SelectionDAGNodes.h revision 735afe14eea8049bf69210ce8a3512e391fc643f
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/ilist_node.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/System/DataTypes.h"
32#include "llvm/Support/DebugLoc.h"
33#include <cassert>
34
35namespace llvm {
36
37class SelectionDAG;
38class GlobalValue;
39class MachineBasicBlock;
40class MachineConstantPoolValue;
41class SDNode;
42class Value;
43template <typename T> struct DenseMapInfo;
44template <typename T> struct simplify_type;
45template <typename T> struct ilist_traits;
46
47/// SDVTList - This represents a list of ValueType's that has been intern'd by
48/// a SelectionDAG.  Instances of this simple value class are returned by
49/// SelectionDAG::getVTList(...).
50///
51struct SDVTList {
52  const EVT *VTs;
53  unsigned int NumVTs;
54};
55
56/// ISD namespace - This namespace contains an enum which represents all of the
57/// SelectionDAG node types and value types.
58///
59namespace ISD {
60
61  //===--------------------------------------------------------------------===//
62  /// ISD::NodeType enum - This enum defines the target-independent operators
63  /// for a SelectionDAG.
64  ///
65  /// Targets may also define target-dependent operator codes for SDNodes. For
66  /// example, on x86, these are the enum values in the X86ISD namespace.
67  /// Targets should aim to use target-independent operators to model their
68  /// instruction sets as much as possible, and only use target-dependent
69  /// operators when they have special requirements.
70  ///
71  /// Finally, during and after selection proper, SNodes may use special
72  /// operator codes that correspond directly with MachineInstr opcodes. These
73  /// are used to represent selected instructions. See the isMachineOpcode()
74  /// and getMachineOpcode() member functions of SDNode.
75  ///
76  enum NodeType {
77    // DELETED_NODE - This is an illegal value that is used to catch
78    // errors.  This opcode is not a legal opcode for any node.
79    DELETED_NODE,
80
81    // EntryToken - This is the marker used to indicate the start of the region.
82    EntryToken,
83
84    // TokenFactor - This node takes multiple tokens as input and produces a
85    // single token result.  This is used to represent the fact that the operand
86    // operators are independent of each other.
87    TokenFactor,
88
89    // AssertSext, AssertZext - These nodes record if a register contains a
90    // value that has already been zero or sign extended from a narrower type.
91    // These nodes take two operands.  The first is the node that has already
92    // been extended, and the second is a value type node indicating the width
93    // of the extension
94    AssertSext, AssertZext,
95
96    // Various leaf nodes.
97    BasicBlock, VALUETYPE, CONDCODE, Register,
98    Constant, ConstantFP,
99    GlobalAddress, GlobalTLSAddress, FrameIndex,
100    JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
101
102    // The address of the GOT
103    GLOBAL_OFFSET_TABLE,
104
105    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
106    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
107    // of the frame or return address to return.  An index of zero corresponds
108    // to the current function's frame or return address, an index of one to the
109    // parent's frame or return address, and so on.
110    FRAMEADDR, RETURNADDR,
111
112    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
113    // first (possible) on-stack argument. This is needed for correct stack
114    // adjustment during unwind.
115    FRAME_TO_ARGS_OFFSET,
116
117    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
118    // address of the exception block on entry to an landing pad block.
119    EXCEPTIONADDR,
120
121    // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
122    // address of the Language Specific Data Area for the enclosing function.
123    LSDAADDR,
124
125    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
126    // the selection index of the exception thrown.
127    EHSELECTION,
128
129    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
130    // 'eh_return' gcc dwarf builtin, which is used to return from
131    // exception. The general meaning is: adjust stack by OFFSET and pass
132    // execution to HANDLER. Many platform-related details also :)
133    EH_RETURN,
134
135    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
136    // simplification of the constant.
137    TargetConstant,
138    TargetConstantFP,
139
140    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
141    // anything else with this node, and this is valid in the target-specific
142    // dag, turning into a GlobalAddress operand.
143    TargetGlobalAddress,
144    TargetGlobalTLSAddress,
145    TargetFrameIndex,
146    TargetJumpTable,
147    TargetConstantPool,
148    TargetExternalSymbol,
149    TargetBlockAddress,
150
151    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
152    /// This node represents a target intrinsic function with no side effects.
153    /// The first operand is the ID number of the intrinsic from the
154    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
155    /// node has returns the result of the intrinsic.
156    INTRINSIC_WO_CHAIN,
157
158    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
159    /// This node represents a target intrinsic function with side effects that
160    /// returns a result.  The first operand is a chain pointer.  The second is
161    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
162    /// operands to the intrinsic follow.  The node has two results, the result
163    /// of the intrinsic and an output chain.
164    INTRINSIC_W_CHAIN,
165
166    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
167    /// This node represents a target intrinsic function with side effects that
168    /// does not return a result.  The first operand is a chain pointer.  The
169    /// second is the ID number of the intrinsic from the llvm::Intrinsic
170    /// namespace.  The operands to the intrinsic follow.
171    INTRINSIC_VOID,
172
173    // CopyToReg - This node has three operands: a chain, a register number to
174    // set to this value, and a value.
175    CopyToReg,
176
177    // CopyFromReg - This node indicates that the input value is a virtual or
178    // physical register that is defined outside of the scope of this
179    // SelectionDAG.  The register is available from the RegisterSDNode object.
180    CopyFromReg,
181
182    // UNDEF - An undefined node
183    UNDEF,
184
185    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
186    // a Constant, which is required to be operand #1) half of the integer or
187    // float value specified as operand #0.  This is only for use before
188    // legalization, for values that will be broken into multiple registers.
189    EXTRACT_ELEMENT,
190
191    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
192    // two values of the same integer value type, this produces a value twice as
193    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
194    BUILD_PAIR,
195
196    // MERGE_VALUES - This node takes multiple discrete operands and returns
197    // them all as its individual results.  This nodes has exactly the same
198    // number of inputs and outputs. This node is useful for some pieces of the
199    // code generator that want to think about a single node with multiple
200    // results, not multiple nodes.
201    MERGE_VALUES,
202
203    // Simple integer binary arithmetic operators.
204    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
205
206    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
207    // a signed/unsigned value of type i[2*N], and return the full value as
208    // two results, each of type iN.
209    SMUL_LOHI, UMUL_LOHI,
210
211    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
212    // remainder result.
213    SDIVREM, UDIVREM,
214
215    // CARRY_FALSE - This node is used when folding other nodes,
216    // like ADDC/SUBC, which indicate the carry result is always false.
217    CARRY_FALSE,
218
219    // Carry-setting nodes for multiple precision addition and subtraction.
220    // These nodes take two operands of the same value type, and produce two
221    // results.  The first result is the normal add or sub result, the second
222    // result is the carry flag result.
223    ADDC, SUBC,
224
225    // Carry-using nodes for multiple precision addition and subtraction.  These
226    // nodes take three operands: The first two are the normal lhs and rhs to
227    // the add or sub, and the third is the input carry flag.  These nodes
228    // produce two results; the normal result of the add or sub, and the output
229    // carry flag.  These nodes both read and write a carry flag to allow them
230    // to them to be chained together for add and sub of arbitrarily large
231    // values.
232    ADDE, SUBE,
233
234    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
235    // These nodes take two operands: the normal LHS and RHS to the add. They
236    // produce two results: the normal result of the add, and a boolean that
237    // indicates if an overflow occured (*not* a flag, because it may be stored
238    // to memory, etc.).  If the type of the boolean is not i1 then the high
239    // bits conform to getBooleanContents.
240    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
241    SADDO, UADDO,
242
243    // Same for subtraction
244    SSUBO, USUBO,
245
246    // Same for multiplication
247    SMULO, UMULO,
248
249    // Simple binary floating point operators.
250    FADD, FSUB, FMUL, FDIV, FREM,
251
252    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
253    // DAG node does not require that X and Y have the same type, just that they
254    // are both floating point.  X and the result must have the same type.
255    // FCOPYSIGN(f32, f64) is allowed.
256    FCOPYSIGN,
257
258    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
259    // value as an integer 0/1 value.
260    FGETSIGN,
261
262    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
263    /// specified, possibly variable, elements.  The number of elements is
264    /// required to be a power of two.  The types of the operands must all be
265    /// the same and must match the vector element type, except that integer
266    /// types are allowed to be larger than the element type, in which case
267    /// the operands are implicitly truncated.
268    BUILD_VECTOR,
269
270    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
271    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
272    /// element type then VAL is truncated before replacement.
273    INSERT_VECTOR_ELT,
274
275    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
276    /// identified by the (potentially variable) element number IDX.  If the
277    /// return type is an integer type larger than the element type of the
278    /// vector, the result is extended to the width of the return type.
279    EXTRACT_VECTOR_ELT,
280
281    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
282    /// vector type with the same length and element type, this produces a
283    /// concatenated vector result value, with length equal to the sum of the
284    /// lengths of the input vectors.
285    CONCAT_VECTORS,
286
287    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
288    /// vector value) starting with the (potentially variable) element number
289    /// IDX, which must be a multiple of the result vector length.
290    EXTRACT_SUBVECTOR,
291
292    /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
293    /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
294    /// values that indicate which value (or undef) each result element will
295    /// get.  These constant ints are accessible through the
296    /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
297    /// 'vperm' instruction, except that the indices must be constants and are
298    /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
299    VECTOR_SHUFFLE,
300
301    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
302    /// scalar value into element 0 of the resultant vector type.  The top
303    /// elements 1 to N-1 of the N-element vector are undefined.  The type
304    /// of the operand must match the vector element type, except when they
305    /// are integer types.  In this case the operand is allowed to be wider
306    /// than the vector element type, and is implicitly truncated to it.
307    SCALAR_TO_VECTOR,
308
309    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
310    // an unsigned/signed value of type i[2*N], then return the top part.
311    MULHU, MULHS,
312
313    // Bitwise operators - logical and, logical or, logical xor, shift left,
314    // shift right algebraic (shift in sign bits), shift right logical (shift in
315    // zeroes), rotate left, rotate right, and byteswap.
316    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
317
318    // Counting operators
319    CTTZ, CTLZ, CTPOP,
320
321    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
322    // i1 then the high bits must conform to getBooleanContents.
323    SELECT,
324
325    // Select with condition operator - This selects between a true value and
326    // a false value (ops #2 and #3) based on the boolean result of comparing
327    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
328    // condition code in op #4, a CondCodeSDNode.
329    SELECT_CC,
330
331    // SetCC operator - This evaluates to a true value iff the condition is
332    // true.  If the result value type is not i1 then the high bits conform
333    // to getBooleanContents.  The operands to this are the left and right
334    // operands to compare (ops #0, and #1) and the condition code to compare
335    // them with (op #2) as a CondCodeSDNode.
336    SETCC,
337
338    // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
339    // integer elements with all bits of the result elements set to true if the
340    // comparison is true or all cleared if the comparison is false.  The
341    // operands to this are the left and right operands to compare (LHS/RHS) and
342    // the condition code to compare them with (COND) as a CondCodeSDNode.
343    VSETCC,
344
345    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
346    // integer shift operations, just like ADD/SUB_PARTS.  The operation
347    // ordering is:
348    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
349    SHL_PARTS, SRA_PARTS, SRL_PARTS,
350
351    // Conversion operators.  These are all single input single output
352    // operations.  For all of these, the result type must be strictly
353    // wider or narrower (depending on the operation) than the source
354    // type.
355
356    // SIGN_EXTEND - Used for integer types, replicating the sign bit
357    // into new bits.
358    SIGN_EXTEND,
359
360    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
361    ZERO_EXTEND,
362
363    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
364    ANY_EXTEND,
365
366    // TRUNCATE - Completely drop the high bits.
367    TRUNCATE,
368
369    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
370    // depends on the first letter) to floating point.
371    SINT_TO_FP,
372    UINT_TO_FP,
373
374    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
375    // sign extend a small value in a large integer register (e.g. sign
376    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
377    // with the 7th bit).  The size of the smaller type is indicated by the 1th
378    // operand, a ValueType node.
379    SIGN_EXTEND_INREG,
380
381    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
382    /// integer.
383    FP_TO_SINT,
384    FP_TO_UINT,
385
386    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
387    /// down to the precision of the destination VT.  TRUNC is a flag, which is
388    /// always an integer that is zero or one.  If TRUNC is 0, this is a
389    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
390    /// value of Y.
391    ///
392    /// The TRUNC = 1 case is used in cases where we know that the value will
393    /// not be modified by the node, because Y is not using any of the extra
394    /// precision of source type.  This allows certain transformations like
395    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
396    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
397    FP_ROUND,
398
399    // FLT_ROUNDS_ - Returns current rounding mode:
400    // -1 Undefined
401    //  0 Round to 0
402    //  1 Round to nearest
403    //  2 Round to +inf
404    //  3 Round to -inf
405    FLT_ROUNDS_,
406
407    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
408    /// rounds it to a floating point value.  It then promotes it and returns it
409    /// in a register of the same size.  This operation effectively just
410    /// discards excess precision.  The type to round down to is specified by
411    /// the VT operand, a VTSDNode.
412    FP_ROUND_INREG,
413
414    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
415    FP_EXTEND,
416
417    // BIT_CONVERT - Theis operator converts between integer and FP values, as
418    // if one was stored to memory as integer and the other was loaded from the
419    // same address (or equivalently for vector format conversions, etc).  The
420    // source and result are required to have the same bit size (e.g.
421    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
422    // conversions, but that is a noop, deleted by getNode().
423    BIT_CONVERT,
424
425    // CONVERT_RNDSAT - This operator is used to support various conversions
426    // between various types (float, signed, unsigned and vectors of those
427    // types) with rounding and saturation. NOTE: Avoid using this operator as
428    // most target don't support it and the operator might be removed in the
429    // future. It takes the following arguments:
430    //   0) value
431    //   1) dest type (type to convert to)
432    //   2) src type (type to convert from)
433    //   3) rounding imm
434    //   4) saturation imm
435    //   5) ISD::CvtCode indicating the type of conversion to do
436    CONVERT_RNDSAT,
437
438    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
439    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
440    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
441    // point operations. These are inspired by libm.
442    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
443    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
444    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
445
446    // LOAD and STORE have token chains as their first operand, then the same
447    // operands as an LLVM load/store instruction, then an offset node that
448    // is added / subtracted from the base pointer to form the address (for
449    // indexed memory ops).
450    LOAD, STORE,
451
452    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
453    // to a specified boundary.  This node always has two return values: a new
454    // stack pointer value and a chain. The first operand is the token chain,
455    // the second is the number of bytes to allocate, and the third is the
456    // alignment boundary.  The size is guaranteed to be a multiple of the stack
457    // alignment, and the alignment is guaranteed to be bigger than the stack
458    // alignment (if required) or 0 to get standard stack alignment.
459    DYNAMIC_STACKALLOC,
460
461    // Control flow instructions.  These all have token chains.
462
463    // BR - Unconditional branch.  The first operand is the chain
464    // operand, the second is the MBB to branch to.
465    BR,
466
467    // BRIND - Indirect branch.  The first operand is the chain, the second
468    // is the value to branch to, which must be of the same type as the target's
469    // pointer type.
470    BRIND,
471
472    // BR_JT - Jumptable branch. The first operand is the chain, the second
473    // is the jumptable index, the last one is the jumptable entry index.
474    BR_JT,
475
476    // BRCOND - Conditional branch.  The first operand is the chain, the
477    // second is the condition, the third is the block to branch to if the
478    // condition is true.  If the type of the condition is not i1, then the
479    // high bits must conform to getBooleanContents.
480    BRCOND,
481
482    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
483    // that the condition is represented as condition code, and two nodes to
484    // compare, rather than as a combined SetCC node.  The operands in order are
485    // chain, cc, lhs, rhs, block to branch to if condition is true.
486    BR_CC,
487
488    // INLINEASM - Represents an inline asm block.  This node always has two
489    // return values: a chain and a flag result.  The inputs are as follows:
490    //   Operand #0   : Input chain.
491    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
492    //   Operand #2n+2: A RegisterNode.
493    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
494    //   Operand #last: Optional, an incoming flag.
495    INLINEASM,
496
497    // EH_LABEL - Represents a label in mid basic block used to track
498    // locations needed for debug and exception handling tables.  These nodes
499    // take a chain as input and return a chain.
500    EH_LABEL,
501
502    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
503    // value, the same type as the pointer type for the system, and an output
504    // chain.
505    STACKSAVE,
506
507    // STACKRESTORE has two operands, an input chain and a pointer to restore to
508    // it returns an output chain.
509    STACKRESTORE,
510
511    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
512    // a call sequence, and carry arbitrary information that target might want
513    // to know.  The first operand is a chain, the rest are specified by the
514    // target and not touched by the DAG optimizers.
515    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
516    CALLSEQ_START,  // Beginning of a call sequence
517    CALLSEQ_END,    // End of a call sequence
518
519    // VAARG - VAARG has three operands: an input chain, a pointer, and a
520    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
521    VAARG,
522
523    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
524    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
525    // source.
526    VACOPY,
527
528    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
529    // pointer, and a SRCVALUE.
530    VAEND, VASTART,
531
532    // SRCVALUE - This is a node type that holds a Value* that is used to
533    // make reference to a value in the LLVM IR.
534    SRCVALUE,
535
536    // PCMARKER - This corresponds to the pcmarker intrinsic.
537    PCMARKER,
538
539    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
540    // The only operand is a chain and a value and a chain are produced.  The
541    // value is the contents of the architecture specific cycle counter like
542    // register (or other high accuracy low latency clock source)
543    READCYCLECOUNTER,
544
545    // HANDLENODE node - Used as a handle for various purposes.
546    HANDLENODE,
547
548    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
549    // It takes as input a token chain, the pointer to the trampoline,
550    // the pointer to the nested function, the pointer to pass for the
551    // 'nest' parameter, a SRCVALUE for the trampoline and another for
552    // the nested function (allowing targets to access the original
553    // Function*).  It produces the result of the intrinsic and a token
554    // chain as output.
555    TRAMPOLINE,
556
557    // TRAP - Trapping instruction
558    TRAP,
559
560    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
561    // their first operand. The other operands are the address to prefetch,
562    // read / write specifier, and locality specifier.
563    PREFETCH,
564
565    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
566    //                       store-store, device)
567    // This corresponds to the memory.barrier intrinsic.
568    // it takes an input chain, 4 operands to specify the type of barrier, an
569    // operand specifying if the barrier applies to device and uncached memory
570    // and produces an output chain.
571    MEMBARRIER,
572
573    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
574    // this corresponds to the atomic.lcs intrinsic.
575    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
576    // the return is always the original value in *ptr
577    ATOMIC_CMP_SWAP,
578
579    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
580    // this corresponds to the atomic.swap intrinsic.
581    // amt is stored to *ptr atomically.
582    // the return is always the original value in *ptr
583    ATOMIC_SWAP,
584
585    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
586    // this corresponds to the atomic.load.[OpName] intrinsic.
587    // op(*ptr, amt) is stored to *ptr atomically.
588    // the return is always the original value in *ptr
589    ATOMIC_LOAD_ADD,
590    ATOMIC_LOAD_SUB,
591    ATOMIC_LOAD_AND,
592    ATOMIC_LOAD_OR,
593    ATOMIC_LOAD_XOR,
594    ATOMIC_LOAD_NAND,
595    ATOMIC_LOAD_MIN,
596    ATOMIC_LOAD_MAX,
597    ATOMIC_LOAD_UMIN,
598    ATOMIC_LOAD_UMAX,
599
600    /// BUILTIN_OP_END - This must be the last enum value in this list.
601    /// The target-specific pre-isel opcode values start here.
602    BUILTIN_OP_END
603  };
604
605  /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
606  /// which do not reference a specific memory location should be less than
607  /// this value. Those that do must not be less than this value, and can
608  /// be used with SelectionDAG::getMemIntrinsicNode.
609  static const int FIRST_TARGET_MEMORY_OPCODE = 1 << 14;
610
611  /// Node predicates
612
613  /// isBuildVectorAllOnes - Return true if the specified node is a
614  /// BUILD_VECTOR where all of the elements are ~0 or undef.
615  bool isBuildVectorAllOnes(const SDNode *N);
616
617  /// isBuildVectorAllZeros - Return true if the specified node is a
618  /// BUILD_VECTOR where all of the elements are 0 or undef.
619  bool isBuildVectorAllZeros(const SDNode *N);
620
621  /// isScalarToVector - Return true if the specified node is a
622  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
623  /// element is not an undef.
624  bool isScalarToVector(const SDNode *N);
625
626  //===--------------------------------------------------------------------===//
627  /// MemIndexedMode enum - This enum defines the load / store indexed
628  /// addressing modes.
629  ///
630  /// UNINDEXED    "Normal" load / store. The effective address is already
631  ///              computed and is available in the base pointer. The offset
632  ///              operand is always undefined. In addition to producing a
633  ///              chain, an unindexed load produces one value (result of the
634  ///              load); an unindexed store does not produce a value.
635  ///
636  /// PRE_INC      Similar to the unindexed mode where the effective address is
637  /// PRE_DEC      the value of the base pointer add / subtract the offset.
638  ///              It considers the computation as being folded into the load /
639  ///              store operation (i.e. the load / store does the address
640  ///              computation as well as performing the memory transaction).
641  ///              The base operand is always undefined. In addition to
642  ///              producing a chain, pre-indexed load produces two values
643  ///              (result of the load and the result of the address
644  ///              computation); a pre-indexed store produces one value (result
645  ///              of the address computation).
646  ///
647  /// POST_INC     The effective address is the value of the base pointer. The
648  /// POST_DEC     value of the offset operand is then added to / subtracted
649  ///              from the base after memory transaction. In addition to
650  ///              producing a chain, post-indexed load produces two values
651  ///              (the result of the load and the result of the base +/- offset
652  ///              computation); a post-indexed store produces one value (the
653  ///              the result of the base +/- offset computation).
654  ///
655  enum MemIndexedMode {
656    UNINDEXED = 0,
657    PRE_INC,
658    PRE_DEC,
659    POST_INC,
660    POST_DEC,
661    LAST_INDEXED_MODE
662  };
663
664  //===--------------------------------------------------------------------===//
665  /// LoadExtType enum - This enum defines the three variants of LOADEXT
666  /// (load with extension).
667  ///
668  /// SEXTLOAD loads the integer operand and sign extends it to a larger
669  ///          integer result type.
670  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
671  ///          integer result type.
672  /// EXTLOAD  is used for three things: floating point extending loads,
673  ///          integer extending loads [the top bits are undefined], and vector
674  ///          extending loads [load into low elt].
675  ///
676  enum LoadExtType {
677    NON_EXTLOAD = 0,
678    EXTLOAD,
679    SEXTLOAD,
680    ZEXTLOAD,
681    LAST_LOADEXT_TYPE
682  };
683
684  //===--------------------------------------------------------------------===//
685  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
686  /// below work out, when considering SETFALSE (something that never exists
687  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
688  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
689  /// to.  If the "N" column is 1, the result of the comparison is undefined if
690  /// the input is a NAN.
691  ///
692  /// All of these (except for the 'always folded ops') should be handled for
693  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
694  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
695  ///
696  /// Note that these are laid out in a specific order to allow bit-twiddling
697  /// to transform conditions.
698  enum CondCode {
699    // Opcode          N U L G E       Intuitive operation
700    SETFALSE,      //    0 0 0 0       Always false (always folded)
701    SETOEQ,        //    0 0 0 1       True if ordered and equal
702    SETOGT,        //    0 0 1 0       True if ordered and greater than
703    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
704    SETOLT,        //    0 1 0 0       True if ordered and less than
705    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
706    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
707    SETO,          //    0 1 1 1       True if ordered (no nans)
708    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
709    SETUEQ,        //    1 0 0 1       True if unordered or equal
710    SETUGT,        //    1 0 1 0       True if unordered or greater than
711    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
712    SETULT,        //    1 1 0 0       True if unordered or less than
713    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
714    SETUNE,        //    1 1 1 0       True if unordered or not equal
715    SETTRUE,       //    1 1 1 1       Always true (always folded)
716    // Don't care operations: undefined if the input is a nan.
717    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
718    SETEQ,         //  1 X 0 0 1       True if equal
719    SETGT,         //  1 X 0 1 0       True if greater than
720    SETGE,         //  1 X 0 1 1       True if greater than or equal
721    SETLT,         //  1 X 1 0 0       True if less than
722    SETLE,         //  1 X 1 0 1       True if less than or equal
723    SETNE,         //  1 X 1 1 0       True if not equal
724    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
725
726    SETCC_INVALID       // Marker value.
727  };
728
729  /// isSignedIntSetCC - Return true if this is a setcc instruction that
730  /// performs a signed comparison when used with integer operands.
731  inline bool isSignedIntSetCC(CondCode Code) {
732    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
733  }
734
735  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
736  /// performs an unsigned comparison when used with integer operands.
737  inline bool isUnsignedIntSetCC(CondCode Code) {
738    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
739  }
740
741  /// isTrueWhenEqual - Return true if the specified condition returns true if
742  /// the two operands to the condition are equal.  Note that if one of the two
743  /// operands is a NaN, this value is meaningless.
744  inline bool isTrueWhenEqual(CondCode Cond) {
745    return ((int)Cond & 1) != 0;
746  }
747
748  /// getUnorderedFlavor - This function returns 0 if the condition is always
749  /// false if an operand is a NaN, 1 if the condition is always true if the
750  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
751  /// NaN.
752  inline unsigned getUnorderedFlavor(CondCode Cond) {
753    return ((int)Cond >> 3) & 3;
754  }
755
756  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
757  /// 'op' is a valid SetCC operation.
758  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
759
760  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
761  /// when given the operation for (X op Y).
762  CondCode getSetCCSwappedOperands(CondCode Operation);
763
764  /// getSetCCOrOperation - Return the result of a logical OR between different
765  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
766  /// function returns SETCC_INVALID if it is not possible to represent the
767  /// resultant comparison.
768  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
769
770  /// getSetCCAndOperation - Return the result of a logical AND between
771  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
772  /// function returns SETCC_INVALID if it is not possible to represent the
773  /// resultant comparison.
774  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
775
776  //===--------------------------------------------------------------------===//
777  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
778  /// supports.
779  enum CvtCode {
780    CVT_FF,     // Float from Float
781    CVT_FS,     // Float from Signed
782    CVT_FU,     // Float from Unsigned
783    CVT_SF,     // Signed from Float
784    CVT_UF,     // Unsigned from Float
785    CVT_SS,     // Signed from Signed
786    CVT_SU,     // Signed from Unsigned
787    CVT_US,     // Unsigned from Signed
788    CVT_UU,     // Unsigned from Unsigned
789    CVT_INVALID // Marker - Invalid opcode
790  };
791}  // end llvm::ISD namespace
792
793
794//===----------------------------------------------------------------------===//
795/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
796/// values as the result of a computation.  Many nodes return multiple values,
797/// from loads (which define a token and a return value) to ADDC (which returns
798/// a result and a carry value), to calls (which may return an arbitrary number
799/// of values).
800///
801/// As such, each use of a SelectionDAG computation must indicate the node that
802/// computes it as well as which return value to use from that node.  This pair
803/// of information is represented with the SDValue value type.
804///
805class SDValue {
806  SDNode *Node;       // The node defining the value we are using.
807  unsigned ResNo;     // Which return value of the node we are using.
808public:
809  SDValue() : Node(0), ResNo(0) {}
810  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
811
812  /// get the index which selects a specific result in the SDNode
813  unsigned getResNo() const { return ResNo; }
814
815  /// get the SDNode which holds the desired result
816  SDNode *getNode() const { return Node; }
817
818  /// set the SDNode
819  void setNode(SDNode *N) { Node = N; }
820
821  bool operator==(const SDValue &O) const {
822    return Node == O.Node && ResNo == O.ResNo;
823  }
824  bool operator!=(const SDValue &O) const {
825    return !operator==(O);
826  }
827  bool operator<(const SDValue &O) const {
828    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
829  }
830
831  SDValue getValue(unsigned R) const {
832    return SDValue(Node, R);
833  }
834
835  // isOperandOf - Return true if this node is an operand of N.
836  bool isOperandOf(SDNode *N) const;
837
838  /// getValueType - Return the ValueType of the referenced return value.
839  ///
840  inline EVT getValueType() const;
841
842  /// getValueSizeInBits - Returns the size of the value in bits.
843  ///
844  unsigned getValueSizeInBits() const {
845    return getValueType().getSizeInBits();
846  }
847
848  // Forwarding methods - These forward to the corresponding methods in SDNode.
849  inline unsigned getOpcode() const;
850  inline unsigned getNumOperands() const;
851  inline const SDValue &getOperand(unsigned i) const;
852  inline uint64_t getConstantOperandVal(unsigned i) const;
853  inline bool isTargetMemoryOpcode() const;
854  inline bool isTargetOpcode() const;
855  inline bool isMachineOpcode() const;
856  inline unsigned getMachineOpcode() const;
857  inline const DebugLoc getDebugLoc() const;
858
859
860  /// reachesChainWithoutSideEffects - Return true if this operand (which must
861  /// be a chain) reaches the specified operand without crossing any
862  /// side-effecting instructions.  In practice, this looks through token
863  /// factors and non-volatile loads.  In order to remain efficient, this only
864  /// looks a couple of nodes in, it does not do an exhaustive search.
865  bool reachesChainWithoutSideEffects(SDValue Dest,
866                                      unsigned Depth = 2) const;
867
868  /// use_empty - Return true if there are no nodes using value ResNo
869  /// of Node.
870  ///
871  inline bool use_empty() const;
872
873  /// hasOneUse - Return true if there is exactly one node using value
874  /// ResNo of Node.
875  ///
876  inline bool hasOneUse() const;
877};
878
879
880template<> struct DenseMapInfo<SDValue> {
881  static inline SDValue getEmptyKey() {
882    return SDValue((SDNode*)-1, -1U);
883  }
884  static inline SDValue getTombstoneKey() {
885    return SDValue((SDNode*)-1, 0);
886  }
887  static unsigned getHashValue(const SDValue &Val) {
888    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
889            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
890  }
891  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
892    return LHS == RHS;
893  }
894  static bool isPod() { return true; }
895};
896
897/// simplify_type specializations - Allow casting operators to work directly on
898/// SDValues as if they were SDNode*'s.
899template<> struct simplify_type<SDValue> {
900  typedef SDNode* SimpleType;
901  static SimpleType getSimplifiedValue(const SDValue &Val) {
902    return static_cast<SimpleType>(Val.getNode());
903  }
904};
905template<> struct simplify_type<const SDValue> {
906  typedef SDNode* SimpleType;
907  static SimpleType getSimplifiedValue(const SDValue &Val) {
908    return static_cast<SimpleType>(Val.getNode());
909  }
910};
911
912/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
913/// which records the SDNode being used and the result number, a
914/// pointer to the SDNode using the value, and Next and Prev pointers,
915/// which link together all the uses of an SDNode.
916///
917class SDUse {
918  /// Val - The value being used.
919  SDValue Val;
920  /// User - The user of this value.
921  SDNode *User;
922  /// Prev, Next - Pointers to the uses list of the SDNode referred by
923  /// this operand.
924  SDUse **Prev, *Next;
925
926  SDUse(const SDUse &U);          // Do not implement
927  void operator=(const SDUse &U); // Do not implement
928
929public:
930  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
931
932  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
933  operator const SDValue&() const { return Val; }
934
935  /// If implicit conversion to SDValue doesn't work, the get() method returns
936  /// the SDValue.
937  const SDValue &get() const { return Val; }
938
939  /// getUser - This returns the SDNode that contains this Use.
940  SDNode *getUser() { return User; }
941
942  /// getNext - Get the next SDUse in the use list.
943  SDUse *getNext() const { return Next; }
944
945  /// getNode - Convenience function for get().getNode().
946  SDNode *getNode() const { return Val.getNode(); }
947  /// getResNo - Convenience function for get().getResNo().
948  unsigned getResNo() const { return Val.getResNo(); }
949  /// getValueType - Convenience function for get().getValueType().
950  EVT getValueType() const { return Val.getValueType(); }
951
952  /// operator== - Convenience function for get().operator==
953  bool operator==(const SDValue &V) const {
954    return Val == V;
955  }
956
957  /// operator!= - Convenience function for get().operator!=
958  bool operator!=(const SDValue &V) const {
959    return Val != V;
960  }
961
962  /// operator< - Convenience function for get().operator<
963  bool operator<(const SDValue &V) const {
964    return Val < V;
965  }
966
967private:
968  friend class SelectionDAG;
969  friend class SDNode;
970
971  void setUser(SDNode *p) { User = p; }
972
973  /// set - Remove this use from its existing use list, assign it the
974  /// given value, and add it to the new value's node's use list.
975  inline void set(const SDValue &V);
976  /// setInitial - like set, but only supports initializing a newly-allocated
977  /// SDUse with a non-null value.
978  inline void setInitial(const SDValue &V);
979  /// setNode - like set, but only sets the Node portion of the value,
980  /// leaving the ResNo portion unmodified.
981  inline void setNode(SDNode *N);
982
983  void addToList(SDUse **List) {
984    Next = *List;
985    if (Next) Next->Prev = &Next;
986    Prev = List;
987    *List = this;
988  }
989
990  void removeFromList() {
991    *Prev = Next;
992    if (Next) Next->Prev = Prev;
993  }
994};
995
996/// simplify_type specializations - Allow casting operators to work directly on
997/// SDValues as if they were SDNode*'s.
998template<> struct simplify_type<SDUse> {
999  typedef SDNode* SimpleType;
1000  static SimpleType getSimplifiedValue(const SDUse &Val) {
1001    return static_cast<SimpleType>(Val.getNode());
1002  }
1003};
1004template<> struct simplify_type<const SDUse> {
1005  typedef SDNode* SimpleType;
1006  static SimpleType getSimplifiedValue(const SDUse &Val) {
1007    return static_cast<SimpleType>(Val.getNode());
1008  }
1009};
1010
1011
1012/// SDNode - Represents one node in the SelectionDAG.
1013///
1014class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1015private:
1016  /// NodeType - The operation that this node performs.
1017  ///
1018  int16_t NodeType;
1019
1020  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1021  /// then they will be delete[]'d when the node is destroyed.
1022  uint16_t OperandsNeedDelete : 1;
1023
1024protected:
1025  /// SubclassData - This member is defined by this class, but is not used for
1026  /// anything.  Subclasses can use it to hold whatever state they find useful.
1027  /// This field is initialized to zero by the ctor.
1028  uint16_t SubclassData : 15;
1029
1030private:
1031  /// NodeId - Unique id per SDNode in the DAG.
1032  int NodeId;
1033
1034  /// OperandList - The values that are used by this operation.
1035  ///
1036  SDUse *OperandList;
1037
1038  /// ValueList - The types of the values this node defines.  SDNode's may
1039  /// define multiple values simultaneously.
1040  const EVT *ValueList;
1041
1042  /// UseList - List of uses for this SDNode.
1043  SDUse *UseList;
1044
1045  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1046  unsigned short NumOperands, NumValues;
1047
1048  /// debugLoc - source line information.
1049  DebugLoc debugLoc;
1050
1051  /// getValueTypeList - Return a pointer to the specified value type.
1052  static const EVT *getValueTypeList(EVT VT);
1053
1054  friend class SelectionDAG;
1055  friend struct ilist_traits<SDNode>;
1056
1057public:
1058  //===--------------------------------------------------------------------===//
1059  //  Accessors
1060  //
1061
1062  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1063  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1064  /// are the opcode values in the ISD and <target>ISD namespaces. For
1065  /// post-isel opcodes, see getMachineOpcode.
1066  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1067
1068  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1069  /// \<target\>ISD namespace).
1070  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1071
1072  /// isTargetMemoryOpcode - Test if this node has a target-specific
1073  /// memory-referencing opcode (in the \<target\>ISD namespace and
1074  /// greater than FIRST_TARGET_MEMORY_OPCODE).
1075  bool isTargetMemoryOpcode() const {
1076    return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
1077  }
1078
1079  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1080  /// corresponding to a MachineInstr opcode.
1081  bool isMachineOpcode() const { return NodeType < 0; }
1082
1083  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1084  /// true. It returns the MachineInstr opcode value that the node's opcode
1085  /// corresponds to.
1086  unsigned getMachineOpcode() const {
1087    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1088    return ~NodeType;
1089  }
1090
1091  /// use_empty - Return true if there are no uses of this node.
1092  ///
1093  bool use_empty() const { return UseList == NULL; }
1094
1095  /// hasOneUse - Return true if there is exactly one use of this node.
1096  ///
1097  bool hasOneUse() const {
1098    return !use_empty() && next(use_begin()) == use_end();
1099  }
1100
1101  /// use_size - Return the number of uses of this node. This method takes
1102  /// time proportional to the number of uses.
1103  ///
1104  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1105
1106  /// getNodeId - Return the unique node id.
1107  ///
1108  int getNodeId() const { return NodeId; }
1109
1110  /// setNodeId - Set unique node id.
1111  void setNodeId(int Id) { NodeId = Id; }
1112
1113  /// getDebugLoc - Return the source location info.
1114  const DebugLoc getDebugLoc() const { return debugLoc; }
1115
1116  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1117  /// it in the constructor is preferable.
1118  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1119
1120  /// use_iterator - This class provides iterator support for SDUse
1121  /// operands that use a specific SDNode.
1122  class use_iterator
1123    : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
1124    SDUse *Op;
1125    explicit use_iterator(SDUse *op) : Op(op) {
1126    }
1127    friend class SDNode;
1128  public:
1129    typedef std::iterator<std::forward_iterator_tag,
1130                          SDUse, ptrdiff_t>::reference reference;
1131    typedef std::iterator<std::forward_iterator_tag,
1132                          SDUse, ptrdiff_t>::pointer pointer;
1133
1134    use_iterator(const use_iterator &I) : Op(I.Op) {}
1135    use_iterator() : Op(0) {}
1136
1137    bool operator==(const use_iterator &x) const {
1138      return Op == x.Op;
1139    }
1140    bool operator!=(const use_iterator &x) const {
1141      return !operator==(x);
1142    }
1143
1144    /// atEnd - return true if this iterator is at the end of uses list.
1145    bool atEnd() const { return Op == 0; }
1146
1147    // Iterator traversal: forward iteration only.
1148    use_iterator &operator++() {          // Preincrement
1149      assert(Op && "Cannot increment end iterator!");
1150      Op = Op->getNext();
1151      return *this;
1152    }
1153
1154    use_iterator operator++(int) {        // Postincrement
1155      use_iterator tmp = *this; ++*this; return tmp;
1156    }
1157
1158    /// Retrieve a pointer to the current user node.
1159    SDNode *operator*() const {
1160      assert(Op && "Cannot dereference end iterator!");
1161      return Op->getUser();
1162    }
1163
1164    SDNode *operator->() const { return operator*(); }
1165
1166    SDUse &getUse() const { return *Op; }
1167
1168    /// getOperandNo - Retrieve the operand # of this use in its user.
1169    ///
1170    unsigned getOperandNo() const {
1171      assert(Op && "Cannot dereference end iterator!");
1172      return (unsigned)(Op - Op->getUser()->OperandList);
1173    }
1174  };
1175
1176  /// use_begin/use_end - Provide iteration support to walk over all uses
1177  /// of an SDNode.
1178
1179  use_iterator use_begin() const {
1180    return use_iterator(UseList);
1181  }
1182
1183  static use_iterator use_end() { return use_iterator(0); }
1184
1185
1186  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1187  /// indicated value.  This method ignores uses of other values defined by this
1188  /// operation.
1189  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1190
1191  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1192  /// value. This method ignores uses of other values defined by this operation.
1193  bool hasAnyUseOfValue(unsigned Value) const;
1194
1195  /// isOnlyUserOf - Return true if this node is the only use of N.
1196  ///
1197  bool isOnlyUserOf(SDNode *N) const;
1198
1199  /// isOperandOf - Return true if this node is an operand of N.
1200  ///
1201  bool isOperandOf(SDNode *N) const;
1202
1203  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1204  /// node is either an operand of N or it can be reached by recursively
1205  /// traversing up the operands.
1206  /// NOTE: this is an expensive method. Use it carefully.
1207  bool isPredecessorOf(SDNode *N) const;
1208
1209  /// getNumOperands - Return the number of values used by this operation.
1210  ///
1211  unsigned getNumOperands() const { return NumOperands; }
1212
1213  /// getConstantOperandVal - Helper method returns the integer value of a
1214  /// ConstantSDNode operand.
1215  uint64_t getConstantOperandVal(unsigned Num) const;
1216
1217  const SDValue &getOperand(unsigned Num) const {
1218    assert(Num < NumOperands && "Invalid child # of SDNode!");
1219    return OperandList[Num];
1220  }
1221
1222  typedef SDUse* op_iterator;
1223  op_iterator op_begin() const { return OperandList; }
1224  op_iterator op_end() const { return OperandList+NumOperands; }
1225
1226  SDVTList getVTList() const {
1227    SDVTList X = { ValueList, NumValues };
1228    return X;
1229  };
1230
1231  /// getFlaggedNode - If this node has a flag operand, return the node
1232  /// to which the flag operand points. Otherwise return NULL.
1233  SDNode *getFlaggedNode() const {
1234    if (getNumOperands() != 0 &&
1235      getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
1236      return getOperand(getNumOperands()-1).getNode();
1237    return 0;
1238  }
1239
1240  // If this is a pseudo op, like copyfromreg, look to see if there is a
1241  // real target node flagged to it.  If so, return the target node.
1242  const SDNode *getFlaggedMachineNode() const {
1243    const SDNode *FoundNode = this;
1244
1245    // Climb up flag edges until a machine-opcode node is found, or the
1246    // end of the chain is reached.
1247    while (!FoundNode->isMachineOpcode()) {
1248      const SDNode *N = FoundNode->getFlaggedNode();
1249      if (!N) break;
1250      FoundNode = N;
1251    }
1252
1253    return FoundNode;
1254  }
1255
1256  /// getNumValues - Return the number of values defined/returned by this
1257  /// operator.
1258  ///
1259  unsigned getNumValues() const { return NumValues; }
1260
1261  /// getValueType - Return the type of a specified result.
1262  ///
1263  EVT getValueType(unsigned ResNo) const {
1264    assert(ResNo < NumValues && "Illegal result number!");
1265    return ValueList[ResNo];
1266  }
1267
1268  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1269  ///
1270  unsigned getValueSizeInBits(unsigned ResNo) const {
1271    return getValueType(ResNo).getSizeInBits();
1272  }
1273
1274  typedef const EVT* value_iterator;
1275  value_iterator value_begin() const { return ValueList; }
1276  value_iterator value_end() const { return ValueList+NumValues; }
1277
1278  /// getOperationName - Return the opcode of this operation for printing.
1279  ///
1280  std::string getOperationName(const SelectionDAG *G = 0) const;
1281  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1282  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1283  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1284  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1285  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1286  void dump() const;
1287  void dumpr() const;
1288  void dump(const SelectionDAG *G) const;
1289  void dumpr(const SelectionDAG *G) const;
1290
1291  static bool classof(const SDNode *) { return true; }
1292
1293  /// Profile - Gather unique data for the node.
1294  ///
1295  void Profile(FoldingSetNodeID &ID) const;
1296
1297  /// addUse - This method should only be used by the SDUse class.
1298  ///
1299  void addUse(SDUse &U) { U.addToList(&UseList); }
1300
1301protected:
1302  static SDVTList getSDVTList(EVT VT) {
1303    SDVTList Ret = { getValueTypeList(VT), 1 };
1304    return Ret;
1305  }
1306
1307  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1308         unsigned NumOps)
1309    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1310      NodeId(-1),
1311      OperandList(NumOps ? new SDUse[NumOps] : 0),
1312      ValueList(VTs.VTs), UseList(NULL),
1313      NumOperands(NumOps), NumValues(VTs.NumVTs),
1314      debugLoc(dl) {
1315    for (unsigned i = 0; i != NumOps; ++i) {
1316      OperandList[i].setUser(this);
1317      OperandList[i].setInitial(Ops[i]);
1318    }
1319  }
1320
1321  /// This constructor adds no operands itself; operands can be
1322  /// set later with InitOperands.
1323  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1324    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1325      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1326      NumOperands(0), NumValues(VTs.NumVTs),
1327      debugLoc(dl) {}
1328
1329  /// InitOperands - Initialize the operands list of this with 1 operand.
1330  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1331    Ops[0].setUser(this);
1332    Ops[0].setInitial(Op0);
1333    NumOperands = 1;
1334    OperandList = Ops;
1335  }
1336
1337  /// InitOperands - Initialize the operands list of this with 2 operands.
1338  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1339    Ops[0].setUser(this);
1340    Ops[0].setInitial(Op0);
1341    Ops[1].setUser(this);
1342    Ops[1].setInitial(Op1);
1343    NumOperands = 2;
1344    OperandList = Ops;
1345  }
1346
1347  /// InitOperands - Initialize the operands list of this with 3 operands.
1348  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1349                    const SDValue &Op2) {
1350    Ops[0].setUser(this);
1351    Ops[0].setInitial(Op0);
1352    Ops[1].setUser(this);
1353    Ops[1].setInitial(Op1);
1354    Ops[2].setUser(this);
1355    Ops[2].setInitial(Op2);
1356    NumOperands = 3;
1357    OperandList = Ops;
1358  }
1359
1360  /// InitOperands - Initialize the operands list of this with 4 operands.
1361  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1362                    const SDValue &Op2, const SDValue &Op3) {
1363    Ops[0].setUser(this);
1364    Ops[0].setInitial(Op0);
1365    Ops[1].setUser(this);
1366    Ops[1].setInitial(Op1);
1367    Ops[2].setUser(this);
1368    Ops[2].setInitial(Op2);
1369    Ops[3].setUser(this);
1370    Ops[3].setInitial(Op3);
1371    NumOperands = 4;
1372    OperandList = Ops;
1373  }
1374
1375  /// InitOperands - Initialize the operands list of this with N operands.
1376  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1377    for (unsigned i = 0; i != N; ++i) {
1378      Ops[i].setUser(this);
1379      Ops[i].setInitial(Vals[i]);
1380    }
1381    NumOperands = N;
1382    OperandList = Ops;
1383  }
1384
1385  /// DropOperands - Release the operands and set this node to have
1386  /// zero operands.
1387  void DropOperands();
1388};
1389
1390
1391// Define inline functions from the SDValue class.
1392
1393inline unsigned SDValue::getOpcode() const {
1394  return Node->getOpcode();
1395}
1396inline EVT SDValue::getValueType() const {
1397  return Node->getValueType(ResNo);
1398}
1399inline unsigned SDValue::getNumOperands() const {
1400  return Node->getNumOperands();
1401}
1402inline const SDValue &SDValue::getOperand(unsigned i) const {
1403  return Node->getOperand(i);
1404}
1405inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1406  return Node->getConstantOperandVal(i);
1407}
1408inline bool SDValue::isTargetOpcode() const {
1409  return Node->isTargetOpcode();
1410}
1411inline bool SDValue::isTargetMemoryOpcode() const {
1412  return Node->isTargetMemoryOpcode();
1413}
1414inline bool SDValue::isMachineOpcode() const {
1415  return Node->isMachineOpcode();
1416}
1417inline unsigned SDValue::getMachineOpcode() const {
1418  return Node->getMachineOpcode();
1419}
1420inline bool SDValue::use_empty() const {
1421  return !Node->hasAnyUseOfValue(ResNo);
1422}
1423inline bool SDValue::hasOneUse() const {
1424  return Node->hasNUsesOfValue(1, ResNo);
1425}
1426inline const DebugLoc SDValue::getDebugLoc() const {
1427  return Node->getDebugLoc();
1428}
1429
1430// Define inline functions from the SDUse class.
1431
1432inline void SDUse::set(const SDValue &V) {
1433  if (Val.getNode()) removeFromList();
1434  Val = V;
1435  if (V.getNode()) V.getNode()->addUse(*this);
1436}
1437
1438inline void SDUse::setInitial(const SDValue &V) {
1439  Val = V;
1440  V.getNode()->addUse(*this);
1441}
1442
1443inline void SDUse::setNode(SDNode *N) {
1444  if (Val.getNode()) removeFromList();
1445  Val.setNode(N);
1446  if (N) N->addUse(*this);
1447}
1448
1449/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1450/// to allow co-allocation of node operands with the node itself.
1451class UnarySDNode : public SDNode {
1452  SDUse Op;
1453public:
1454  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1455    : SDNode(Opc, dl, VTs) {
1456    InitOperands(&Op, X);
1457  }
1458};
1459
1460/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1461/// to allow co-allocation of node operands with the node itself.
1462class BinarySDNode : public SDNode {
1463  SDUse Ops[2];
1464public:
1465  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1466    : SDNode(Opc, dl, VTs) {
1467    InitOperands(Ops, X, Y);
1468  }
1469};
1470
1471/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1472/// to allow co-allocation of node operands with the node itself.
1473class TernarySDNode : public SDNode {
1474  SDUse Ops[3];
1475public:
1476  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1477                SDValue Z)
1478    : SDNode(Opc, dl, VTs) {
1479    InitOperands(Ops, X, Y, Z);
1480  }
1481};
1482
1483
1484/// HandleSDNode - This class is used to form a handle around another node that
1485/// is persistant and is updated across invocations of replaceAllUsesWith on its
1486/// operand.  This node should be directly created by end-users and not added to
1487/// the AllNodes list.
1488class HandleSDNode : public SDNode {
1489  SDUse Op;
1490public:
1491  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1492  // fixed.
1493#ifdef __GNUC__
1494  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1495#else
1496  explicit HandleSDNode(SDValue X)
1497#endif
1498    : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1499             getSDVTList(MVT::Other)) {
1500    InitOperands(&Op, X);
1501  }
1502  ~HandleSDNode();
1503  const SDValue &getValue() const { return Op; }
1504};
1505
1506/// Abstact virtual class for operations for memory operations
1507class MemSDNode : public SDNode {
1508private:
1509  // MemoryVT - VT of in-memory value.
1510  EVT MemoryVT;
1511
1512protected:
1513  /// MMO - Memory reference information.
1514  MachineMemOperand *MMO;
1515
1516public:
1517  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
1518            MachineMemOperand *MMO);
1519
1520  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1521            unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
1522
1523  bool readMem() const { return MMO->isLoad(); }
1524  bool writeMem() const { return MMO->isStore(); }
1525
1526  /// Returns alignment and volatility of the memory access
1527  unsigned getOriginalAlignment() const {
1528    return MMO->getBaseAlignment();
1529  }
1530  unsigned getAlignment() const {
1531    return MMO->getAlignment();
1532  }
1533
1534  /// getRawSubclassData - Return the SubclassData value, which contains an
1535  /// encoding of the volatile flag, as well as bits used by subclasses. This
1536  /// function should only be used to compute a FoldingSetNodeID value.
1537  unsigned getRawSubclassData() const {
1538    return SubclassData;
1539  }
1540
1541  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1542
1543  /// Returns the SrcValue and offset that describes the location of the access
1544  const Value *getSrcValue() const { return MMO->getValue(); }
1545  int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1546
1547  /// getMemoryVT - Return the type of the in-memory value.
1548  EVT getMemoryVT() const { return MemoryVT; }
1549
1550  /// getMemOperand - Return a MachineMemOperand object describing the memory
1551  /// reference performed by operation.
1552  MachineMemOperand *getMemOperand() const { return MMO; }
1553
1554  /// refineAlignment - Update this MemSDNode's MachineMemOperand information
1555  /// to reflect the alignment of NewMMO, if it has a greater alignment.
1556  /// This must only be used when the new alignment applies to all users of
1557  /// this MachineMemOperand.
1558  void refineAlignment(const MachineMemOperand *NewMMO) {
1559    MMO->refineAlignment(NewMMO);
1560  }
1561
1562  const SDValue &getChain() const { return getOperand(0); }
1563  const SDValue &getBasePtr() const {
1564    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1565  }
1566
1567  // Methods to support isa and dyn_cast
1568  static bool classof(const MemSDNode *) { return true; }
1569  static bool classof(const SDNode *N) {
1570    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1571    // with either an intrinsic or a target opcode.
1572    return N->getOpcode() == ISD::LOAD                ||
1573           N->getOpcode() == ISD::STORE               ||
1574           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1575           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1576           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1577           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1578           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1579           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1580           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1581           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1582           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1583           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1584           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1585           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1586           N->isTargetMemoryOpcode();
1587  }
1588};
1589
1590/// AtomicSDNode - A SDNode reprenting atomic operations.
1591///
1592class AtomicSDNode : public MemSDNode {
1593  SDUse Ops[4];
1594
1595public:
1596  // Opc:   opcode for atomic
1597  // VTL:    value type list
1598  // Chain:  memory chain for operaand
1599  // Ptr:    address to update as a SDValue
1600  // Cmp:    compare value
1601  // Swp:    swap value
1602  // SrcVal: address to update as a Value (used for MemOperand)
1603  // Align:  alignment of memory
1604  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1605               SDValue Chain, SDValue Ptr,
1606               SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
1607    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
1608    assert(readMem() && "Atomic MachineMemOperand is not a load!");
1609    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1610    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1611  }
1612  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1613               SDValue Chain, SDValue Ptr,
1614               SDValue Val, MachineMemOperand *MMO)
1615    : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
1616    assert(readMem() && "Atomic MachineMemOperand is not a load!");
1617    assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1618    InitOperands(Ops, Chain, Ptr, Val);
1619  }
1620
1621  const SDValue &getBasePtr() const { return getOperand(1); }
1622  const SDValue &getVal() const { return getOperand(2); }
1623
1624  bool isCompareAndSwap() const {
1625    unsigned Op = getOpcode();
1626    return Op == ISD::ATOMIC_CMP_SWAP;
1627  }
1628
1629  // Methods to support isa and dyn_cast
1630  static bool classof(const AtomicSDNode *) { return true; }
1631  static bool classof(const SDNode *N) {
1632    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1633           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1634           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1635           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1636           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1637           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1638           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1639           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1640           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1641           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1642           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1643           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1644  }
1645};
1646
1647/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
1648/// memory and need an associated MachineMemOperand. Its opcode may be
1649/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
1650/// value not less than FIRST_TARGET_MEMORY_OPCODE.
1651class MemIntrinsicSDNode : public MemSDNode {
1652public:
1653  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1654                     const SDValue *Ops, unsigned NumOps,
1655                     EVT MemoryVT, MachineMemOperand *MMO)
1656    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
1657  }
1658
1659  // Methods to support isa and dyn_cast
1660  static bool classof(const MemIntrinsicSDNode *) { return true; }
1661  static bool classof(const SDNode *N) {
1662    // We lower some target intrinsics to their target opcode
1663    // early a node with a target opcode can be of this class
1664    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1665           N->getOpcode() == ISD::INTRINSIC_VOID ||
1666           N->isTargetMemoryOpcode();
1667  }
1668};
1669
1670/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1671/// support for the llvm IR shufflevector instruction.  It combines elements
1672/// from two input vectors into a new input vector, with the selection and
1673/// ordering of elements determined by an array of integers, referred to as
1674/// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1675/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1676/// An index of -1 is treated as undef, such that the code generator may put
1677/// any value in the corresponding element of the result.
1678class ShuffleVectorSDNode : public SDNode {
1679  SDUse Ops[2];
1680
1681  // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1682  // is freed when the SelectionDAG object is destroyed.
1683  const int *Mask;
1684protected:
1685  friend class SelectionDAG;
1686  ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
1687                      const int *M)
1688    : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
1689    InitOperands(Ops, N1, N2);
1690  }
1691public:
1692
1693  void getMask(SmallVectorImpl<int> &M) const {
1694    EVT VT = getValueType(0);
1695    M.clear();
1696    for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1697      M.push_back(Mask[i]);
1698  }
1699  int getMaskElt(unsigned Idx) const {
1700    assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1701    return Mask[Idx];
1702  }
1703
1704  bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1705  int  getSplatIndex() const {
1706    assert(isSplat() && "Cannot get splat index for non-splat!");
1707    return Mask[0];
1708  }
1709  static bool isSplatMask(const int *Mask, EVT VT);
1710
1711  static bool classof(const ShuffleVectorSDNode *) { return true; }
1712  static bool classof(const SDNode *N) {
1713    return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1714  }
1715};
1716
1717class ConstantSDNode : public SDNode {
1718  const ConstantInt *Value;
1719  friend class SelectionDAG;
1720  ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
1721    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1722             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1723  }
1724public:
1725
1726  const ConstantInt *getConstantIntValue() const { return Value; }
1727  const APInt &getAPIntValue() const { return Value->getValue(); }
1728  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1729  int64_t getSExtValue() const { return Value->getSExtValue(); }
1730
1731  bool isNullValue() const { return Value->isNullValue(); }
1732  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1733
1734  static bool classof(const ConstantSDNode *) { return true; }
1735  static bool classof(const SDNode *N) {
1736    return N->getOpcode() == ISD::Constant ||
1737           N->getOpcode() == ISD::TargetConstant;
1738  }
1739};
1740
1741class ConstantFPSDNode : public SDNode {
1742  const ConstantFP *Value;
1743  friend class SelectionDAG;
1744  ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1745    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1746             DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1747  }
1748public:
1749
1750  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1751  const ConstantFP *getConstantFPValue() const { return Value; }
1752
1753  /// isExactlyValue - We don't rely on operator== working on double values, as
1754  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1755  /// As such, this method can be used to do an exact bit-for-bit comparison of
1756  /// two floating point values.
1757
1758  /// We leave the version with the double argument here because it's just so
1759  /// convenient to write "2.0" and the like.  Without this function we'd
1760  /// have to duplicate its logic everywhere it's called.
1761  bool isExactlyValue(double V) const {
1762    bool ignored;
1763    // convert is not supported on this type
1764    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1765      return false;
1766    APFloat Tmp(V);
1767    Tmp.convert(Value->getValueAPF().getSemantics(),
1768                APFloat::rmNearestTiesToEven, &ignored);
1769    return isExactlyValue(Tmp);
1770  }
1771  bool isExactlyValue(const APFloat& V) const;
1772
1773  bool isValueValidForType(EVT VT, const APFloat& Val);
1774
1775  static bool classof(const ConstantFPSDNode *) { return true; }
1776  static bool classof(const SDNode *N) {
1777    return N->getOpcode() == ISD::ConstantFP ||
1778           N->getOpcode() == ISD::TargetConstantFP;
1779  }
1780};
1781
1782class GlobalAddressSDNode : public SDNode {
1783  GlobalValue *TheGlobal;
1784  int64_t Offset;
1785  unsigned char TargetFlags;
1786  friend class SelectionDAG;
1787  GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
1788                      int64_t o, unsigned char TargetFlags);
1789public:
1790
1791  GlobalValue *getGlobal() const { return TheGlobal; }
1792  int64_t getOffset() const { return Offset; }
1793  unsigned char getTargetFlags() const { return TargetFlags; }
1794  // Return the address space this GlobalAddress belongs to.
1795  unsigned getAddressSpace() const;
1796
1797  static bool classof(const GlobalAddressSDNode *) { return true; }
1798  static bool classof(const SDNode *N) {
1799    return N->getOpcode() == ISD::GlobalAddress ||
1800           N->getOpcode() == ISD::TargetGlobalAddress ||
1801           N->getOpcode() == ISD::GlobalTLSAddress ||
1802           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1803  }
1804};
1805
1806class FrameIndexSDNode : public SDNode {
1807  int FI;
1808  friend class SelectionDAG;
1809  FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1810    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1811      DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1812  }
1813public:
1814
1815  int getIndex() const { return FI; }
1816
1817  static bool classof(const FrameIndexSDNode *) { return true; }
1818  static bool classof(const SDNode *N) {
1819    return N->getOpcode() == ISD::FrameIndex ||
1820           N->getOpcode() == ISD::TargetFrameIndex;
1821  }
1822};
1823
1824class JumpTableSDNode : public SDNode {
1825  int JTI;
1826  unsigned char TargetFlags;
1827  friend class SelectionDAG;
1828  JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1829    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1830      DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1831  }
1832public:
1833
1834  int getIndex() const { return JTI; }
1835  unsigned char getTargetFlags() const { return TargetFlags; }
1836
1837  static bool classof(const JumpTableSDNode *) { return true; }
1838  static bool classof(const SDNode *N) {
1839    return N->getOpcode() == ISD::JumpTable ||
1840           N->getOpcode() == ISD::TargetJumpTable;
1841  }
1842};
1843
1844class ConstantPoolSDNode : public SDNode {
1845  union {
1846    Constant *ConstVal;
1847    MachineConstantPoolValue *MachineCPVal;
1848  } Val;
1849  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1850  unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1851  unsigned char TargetFlags;
1852  friend class SelectionDAG;
1853  ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
1854                     unsigned char TF)
1855    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1856             DebugLoc::getUnknownLoc(),
1857             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1858    assert((int)Offset >= 0 && "Offset is too large");
1859    Val.ConstVal = c;
1860  }
1861  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1862                     EVT VT, int o, unsigned Align, unsigned char TF)
1863    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1864             DebugLoc::getUnknownLoc(),
1865             getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1866    assert((int)Offset >= 0 && "Offset is too large");
1867    Val.MachineCPVal = v;
1868    Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1869  }
1870public:
1871
1872
1873  bool isMachineConstantPoolEntry() const {
1874    return (int)Offset < 0;
1875  }
1876
1877  Constant *getConstVal() const {
1878    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1879    return Val.ConstVal;
1880  }
1881
1882  MachineConstantPoolValue *getMachineCPVal() const {
1883    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1884    return Val.MachineCPVal;
1885  }
1886
1887  int getOffset() const {
1888    return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1889  }
1890
1891  // Return the alignment of this constant pool object, which is either 0 (for
1892  // default alignment) or the desired value.
1893  unsigned getAlignment() const { return Alignment; }
1894  unsigned char getTargetFlags() const { return TargetFlags; }
1895
1896  const Type *getType() const;
1897
1898  static bool classof(const ConstantPoolSDNode *) { return true; }
1899  static bool classof(const SDNode *N) {
1900    return N->getOpcode() == ISD::ConstantPool ||
1901           N->getOpcode() == ISD::TargetConstantPool;
1902  }
1903};
1904
1905class BasicBlockSDNode : public SDNode {
1906  MachineBasicBlock *MBB;
1907  friend class SelectionDAG;
1908  /// Debug info is meaningful and potentially useful here, but we create
1909  /// blocks out of order when they're jumped to, which makes it a bit
1910  /// harder.  Let's see if we need it first.
1911  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1912    : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1913             getSDVTList(MVT::Other)), MBB(mbb) {
1914  }
1915public:
1916
1917  MachineBasicBlock *getBasicBlock() const { return MBB; }
1918
1919  static bool classof(const BasicBlockSDNode *) { return true; }
1920  static bool classof(const SDNode *N) {
1921    return N->getOpcode() == ISD::BasicBlock;
1922  }
1923};
1924
1925/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1926/// BUILD_VECTORs.
1927class BuildVectorSDNode : public SDNode {
1928  // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1929  explicit BuildVectorSDNode();        // Do not implement
1930public:
1931  /// isConstantSplat - Check if this is a constant splat, and if so, find the
1932  /// smallest element size that splats the vector.  If MinSplatBits is
1933  /// nonzero, the element size must be at least that large.  Note that the
1934  /// splat element may be the entire vector (i.e., a one element vector).
1935  /// Returns the splat element value in SplatValue.  Any undefined bits in
1936  /// that value are zero, and the corresponding bits in the SplatUndef mask
1937  /// are set.  The SplatBitSize value is set to the splat element size in
1938  /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1939  /// undefined.  isBigEndian describes the endianness of the target.
1940  bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1941                       unsigned &SplatBitSize, bool &HasAnyUndefs,
1942                       unsigned MinSplatBits = 0, bool isBigEndian = false);
1943
1944  static inline bool classof(const BuildVectorSDNode *) { return true; }
1945  static inline bool classof(const SDNode *N) {
1946    return N->getOpcode() == ISD::BUILD_VECTOR;
1947  }
1948};
1949
1950/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1951/// used when the SelectionDAG needs to make a simple reference to something
1952/// in the LLVM IR representation.
1953///
1954class SrcValueSDNode : public SDNode {
1955  const Value *V;
1956  friend class SelectionDAG;
1957  /// Create a SrcValue for a general value.
1958  explicit SrcValueSDNode(const Value *v)
1959    : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
1960             getSDVTList(MVT::Other)), V(v) {}
1961
1962public:
1963  /// getValue - return the contained Value.
1964  const Value *getValue() const { return V; }
1965
1966  static bool classof(const SrcValueSDNode *) { return true; }
1967  static bool classof(const SDNode *N) {
1968    return N->getOpcode() == ISD::SRCVALUE;
1969  }
1970};
1971
1972
1973class RegisterSDNode : public SDNode {
1974  unsigned Reg;
1975  friend class SelectionDAG;
1976  RegisterSDNode(unsigned reg, EVT VT)
1977    : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
1978             getSDVTList(VT)), Reg(reg) {
1979  }
1980public:
1981
1982  unsigned getReg() const { return Reg; }
1983
1984  static bool classof(const RegisterSDNode *) { return true; }
1985  static bool classof(const SDNode *N) {
1986    return N->getOpcode() == ISD::Register;
1987  }
1988};
1989
1990class BlockAddressSDNode : public SDNode {
1991  BlockAddress *BA;
1992  unsigned char TargetFlags;
1993  friend class SelectionDAG;
1994  BlockAddressSDNode(unsigned NodeTy, EVT VT, BlockAddress *ba,
1995                     unsigned char Flags)
1996    : SDNode(NodeTy, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
1997             BA(ba), TargetFlags(Flags) {
1998  }
1999public:
2000  BlockAddress *getBlockAddress() const { return BA; }
2001  unsigned char getTargetFlags() const { return TargetFlags; }
2002
2003  static bool classof(const BlockAddressSDNode *) { return true; }
2004  static bool classof(const SDNode *N) {
2005    return N->getOpcode() == ISD::BlockAddress ||
2006           N->getOpcode() == ISD::TargetBlockAddress;
2007  }
2008};
2009
2010class LabelSDNode : public SDNode {
2011  SDUse Chain;
2012  unsigned LabelID;
2013  friend class SelectionDAG;
2014  LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2015    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2016    InitOperands(&Chain, ch);
2017  }
2018public:
2019  unsigned getLabelID() const { return LabelID; }
2020
2021  static bool classof(const LabelSDNode *) { return true; }
2022  static bool classof(const SDNode *N) {
2023    return N->getOpcode() == ISD::EH_LABEL;
2024  }
2025};
2026
2027class ExternalSymbolSDNode : public SDNode {
2028  const char *Symbol;
2029  unsigned char TargetFlags;
2030
2031  friend class SelectionDAG;
2032  ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
2033    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2034             DebugLoc::getUnknownLoc(),
2035             getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
2036  }
2037public:
2038
2039  const char *getSymbol() const { return Symbol; }
2040  unsigned char getTargetFlags() const { return TargetFlags; }
2041
2042  static bool classof(const ExternalSymbolSDNode *) { return true; }
2043  static bool classof(const SDNode *N) {
2044    return N->getOpcode() == ISD::ExternalSymbol ||
2045           N->getOpcode() == ISD::TargetExternalSymbol;
2046  }
2047};
2048
2049class CondCodeSDNode : public SDNode {
2050  ISD::CondCode Condition;
2051  friend class SelectionDAG;
2052  explicit CondCodeSDNode(ISD::CondCode Cond)
2053    : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2054             getSDVTList(MVT::Other)), Condition(Cond) {
2055  }
2056public:
2057
2058  ISD::CondCode get() const { return Condition; }
2059
2060  static bool classof(const CondCodeSDNode *) { return true; }
2061  static bool classof(const SDNode *N) {
2062    return N->getOpcode() == ISD::CONDCODE;
2063  }
2064};
2065
2066/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2067/// future and most targets don't support it.
2068class CvtRndSatSDNode : public SDNode {
2069  ISD::CvtCode CvtCode;
2070  friend class SelectionDAG;
2071  explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
2072                           unsigned NumOps, ISD::CvtCode Code)
2073    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2074      CvtCode(Code) {
2075    assert(NumOps == 5 && "wrong number of operations");
2076  }
2077public:
2078  ISD::CvtCode getCvtCode() const { return CvtCode; }
2079
2080  static bool classof(const CvtRndSatSDNode *) { return true; }
2081  static bool classof(const SDNode *N) {
2082    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2083  }
2084};
2085
2086namespace ISD {
2087  struct ArgFlagsTy {
2088  private:
2089    static const uint64_t NoFlagSet      = 0ULL;
2090    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2091    static const uint64_t ZExtOffs       = 0;
2092    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2093    static const uint64_t SExtOffs       = 1;
2094    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2095    static const uint64_t InRegOffs      = 2;
2096    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2097    static const uint64_t SRetOffs       = 3;
2098    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2099    static const uint64_t ByValOffs      = 4;
2100    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2101    static const uint64_t NestOffs       = 5;
2102    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2103    static const uint64_t ByValAlignOffs = 6;
2104    static const uint64_t Split          = 1ULL << 10;
2105    static const uint64_t SplitOffs      = 10;
2106    static const uint64_t OrigAlign      = 0x1FULL<<27;
2107    static const uint64_t OrigAlignOffs  = 27;
2108    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2109    static const uint64_t ByValSizeOffs  = 32;
2110
2111    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2112
2113    uint64_t Flags;
2114  public:
2115    ArgFlagsTy() : Flags(0) { }
2116
2117    bool isZExt()   const { return Flags & ZExt; }
2118    void setZExt()  { Flags |= One << ZExtOffs; }
2119
2120    bool isSExt()   const { return Flags & SExt; }
2121    void setSExt()  { Flags |= One << SExtOffs; }
2122
2123    bool isInReg()  const { return Flags & InReg; }
2124    void setInReg() { Flags |= One << InRegOffs; }
2125
2126    bool isSRet()   const { return Flags & SRet; }
2127    void setSRet()  { Flags |= One << SRetOffs; }
2128
2129    bool isByVal()  const { return Flags & ByVal; }
2130    void setByVal() { Flags |= One << ByValOffs; }
2131
2132    bool isNest()   const { return Flags & Nest; }
2133    void setNest()  { Flags |= One << NestOffs; }
2134
2135    unsigned getByValAlign() const {
2136      return (unsigned)
2137        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2138    }
2139    void setByValAlign(unsigned A) {
2140      Flags = (Flags & ~ByValAlign) |
2141        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2142    }
2143
2144    bool isSplit()   const { return Flags & Split; }
2145    void setSplit()  { Flags |= One << SplitOffs; }
2146
2147    unsigned getOrigAlign() const {
2148      return (unsigned)
2149        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2150    }
2151    void setOrigAlign(unsigned A) {
2152      Flags = (Flags & ~OrigAlign) |
2153        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2154    }
2155
2156    unsigned getByValSize() const {
2157      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2158    }
2159    void setByValSize(unsigned S) {
2160      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2161    }
2162
2163    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2164    std::string getArgFlagsString();
2165
2166    /// getRawBits - Represent the flags as a bunch of bits.
2167    uint64_t getRawBits() const { return Flags; }
2168  };
2169
2170  /// InputArg - This struct carries flags and type information about a
2171  /// single incoming (formal) argument or incoming (from the perspective
2172  /// of the caller) return value virtual register.
2173  ///
2174  struct InputArg {
2175    ArgFlagsTy Flags;
2176    EVT VT;
2177    bool Used;
2178
2179    InputArg() : VT(MVT::Other), Used(false) {}
2180    InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
2181      : Flags(flags), VT(vt), Used(used) {
2182      assert(VT.isSimple() &&
2183             "InputArg value type must be Simple!");
2184    }
2185  };
2186
2187  /// OutputArg - This struct carries flags and a value for a
2188  /// single outgoing (actual) argument or outgoing (from the perspective
2189  /// of the caller) return value virtual register.
2190  ///
2191  struct OutputArg {
2192    ArgFlagsTy Flags;
2193    SDValue Val;
2194    bool IsFixed;
2195
2196    OutputArg() : IsFixed(false) {}
2197    OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
2198      : Flags(flags), Val(val), IsFixed(isfixed) {
2199      assert(Val.getValueType().isSimple() &&
2200             "OutputArg value type must be Simple!");
2201    }
2202  };
2203}
2204
2205/// VTSDNode - This class is used to represent EVT's, which are used
2206/// to parameterize some operations.
2207class VTSDNode : public SDNode {
2208  EVT ValueType;
2209  friend class SelectionDAG;
2210  explicit VTSDNode(EVT VT)
2211    : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2212             getSDVTList(MVT::Other)), ValueType(VT) {
2213  }
2214public:
2215
2216  EVT getVT() const { return ValueType; }
2217
2218  static bool classof(const VTSDNode *) { return true; }
2219  static bool classof(const SDNode *N) {
2220    return N->getOpcode() == ISD::VALUETYPE;
2221  }
2222};
2223
2224/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2225///
2226class LSBaseSDNode : public MemSDNode {
2227  //! Operand array for load and store
2228  /*!
2229    \note Moving this array to the base class captures more
2230    common functionality shared between LoadSDNode and
2231    StoreSDNode
2232   */
2233  SDUse Ops[4];
2234public:
2235  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2236               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2237               EVT MemVT, MachineMemOperand *MMO)
2238    : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
2239    SubclassData |= AM << 2;
2240    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2241    InitOperands(Ops, Operands, numOperands);
2242    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2243           "Only indexed loads and stores have a non-undef offset operand");
2244  }
2245
2246  const SDValue &getOffset() const {
2247    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2248  }
2249
2250  /// getAddressingMode - Return the addressing mode for this load or store:
2251  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2252  ISD::MemIndexedMode getAddressingMode() const {
2253    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2254  }
2255
2256  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2257  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2258
2259  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2260  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2261
2262  static bool classof(const LSBaseSDNode *) { return true; }
2263  static bool classof(const SDNode *N) {
2264    return N->getOpcode() == ISD::LOAD ||
2265           N->getOpcode() == ISD::STORE;
2266  }
2267};
2268
2269/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2270///
2271class LoadSDNode : public LSBaseSDNode {
2272  friend class SelectionDAG;
2273  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2274             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2275             MachineMemOperand *MMO)
2276    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2277                   VTs, AM, MemVT, MMO) {
2278    SubclassData |= (unsigned short)ETy;
2279    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2280    assert(readMem() && "Load MachineMemOperand is not a load!");
2281    assert(!writeMem() && "Load MachineMemOperand is a store!");
2282  }
2283public:
2284
2285  /// getExtensionType - Return whether this is a plain node,
2286  /// or one of the varieties of value-extending loads.
2287  ISD::LoadExtType getExtensionType() const {
2288    return ISD::LoadExtType(SubclassData & 3);
2289  }
2290
2291  const SDValue &getBasePtr() const { return getOperand(1); }
2292  const SDValue &getOffset() const { return getOperand(2); }
2293
2294  static bool classof(const LoadSDNode *) { return true; }
2295  static bool classof(const SDNode *N) {
2296    return N->getOpcode() == ISD::LOAD;
2297  }
2298};
2299
2300/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2301///
2302class StoreSDNode : public LSBaseSDNode {
2303  friend class SelectionDAG;
2304  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2305              ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2306              MachineMemOperand *MMO)
2307    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2308                   VTs, AM, MemVT, MMO) {
2309    SubclassData |= (unsigned short)isTrunc;
2310    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2311    assert(!readMem() && "Store MachineMemOperand is a load!");
2312    assert(writeMem() && "Store MachineMemOperand is not a store!");
2313  }
2314public:
2315
2316  /// isTruncatingStore - Return true if the op does a truncation before store.
2317  /// For integers this is the same as doing a TRUNCATE and storing the result.
2318  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2319  bool isTruncatingStore() const { return SubclassData & 1; }
2320
2321  const SDValue &getValue() const { return getOperand(1); }
2322  const SDValue &getBasePtr() const { return getOperand(2); }
2323  const SDValue &getOffset() const { return getOperand(3); }
2324
2325  static bool classof(const StoreSDNode *) { return true; }
2326  static bool classof(const SDNode *N) {
2327    return N->getOpcode() == ISD::STORE;
2328  }
2329};
2330
2331/// MachineSDNode - An SDNode that represents everything that will be needed
2332/// to construct a MachineInstr. These nodes are created during the
2333/// instruction selection proper phase.
2334///
2335class MachineSDNode : public SDNode {
2336public:
2337  typedef MachineMemOperand **mmo_iterator;
2338
2339private:
2340  friend class SelectionDAG;
2341  MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
2342    : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
2343
2344  /// LocalOperands - Operands for this instruction, if they fit here. If
2345  /// they don't, this field is unused.
2346  SDUse LocalOperands[4];
2347
2348  /// MemRefs - Memory reference descriptions for this instruction.
2349  mmo_iterator MemRefs;
2350  mmo_iterator MemRefsEnd;
2351
2352public:
2353  mmo_iterator memoperands_begin() const { return MemRefs; }
2354  mmo_iterator memoperands_end() const { return MemRefsEnd; }
2355  bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
2356
2357  /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
2358  /// list. This does not transfer ownership.
2359  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
2360    MemRefs = NewMemRefs;
2361    MemRefsEnd = NewMemRefsEnd;
2362  }
2363
2364  static bool classof(const MachineSDNode *) { return true; }
2365  static bool classof(const SDNode *N) {
2366    return N->isMachineOpcode();
2367  }
2368};
2369
2370class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2371                                            SDNode, ptrdiff_t> {
2372  SDNode *Node;
2373  unsigned Operand;
2374
2375  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2376public:
2377  bool operator==(const SDNodeIterator& x) const {
2378    return Operand == x.Operand;
2379  }
2380  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2381
2382  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2383    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2384    Operand = I.Operand;
2385    return *this;
2386  }
2387
2388  pointer operator*() const {
2389    return Node->getOperand(Operand).getNode();
2390  }
2391  pointer operator->() const { return operator*(); }
2392
2393  SDNodeIterator& operator++() {                // Preincrement
2394    ++Operand;
2395    return *this;
2396  }
2397  SDNodeIterator operator++(int) { // Postincrement
2398    SDNodeIterator tmp = *this; ++*this; return tmp;
2399  }
2400
2401  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2402  static SDNodeIterator end  (SDNode *N) {
2403    return SDNodeIterator(N, N->getNumOperands());
2404  }
2405
2406  unsigned getOperand() const { return Operand; }
2407  const SDNode *getNode() const { return Node; }
2408};
2409
2410template <> struct GraphTraits<SDNode*> {
2411  typedef SDNode NodeType;
2412  typedef SDNodeIterator ChildIteratorType;
2413  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2414  static inline ChildIteratorType child_begin(NodeType *N) {
2415    return SDNodeIterator::begin(N);
2416  }
2417  static inline ChildIteratorType child_end(NodeType *N) {
2418    return SDNodeIterator::end(N);
2419  }
2420};
2421
2422/// LargestSDNode - The largest SDNode class.
2423///
2424typedef LoadSDNode LargestSDNode;
2425
2426/// MostAlignedSDNode - The SDNode class with the greatest alignment
2427/// requirement.
2428///
2429typedef GlobalAddressSDNode MostAlignedSDNode;
2430
2431namespace ISD {
2432  /// isNormalLoad - Returns true if the specified node is a non-extending
2433  /// and unindexed load.
2434  inline bool isNormalLoad(const SDNode *N) {
2435    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2436    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2437      Ld->getAddressingMode() == ISD::UNINDEXED;
2438  }
2439
2440  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2441  /// load.
2442  inline bool isNON_EXTLoad(const SDNode *N) {
2443    return isa<LoadSDNode>(N) &&
2444      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2445  }
2446
2447  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2448  ///
2449  inline bool isEXTLoad(const SDNode *N) {
2450    return isa<LoadSDNode>(N) &&
2451      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2452  }
2453
2454  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2455  ///
2456  inline bool isSEXTLoad(const SDNode *N) {
2457    return isa<LoadSDNode>(N) &&
2458      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2459  }
2460
2461  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2462  ///
2463  inline bool isZEXTLoad(const SDNode *N) {
2464    return isa<LoadSDNode>(N) &&
2465      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2466  }
2467
2468  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2469  ///
2470  inline bool isUNINDEXEDLoad(const SDNode *N) {
2471    return isa<LoadSDNode>(N) &&
2472      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2473  }
2474
2475  /// isNormalStore - Returns true if the specified node is a non-truncating
2476  /// and unindexed store.
2477  inline bool isNormalStore(const SDNode *N) {
2478    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2479    return St && !St->isTruncatingStore() &&
2480      St->getAddressingMode() == ISD::UNINDEXED;
2481  }
2482
2483  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2484  /// store.
2485  inline bool isNON_TRUNCStore(const SDNode *N) {
2486    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2487  }
2488
2489  /// isTRUNCStore - Returns true if the specified node is a truncating
2490  /// store.
2491  inline bool isTRUNCStore(const SDNode *N) {
2492    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2493  }
2494
2495  /// isUNINDEXEDStore - Returns true if the specified node is an
2496  /// unindexed store.
2497  inline bool isUNINDEXEDStore(const SDNode *N) {
2498    return isa<StoreSDNode>(N) &&
2499      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2500  }
2501}
2502
2503
2504} // end llvm namespace
2505
2506#endif
2507