNode {
1367  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1368  SDUse Op;
1369public:
1370  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1371    : SDNode(Opc, VTs) {
1372    Op = X;
1373    InitOperands(&Op, 1);
1374  }
1375};
1376
1377/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1378/// to allow co-allocation of node operands with the node itself.
1379class BinarySDNode : public SDNode {
1380  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1381  SDUse Ops[2];
1382public:
1383  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1384    : SDNode(Opc, VTs) {
1385    Ops[0] = X;
1386    Ops[1] = Y;
1387    InitOperands(Ops, 2);
1388  }
1389};
1390
1391/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1392/// to allow co-allocation of node operands with the node itself.
1393class TernarySDNode : public SDNode {
1394  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1395  SDUse Ops[3];
1396public:
1397  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1398                SDOperand Z)
1399    : SDNode(Opc, VTs) {
1400    Ops[0] = X;
1401    Ops[1] = Y;
1402    Ops[2] = Z;
1403    InitOperands(Ops, 3);
1404  }
1405};
1406
1407
1408/// HandleSDNode - This class is used to form a handle around another node that
1409/// is persistant and is updated across invocations of replaceAllUsesWith on its
1410/// operand.  This node should be directly created by end-users and not added to
1411/// the AllNodes list.
1412class HandleSDNode : public SDNode {
1413  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1414  SDUse Op;
1415public:
1416  explicit HandleSDNode(SDOperand X)
1417    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1418    Op = X;
1419    InitOperands(&Op, 1);
1420  }
1421  ~HandleSDNode();
1422  SDUse getValue() const { return Op; }
1423};
1424
1425class AtomicSDNode : public SDNode {
1426  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1427  SDUse Ops[4];
1428  MVT::ValueType OrigVT;
1429public:
1430  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1431               SDOperand Cmp, SDOperand Swp, MVT::ValueType VT)
1432    : SDNode(Opc, VTL) {
1433    Ops[0] = Chain;
1434    Ops[1] = Ptr;
1435    Ops[2] = Swp;
1436    Ops[3] = Cmp;
1437    InitOperands(Ops, 4);
1438    OrigVT=VT;
1439  }
1440  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1441               SDOperand Val, MVT::ValueType VT)
1442    : SDNode(Opc, VTL) {
1443    Ops[0] = Chain;
1444    Ops[1] = Ptr;
1445    Ops[2] = Val;
1446    InitOperands(Ops, 3);
1447    OrigVT=VT;
1448  }
1449  MVT::ValueType getVT() const { return OrigVT; }
1450  bool isCompareAndSwap() const { return getOpcode() == ISD::ATOMIC_LCS; }
1451};
1452
1453class StringSDNode : public SDNode {
1454  std::string Value;
1455  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1456protected:
1457  friend class SelectionDAG;
1458  explicit StringSDNode(const std::string &val)
1459    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1460  }
1461public:
1462  const std::string &getValue() const { return Value; }
1463  static bool classof(const StringSDNode *) { return true; }
1464  static bool classof(const SDNode *N) {
1465    return N->getOpcode() == ISD::STRING;
1466  }
1467};
1468
1469class ConstantSDNode : public SDNode {
1470  APInt Value;
1471  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1472protected:
1473  friend class SelectionDAG;
1474  ConstantSDNode(bool isTarget, const APInt &val, MVT::ValueType VT)
1475    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1476      Value(val) {
1477  }
1478public:
1479
1480  const APInt &getAPIntValue() const { return Value; }
1481  uint64_t getValue() const { return Value.getZExtValue(); }
1482
1483  int64_t getSignExtended() const {
1484    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1485    return ((int64_t)Value.getZExtValue() << (64-Bits)) >> (64-Bits);
1486  }
1487
1488  bool isNullValue() const { return Value == 0; }
1489  bool isAllOnesValue() const {
1490    return Value == MVT::getIntVTBitMask(getValueType(0));
1491  }
1492
1493  static bool classof(const ConstantSDNode *) { return true; }
1494  static bool classof(const SDNode *N) {
1495    return N->getOpcode() == ISD::Constant ||
1496           N->getOpcode() == ISD::TargetConstant;
1497  }
1498};
1499
1500class ConstantFPSDNode : public SDNode {
1501  APFloat Value;
1502  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1503protected:
1504  friend class SelectionDAG;
1505  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT::ValueType VT)
1506    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1507             getSDVTList(VT)), Value(val) {
1508  }
1509public:
1510
1511  const APFloat& getValueAPF() const { return Value; }
1512
1513  /// isExactlyValue - We don't rely on operator== working on double values, as
1514  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1515  /// As such, this method can be used to do an exact bit-for-bit comparison of
1516  /// two floating point values.
1517
1518  /// We leave the version with the double argument here because it's just so
1519  /// convenient to write "2.0" and the like.  Without this function we'd
1520  /// have to duplicate its logic everywhere it's called.
1521  bool isExactlyValue(double V) const {
1522    // convert is not supported on this type
1523    if (&Value.getSemantics() == &APFloat::PPCDoubleDouble)
1524      return false;
1525    APFloat Tmp(V);
1526    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
1527    return isExactlyValue(Tmp);
1528  }
1529  bool isExactlyValue(const APFloat& V) const;
1530
1531  bool isValueValidForType(MVT::ValueType VT, const APFloat& Val);
1532
1533  static bool classof(const ConstantFPSDNode *) { return true; }
1534  static bool classof(const SDNode *N) {
1535    return N->getOpcode() == ISD::ConstantFP ||
1536           N->getOpcode() == ISD::TargetConstantFP;
1537  }
1538};
1539
1540class GlobalAddressSDNode : public SDNode {
1541  GlobalValue *TheGlobal;
1542  int Offset;
1543  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1544protected:
1545  friend class SelectionDAG;
1546  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1547                      int o = 0);
1548public:
1549
1550  GlobalValue *getGlobal() const { return TheGlobal; }
1551  int getOffset() const { return Offset; }
1552
1553  static bool classof(const GlobalAddressSDNode *) { return true; }
1554  static bool classof(const SDNode *N) {
1555    return N->getOpcode() == ISD::GlobalAddress ||
1556           N->getOpcode() == ISD::TargetGlobalAddress ||
1557           N->getOpcode() == ISD::GlobalTLSAddress ||
1558           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1559  }
1560};
1561
1562class FrameIndexSDNode : public SDNode {
1563  int FI;
1564  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1565protected:
1566  friend class SelectionDAG;
1567  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1568    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1569      FI(fi) {
1570  }
1571public:
1572
1573  int getIndex() const { return FI; }
1574
1575  static bool classof(const FrameIndexSDNode *) { return true; }
1576  static bool classof(const SDNode *N) {
1577    return N->getOpcode() == ISD::FrameIndex ||
1578           N->getOpcode() == ISD::TargetFrameIndex;
1579  }
1580};
1581
1582class JumpTableSDNode : public SDNode {
1583  int JTI;
1584  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1585protected:
1586  friend class SelectionDAG;
1587  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1588    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1589      JTI(jti) {
1590  }
1591public:
1592
1593  int getIndex() const { return JTI; }
1594
1595  static bool classof(const JumpTableSDNode *) { return true; }
1596  static bool classof(const SDNode *N) {
1597    return N->getOpcode() == ISD::JumpTable ||
1598           N->getOpcode() == ISD::TargetJumpTable;
1599  }
1600};
1601
1602class ConstantPoolSDNode : public SDNode {
1603  union {
1604    Constant *ConstVal;
1605    MachineConstantPoolValue *MachineCPVal;
1606  } Val;
1607  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1608  unsigned Alignment;
1609  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1610protected:
1611  friend class SelectionDAG;
1612  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1613                     int o=0)
1614    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1615             getSDVTList(VT)), Offset(o), Alignment(0) {
1616    assert((int)Offset >= 0 && "Offset is too large");
1617    Val.ConstVal = c;
1618  }
1619  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1620                     unsigned Align)
1621    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1622             getSDVTList(VT)), Offset(o), Alignment(Align) {
1623    assert((int)Offset >= 0 && "Offset is too large");
1624    Val.ConstVal = c;
1625  }
1626  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1627                     MVT::ValueType VT, int o=0)
1628    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1629             getSDVTList(VT)), Offset(o), Alignment(0) {
1630    assert((int)Offset >= 0 && "Offset is too large");
1631    Val.MachineCPVal = v;
1632    Offset |= 1 << (sizeof(unsigned)*8-1);
1633  }
1634  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1635                     MVT::ValueType VT, int o, unsigned Align)
1636    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1637             getSDVTList(VT)), Offset(o), Alignment(Align) {
1638    assert((int)Offset >= 0 && "Offset is too large");
1639    Val.MachineCPVal = v;
1640    Offset |= 1 << (sizeof(unsigned)*8-1);
1641  }
1642public:
1643
1644  bool isMachineConstantPoolEntry() const {
1645    return (int)Offset < 0;
1646  }
1647
1648  Constant *getConstVal() const {
1649    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1650    return Val.ConstVal;
1651  }
1652
1653  MachineConstantPoolValue *getMachineCPVal() const {
1654    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1655    return Val.MachineCPVal;
1656  }
1657
1658  int getOffset() const {
1659    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1660  }
1661
1662  // Return the alignment of this constant pool object, which is either 0 (for
1663  // default alignment) or log2 of the desired value.
1664  unsigned getAlignment() const { return Alignment; }
1665
1666  const Type *getType() const;
1667
1668  static bool classof(const ConstantPoolSDNode *) { return true; }
1669  static bool classof(const SDNode *N) {
1670    return N->getOpcode() == ISD::ConstantPool ||
1671           N->getOpcode() == ISD::TargetConstantPool;
1672  }
1673};
1674
1675class BasicBlockSDNode : public SDNode {
1676  MachineBasicBlock *MBB;
1677  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1678protected:
1679  friend class SelectionDAG;
1680  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1681    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1682  }
1683public:
1684
1685  MachineBasicBlock *getBasicBlock() const { return MBB; }
1686
1687  static bool classof(const BasicBlockSDNode *) { return true; }
1688  static bool classof(const SDNode *N) {
1689    return N->getOpcode() == ISD::BasicBlock;
1690  }
1691};
1692
1693/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1694/// used when the SelectionDAG needs to make a simple reference to something
1695/// in the LLVM IR representation.
1696///
1697/// Note that this is not used for carrying alias information; that is done
1698/// with MemOperandSDNode, which includes a Value which is required to be a
1699/// pointer, and several other fields specific to memory references.
1700///
1701class SrcValueSDNode : public SDNode {
1702  const Value *V;
1703  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1704protected:
1705  friend class SelectionDAG;
1706  /// Create a SrcValue for a general value.
1707  explicit SrcValueSDNode(const Value *v)
1708    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1709
1710public:
1711  /// getValue - return the contained Value.
1712  const Value *getValue() const { return V; }
1713
1714  static bool classof(const SrcValueSDNode *) { return true; }
1715  static bool classof(const SDNode *N) {
1716    return N->getOpcode() == ISD::SRCVALUE;
1717  }
1718};
1719
1720
1721/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
1722/// used to represent a reference to memory after ISD::LOAD
1723/// and ISD::STORE have been lowered.
1724///
1725class MemOperandSDNode : public SDNode {
1726  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1727protected:
1728  friend class SelectionDAG;
1729  /// Create a MachineMemOperand node
1730  explicit MemOperandSDNode(const MachineMemOperand &mo)
1731    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
1732
1733public:
1734  /// MO - The contained MachineMemOperand.
1735  const MachineMemOperand MO;
1736
1737  static bool classof(const MemOperandSDNode *) { return true; }
1738  static bool classof(const SDNode *N) {
1739    return N->getOpcode() == ISD::MEMOPERAND;
1740  }
1741};
1742
1743
1744class RegisterSDNode : public SDNode {
1745  unsigned Reg;
1746  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1747protected:
1748  friend class SelectionDAG;
1749  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1750    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1751  }
1752public:
1753
1754  unsigned getReg() const { return Reg; }
1755
1756  static bool classof(const RegisterSDNode *) { return true; }
1757  static bool classof(const SDNode *N) {
1758    return N->getOpcode() == ISD::Register;
1759  }
1760};
1761
1762class ExternalSymbolSDNode : public SDNode {
1763  const char *Symbol;
1764  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1765protected:
1766  friend class SelectionDAG;
1767  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1768    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1769             getSDVTList(VT)), Symbol(Sym) {
1770  }
1771public:
1772
1773  const char *getSymbol() const { return Symbol; }
1774
1775  static bool classof(const ExternalSymbolSDNode *) { return true; }
1776  static bool classof(const SDNode *N) {
1777    return N->getOpcode() == ISD::ExternalSymbol ||
1778           N->getOpcode() == ISD::TargetExternalSymbol;
1779  }
1780};
1781
1782class CondCodeSDNode : public SDNode {
1783  ISD::CondCode Condition;
1784  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1785protected:
1786  friend class SelectionDAG;
1787  explicit CondCodeSDNode(ISD::CondCode Cond)
1788    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1789  }
1790public:
1791
1792  ISD::CondCode get() const { return Condition; }
1793
1794  static bool classof(const CondCodeSDNode *) { return true; }
1795  static bool classof(const SDNode *N) {
1796    return N->getOpcode() == ISD::CONDCODE;
1797  }
1798};
1799
1800namespace ISD {
1801  struct ArgFlagsTy {
1802  private:
1803    static const uint64_t NoFlagSet      = 0ULL;
1804    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
1805    static const uint64_t ZExtOffs       = 0;
1806    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
1807    static const uint64_t SExtOffs       = 1;
1808    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
1809    static const uint64_t InRegOffs      = 2;
1810    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
1811    static const uint64_t SRetOffs       = 3;
1812    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
1813    static const uint64_t ByValOffs      = 4;
1814    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
1815    static const uint64_t NestOffs       = 5;
1816    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
1817    static const uint64_t ByValAlignOffs = 6;
1818    static const uint64_t Split          = 1ULL << 10;
1819    static const uint64_t SplitOffs      = 10;
1820    static const uint64_t OrigAlign      = 0x1FULL<<27;
1821    static const uint64_t OrigAlignOffs  = 27;
1822    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
1823    static const uint64_t ByValSizeOffs  = 32;
1824
1825    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
1826
1827    uint64_t Flags;
1828  public:
1829    ArgFlagsTy() : Flags(0) { }
1830
1831    bool isZExt()   const { return Flags & ZExt; }
1832    void setZExt()  { Flags |= One << ZExtOffs; }
1833
1834    bool isSExt()   const { return Flags & SExt; }
1835    void setSExt()  { Flags |= One << SExtOffs; }
1836
1837    bool isInReg()  const { return Flags & InReg; }
1838    void setInReg() { Flags |= One << InRegOffs; }
1839
1840    bool isSRet()   const { return Flags & SRet; }
1841    void setSRet()  { Flags |= One << SRetOffs; }
1842
1843    bool isByVal()  const { return Flags & ByVal; }
1844    void setByVal() { Flags |= One << ByValOffs; }
1845
1846    bool isNest()   const { return Flags & Nest; }
1847    void setNest()  { Flags |= One << NestOffs; }
1848
1849    unsigned getByValAlign() const {
1850      return (unsigned)
1851        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
1852    }
1853    void setByValAlign(unsigned A) {
1854      Flags = (Flags & ~ByValAlign) |
1855        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
1856    }
1857
1858    bool isSplit()   const { return Flags & Split; }
1859    void setSplit()  { Flags |= One << SplitOffs; }
1860
1861    unsigned getOrigAlign() const {
1862      return (unsigned)
1863        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
1864    }
1865    void setOrigAlign(unsigned A) {
1866      Flags = (Flags & ~OrigAlign) |
1867        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
1868    }
1869
1870    unsigned getByValSize() const {
1871      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
1872    }
1873    void setByValSize(unsigned S) {
1874      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
1875    }
1876
1877    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
1878    std::string getArgFlagsString();
1879
1880    /// getRawBits - Represent the flags as a bunch of bits.
1881    uint64_t getRawBits() const { return Flags; }
1882  };
1883}
1884
1885/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
1886class ARG_FLAGSSDNode : public SDNode {
1887  ISD::ArgFlagsTy TheFlags;
1888  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1889protected:
1890  friend class SelectionDAG;
1891  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
1892    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
1893  }
1894public:
1895  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
1896
1897  static bool classof(const ARG_FLAGSSDNode *) { return true; }
1898  static bool classof(const SDNode *N) {
1899    return N->getOpcode() == ISD::ARG_FLAGS;
1900  }
1901};
1902
1903/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1904/// to parameterize some operations.
1905class VTSDNode : public SDNode {
1906  MVT::ValueType ValueType;
1907  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1908protected:
1909  friend class SelectionDAG;
1910  explicit VTSDNode(MVT::ValueType VT)
1911    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1912  }
1913public:
1914
1915  MVT::ValueType getVT() const { return ValueType; }
1916
1917  static bool classof(const VTSDNode *) { return true; }
1918  static bool classof(const SDNode *N) {
1919    return N->getOpcode() == ISD::VALUETYPE;
1920  }
1921};
1922
1923/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
1924///
1925class LSBaseSDNode : public SDNode {
1926private:
1927  // AddrMode - unindexed, pre-indexed, post-indexed.
1928  ISD::MemIndexedMode AddrMode;
1929
1930  // MemoryVT - VT of in-memory value.
1931  MVT::ValueType MemoryVT;
1932
1933  //! SrcValue - Memory location for alias analysis.
1934  const Value *SrcValue;
1935
1936  //! SVOffset - Memory location offset.
1937  int SVOffset;
1938
1939  //! Alignment - Alignment of memory location in bytes.
1940  unsigned Alignment;
1941
1942  //! IsVolatile - True if the store is volatile.
1943  bool IsVolatile;
1944protected:
1945  //! Operand array for load and store
1946  /*!
1947    \note Moving this array to the base class captures more
1948    common functionality shared between LoadSDNode and
1949    StoreSDNode
1950   */
1951  SDUse Ops[4];
1952public:
1953  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned NumOperands,
1954               SDVTList VTs, ISD::MemIndexedMode AM, MVT::ValueType VT,
1955               const Value *SV, int SVO, unsigned Align, bool Vol)
1956    : SDNode(NodeTy, VTs),
1957      AddrMode(AM), MemoryVT(VT),
1958      SrcValue(SV), SVOffset(SVO), Alignment(Align), IsVolatile(Vol) {
1959    for (unsigned i = 0; i != NumOperands; ++i)
1960      Ops[i] = Operands[i];
1961    InitOperands(Ops, NumOperands);
1962    assert(Align != 0 && "Loads and stores should have non-zero aligment");
1963    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
1964           "Only indexed loads and stores have a non-undef offset operand");
1965  }
1966
1967  const SDOperand &getChain() const { return getOperand(0); }
1968  const SDOperand &getBasePtr() const {
1969    return getOperand(getOpcode() == ISD::LOAD ? 1 : 2);
1970  }
1971  const SDOperand &getOffset() const {
1972    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
1973  }
1974
1975  const Value *getSrcValue() const { return SrcValue; }
1976  int getSrcValueOffset() const { return SVOffset; }
1977  unsigned getAlignment() const { return Alignment; }
1978  MVT::ValueType getMemoryVT() const { return MemoryVT; }
1979  bool isVolatile() const { return IsVolatile; }
1980
1981  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1982
1983  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
1984  bool isIndexed() const { return AddrMode != ISD::UNINDEXED; }
1985
1986  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
1987  bool isUnindexed() const { return AddrMode == ISD::UNINDEXED; }
1988
1989  /// getMemOperand - Return a MachineMemOperand object describing the memory
1990  /// reference performed by this load or store.
1991  MachineMemOperand getMemOperand() const;
1992
1993  static bool classof(const LSBaseSDNode *N) { return true; }
1994  static bool classof(const SDNode *N) {
1995    return N->getOpcode() == ISD::LOAD ||
1996           N->getOpcode() == ISD::STORE;
1997  }
1998};
1999
2000/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2001///
2002class LoadSDNode : public LSBaseSDNode {
2003  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2004
2005  // ExtType - non-ext, anyext, sext, zext.
2006  ISD::LoadExtType ExtType;
2007
2008protected:
2009  friend class SelectionDAG;
2010  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
2011             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
2012             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2013    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2014                   VTs, AM, LVT, SV, O, Align, Vol),
2015      ExtType(ETy) {}
2016public:
2017
2018  ISD::LoadExtType getExtensionType() const { return ExtType; }
2019  const SDOperand &getBasePtr() const { return getOperand(1); }
2020  const SDOperand &getOffset() const { return getOperand(2); }
2021
2022  static bool classof(const LoadSDNode *) { return true; }
2023  static bool classof(const SDNode *N) {
2024    return N->getOpcode() == ISD::LOAD;
2025  }
2026};
2027
2028/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2029///
2030class StoreSDNode : public LSBaseSDNode {
2031  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2032
2033  // IsTruncStore - True if the op does a truncation before store.
2034  bool IsTruncStore;
2035protected:
2036  friend class SelectionDAG;
2037  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
2038              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
2039              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2040    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2041                   VTs, AM, SVT, SV, O, Align, Vol),
2042      IsTruncStore(isTrunc) {}
2043public:
2044
2045  bool isTruncatingStore() const { return IsTruncStore; }
2046  const SDOperand &getValue() const { return getOperand(1); }
2047  const SDOperand &getBasePtr() const { return getOperand(2); }
2048  const SDOperand &getOffset() const { return getOperand(3); }
2049
2050  static bool classof(const StoreSDNode *) { return true; }
2051  static bool classof(const SDNode *N) {
2052    return N->getOpcode() == ISD::STORE;
2053  }
2054};
2055
2056
2057class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2058  SDNode *Node;
2059  unsigned Operand;
2060
2061  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2062public:
2063  bool operator==(const SDNodeIterator& x) const {
2064    return Operand == x.Operand;
2065  }
2066  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2067
2068  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2069    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2070    Operand = I.Operand;
2071    return *this;
2072  }
2073
2074  pointer operator*() const {
2075    return Node->getOperand(Operand).Val;
2076  }
2077  pointer operator->() const { return operator*(); }
2078
2079  SDNodeIterator& operator++() {                // Preincrement
2080    ++Operand;
2081    return *this;
2082  }
2083  SDNodeIterator operator++(int) { // Postincrement
2084    SDNodeIterator tmp = *this; ++*this; return tmp;
2085  }
2086
2087  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2088  static SDNodeIterator end  (SDNode *N) {
2089    return SDNodeIterator(N, N->getNumOperands());
2090  }
2091
2092  unsigned getOperand() const { return Operand; }
2093  const SDNode *getNode() const { return Node; }
2094};
2095
2096template <> struct GraphTraits<SDNode*> {
2097  typedef SDNode NodeType;
2098  typedef SDNodeIterator ChildIteratorType;
2099  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2100  static inline ChildIteratorType child_begin(NodeType *N) {
2101    return SDNodeIterator::begin(N);
2102  }
2103  static inline ChildIteratorType child_end(NodeType *N) {
2104    return SDNodeIterator::end(N);
2105  }
2106};
2107
2108template<>
2109struct ilist_traits<SDNode> {
2110  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
2111  static SDNode *getNext(const SDNode *N) { return N->Next; }
2112
2113  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
2114  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
2115
2116  static SDNode *createSentinel() {
2117    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
2118  }
2119  static void destroySentinel(SDNode *N) { delete N; }
2120  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
2121
2122
2123  void addNodeToList(SDNode *NTy) {}
2124  void removeNodeFromList(SDNode *NTy) {}
2125  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
2126                             const ilist_iterator<SDNode> &X,
2127                             const ilist_iterator<SDNode> &Y) {}
2128};
2129
2130namespace ISD {
2131  /// isNormalLoad - Returns true if the specified node is a non-extending
2132  /// and unindexed load.
2133  inline bool isNormalLoad(const SDNode *N) {
2134    if (N->getOpcode() != ISD::LOAD)
2135      return false;
2136    const LoadSDNode *Ld = cast<LoadSDNode>(N);
2137    return Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2138      Ld->getAddressingMode() == ISD::UNINDEXED;
2139  }
2140
2141  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2142  /// load.
2143  inline bool isNON_EXTLoad(const SDNode *N) {
2144    return N->getOpcode() == ISD::LOAD &&
2145      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2146  }
2147
2148  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2149  ///
2150  inline bool isEXTLoad(const SDNode *N) {
2151    return N->getOpcode() == ISD::LOAD &&
2152      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2153  }
2154
2155  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2156  ///
2157  inline bool isSEXTLoad(const SDNode *N) {
2158    return N->getOpcode() == ISD::LOAD &&
2159      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2160  }
2161
2162  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2163  ///
2164  inline bool isZEXTLoad(const SDNode *N) {
2165    return N->getOpcode() == ISD::LOAD &&
2166      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2167  }
2168
2169  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
2170  ///
2171  inline bool isUNINDEXEDLoad(const SDNode *N) {
2172    return N->getOpcode() == ISD::LOAD &&
2173      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2174  }
2175
2176  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2177  /// store.
2178  inline bool isNON_TRUNCStore(const SDNode *N) {
2179    return N->getOpcode() == ISD::STORE &&
2180      !cast<StoreSDNode>(N)->isTruncatingStore();
2181  }
2182
2183  /// isTRUNCStore - Returns true if the specified node is a truncating
2184  /// store.
2185  inline bool isTRUNCStore(const SDNode *N) {
2186    return N->getOpcode() == ISD::STORE &&
2187      cast<StoreSDNode>(N)->isTruncatingStore();
2188  }
2189}
2190
2191
2192} // end llvm namespace
2193
2194#endif
2195