SelectionDAGNodes.h revision 7572eb81eee93b0c666ddc5f5ff0ff72f17574fd
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // EntryToken - This is the marker used to indicate the start of the region.
51    EntryToken,
52
53    // Token factor - This node takes multiple tokens as input and produces a
54    // single token result.  This is used to represent the fact that the operand
55    // operators are independent of each other.
56    TokenFactor,
57
58    // AssertSext, AssertZext - These nodes record if a register contains a
59    // value that has already been zero or sign extended from a narrower type.
60    // These nodes take two operands.  The first is the node that has already
61    // been extended, and the second is a value type node indicating the width
62    // of the extension
63    AssertSext, AssertZext,
64
65    // Various leaf nodes.
66    Constant, ConstantFP, STRING,
67    GlobalAddress, FrameIndex, ConstantPool,
68    BasicBlock, ExternalSymbol, VALUETYPE, CONDCODE, Register,
69
70    // ConstantVec works like Constant or ConstantFP, except that it is not a
71    // leaf node.  All operands are either Constant or ConstantFP nodes.
72    ConstantVec,
73
74    // TargetConstant - Like Constant, but the DAG does not do any folding or
75    // simplification of the constant.  This is used by the DAG->DAG selector.
76    TargetConstant,
77
78    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
79    // anything else with this node, and this is valid in the target-specific
80    // dag, turning into a GlobalAddress operand.
81    TargetGlobalAddress,
82    TargetFrameIndex,
83    TargetConstantPool,
84    TargetExternalSymbol,
85
86    // CopyToReg - This node has three operands: a chain, a register number to
87    // set to this value, and a value.
88    CopyToReg,
89
90    // CopyFromReg - This node indicates that the input value is a virtual or
91    // physical register that is defined outside of the scope of this
92    // SelectionDAG.  The register is available from the RegSDNode object.
93    CopyFromReg,
94
95    // UNDEF - An undefined node
96    UNDEF,
97
98    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
99    // a Constant, which is required to be operand #1), element of the aggregate
100    // value specified as operand #0.  This is only for use before legalization,
101    // for values that will be broken into multiple registers.
102    EXTRACT_ELEMENT,
103
104    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
105    // two values of the same integer value type, this produces a value twice as
106    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
107    BUILD_PAIR,
108
109    // MERGE_VALUES - This node takes multiple discrete operands and returns
110    // them all as its individual results.  This nodes has exactly the same
111    // number of inputs and outputs, and is only valid before legalization.
112    // This node is useful for some pieces of the code generator that want to
113    // think about a single node with multiple results, not multiple nodes.
114    MERGE_VALUES,
115
116    // Simple integer binary arithmetic operators.
117    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
118
119    // Simple binary floating point operators.
120    FADD, FSUB, FMUL, FDIV, FREM,
121
122    // Simple abstract vector operators.  Unlike the integer and floating point
123    // binary operators, these nodes also take two additional operands:
124    // a constant element count, and a value type node indicating the type of
125    // the elements.  The order is op0, op1, count, type.  All vector opcodes,
126    // including VLOAD, must currently have count and type as their 3rd and 4th
127    // arguments.
128    VADD, VSUB, VMUL,
129
130    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
131    // an unsigned/signed value of type i[2*n], then return the top part.
132    MULHU, MULHS,
133
134    // Bitwise operators - logical and, logical or, logical xor, shift left,
135    // shift right algebraic (shift in sign bits), shift right logical (shift in
136    // zeroes), rotate left, rotate right, and byteswap.
137    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
138
139    // Counting operators
140    CTTZ, CTLZ, CTPOP,
141
142    // Select
143    SELECT,
144
145    // Select with condition operator - This selects between a true value and
146    // a false value (ops #2 and #3) based on the boolean result of comparing
147    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
148    // condition code in op #4, a CondCodeSDNode.
149    SELECT_CC,
150
151    // SetCC operator - This evaluates to a boolean (i1) true value if the
152    // condition is true.  The operands to this are the left and right operands
153    // to compare (ops #0, and #1) and the condition code to compare them with
154    // (op #2) as a CondCodeSDNode.
155    SETCC,
156
157    // ADD_PARTS/SUB_PARTS - These operators take two logical operands which are
158    // broken into a multiple pieces each, and return the resulting pieces of
159    // doing an atomic add/sub operation.  This is used to handle add/sub of
160    // expanded types.  The operation ordering is:
161    //       [Lo,Hi] = op [LoLHS,HiLHS], [LoRHS,HiRHS]
162    ADD_PARTS, SUB_PARTS,
163
164    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
165    // integer shift operations, just like ADD/SUB_PARTS.  The operation
166    // ordering is:
167    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
168    SHL_PARTS, SRA_PARTS, SRL_PARTS,
169
170    // Conversion operators.  These are all single input single output
171    // operations.  For all of these, the result type must be strictly
172    // wider or narrower (depending on the operation) than the source
173    // type.
174
175    // SIGN_EXTEND - Used for integer types, replicating the sign bit
176    // into new bits.
177    SIGN_EXTEND,
178
179    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
180    ZERO_EXTEND,
181
182    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
183    ANY_EXTEND,
184
185    // TRUNCATE - Completely drop the high bits.
186    TRUNCATE,
187
188    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
189    // depends on the first letter) to floating point.
190    SINT_TO_FP,
191    UINT_TO_FP,
192
193    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
194    // sign extend a small value in a large integer register (e.g. sign
195    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
196    // with the 7th bit).  The size of the smaller type is indicated by the 1th
197    // operand, a ValueType node.
198    SIGN_EXTEND_INREG,
199
200    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
201    // integer.
202    FP_TO_SINT,
203    FP_TO_UINT,
204
205    // FP_ROUND - Perform a rounding operation from the current
206    // precision down to the specified precision (currently always 64->32).
207    FP_ROUND,
208
209    // FP_ROUND_INREG - This operator takes a floating point register, and
210    // rounds it to a floating point value.  It then promotes it and returns it
211    // in a register of the same size.  This operation effectively just discards
212    // excess precision.  The type to round down to is specified by the 1th
213    // operation, a VTSDNode (currently always 64->32->64).
214    FP_ROUND_INREG,
215
216    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
217    FP_EXTEND,
218
219    // BIT_CONVERT - Theis operator converts between integer and FP values, as
220    // if one was stored to memory as integer and the other was loaded from the
221    // same address (or equivalently for vector format conversions, etc).  The
222    // source and result are required to have the same bit size (e.g.
223    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
224    // conversions, but that is a noop, deleted by getNode().
225    BIT_CONVERT,
226
227    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
228    // absolute value, square root, sine and cosine operations.
229    FNEG, FABS, FSQRT, FSIN, FCOS,
230
231    // Other operators.  LOAD and STORE have token chains as their first
232    // operand, then the same operands as an LLVM load/store instruction, then a
233    // SRCVALUE node that provides alias analysis information.
234    LOAD, STORE,
235
236    // Abstract vector version of LOAD.  VLOAD has a token chain as the first
237    // operand, followed by a pointer operand, a constant element count, a value
238    // type node indicating the type of the elements, and a SRCVALUE node.
239    VLOAD,
240
241    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
242    // memory and extend them to a larger value (e.g. load a byte into a word
243    // register).  All three of these have four operands, a token chain, a
244    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
245    // indicating the type to load.
246    //
247    // SEXTLOAD loads the integer operand and sign extends it to a larger
248    //          integer result type.
249    // ZEXTLOAD loads the integer operand and zero extends it to a larger
250    //          integer result type.
251    // EXTLOAD  is used for two things: floating point extending loads, and
252    //          integer extending loads where it doesn't matter what the high
253    //          bits are set to.  The code generator is allowed to codegen this
254    //          into whichever operation is more efficient.
255    EXTLOAD, SEXTLOAD, ZEXTLOAD,
256
257    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
258    // value and stores it to memory in one operation.  This can be used for
259    // either integer or floating point operands.  The first four operands of
260    // this are the same as a standard store.  The fifth is the ValueType to
261    // store it as (which will be smaller than the source value).
262    TRUNCSTORE,
263
264    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
265    // to a specified boundary.  The first operand is the token chain, the
266    // second is the number of bytes to allocate, and the third is the alignment
267    // boundary.  The size is guaranteed to be a multiple of the stack
268    // alignment, and the alignment is guaranteed to be bigger than the stack
269    // alignment (if required) or 0 to get standard stack alignment.
270    DYNAMIC_STACKALLOC,
271
272    // Control flow instructions.  These all have token chains.
273
274    // BR - Unconditional branch.  The first operand is the chain
275    // operand, the second is the MBB to branch to.
276    BR,
277
278    // BRCOND - Conditional branch.  The first operand is the chain,
279    // the second is the condition, the third is the block to branch
280    // to if the condition is true.
281    BRCOND,
282
283    // BRCONDTWOWAY - Two-way conditional branch.  The first operand is the
284    // chain, the second is the condition, the third is the block to branch to
285    // if true, and the forth is the block to branch to if false.  Targets
286    // usually do not implement this, preferring to have legalize demote the
287    // operation to BRCOND/BR pairs when necessary.
288    BRCONDTWOWAY,
289
290    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
291    // that the condition is represented as condition code, and two nodes to
292    // compare, rather than as a combined SetCC node.  The operands in order are
293    // chain, cc, lhs, rhs, block to branch to if condition is true.
294    BR_CC,
295
296    // BRTWOWAY_CC - Two-way conditional branch.  The operands in order are
297    // chain, cc, lhs, rhs, block to branch to if condition is true, block to
298    // branch to if condition is false.  Targets usually do not implement this,
299    // preferring to have legalize demote the operation to BRCOND/BR pairs.
300    BRTWOWAY_CC,
301
302    // RET - Return from function.  The first operand is the chain,
303    // and any subsequent operands are the return values for the
304    // function.  This operation can have variable number of operands.
305    RET,
306
307    // CALL - Call to a function pointer.  The first operand is the chain, the
308    // second is the destination function pointer (a GlobalAddress for a direct
309    // call).  Arguments have already been lowered to explicit DAGs according to
310    // the calling convention in effect here.  TAILCALL is the same as CALL, but
311    // the callee is known not to access the stack of the caller.
312    CALL,
313    TAILCALL,
314
315    // INLINEASM - Represents an inline asm block.  This node always has two
316    // return values: a chain and a flag result.  The inputs are as follows:
317    //   Operand #0   : Input chain.
318    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
319    //   Operand #2n+2: A RegisterNode.
320    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
321    //   Operand #last: Optional, an incoming flag.
322    INLINEASM,
323
324    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
325    // value, the same type as the pointer type for the system, and an output
326    // chain.
327    STACKSAVE,
328
329    // STACKRESTORE has two operands, an input chain and a pointer to restore to
330    // it returns an output chain.
331    STACKRESTORE,
332
333    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
334    // correspond to the operands of the LLVM intrinsic functions.  The only
335    // result is a token chain.  The alignment argument is guaranteed to be a
336    // Constant node.
337    MEMSET,
338    MEMMOVE,
339    MEMCPY,
340
341    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
342    // a call sequence, and carry arbitrary information that target might want
343    // to know.  The first operand is a chain, the rest are specified by the
344    // target and not touched by the DAG optimizers.
345    CALLSEQ_START,  // Beginning of a call sequence
346    CALLSEQ_END,    // End of a call sequence
347
348    // VAARG - VAARG has three operands: an input chain, a pointer, and a
349    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
350    VAARG,
351
352    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
353    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
354    // source.
355    VACOPY,
356
357    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
358    // pointer, and a SRCVALUE.
359    VAEND, VASTART,
360
361    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
362    // locations with their value.  This allows one use alias analysis
363    // information in the backend.
364    SRCVALUE,
365
366    // PCMARKER - This corresponds to the pcmarker intrinsic.
367    PCMARKER,
368
369    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
370    // The only operand is a chain and a value and a chain are produced.  The
371    // value is the contents of the architecture specific cycle counter like
372    // register (or other high accuracy low latency clock source)
373    READCYCLECOUNTER,
374
375    // READPORT, WRITEPORT, READIO, WRITEIO - These correspond to the LLVM
376    // intrinsics of the same name.  The first operand is a token chain, the
377    // other operands match the intrinsic.  These produce a token chain in
378    // addition to a value (if any).
379    READPORT, WRITEPORT, READIO, WRITEIO,
380
381    // HANDLENODE node - Used as a handle for various purposes.
382    HANDLENODE,
383
384    // LOCATION - This node is used to represent a source location for debug
385    // info.  It takes token chain as input, then a line number, then a column
386    // number, then a filename, then a working dir.  It produces a token chain
387    // as output.
388    LOCATION,
389
390    // DEBUG_LOC - This node is used to represent source line information
391    // embedded in the code.  It takes a token chain as input, then a line
392    // number, then a column then a file id (provided by MachineDebugInfo.) It
393    // produces a token chain as output.
394    DEBUG_LOC,
395
396    // DEBUG_LABEL - This node is used to mark a location in the code where a
397    // label should be generated for use by the debug information.  It takes a
398    // token chain as input and then a unique id (provided by MachineDebugInfo.)
399    // It produces a token chain as output.
400    DEBUG_LABEL,
401
402    // BUILTIN_OP_END - This must be the last enum value in this list.
403    BUILTIN_OP_END,
404  };
405
406  //===--------------------------------------------------------------------===//
407  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
408  /// below work out, when considering SETFALSE (something that never exists
409  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
410  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
411  /// to.  If the "N" column is 1, the result of the comparison is undefined if
412  /// the input is a NAN.
413  ///
414  /// All of these (except for the 'always folded ops') should be handled for
415  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
416  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
417  ///
418  /// Note that these are laid out in a specific order to allow bit-twiddling
419  /// to transform conditions.
420  enum CondCode {
421    // Opcode          N U L G E       Intuitive operation
422    SETFALSE,      //    0 0 0 0       Always false (always folded)
423    SETOEQ,        //    0 0 0 1       True if ordered and equal
424    SETOGT,        //    0 0 1 0       True if ordered and greater than
425    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
426    SETOLT,        //    0 1 0 0       True if ordered and less than
427    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
428    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
429    SETO,          //    0 1 1 1       True if ordered (no nans)
430    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
431    SETUEQ,        //    1 0 0 1       True if unordered or equal
432    SETUGT,        //    1 0 1 0       True if unordered or greater than
433    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
434    SETULT,        //    1 1 0 0       True if unordered or less than
435    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
436    SETUNE,        //    1 1 1 0       True if unordered or not equal
437    SETTRUE,       //    1 1 1 1       Always true (always folded)
438    // Don't care operations: undefined if the input is a nan.
439    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
440    SETEQ,         //  1 X 0 0 1       True if equal
441    SETGT,         //  1 X 0 1 0       True if greater than
442    SETGE,         //  1 X 0 1 1       True if greater than or equal
443    SETLT,         //  1 X 1 0 0       True if less than
444    SETLE,         //  1 X 1 0 1       True if less than or equal
445    SETNE,         //  1 X 1 1 0       True if not equal
446    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
447
448    SETCC_INVALID,      // Marker value.
449  };
450
451  /// isSignedIntSetCC - Return true if this is a setcc instruction that
452  /// performs a signed comparison when used with integer operands.
453  inline bool isSignedIntSetCC(CondCode Code) {
454    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
455  }
456
457  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
458  /// performs an unsigned comparison when used with integer operands.
459  inline bool isUnsignedIntSetCC(CondCode Code) {
460    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
461  }
462
463  /// isTrueWhenEqual - Return true if the specified condition returns true if
464  /// the two operands to the condition are equal.  Note that if one of the two
465  /// operands is a NaN, this value is meaningless.
466  inline bool isTrueWhenEqual(CondCode Cond) {
467    return ((int)Cond & 1) != 0;
468  }
469
470  /// getUnorderedFlavor - This function returns 0 if the condition is always
471  /// false if an operand is a NaN, 1 if the condition is always true if the
472  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
473  /// NaN.
474  inline unsigned getUnorderedFlavor(CondCode Cond) {
475    return ((int)Cond >> 3) & 3;
476  }
477
478  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
479  /// 'op' is a valid SetCC operation.
480  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
481
482  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
483  /// when given the operation for (X op Y).
484  CondCode getSetCCSwappedOperands(CondCode Operation);
485
486  /// getSetCCOrOperation - Return the result of a logical OR between different
487  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
488  /// function returns SETCC_INVALID if it is not possible to represent the
489  /// resultant comparison.
490  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
491
492  /// getSetCCAndOperation - Return the result of a logical AND between
493  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
494  /// function returns SETCC_INVALID if it is not possible to represent the
495  /// resultant comparison.
496  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
497}  // end llvm::ISD namespace
498
499
500//===----------------------------------------------------------------------===//
501/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
502/// values as the result of a computation.  Many nodes return multiple values,
503/// from loads (which define a token and a return value) to ADDC (which returns
504/// a result and a carry value), to calls (which may return an arbitrary number
505/// of values).
506///
507/// As such, each use of a SelectionDAG computation must indicate the node that
508/// computes it as well as which return value to use from that node.  This pair
509/// of information is represented with the SDOperand value type.
510///
511class SDOperand {
512public:
513  SDNode *Val;        // The node defining the value we are using.
514  unsigned ResNo;     // Which return value of the node we are using.
515
516  SDOperand() : Val(0) {}
517  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
518
519  bool operator==(const SDOperand &O) const {
520    return Val == O.Val && ResNo == O.ResNo;
521  }
522  bool operator!=(const SDOperand &O) const {
523    return !operator==(O);
524  }
525  bool operator<(const SDOperand &O) const {
526    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
527  }
528
529  SDOperand getValue(unsigned R) const {
530    return SDOperand(Val, R);
531  }
532
533  /// getValueType - Return the ValueType of the referenced return value.
534  ///
535  inline MVT::ValueType getValueType() const;
536
537  // Forwarding methods - These forward to the corresponding methods in SDNode.
538  inline unsigned getOpcode() const;
539  inline unsigned getNodeDepth() const;
540  inline unsigned getNumOperands() const;
541  inline const SDOperand &getOperand(unsigned i) const;
542  inline bool isTargetOpcode() const;
543  inline unsigned getTargetOpcode() const;
544
545  /// hasOneUse - Return true if there is exactly one operation using this
546  /// result value of the defining operator.
547  inline bool hasOneUse() const;
548};
549
550
551/// simplify_type specializations - Allow casting operators to work directly on
552/// SDOperands as if they were SDNode*'s.
553template<> struct simplify_type<SDOperand> {
554  typedef SDNode* SimpleType;
555  static SimpleType getSimplifiedValue(const SDOperand &Val) {
556    return static_cast<SimpleType>(Val.Val);
557  }
558};
559template<> struct simplify_type<const SDOperand> {
560  typedef SDNode* SimpleType;
561  static SimpleType getSimplifiedValue(const SDOperand &Val) {
562    return static_cast<SimpleType>(Val.Val);
563  }
564};
565
566
567/// SDNode - Represents one node in the SelectionDAG.
568///
569class SDNode {
570  /// NodeType - The operation that this node performs.
571  ///
572  unsigned short NodeType;
573
574  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
575  /// means that leaves have a depth of 1, things that use only leaves have a
576  /// depth of 2, etc.
577  unsigned short NodeDepth;
578
579  /// OperandList - The values that are used by this operation.
580  ///
581  SDOperand *OperandList;
582
583  /// ValueList - The types of the values this node defines.  SDNode's may
584  /// define multiple values simultaneously.
585  MVT::ValueType *ValueList;
586
587  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
588  unsigned short NumOperands, NumValues;
589
590  /// Prev/Next pointers - These pointers form the linked list of of the
591  /// AllNodes list in the current DAG.
592  SDNode *Prev, *Next;
593  friend struct ilist_traits<SDNode>;
594
595  /// Uses - These are all of the SDNode's that use a value produced by this
596  /// node.
597  std::vector<SDNode*> Uses;
598public:
599  virtual ~SDNode() {
600    assert(NumOperands == 0 && "Operand list not cleared before deletion");
601  }
602
603  //===--------------------------------------------------------------------===//
604  //  Accessors
605  //
606  unsigned getOpcode()  const { return NodeType; }
607  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
608  unsigned getTargetOpcode() const {
609    assert(isTargetOpcode() && "Not a target opcode!");
610    return NodeType - ISD::BUILTIN_OP_END;
611  }
612
613  size_t use_size() const { return Uses.size(); }
614  bool use_empty() const { return Uses.empty(); }
615  bool hasOneUse() const { return Uses.size() == 1; }
616
617  /// getNodeDepth - Return the distance from this node to the leaves in the
618  /// graph.  The leaves have a depth of 1.
619  unsigned getNodeDepth() const { return NodeDepth; }
620
621  typedef std::vector<SDNode*>::const_iterator use_iterator;
622  use_iterator use_begin() const { return Uses.begin(); }
623  use_iterator use_end() const { return Uses.end(); }
624
625  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
626  /// indicated value.  This method ignores uses of other values defined by this
627  /// operation.
628  bool hasNUsesOfValue(unsigned NUses, unsigned Value);
629
630  /// getNumOperands - Return the number of values used by this operation.
631  ///
632  unsigned getNumOperands() const { return NumOperands; }
633
634  const SDOperand &getOperand(unsigned Num) const {
635    assert(Num < NumOperands && "Invalid child # of SDNode!");
636    return OperandList[Num];
637  }
638  typedef const SDOperand* op_iterator;
639  op_iterator op_begin() const { return OperandList; }
640  op_iterator op_end() const { return OperandList+NumOperands; }
641
642
643  /// getNumValues - Return the number of values defined/returned by this
644  /// operator.
645  ///
646  unsigned getNumValues() const { return NumValues; }
647
648  /// getValueType - Return the type of a specified result.
649  ///
650  MVT::ValueType getValueType(unsigned ResNo) const {
651    assert(ResNo < NumValues && "Illegal result number!");
652    return ValueList[ResNo];
653  }
654
655  typedef const MVT::ValueType* value_iterator;
656  value_iterator value_begin() const { return ValueList; }
657  value_iterator value_end() const { return ValueList+NumValues; }
658
659  /// getOperationName - Return the opcode of this operation for printing.
660  ///
661  const char* getOperationName(const SelectionDAG *G = 0) const;
662  void dump() const;
663  void dump(const SelectionDAG *G) const;
664
665  static bool classof(const SDNode *) { return true; }
666
667
668  /// setAdjCallChain - This method should only be used by the legalizer.
669  void setAdjCallChain(SDOperand N);
670  void setAdjCallFlag(SDOperand N);
671
672protected:
673  friend class SelectionDAG;
674
675  /// getValueTypeList - Return a pointer to the specified value type.
676  ///
677  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
678
679  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
680    OperandList = 0; NumOperands = 0;
681    ValueList = getValueTypeList(VT);
682    NumValues = 1;
683    Prev = 0; Next = 0;
684  }
685  SDNode(unsigned NT, SDOperand Op)
686    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
687    OperandList = new SDOperand[1];
688    OperandList[0] = Op;
689    NumOperands = 1;
690    Op.Val->Uses.push_back(this);
691    ValueList = 0;
692    NumValues = 0;
693    Prev = 0; Next = 0;
694  }
695  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
696    : NodeType(NT) {
697    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
698      NodeDepth = N1.Val->getNodeDepth()+1;
699    else
700      NodeDepth = N2.Val->getNodeDepth()+1;
701    OperandList = new SDOperand[2];
702    OperandList[0] = N1;
703    OperandList[1] = N2;
704    NumOperands = 2;
705    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
706    ValueList = 0;
707    NumValues = 0;
708    Prev = 0; Next = 0;
709  }
710  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
711    : NodeType(NT) {
712    unsigned ND = N1.Val->getNodeDepth();
713    if (ND < N2.Val->getNodeDepth())
714      ND = N2.Val->getNodeDepth();
715    if (ND < N3.Val->getNodeDepth())
716      ND = N3.Val->getNodeDepth();
717    NodeDepth = ND+1;
718
719    OperandList = new SDOperand[3];
720    OperandList[0] = N1;
721    OperandList[1] = N2;
722    OperandList[2] = N3;
723    NumOperands = 3;
724
725    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
726    N3.Val->Uses.push_back(this);
727    ValueList = 0;
728    NumValues = 0;
729    Prev = 0; Next = 0;
730  }
731  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
732    : NodeType(NT) {
733    unsigned ND = N1.Val->getNodeDepth();
734    if (ND < N2.Val->getNodeDepth())
735      ND = N2.Val->getNodeDepth();
736    if (ND < N3.Val->getNodeDepth())
737      ND = N3.Val->getNodeDepth();
738    if (ND < N4.Val->getNodeDepth())
739      ND = N4.Val->getNodeDepth();
740    NodeDepth = ND+1;
741
742    OperandList = new SDOperand[4];
743    OperandList[0] = N1;
744    OperandList[1] = N2;
745    OperandList[2] = N3;
746    OperandList[3] = N4;
747    NumOperands = 4;
748
749    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
750    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
751    ValueList = 0;
752    NumValues = 0;
753    Prev = 0; Next = 0;
754  }
755  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
756    NumOperands = Nodes.size();
757    OperandList = new SDOperand[NumOperands];
758
759    unsigned ND = 0;
760    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
761      OperandList[i] = Nodes[i];
762      SDNode *N = OperandList[i].Val;
763      N->Uses.push_back(this);
764      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
765    }
766    NodeDepth = ND+1;
767    ValueList = 0;
768    NumValues = 0;
769    Prev = 0; Next = 0;
770  }
771
772  /// MorphNodeTo - This clears the return value and operands list, and sets the
773  /// opcode of the node to the specified value.  This should only be used by
774  /// the SelectionDAG class.
775  void MorphNodeTo(unsigned Opc) {
776    NodeType = Opc;
777    ValueList = 0;
778    NumValues = 0;
779
780    // Clear the operands list, updating used nodes to remove this from their
781    // use list.
782    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
783      I->Val->removeUser(this);
784    delete [] OperandList;
785    OperandList = 0;
786    NumOperands = 0;
787  }
788
789  void setValueTypes(MVT::ValueType VT) {
790    assert(NumValues == 0 && "Should not have values yet!");
791    ValueList = getValueTypeList(VT);
792    NumValues = 1;
793  }
794  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
795    assert(NumValues == 0 && "Should not have values yet!");
796    ValueList = List;
797    NumValues = NumVal;
798  }
799
800  void setOperands(SDOperand Op0) {
801    assert(NumOperands == 0 && "Should not have operands yet!");
802    OperandList = new SDOperand[1];
803    OperandList[0] = Op0;
804    NumOperands = 1;
805    Op0.Val->Uses.push_back(this);
806  }
807  void setOperands(SDOperand Op0, SDOperand Op1) {
808    assert(NumOperands == 0 && "Should not have operands yet!");
809    OperandList = new SDOperand[2];
810    OperandList[0] = Op0;
811    OperandList[1] = Op1;
812    NumOperands = 2;
813    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
814  }
815  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
816    assert(NumOperands == 0 && "Should not have operands yet!");
817    OperandList = new SDOperand[3];
818    OperandList[0] = Op0;
819    OperandList[1] = Op1;
820    OperandList[2] = Op2;
821    NumOperands = 3;
822    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
823    Op2.Val->Uses.push_back(this);
824  }
825  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
826    assert(NumOperands == 0 && "Should not have operands yet!");
827    OperandList = new SDOperand[4];
828    OperandList[0] = Op0;
829    OperandList[1] = Op1;
830    OperandList[2] = Op2;
831    OperandList[3] = Op3;
832    NumOperands = 4;
833    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
834    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
835  }
836  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
837                   SDOperand Op4) {
838    assert(NumOperands == 0 && "Should not have operands yet!");
839    OperandList = new SDOperand[5];
840    OperandList[0] = Op0;
841    OperandList[1] = Op1;
842    OperandList[2] = Op2;
843    OperandList[3] = Op3;
844    OperandList[4] = Op4;
845    NumOperands = 5;
846    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
847    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
848    Op4.Val->Uses.push_back(this);
849  }
850  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
851                   SDOperand Op4, SDOperand Op5) {
852    assert(NumOperands == 0 && "Should not have operands yet!");
853    OperandList = new SDOperand[6];
854    OperandList[0] = Op0;
855    OperandList[1] = Op1;
856    OperandList[2] = Op2;
857    OperandList[3] = Op3;
858    OperandList[4] = Op4;
859    OperandList[5] = Op5;
860    NumOperands = 6;
861    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
862    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
863    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
864  }
865  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
866                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
867    assert(NumOperands == 0 && "Should not have operands yet!");
868    OperandList = new SDOperand[7];
869    OperandList[0] = Op0;
870    OperandList[1] = Op1;
871    OperandList[2] = Op2;
872    OperandList[3] = Op3;
873    OperandList[4] = Op4;
874    OperandList[5] = Op5;
875    OperandList[6] = Op6;
876    NumOperands = 7;
877    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
878    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
879    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
880    Op6.Val->Uses.push_back(this);
881  }
882  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
883                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
884    assert(NumOperands == 0 && "Should not have operands yet!");
885    OperandList = new SDOperand[8];
886    OperandList[0] = Op0;
887    OperandList[1] = Op1;
888    OperandList[2] = Op2;
889    OperandList[3] = Op3;
890    OperandList[4] = Op4;
891    OperandList[5] = Op5;
892    OperandList[6] = Op6;
893    OperandList[7] = Op7;
894    NumOperands = 8;
895    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
896    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
897    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
898    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
899  }
900
901  void addUser(SDNode *User) {
902    Uses.push_back(User);
903  }
904  void removeUser(SDNode *User) {
905    // Remove this user from the operand's use list.
906    for (unsigned i = Uses.size(); ; --i) {
907      assert(i != 0 && "Didn't find user!");
908      if (Uses[i-1] == User) {
909        Uses[i-1] = Uses.back();
910        Uses.pop_back();
911        return;
912      }
913    }
914  }
915};
916
917
918// Define inline functions from the SDOperand class.
919
920inline unsigned SDOperand::getOpcode() const {
921  return Val->getOpcode();
922}
923inline unsigned SDOperand::getNodeDepth() const {
924  return Val->getNodeDepth();
925}
926inline MVT::ValueType SDOperand::getValueType() const {
927  return Val->getValueType(ResNo);
928}
929inline unsigned SDOperand::getNumOperands() const {
930  return Val->getNumOperands();
931}
932inline const SDOperand &SDOperand::getOperand(unsigned i) const {
933  return Val->getOperand(i);
934}
935inline bool SDOperand::isTargetOpcode() const {
936  return Val->isTargetOpcode();
937}
938inline unsigned SDOperand::getTargetOpcode() const {
939  return Val->getTargetOpcode();
940}
941inline bool SDOperand::hasOneUse() const {
942  return Val->hasNUsesOfValue(1, ResNo);
943}
944
945/// HandleSDNode - This class is used to form a handle around another node that
946/// is persistant and is updated across invocations of replaceAllUsesWith on its
947/// operand.  This node should be directly created by end-users and not added to
948/// the AllNodes list.
949class HandleSDNode : public SDNode {
950public:
951  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
952  ~HandleSDNode() {
953    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
954  }
955
956  SDOperand getValue() const { return getOperand(0); }
957};
958
959class StringSDNode : public SDNode {
960  std::string Value;
961protected:
962  friend class SelectionDAG;
963  StringSDNode(const std::string &val)
964    : SDNode(ISD::STRING, MVT::Other), Value(val) {
965  }
966public:
967  const std::string &getValue() const { return Value; }
968  static bool classof(const StringSDNode *) { return true; }
969  static bool classof(const SDNode *N) {
970    return N->getOpcode() == ISD::STRING;
971  }
972};
973
974class ConstantSDNode : public SDNode {
975  uint64_t Value;
976protected:
977  friend class SelectionDAG;
978  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
979    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
980  }
981public:
982
983  uint64_t getValue() const { return Value; }
984
985  int64_t getSignExtended() const {
986    unsigned Bits = MVT::getSizeInBits(getValueType(0));
987    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
988  }
989
990  bool isNullValue() const { return Value == 0; }
991  bool isAllOnesValue() const {
992    int NumBits = MVT::getSizeInBits(getValueType(0));
993    if (NumBits == 64) return Value+1 == 0;
994    return Value == (1ULL << NumBits)-1;
995  }
996
997  static bool classof(const ConstantSDNode *) { return true; }
998  static bool classof(const SDNode *N) {
999    return N->getOpcode() == ISD::Constant ||
1000           N->getOpcode() == ISD::TargetConstant;
1001  }
1002};
1003
1004class ConstantFPSDNode : public SDNode {
1005  double Value;
1006protected:
1007  friend class SelectionDAG;
1008  ConstantFPSDNode(double val, MVT::ValueType VT)
1009    : SDNode(ISD::ConstantFP, VT), Value(val) {
1010  }
1011public:
1012
1013  double getValue() const { return Value; }
1014
1015  /// isExactlyValue - We don't rely on operator== working on double values, as
1016  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1017  /// As such, this method can be used to do an exact bit-for-bit comparison of
1018  /// two floating point values.
1019  bool isExactlyValue(double V) const;
1020
1021  static bool classof(const ConstantFPSDNode *) { return true; }
1022  static bool classof(const SDNode *N) {
1023    return N->getOpcode() == ISD::ConstantFP;
1024  }
1025};
1026
1027class GlobalAddressSDNode : public SDNode {
1028  GlobalValue *TheGlobal;
1029  int offset;
1030protected:
1031  friend class SelectionDAG;
1032  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1033                      int o=0)
1034    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT) {
1035    TheGlobal = const_cast<GlobalValue*>(GA);
1036    offset = o;
1037  }
1038public:
1039
1040  GlobalValue *getGlobal() const { return TheGlobal; }
1041  int getOffset() const { return offset; }
1042
1043  static bool classof(const GlobalAddressSDNode *) { return true; }
1044  static bool classof(const SDNode *N) {
1045    return N->getOpcode() == ISD::GlobalAddress ||
1046           N->getOpcode() == ISD::TargetGlobalAddress;
1047  }
1048};
1049
1050
1051class FrameIndexSDNode : public SDNode {
1052  int FI;
1053protected:
1054  friend class SelectionDAG;
1055  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1056    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1057public:
1058
1059  int getIndex() const { return FI; }
1060
1061  static bool classof(const FrameIndexSDNode *) { return true; }
1062  static bool classof(const SDNode *N) {
1063    return N->getOpcode() == ISD::FrameIndex ||
1064           N->getOpcode() == ISD::TargetFrameIndex;
1065  }
1066};
1067
1068class ConstantPoolSDNode : public SDNode {
1069  Constant *C;
1070protected:
1071  friend class SelectionDAG;
1072  ConstantPoolSDNode(Constant *c, MVT::ValueType VT, bool isTarget)
1073    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1074    C(c) {}
1075public:
1076
1077  Constant *get() const { return C; }
1078
1079  static bool classof(const ConstantPoolSDNode *) { return true; }
1080  static bool classof(const SDNode *N) {
1081    return N->getOpcode() == ISD::ConstantPool ||
1082           N->getOpcode() == ISD::TargetConstantPool;
1083  }
1084};
1085
1086class BasicBlockSDNode : public SDNode {
1087  MachineBasicBlock *MBB;
1088protected:
1089  friend class SelectionDAG;
1090  BasicBlockSDNode(MachineBasicBlock *mbb)
1091    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1092public:
1093
1094  MachineBasicBlock *getBasicBlock() const { return MBB; }
1095
1096  static bool classof(const BasicBlockSDNode *) { return true; }
1097  static bool classof(const SDNode *N) {
1098    return N->getOpcode() == ISD::BasicBlock;
1099  }
1100};
1101
1102class SrcValueSDNode : public SDNode {
1103  const Value *V;
1104  int offset;
1105protected:
1106  friend class SelectionDAG;
1107  SrcValueSDNode(const Value* v, int o)
1108    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1109
1110public:
1111  const Value *getValue() const { return V; }
1112  int getOffset() const { return offset; }
1113
1114  static bool classof(const SrcValueSDNode *) { return true; }
1115  static bool classof(const SDNode *N) {
1116    return N->getOpcode() == ISD::SRCVALUE;
1117  }
1118};
1119
1120
1121class RegisterSDNode : public SDNode {
1122  unsigned Reg;
1123protected:
1124  friend class SelectionDAG;
1125  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1126    : SDNode(ISD::Register, VT), Reg(reg) {}
1127public:
1128
1129  unsigned getReg() const { return Reg; }
1130
1131  static bool classof(const RegisterSDNode *) { return true; }
1132  static bool classof(const SDNode *N) {
1133    return N->getOpcode() == ISD::Register;
1134  }
1135};
1136
1137class ExternalSymbolSDNode : public SDNode {
1138  const char *Symbol;
1139protected:
1140  friend class SelectionDAG;
1141  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1142    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1143      Symbol(Sym) {
1144    }
1145public:
1146
1147  const char *getSymbol() const { return Symbol; }
1148
1149  static bool classof(const ExternalSymbolSDNode *) { return true; }
1150  static bool classof(const SDNode *N) {
1151    return N->getOpcode() == ISD::ExternalSymbol ||
1152           N->getOpcode() == ISD::TargetExternalSymbol;
1153  }
1154};
1155
1156class CondCodeSDNode : public SDNode {
1157  ISD::CondCode Condition;
1158protected:
1159  friend class SelectionDAG;
1160  CondCodeSDNode(ISD::CondCode Cond)
1161    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1162  }
1163public:
1164
1165  ISD::CondCode get() const { return Condition; }
1166
1167  static bool classof(const CondCodeSDNode *) { return true; }
1168  static bool classof(const SDNode *N) {
1169    return N->getOpcode() == ISD::CONDCODE;
1170  }
1171};
1172
1173/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1174/// to parameterize some operations.
1175class VTSDNode : public SDNode {
1176  MVT::ValueType ValueType;
1177protected:
1178  friend class SelectionDAG;
1179  VTSDNode(MVT::ValueType VT)
1180    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1181public:
1182
1183  MVT::ValueType getVT() const { return ValueType; }
1184
1185  static bool classof(const VTSDNode *) { return true; }
1186  static bool classof(const SDNode *N) {
1187    return N->getOpcode() == ISD::VALUETYPE;
1188  }
1189};
1190
1191
1192class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1193  SDNode *Node;
1194  unsigned Operand;
1195
1196  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1197public:
1198  bool operator==(const SDNodeIterator& x) const {
1199    return Operand == x.Operand;
1200  }
1201  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1202
1203  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1204    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1205    Operand = I.Operand;
1206    return *this;
1207  }
1208
1209  pointer operator*() const {
1210    return Node->getOperand(Operand).Val;
1211  }
1212  pointer operator->() const { return operator*(); }
1213
1214  SDNodeIterator& operator++() {                // Preincrement
1215    ++Operand;
1216    return *this;
1217  }
1218  SDNodeIterator operator++(int) { // Postincrement
1219    SDNodeIterator tmp = *this; ++*this; return tmp;
1220  }
1221
1222  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1223  static SDNodeIterator end  (SDNode *N) {
1224    return SDNodeIterator(N, N->getNumOperands());
1225  }
1226
1227  unsigned getOperand() const { return Operand; }
1228  const SDNode *getNode() const { return Node; }
1229};
1230
1231template <> struct GraphTraits<SDNode*> {
1232  typedef SDNode NodeType;
1233  typedef SDNodeIterator ChildIteratorType;
1234  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1235  static inline ChildIteratorType child_begin(NodeType *N) {
1236    return SDNodeIterator::begin(N);
1237  }
1238  static inline ChildIteratorType child_end(NodeType *N) {
1239    return SDNodeIterator::end(N);
1240  }
1241};
1242
1243template<>
1244struct ilist_traits<SDNode> {
1245  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1246  static SDNode *getNext(const SDNode *N) { return N->Next; }
1247
1248  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1249  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1250
1251  static SDNode *createSentinel() {
1252    return new SDNode(ISD::EntryToken, MVT::Other);
1253  }
1254  static void destroySentinel(SDNode *N) { delete N; }
1255  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1256
1257
1258  void addNodeToList(SDNode *NTy) {}
1259  void removeNodeFromList(SDNode *NTy) {}
1260  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1261                             const ilist_iterator<SDNode> &X,
1262                             const ilist_iterator<SDNode> &Y) {}
1263};
1264
1265} // end llvm namespace
1266
1267#endif
1268