SelectionDAGNodes.h revision 6c0bfc723779366698d3936b63dcddc6164c2d33
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // EntryToken - This is the marker used to indicate the start of the region.
51    EntryToken,
52
53    // Token factor - This node takes multiple tokens as input and produces a
54    // single token result.  This is used to represent the fact that the operand
55    // operators are independent of each other.
56    TokenFactor,
57
58    // AssertSext, AssertZext - These nodes record if a register contains a
59    // value that has already been zero or sign extended from a narrower type.
60    // These nodes take two operands.  The first is the node that has already
61    // been extended, and the second is a value type node indicating the width
62    // of the extension
63    AssertSext, AssertZext,
64
65    // Various leaf nodes.
66    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
67    Constant, ConstantFP,
68    GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
69
70    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
71    // simplification of the constant.
72    TargetConstant,
73    TargetConstantFP,
74
75    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
76    // anything else with this node, and this is valid in the target-specific
77    // dag, turning into a GlobalAddress operand.
78    TargetGlobalAddress,
79    TargetFrameIndex,
80    TargetJumpTable,
81    TargetConstantPool,
82    TargetExternalSymbol,
83
84    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
85    /// This node represents a target intrinsic function with no side effects.
86    /// The first operand is the ID number of the intrinsic from the
87    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
88    /// node has returns the result of the intrinsic.
89    INTRINSIC_WO_CHAIN,
90
91    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
92    /// This node represents a target intrinsic function with side effects that
93    /// returns a result.  The first operand is a chain pointer.  The second is
94    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
95    /// operands to the intrinsic follow.  The node has two results, the result
96    /// of the intrinsic and an output chain.
97    INTRINSIC_W_CHAIN,
98
99    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
100    /// This node represents a target intrinsic function with side effects that
101    /// does not return a result.  The first operand is a chain pointer.  The
102    /// second is the ID number of the intrinsic from the llvm::Intrinsic
103    /// namespace.  The operands to the intrinsic follow.
104    INTRINSIC_VOID,
105
106    // CopyToReg - This node has three operands: a chain, a register number to
107    // set to this value, and a value.
108    CopyToReg,
109
110    // CopyFromReg - This node indicates that the input value is a virtual or
111    // physical register that is defined outside of the scope of this
112    // SelectionDAG.  The register is available from the RegSDNode object.
113    CopyFromReg,
114
115    // UNDEF - An undefined node
116    UNDEF,
117
118    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG) - This node represents the formal
119    /// arguments for a function.  CC# is a Constant value indicating the
120    /// calling convention of the function, and ISVARARG is a flag that
121    /// indicates whether the function is varargs or not.  This node has one
122    /// result value for each incoming argument, plus one for the output chain.
123    /// It must be custom legalized.
124    ///
125    FORMAL_ARGUMENTS,
126
127    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
128    ///                              ARG0, ARG1, ... ARGn)
129    /// This node represents a fully general function call, before the legalizer
130    /// runs.  This has one result value for each argument, plus a chain result.
131    /// It must be custom legalized.
132    CALL,
133
134    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
135    // a Constant, which is required to be operand #1), element of the aggregate
136    // value specified as operand #0.  This is only for use before legalization,
137    // for values that will be broken into multiple registers.
138    EXTRACT_ELEMENT,
139
140    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
141    // two values of the same integer value type, this produces a value twice as
142    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
143    BUILD_PAIR,
144
145    // MERGE_VALUES - This node takes multiple discrete operands and returns
146    // them all as its individual results.  This nodes has exactly the same
147    // number of inputs and outputs, and is only valid before legalization.
148    // This node is useful for some pieces of the code generator that want to
149    // think about a single node with multiple results, not multiple nodes.
150    MERGE_VALUES,
151
152    // Simple integer binary arithmetic operators.
153    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
154
155    // Carry-setting nodes for multiple precision addition and subtraction.
156    // These nodes take two operands of the same value type, and produce two
157    // results.  The first result is the normal add or sub result, the second
158    // result is the carry flag result.
159    ADDC, SUBC,
160
161    // Carry-using nodes for multiple precision addition and subtraction.  These
162    // nodes take three operands: The first two are the normal lhs and rhs to
163    // the add or sub, and the third is the input carry flag.  These nodes
164    // produce two results; the normal result of the add or sub, and the output
165    // carry flag.  These nodes both read and write a carry flag to allow them
166    // to them to be chained together for add and sub of arbitrarily large
167    // values.
168    ADDE, SUBE,
169
170    // Simple binary floating point operators.
171    FADD, FSUB, FMUL, FDIV, FREM,
172
173    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
174    // DAG node does not require that X and Y have the same type, just that they
175    // are both floating point.  X and the result must have the same type.
176    // FCOPYSIGN(f32, f64) is allowed.
177    FCOPYSIGN,
178
179    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
180    /// with the specified, possibly variable, elements.  The number of elements
181    /// is required to be a power of two.
182    VBUILD_VECTOR,
183
184    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
185    /// with the specified, possibly variable, elements.  The number of elements
186    /// is required to be a power of two.
187    BUILD_VECTOR,
188
189    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
190    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
191    /// return an vector with the specified element of VECTOR replaced with VAL.
192    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
193    VINSERT_VECTOR_ELT,
194
195    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
196    /// type) with the element at IDX replaced with VAL.
197    INSERT_VECTOR_ELT,
198
199    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
200    /// (an MVT::Vector value) identified by the (potentially variable) element
201    /// number IDX.
202    VEXTRACT_VECTOR_ELT,
203
204    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
205    /// (a legal packed type vector) identified by the (potentially variable)
206    /// element number IDX.
207    EXTRACT_VECTOR_ELT,
208
209    /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
210    /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
211    /// constant int values that indicate which value each result element will
212    /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
213    /// similar to the Altivec 'vperm' instruction, except that the indices must
214    /// be constants and are in terms of the element size of VEC1/VEC2, not in
215    /// terms of bytes.
216    VVECTOR_SHUFFLE,
217
218    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
219    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
220    /// (regardless of whether its datatype is legal or not) that indicate
221    /// which value each result element will get.  The elements of VEC1/VEC2 are
222    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
223    /// instruction, except that the indices must be constants and are in terms
224    /// of the element size of VEC1/VEC2, not in terms of bytes.
225    VECTOR_SHUFFLE,
226
227    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
228    /// represents a conversion from or to an ISD::Vector type.
229    ///
230    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
231    /// The input and output are required to have the same size and at least one
232    /// is required to be a vector (if neither is a vector, just use
233    /// BIT_CONVERT).
234    ///
235    /// If the result is a vector, this takes three operands (like any other
236    /// vector producer) which indicate the size and type of the vector result.
237    /// Otherwise it takes one input.
238    VBIT_CONVERT,
239
240    /// BINOP(LHS, RHS,  COUNT,TYPE)
241    /// Simple abstract vector operators.  Unlike the integer and floating point
242    /// binary operators, these nodes also take two additional operands:
243    /// a constant element count, and a value type node indicating the type of
244    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
245    /// including VLOAD and VConstant must currently have count and type as
246    /// their last two operands.
247    VADD, VSUB, VMUL, VSDIV, VUDIV,
248    VAND, VOR, VXOR,
249
250    /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
251    /// COND is a boolean value.  This node return LHS if COND is true, RHS if
252    /// COND is false.
253    VSELECT,
254
255    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
256    /// scalar value into the low element of the resultant vector type.  The top
257    /// elements of the vector are undefined.
258    SCALAR_TO_VECTOR,
259
260    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
261    // an unsigned/signed value of type i[2*n], then return the top part.
262    MULHU, MULHS,
263
264    // Bitwise operators - logical and, logical or, logical xor, shift left,
265    // shift right algebraic (shift in sign bits), shift right logical (shift in
266    // zeroes), rotate left, rotate right, and byteswap.
267    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
268
269    // Counting operators
270    CTTZ, CTLZ, CTPOP,
271
272    // Select(COND, TRUEVAL, FALSEVAL)
273    SELECT,
274
275    // Select with condition operator - This selects between a true value and
276    // a false value (ops #2 and #3) based on the boolean result of comparing
277    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
278    // condition code in op #4, a CondCodeSDNode.
279    SELECT_CC,
280
281    // SetCC operator - This evaluates to a boolean (i1) true value if the
282    // condition is true.  The operands to this are the left and right operands
283    // to compare (ops #0, and #1) and the condition code to compare them with
284    // (op #2) as a CondCodeSDNode.
285    SETCC,
286
287    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
288    // integer shift operations, just like ADD/SUB_PARTS.  The operation
289    // ordering is:
290    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
291    SHL_PARTS, SRA_PARTS, SRL_PARTS,
292
293    // Conversion operators.  These are all single input single output
294    // operations.  For all of these, the result type must be strictly
295    // wider or narrower (depending on the operation) than the source
296    // type.
297
298    // SIGN_EXTEND - Used for integer types, replicating the sign bit
299    // into new bits.
300    SIGN_EXTEND,
301
302    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
303    ZERO_EXTEND,
304
305    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
306    ANY_EXTEND,
307
308    // TRUNCATE - Completely drop the high bits.
309    TRUNCATE,
310
311    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
312    // depends on the first letter) to floating point.
313    SINT_TO_FP,
314    UINT_TO_FP,
315
316    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
317    // sign extend a small value in a large integer register (e.g. sign
318    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
319    // with the 7th bit).  The size of the smaller type is indicated by the 1th
320    // operand, a ValueType node.
321    SIGN_EXTEND_INREG,
322
323    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
324    // integer.
325    FP_TO_SINT,
326    FP_TO_UINT,
327
328    // FP_ROUND - Perform a rounding operation from the current
329    // precision down to the specified precision (currently always 64->32).
330    FP_ROUND,
331
332    // FP_ROUND_INREG - This operator takes a floating point register, and
333    // rounds it to a floating point value.  It then promotes it and returns it
334    // in a register of the same size.  This operation effectively just discards
335    // excess precision.  The type to round down to is specified by the 1th
336    // operation, a VTSDNode (currently always 64->32->64).
337    FP_ROUND_INREG,
338
339    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
340    FP_EXTEND,
341
342    // BIT_CONVERT - Theis operator converts between integer and FP values, as
343    // if one was stored to memory as integer and the other was loaded from the
344    // same address (or equivalently for vector format conversions, etc).  The
345    // source and result are required to have the same bit size (e.g.
346    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
347    // conversions, but that is a noop, deleted by getNode().
348    BIT_CONVERT,
349
350    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
351    // absolute value, square root, sine and cosine operations.
352    FNEG, FABS, FSQRT, FSIN, FCOS,
353
354    // Other operators.  LOAD and STORE have token chains as their first
355    // operand, then the same operands as an LLVM load/store instruction, then a
356    // SRCVALUE node that provides alias analysis information.
357    LOAD, STORE,
358
359    // Abstract vector version of LOAD.  VLOAD has a constant element count as
360    // the first operand, followed by a value type node indicating the type of
361    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
362    VLOAD,
363
364    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
365    // memory and extend them to a larger value (e.g. load a byte into a word
366    // register).  All three of these have four operands, a token chain, a
367    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
368    // indicating the type to load.
369    //
370    // SEXTLOAD loads the integer operand and sign extends it to a larger
371    //          integer result type.
372    // ZEXTLOAD loads the integer operand and zero extends it to a larger
373    //          integer result type.
374    // EXTLOAD  is used for three things: floating point extending loads,
375    //          integer extending loads [the top bits are undefined], and vector
376    //          extending loads [load into low elt].
377    EXTLOAD, SEXTLOAD, ZEXTLOAD,
378
379    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
380    // value and stores it to memory in one operation.  This can be used for
381    // either integer or floating point operands.  The first four operands of
382    // this are the same as a standard store.  The fifth is the ValueType to
383    // store it as (which will be smaller than the source value).
384    TRUNCSTORE,
385
386    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
387    // to a specified boundary.  The first operand is the token chain, the
388    // second is the number of bytes to allocate, and the third is the alignment
389    // boundary.  The size is guaranteed to be a multiple of the stack
390    // alignment, and the alignment is guaranteed to be bigger than the stack
391    // alignment (if required) or 0 to get standard stack alignment.
392    DYNAMIC_STACKALLOC,
393
394    // Control flow instructions.  These all have token chains.
395
396    // BR - Unconditional branch.  The first operand is the chain
397    // operand, the second is the MBB to branch to.
398    BR,
399
400    // BRIND - Indirect branch.  The first operand is the chain, the second
401    // is the value to branch to, which must be of the same type as the target's
402    // pointer type.
403    BRIND,
404
405    // BRCOND - Conditional branch.  The first operand is the chain,
406    // the second is the condition, the third is the block to branch
407    // to if the condition is true.
408    BRCOND,
409
410    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
411    // that the condition is represented as condition code, and two nodes to
412    // compare, rather than as a combined SetCC node.  The operands in order are
413    // chain, cc, lhs, rhs, block to branch to if condition is true.
414    BR_CC,
415
416    // RET - Return from function.  The first operand is the chain,
417    // and any subsequent operands are the return values for the
418    // function.  This operation can have variable number of operands.
419    RET,
420
421    // INLINEASM - Represents an inline asm block.  This node always has two
422    // return values: a chain and a flag result.  The inputs are as follows:
423    //   Operand #0   : Input chain.
424    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
425    //   Operand #2n+2: A RegisterNode.
426    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
427    //   Operand #last: Optional, an incoming flag.
428    INLINEASM,
429
430    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
431    // value, the same type as the pointer type for the system, and an output
432    // chain.
433    STACKSAVE,
434
435    // STACKRESTORE has two operands, an input chain and a pointer to restore to
436    // it returns an output chain.
437    STACKRESTORE,
438
439    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
440    // correspond to the operands of the LLVM intrinsic functions.  The only
441    // result is a token chain.  The alignment argument is guaranteed to be a
442    // Constant node.
443    MEMSET,
444    MEMMOVE,
445    MEMCPY,
446
447    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
448    // a call sequence, and carry arbitrary information that target might want
449    // to know.  The first operand is a chain, the rest are specified by the
450    // target and not touched by the DAG optimizers.
451    CALLSEQ_START,  // Beginning of a call sequence
452    CALLSEQ_END,    // End of a call sequence
453
454    // VAARG - VAARG has three operands: an input chain, a pointer, and a
455    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
456    VAARG,
457
458    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
459    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
460    // source.
461    VACOPY,
462
463    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
464    // pointer, and a SRCVALUE.
465    VAEND, VASTART,
466
467    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
468    // locations with their value.  This allows one use alias analysis
469    // information in the backend.
470    SRCVALUE,
471
472    // PCMARKER - This corresponds to the pcmarker intrinsic.
473    PCMARKER,
474
475    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
476    // The only operand is a chain and a value and a chain are produced.  The
477    // value is the contents of the architecture specific cycle counter like
478    // register (or other high accuracy low latency clock source)
479    READCYCLECOUNTER,
480
481    // HANDLENODE node - Used as a handle for various purposes.
482    HANDLENODE,
483
484    // LOCATION - This node is used to represent a source location for debug
485    // info.  It takes token chain as input, then a line number, then a column
486    // number, then a filename, then a working dir.  It produces a token chain
487    // as output.
488    LOCATION,
489
490    // DEBUG_LOC - This node is used to represent source line information
491    // embedded in the code.  It takes a token chain as input, then a line
492    // number, then a column then a file id (provided by MachineDebugInfo.) It
493    // produces a token chain as output.
494    DEBUG_LOC,
495
496    // DEBUG_LABEL - This node is used to mark a location in the code where a
497    // label should be generated for use by the debug information.  It takes a
498    // token chain as input and then a unique id (provided by MachineDebugInfo.)
499    // It produces a token chain as output.
500    DEBUG_LABEL,
501
502    // BUILTIN_OP_END - This must be the last enum value in this list.
503    BUILTIN_OP_END
504  };
505
506  /// Node predicates
507
508  /// isBuildVectorAllOnes - Return true if the specified node is a
509  /// BUILD_VECTOR where all of the elements are ~0 or undef.
510  bool isBuildVectorAllOnes(const SDNode *N);
511
512  /// isBuildVectorAllZeros - Return true if the specified node is a
513  /// BUILD_VECTOR where all of the elements are 0 or undef.
514  bool isBuildVectorAllZeros(const SDNode *N);
515
516  //===--------------------------------------------------------------------===//
517  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
518  /// below work out, when considering SETFALSE (something that never exists
519  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
520  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
521  /// to.  If the "N" column is 1, the result of the comparison is undefined if
522  /// the input is a NAN.
523  ///
524  /// All of these (except for the 'always folded ops') should be handled for
525  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
526  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
527  ///
528  /// Note that these are laid out in a specific order to allow bit-twiddling
529  /// to transform conditions.
530  enum CondCode {
531    // Opcode          N U L G E       Intuitive operation
532    SETFALSE,      //    0 0 0 0       Always false (always folded)
533    SETOEQ,        //    0 0 0 1       True if ordered and equal
534    SETOGT,        //    0 0 1 0       True if ordered and greater than
535    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
536    SETOLT,        //    0 1 0 0       True if ordered and less than
537    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
538    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
539    SETO,          //    0 1 1 1       True if ordered (no nans)
540    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
541    SETUEQ,        //    1 0 0 1       True if unordered or equal
542    SETUGT,        //    1 0 1 0       True if unordered or greater than
543    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
544    SETULT,        //    1 1 0 0       True if unordered or less than
545    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
546    SETUNE,        //    1 1 1 0       True if unordered or not equal
547    SETTRUE,       //    1 1 1 1       Always true (always folded)
548    // Don't care operations: undefined if the input is a nan.
549    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
550    SETEQ,         //  1 X 0 0 1       True if equal
551    SETGT,         //  1 X 0 1 0       True if greater than
552    SETGE,         //  1 X 0 1 1       True if greater than or equal
553    SETLT,         //  1 X 1 0 0       True if less than
554    SETLE,         //  1 X 1 0 1       True if less than or equal
555    SETNE,         //  1 X 1 1 0       True if not equal
556    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
557
558    SETCC_INVALID       // Marker value.
559  };
560
561  /// isSignedIntSetCC - Return true if this is a setcc instruction that
562  /// performs a signed comparison when used with integer operands.
563  inline bool isSignedIntSetCC(CondCode Code) {
564    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
565  }
566
567  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
568  /// performs an unsigned comparison when used with integer operands.
569  inline bool isUnsignedIntSetCC(CondCode Code) {
570    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
571  }
572
573  /// isTrueWhenEqual - Return true if the specified condition returns true if
574  /// the two operands to the condition are equal.  Note that if one of the two
575  /// operands is a NaN, this value is meaningless.
576  inline bool isTrueWhenEqual(CondCode Cond) {
577    return ((int)Cond & 1) != 0;
578  }
579
580  /// getUnorderedFlavor - This function returns 0 if the condition is always
581  /// false if an operand is a NaN, 1 if the condition is always true if the
582  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
583  /// NaN.
584  inline unsigned getUnorderedFlavor(CondCode Cond) {
585    return ((int)Cond >> 3) & 3;
586  }
587
588  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
589  /// 'op' is a valid SetCC operation.
590  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
591
592  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
593  /// when given the operation for (X op Y).
594  CondCode getSetCCSwappedOperands(CondCode Operation);
595
596  /// getSetCCOrOperation - Return the result of a logical OR between different
597  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
598  /// function returns SETCC_INVALID if it is not possible to represent the
599  /// resultant comparison.
600  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
601
602  /// getSetCCAndOperation - Return the result of a logical AND between
603  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
604  /// function returns SETCC_INVALID if it is not possible to represent the
605  /// resultant comparison.
606  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
607}  // end llvm::ISD namespace
608
609
610//===----------------------------------------------------------------------===//
611/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
612/// values as the result of a computation.  Many nodes return multiple values,
613/// from loads (which define a token and a return value) to ADDC (which returns
614/// a result and a carry value), to calls (which may return an arbitrary number
615/// of values).
616///
617/// As such, each use of a SelectionDAG computation must indicate the node that
618/// computes it as well as which return value to use from that node.  This pair
619/// of information is represented with the SDOperand value type.
620///
621class SDOperand {
622public:
623  SDNode *Val;        // The node defining the value we are using.
624  unsigned ResNo;     // Which return value of the node we are using.
625
626  SDOperand() : Val(0), ResNo(0) {}
627  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
628
629  bool operator==(const SDOperand &O) const {
630    return Val == O.Val && ResNo == O.ResNo;
631  }
632  bool operator!=(const SDOperand &O) const {
633    return !operator==(O);
634  }
635  bool operator<(const SDOperand &O) const {
636    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
637  }
638
639  SDOperand getValue(unsigned R) const {
640    return SDOperand(Val, R);
641  }
642
643  // isOperand - Return true if this node is an operand of N.
644  bool isOperand(SDNode *N) const;
645
646  /// getValueType - Return the ValueType of the referenced return value.
647  ///
648  inline MVT::ValueType getValueType() const;
649
650  // Forwarding methods - These forward to the corresponding methods in SDNode.
651  inline unsigned getOpcode() const;
652  inline unsigned getNodeDepth() const;
653  inline unsigned getNumOperands() const;
654  inline const SDOperand &getOperand(unsigned i) const;
655  inline bool isTargetOpcode() const;
656  inline unsigned getTargetOpcode() const;
657
658  /// hasOneUse - Return true if there is exactly one operation using this
659  /// result value of the defining operator.
660  inline bool hasOneUse() const;
661};
662
663
664/// simplify_type specializations - Allow casting operators to work directly on
665/// SDOperands as if they were SDNode*'s.
666template<> struct simplify_type<SDOperand> {
667  typedef SDNode* SimpleType;
668  static SimpleType getSimplifiedValue(const SDOperand &Val) {
669    return static_cast<SimpleType>(Val.Val);
670  }
671};
672template<> struct simplify_type<const SDOperand> {
673  typedef SDNode* SimpleType;
674  static SimpleType getSimplifiedValue(const SDOperand &Val) {
675    return static_cast<SimpleType>(Val.Val);
676  }
677};
678
679
680/// SDNode - Represents one node in the SelectionDAG.
681///
682class SDNode {
683  /// NodeType - The operation that this node performs.
684  ///
685  unsigned short NodeType;
686
687  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
688  /// means that leaves have a depth of 1, things that use only leaves have a
689  /// depth of 2, etc.
690  unsigned short NodeDepth;
691
692  /// OperandList - The values that are used by this operation.
693  ///
694  SDOperand *OperandList;
695
696  /// ValueList - The types of the values this node defines.  SDNode's may
697  /// define multiple values simultaneously.
698  MVT::ValueType *ValueList;
699
700  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
701  unsigned short NumOperands, NumValues;
702
703  /// Prev/Next pointers - These pointers form the linked list of of the
704  /// AllNodes list in the current DAG.
705  SDNode *Prev, *Next;
706  friend struct ilist_traits<SDNode>;
707
708  /// Uses - These are all of the SDNode's that use a value produced by this
709  /// node.
710  std::vector<SDNode*> Uses;
711public:
712  virtual ~SDNode() {
713    assert(NumOperands == 0 && "Operand list not cleared before deletion");
714  }
715
716  //===--------------------------------------------------------------------===//
717  //  Accessors
718  //
719  unsigned getOpcode()  const { return NodeType; }
720  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
721  unsigned getTargetOpcode() const {
722    assert(isTargetOpcode() && "Not a target opcode!");
723    return NodeType - ISD::BUILTIN_OP_END;
724  }
725
726  size_t use_size() const { return Uses.size(); }
727  bool use_empty() const { return Uses.empty(); }
728  bool hasOneUse() const { return Uses.size() == 1; }
729
730  /// getNodeDepth - Return the distance from this node to the leaves in the
731  /// graph.  The leaves have a depth of 1.
732  unsigned getNodeDepth() const { return NodeDepth; }
733
734  typedef std::vector<SDNode*>::const_iterator use_iterator;
735  use_iterator use_begin() const { return Uses.begin(); }
736  use_iterator use_end() const { return Uses.end(); }
737
738  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
739  /// indicated value.  This method ignores uses of other values defined by this
740  /// operation.
741  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
742
743  // isOnlyUse - Return true if this node is the only use of N.
744  bool isOnlyUse(SDNode *N) const;
745
746  // isOperand - Return true if this node is an operand of N.
747  bool isOperand(SDNode *N) const;
748
749  /// getNumOperands - Return the number of values used by this operation.
750  ///
751  unsigned getNumOperands() const { return NumOperands; }
752
753  const SDOperand &getOperand(unsigned Num) const {
754    assert(Num < NumOperands && "Invalid child # of SDNode!");
755    return OperandList[Num];
756  }
757  typedef const SDOperand* op_iterator;
758  op_iterator op_begin() const { return OperandList; }
759  op_iterator op_end() const { return OperandList+NumOperands; }
760
761
762  /// getNumValues - Return the number of values defined/returned by this
763  /// operator.
764  ///
765  unsigned getNumValues() const { return NumValues; }
766
767  /// getValueType - Return the type of a specified result.
768  ///
769  MVT::ValueType getValueType(unsigned ResNo) const {
770    assert(ResNo < NumValues && "Illegal result number!");
771    return ValueList[ResNo];
772  }
773
774  typedef const MVT::ValueType* value_iterator;
775  value_iterator value_begin() const { return ValueList; }
776  value_iterator value_end() const { return ValueList+NumValues; }
777
778  /// getOperationName - Return the opcode of this operation for printing.
779  ///
780  const char* getOperationName(const SelectionDAG *G = 0) const;
781  void dump() const;
782  void dump(const SelectionDAG *G) const;
783
784  static bool classof(const SDNode *) { return true; }
785
786protected:
787  friend class SelectionDAG;
788
789  /// getValueTypeList - Return a pointer to the specified value type.
790  ///
791  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
792
793  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
794    OperandList = 0; NumOperands = 0;
795    ValueList = getValueTypeList(VT);
796    NumValues = 1;
797    Prev = 0; Next = 0;
798  }
799  SDNode(unsigned NT, SDOperand Op)
800    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
801    OperandList = new SDOperand[1];
802    OperandList[0] = Op;
803    NumOperands = 1;
804    Op.Val->Uses.push_back(this);
805    ValueList = 0;
806    NumValues = 0;
807    Prev = 0; Next = 0;
808  }
809  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
810    : NodeType(NT) {
811    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
812      NodeDepth = N1.Val->getNodeDepth()+1;
813    else
814      NodeDepth = N2.Val->getNodeDepth()+1;
815    OperandList = new SDOperand[2];
816    OperandList[0] = N1;
817    OperandList[1] = N2;
818    NumOperands = 2;
819    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
820    ValueList = 0;
821    NumValues = 0;
822    Prev = 0; Next = 0;
823  }
824  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
825    : NodeType(NT) {
826    unsigned ND = N1.Val->getNodeDepth();
827    if (ND < N2.Val->getNodeDepth())
828      ND = N2.Val->getNodeDepth();
829    if (ND < N3.Val->getNodeDepth())
830      ND = N3.Val->getNodeDepth();
831    NodeDepth = ND+1;
832
833    OperandList = new SDOperand[3];
834    OperandList[0] = N1;
835    OperandList[1] = N2;
836    OperandList[2] = N3;
837    NumOperands = 3;
838
839    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
840    N3.Val->Uses.push_back(this);
841    ValueList = 0;
842    NumValues = 0;
843    Prev = 0; Next = 0;
844  }
845  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
846    : NodeType(NT) {
847    unsigned ND = N1.Val->getNodeDepth();
848    if (ND < N2.Val->getNodeDepth())
849      ND = N2.Val->getNodeDepth();
850    if (ND < N3.Val->getNodeDepth())
851      ND = N3.Val->getNodeDepth();
852    if (ND < N4.Val->getNodeDepth())
853      ND = N4.Val->getNodeDepth();
854    NodeDepth = ND+1;
855
856    OperandList = new SDOperand[4];
857    OperandList[0] = N1;
858    OperandList[1] = N2;
859    OperandList[2] = N3;
860    OperandList[3] = N4;
861    NumOperands = 4;
862
863    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
864    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
865    ValueList = 0;
866    NumValues = 0;
867    Prev = 0; Next = 0;
868  }
869  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
870    NumOperands = Nodes.size();
871    OperandList = new SDOperand[NumOperands];
872
873    unsigned ND = 0;
874    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
875      OperandList[i] = Nodes[i];
876      SDNode *N = OperandList[i].Val;
877      N->Uses.push_back(this);
878      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
879    }
880    NodeDepth = ND+1;
881    ValueList = 0;
882    NumValues = 0;
883    Prev = 0; Next = 0;
884  }
885
886  /// MorphNodeTo - This clears the return value and operands list, and sets the
887  /// opcode of the node to the specified value.  This should only be used by
888  /// the SelectionDAG class.
889  void MorphNodeTo(unsigned Opc) {
890    NodeType = Opc;
891    ValueList = 0;
892    NumValues = 0;
893
894    // Clear the operands list, updating used nodes to remove this from their
895    // use list.
896    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
897      I->Val->removeUser(this);
898    delete [] OperandList;
899    OperandList = 0;
900    NumOperands = 0;
901  }
902
903  void setValueTypes(MVT::ValueType VT) {
904    assert(NumValues == 0 && "Should not have values yet!");
905    ValueList = getValueTypeList(VT);
906    NumValues = 1;
907  }
908  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
909    assert(NumValues == 0 && "Should not have values yet!");
910    ValueList = List;
911    NumValues = NumVal;
912  }
913
914  void setOperands(SDOperand Op0) {
915    assert(NumOperands == 0 && "Should not have operands yet!");
916    OperandList = new SDOperand[1];
917    OperandList[0] = Op0;
918    NumOperands = 1;
919    Op0.Val->Uses.push_back(this);
920  }
921  void setOperands(SDOperand Op0, SDOperand Op1) {
922    assert(NumOperands == 0 && "Should not have operands yet!");
923    OperandList = new SDOperand[2];
924    OperandList[0] = Op0;
925    OperandList[1] = Op1;
926    NumOperands = 2;
927    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
928  }
929  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
930    assert(NumOperands == 0 && "Should not have operands yet!");
931    OperandList = new SDOperand[3];
932    OperandList[0] = Op0;
933    OperandList[1] = Op1;
934    OperandList[2] = Op2;
935    NumOperands = 3;
936    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
937    Op2.Val->Uses.push_back(this);
938  }
939  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
940    assert(NumOperands == 0 && "Should not have operands yet!");
941    OperandList = new SDOperand[4];
942    OperandList[0] = Op0;
943    OperandList[1] = Op1;
944    OperandList[2] = Op2;
945    OperandList[3] = Op3;
946    NumOperands = 4;
947    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
948    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
949  }
950  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
951                   SDOperand Op4) {
952    assert(NumOperands == 0 && "Should not have operands yet!");
953    OperandList = new SDOperand[5];
954    OperandList[0] = Op0;
955    OperandList[1] = Op1;
956    OperandList[2] = Op2;
957    OperandList[3] = Op3;
958    OperandList[4] = Op4;
959    NumOperands = 5;
960    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
961    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
962    Op4.Val->Uses.push_back(this);
963  }
964  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
965                   SDOperand Op4, SDOperand Op5) {
966    assert(NumOperands == 0 && "Should not have operands yet!");
967    OperandList = new SDOperand[6];
968    OperandList[0] = Op0;
969    OperandList[1] = Op1;
970    OperandList[2] = Op2;
971    OperandList[3] = Op3;
972    OperandList[4] = Op4;
973    OperandList[5] = Op5;
974    NumOperands = 6;
975    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
976    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
977    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
978  }
979  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
980                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
981    assert(NumOperands == 0 && "Should not have operands yet!");
982    OperandList = new SDOperand[7];
983    OperandList[0] = Op0;
984    OperandList[1] = Op1;
985    OperandList[2] = Op2;
986    OperandList[3] = Op3;
987    OperandList[4] = Op4;
988    OperandList[5] = Op5;
989    OperandList[6] = Op6;
990    NumOperands = 7;
991    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
992    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
993    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
994    Op6.Val->Uses.push_back(this);
995  }
996  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
997                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
998    assert(NumOperands == 0 && "Should not have operands yet!");
999    OperandList = new SDOperand[8];
1000    OperandList[0] = Op0;
1001    OperandList[1] = Op1;
1002    OperandList[2] = Op2;
1003    OperandList[3] = Op3;
1004    OperandList[4] = Op4;
1005    OperandList[5] = Op5;
1006    OperandList[6] = Op6;
1007    OperandList[7] = Op7;
1008    NumOperands = 8;
1009    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
1010    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
1011    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
1012    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
1013  }
1014
1015  void addUser(SDNode *User) {
1016    Uses.push_back(User);
1017  }
1018  void removeUser(SDNode *User) {
1019    // Remove this user from the operand's use list.
1020    for (unsigned i = Uses.size(); ; --i) {
1021      assert(i != 0 && "Didn't find user!");
1022      if (Uses[i-1] == User) {
1023        Uses[i-1] = Uses.back();
1024        Uses.pop_back();
1025        return;
1026      }
1027    }
1028  }
1029};
1030
1031
1032// Define inline functions from the SDOperand class.
1033
1034inline unsigned SDOperand::getOpcode() const {
1035  return Val->getOpcode();
1036}
1037inline unsigned SDOperand::getNodeDepth() const {
1038  return Val->getNodeDepth();
1039}
1040inline MVT::ValueType SDOperand::getValueType() const {
1041  return Val->getValueType(ResNo);
1042}
1043inline unsigned SDOperand::getNumOperands() const {
1044  return Val->getNumOperands();
1045}
1046inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1047  return Val->getOperand(i);
1048}
1049inline bool SDOperand::isTargetOpcode() const {
1050  return Val->isTargetOpcode();
1051}
1052inline unsigned SDOperand::getTargetOpcode() const {
1053  return Val->getTargetOpcode();
1054}
1055inline bool SDOperand::hasOneUse() const {
1056  return Val->hasNUsesOfValue(1, ResNo);
1057}
1058
1059/// HandleSDNode - This class is used to form a handle around another node that
1060/// is persistant and is updated across invocations of replaceAllUsesWith on its
1061/// operand.  This node should be directly created by end-users and not added to
1062/// the AllNodes list.
1063class HandleSDNode : public SDNode {
1064public:
1065  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
1066  ~HandleSDNode() {
1067    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
1068  }
1069
1070  SDOperand getValue() const { return getOperand(0); }
1071};
1072
1073class StringSDNode : public SDNode {
1074  std::string Value;
1075protected:
1076  friend class SelectionDAG;
1077  StringSDNode(const std::string &val)
1078    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1079  }
1080public:
1081  const std::string &getValue() const { return Value; }
1082  static bool classof(const StringSDNode *) { return true; }
1083  static bool classof(const SDNode *N) {
1084    return N->getOpcode() == ISD::STRING;
1085  }
1086};
1087
1088class ConstantSDNode : public SDNode {
1089  uint64_t Value;
1090protected:
1091  friend class SelectionDAG;
1092  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1093    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1094  }
1095public:
1096
1097  uint64_t getValue() const { return Value; }
1098
1099  int64_t getSignExtended() const {
1100    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1101    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1102  }
1103
1104  bool isNullValue() const { return Value == 0; }
1105  bool isAllOnesValue() const {
1106    return Value == MVT::getIntVTBitMask(getValueType(0));
1107  }
1108
1109  static bool classof(const ConstantSDNode *) { return true; }
1110  static bool classof(const SDNode *N) {
1111    return N->getOpcode() == ISD::Constant ||
1112           N->getOpcode() == ISD::TargetConstant;
1113  }
1114};
1115
1116class ConstantFPSDNode : public SDNode {
1117  double Value;
1118protected:
1119  friend class SelectionDAG;
1120  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1121    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1122      Value(val) {
1123  }
1124public:
1125
1126  double getValue() const { return Value; }
1127
1128  /// isExactlyValue - We don't rely on operator== working on double values, as
1129  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1130  /// As such, this method can be used to do an exact bit-for-bit comparison of
1131  /// two floating point values.
1132  bool isExactlyValue(double V) const;
1133
1134  static bool classof(const ConstantFPSDNode *) { return true; }
1135  static bool classof(const SDNode *N) {
1136    return N->getOpcode() == ISD::ConstantFP ||
1137           N->getOpcode() == ISD::TargetConstantFP;
1138  }
1139};
1140
1141class GlobalAddressSDNode : public SDNode {
1142  GlobalValue *TheGlobal;
1143  int Offset;
1144protected:
1145  friend class SelectionDAG;
1146  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1147                      int o=0)
1148    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1149      Offset(o) {
1150    TheGlobal = const_cast<GlobalValue*>(GA);
1151  }
1152public:
1153
1154  GlobalValue *getGlobal() const { return TheGlobal; }
1155  int getOffset() const { return Offset; }
1156
1157  static bool classof(const GlobalAddressSDNode *) { return true; }
1158  static bool classof(const SDNode *N) {
1159    return N->getOpcode() == ISD::GlobalAddress ||
1160           N->getOpcode() == ISD::TargetGlobalAddress;
1161  }
1162};
1163
1164
1165class FrameIndexSDNode : public SDNode {
1166  int FI;
1167protected:
1168  friend class SelectionDAG;
1169  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1170    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1171public:
1172
1173  int getIndex() const { return FI; }
1174
1175  static bool classof(const FrameIndexSDNode *) { return true; }
1176  static bool classof(const SDNode *N) {
1177    return N->getOpcode() == ISD::FrameIndex ||
1178           N->getOpcode() == ISD::TargetFrameIndex;
1179  }
1180};
1181
1182class JumpTableSDNode : public SDNode {
1183  int JTI;
1184protected:
1185  friend class SelectionDAG;
1186  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1187    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT),
1188    JTI(jti) {}
1189public:
1190
1191    int getIndex() const { return JTI; }
1192
1193  static bool classof(const JumpTableSDNode *) { return true; }
1194  static bool classof(const SDNode *N) {
1195    return N->getOpcode() == ISD::JumpTable ||
1196           N->getOpcode() == ISD::TargetJumpTable;
1197  }
1198};
1199
1200class ConstantPoolSDNode : public SDNode {
1201  Constant *C;
1202  int Offset;
1203  unsigned Alignment;
1204protected:
1205  friend class SelectionDAG;
1206  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1207                     int o=0)
1208    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1209      C(c), Offset(o), Alignment(0) {}
1210  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1211                     unsigned Align)
1212    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1213      C(c), Offset(o), Alignment(Align) {}
1214public:
1215
1216  Constant *get() const { return C; }
1217  int getOffset() const { return Offset; }
1218
1219  // Return the alignment of this constant pool object, which is either 0 (for
1220  // default alignment) or log2 of the desired value.
1221  unsigned getAlignment() const { return Alignment; }
1222
1223  static bool classof(const ConstantPoolSDNode *) { return true; }
1224  static bool classof(const SDNode *N) {
1225    return N->getOpcode() == ISD::ConstantPool ||
1226           N->getOpcode() == ISD::TargetConstantPool;
1227  }
1228};
1229
1230class BasicBlockSDNode : public SDNode {
1231  MachineBasicBlock *MBB;
1232protected:
1233  friend class SelectionDAG;
1234  BasicBlockSDNode(MachineBasicBlock *mbb)
1235    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1236public:
1237
1238  MachineBasicBlock *getBasicBlock() const { return MBB; }
1239
1240  static bool classof(const BasicBlockSDNode *) { return true; }
1241  static bool classof(const SDNode *N) {
1242    return N->getOpcode() == ISD::BasicBlock;
1243  }
1244};
1245
1246class SrcValueSDNode : public SDNode {
1247  const Value *V;
1248  int offset;
1249protected:
1250  friend class SelectionDAG;
1251  SrcValueSDNode(const Value* v, int o)
1252    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1253
1254public:
1255  const Value *getValue() const { return V; }
1256  int getOffset() const { return offset; }
1257
1258  static bool classof(const SrcValueSDNode *) { return true; }
1259  static bool classof(const SDNode *N) {
1260    return N->getOpcode() == ISD::SRCVALUE;
1261  }
1262};
1263
1264
1265class RegisterSDNode : public SDNode {
1266  unsigned Reg;
1267protected:
1268  friend class SelectionDAG;
1269  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1270    : SDNode(ISD::Register, VT), Reg(reg) {}
1271public:
1272
1273  unsigned getReg() const { return Reg; }
1274
1275  static bool classof(const RegisterSDNode *) { return true; }
1276  static bool classof(const SDNode *N) {
1277    return N->getOpcode() == ISD::Register;
1278  }
1279};
1280
1281class ExternalSymbolSDNode : public SDNode {
1282  const char *Symbol;
1283protected:
1284  friend class SelectionDAG;
1285  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1286    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1287      Symbol(Sym) {
1288    }
1289public:
1290
1291  const char *getSymbol() const { return Symbol; }
1292
1293  static bool classof(const ExternalSymbolSDNode *) { return true; }
1294  static bool classof(const SDNode *N) {
1295    return N->getOpcode() == ISD::ExternalSymbol ||
1296           N->getOpcode() == ISD::TargetExternalSymbol;
1297  }
1298};
1299
1300class CondCodeSDNode : public SDNode {
1301  ISD::CondCode Condition;
1302protected:
1303  friend class SelectionDAG;
1304  CondCodeSDNode(ISD::CondCode Cond)
1305    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1306  }
1307public:
1308
1309  ISD::CondCode get() const { return Condition; }
1310
1311  static bool classof(const CondCodeSDNode *) { return true; }
1312  static bool classof(const SDNode *N) {
1313    return N->getOpcode() == ISD::CONDCODE;
1314  }
1315};
1316
1317/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1318/// to parameterize some operations.
1319class VTSDNode : public SDNode {
1320  MVT::ValueType ValueType;
1321protected:
1322  friend class SelectionDAG;
1323  VTSDNode(MVT::ValueType VT)
1324    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1325public:
1326
1327  MVT::ValueType getVT() const { return ValueType; }
1328
1329  static bool classof(const VTSDNode *) { return true; }
1330  static bool classof(const SDNode *N) {
1331    return N->getOpcode() == ISD::VALUETYPE;
1332  }
1333};
1334
1335
1336class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1337  SDNode *Node;
1338  unsigned Operand;
1339
1340  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1341public:
1342  bool operator==(const SDNodeIterator& x) const {
1343    return Operand == x.Operand;
1344  }
1345  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1346
1347  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1348    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1349    Operand = I.Operand;
1350    return *this;
1351  }
1352
1353  pointer operator*() const {
1354    return Node->getOperand(Operand).Val;
1355  }
1356  pointer operator->() const { return operator*(); }
1357
1358  SDNodeIterator& operator++() {                // Preincrement
1359    ++Operand;
1360    return *this;
1361  }
1362  SDNodeIterator operator++(int) { // Postincrement
1363    SDNodeIterator tmp = *this; ++*this; return tmp;
1364  }
1365
1366  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1367  static SDNodeIterator end  (SDNode *N) {
1368    return SDNodeIterator(N, N->getNumOperands());
1369  }
1370
1371  unsigned getOperand() const { return Operand; }
1372  const SDNode *getNode() const { return Node; }
1373};
1374
1375template <> struct GraphTraits<SDNode*> {
1376  typedef SDNode NodeType;
1377  typedef SDNodeIterator ChildIteratorType;
1378  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1379  static inline ChildIteratorType child_begin(NodeType *N) {
1380    return SDNodeIterator::begin(N);
1381  }
1382  static inline ChildIteratorType child_end(NodeType *N) {
1383    return SDNodeIterator::end(N);
1384  }
1385};
1386
1387template<>
1388struct ilist_traits<SDNode> {
1389  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1390  static SDNode *getNext(const SDNode *N) { return N->Next; }
1391
1392  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1393  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1394
1395  static SDNode *createSentinel() {
1396    return new SDNode(ISD::EntryToken, MVT::Other);
1397  }
1398  static void destroySentinel(SDNode *N) { delete N; }
1399  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1400
1401
1402  void addNodeToList(SDNode *NTy) {}
1403  void removeNodeFromList(SDNode *NTy) {}
1404  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1405                             const ilist_iterator<SDNode> &X,
1406                             const ilist_iterator<SDNode> &Y) {}
1407};
1408
1409} // end llvm namespace
1410
1411#endif
1412