SelectionDAGNodes.h revision 762f2ae0c4c07a93fd2f830fb079692dbccef85c
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/CodeGen/ValueTypes.h"
23#include "llvm/Value.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/Support/DataTypes.h"
27#include <cassert>
28#include <vector>
29
30namespace llvm {
31
32class SelectionDAG;
33class GlobalValue;
34class MachineBasicBlock;
35class SDNode;
36template <typename T> struct simplify_type;
37template <typename T> struct ilist_traits;
38template<typename NodeTy, typename Traits> class iplist;
39template<typename NodeTy> class ilist_iterator;
40
41/// ISD namespace - This namespace contains an enum which represents all of the
42/// SelectionDAG node types and value types.
43///
44namespace ISD {
45  //===--------------------------------------------------------------------===//
46  /// ISD::NodeType enum - This enum defines all of the operators valid in a
47  /// SelectionDAG.
48  ///
49  enum NodeType {
50    // EntryToken - This is the marker used to indicate the start of the region.
51    EntryToken,
52
53    // Token factor - This node takes multiple tokens as input and produces a
54    // single token result.  This is used to represent the fact that the operand
55    // operators are independent of each other.
56    TokenFactor,
57
58    // AssertSext, AssertZext - These nodes record if a register contains a
59    // value that has already been zero or sign extended from a narrower type.
60    // These nodes take two operands.  The first is the node that has already
61    // been extended, and the second is a value type node indicating the width
62    // of the extension
63    AssertSext, AssertZext,
64
65    // Various leaf nodes.
66    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
67    Constant, ConstantFP,
68    GlobalAddress, FrameIndex, ConstantPool, ExternalSymbol,
69
70    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
71    // simplification of the constant.
72    TargetConstant,
73    TargetConstantFP,
74
75    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
76    // anything else with this node, and this is valid in the target-specific
77    // dag, turning into a GlobalAddress operand.
78    TargetGlobalAddress,
79    TargetFrameIndex,
80    TargetConstantPool,
81    TargetExternalSymbol,
82
83    // CopyToReg - This node has three operands: a chain, a register number to
84    // set to this value, and a value.
85    CopyToReg,
86
87    // CopyFromReg - This node indicates that the input value is a virtual or
88    // physical register that is defined outside of the scope of this
89    // SelectionDAG.  The register is available from the RegSDNode object.
90    CopyFromReg,
91
92    // UNDEF - An undefined node
93    UNDEF,
94
95    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
96    // a Constant, which is required to be operand #1), element of the aggregate
97    // value specified as operand #0.  This is only for use before legalization,
98    // for values that will be broken into multiple registers.
99    EXTRACT_ELEMENT,
100
101    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
102    // two values of the same integer value type, this produces a value twice as
103    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
104    BUILD_PAIR,
105
106    // MERGE_VALUES - This node takes multiple discrete operands and returns
107    // them all as its individual results.  This nodes has exactly the same
108    // number of inputs and outputs, and is only valid before legalization.
109    // This node is useful for some pieces of the code generator that want to
110    // think about a single node with multiple results, not multiple nodes.
111    MERGE_VALUES,
112
113    // Simple integer binary arithmetic operators.
114    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
115
116    // Carry-setting nodes for multiple precision addition and subtraction.
117    // These nodes take two operands of the same value type, and produce two
118    // results.  The first result is the normal add or sub result, the second
119    // result is the carry flag result.
120    ADDC, SUBC,
121
122    // Carry-using nodes for multiple precision addition and subtraction.  These
123    // nodes take three operands: The first two are the normal lhs and rhs to
124    // the add or sub, and the third is the input carry flag.  These nodes
125    // produce two results; the normal result of the add or sub, and the output
126    // carry flag.  These nodes both read and write a carry flag to allow them
127    // to them to be chained together for add and sub of arbitrarily large
128    // values.
129    ADDE, SUBE,
130
131    // Simple binary floating point operators.
132    FADD, FSUB, FMUL, FDIV, FREM,
133
134    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
135    // DAG node does not require that X and Y have the same type, just that they
136    // are both floating point.  X and the result must have the same type.
137    // FCOPYSIGN(f32, f64) is allowed.
138    FCOPYSIGN,
139
140    /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
141    /// with the specified, possibly variable, elements.  The number of elements
142    /// is required to be a power of two.
143    VBUILD_VECTOR,
144
145    /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
146    /// with the specified, possibly variable, elements.  The number of elements
147    /// is required to be a power of two.
148    BUILD_VECTOR,
149
150    /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
151    /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
152    /// return an vector with the specified element of VECTOR replaced with VAL.
153    /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
154    VINSERT_VECTOR_ELT,
155
156    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
157    /// type) with the element at IDX replaced with VAL.
158    INSERT_VECTOR_ELT,
159
160    /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
161    /// (an MVT::Vector value) identified by the (potentially variable) element
162    /// number IDX.
163    VEXTRACT_VECTOR_ELT,
164
165    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
166    /// (a legal packed type vector) identified by the (potentially variable)
167    /// element number IDX.
168    EXTRACT_VECTOR_ELT,
169
170    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
171    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
172    /// (regardless of whether its datatype is legal or not) that indicate
173    /// which value each result element will get.  The elements of VEC1/VEC2 are
174    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
175    /// instruction, except that the indices must be constants and are in terms
176    /// of the element size of VEC1/VEC2, not in terms of bytes.
177    VECTOR_SHUFFLE,
178
179    /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
180    /// represents a conversion from or to an ISD::Vector type.
181    ///
182    /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
183    /// The input and output are required to have the same size and at least one
184    /// is required to be a vector.
185    ///
186    /// If the source is a vector, this takes three operands (like any other
187    /// vector consumer) which indicate the size and type of the vector input.
188    /// Otherwise it takes one input.
189    VBIT_CONVERT,
190
191    /// BINOP(LHS, RHS,  COUNT,TYPE)
192    /// Simple abstract vector operators.  Unlike the integer and floating point
193    /// binary operators, these nodes also take two additional operands:
194    /// a constant element count, and a value type node indicating the type of
195    /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
196    /// including VLOAD and VConstant must currently have count and type as
197    /// their last two operands.
198    VADD, VSUB, VMUL, VSDIV, VUDIV,
199    VAND, VOR, VXOR,
200
201    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
202    /// scalar value into the low element of the resultant vector type.  The top
203    /// elements of the vector are undefined.
204    SCALAR_TO_VECTOR,
205
206    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
207    // an unsigned/signed value of type i[2*n], then return the top part.
208    MULHU, MULHS,
209
210    // Bitwise operators - logical and, logical or, logical xor, shift left,
211    // shift right algebraic (shift in sign bits), shift right logical (shift in
212    // zeroes), rotate left, rotate right, and byteswap.
213    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
214
215    // Counting operators
216    CTTZ, CTLZ, CTPOP,
217
218    // Select(COND, TRUEVAL, FALSEVAL)
219    SELECT,
220
221    // Select with condition operator - This selects between a true value and
222    // a false value (ops #2 and #3) based on the boolean result of comparing
223    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
224    // condition code in op #4, a CondCodeSDNode.
225    SELECT_CC,
226
227    // SetCC operator - This evaluates to a boolean (i1) true value if the
228    // condition is true.  The operands to this are the left and right operands
229    // to compare (ops #0, and #1) and the condition code to compare them with
230    // (op #2) as a CondCodeSDNode.
231    SETCC,
232
233    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
234    // integer shift operations, just like ADD/SUB_PARTS.  The operation
235    // ordering is:
236    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
237    SHL_PARTS, SRA_PARTS, SRL_PARTS,
238
239    // Conversion operators.  These are all single input single output
240    // operations.  For all of these, the result type must be strictly
241    // wider or narrower (depending on the operation) than the source
242    // type.
243
244    // SIGN_EXTEND - Used for integer types, replicating the sign bit
245    // into new bits.
246    SIGN_EXTEND,
247
248    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
249    ZERO_EXTEND,
250
251    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
252    ANY_EXTEND,
253
254    // TRUNCATE - Completely drop the high bits.
255    TRUNCATE,
256
257    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
258    // depends on the first letter) to floating point.
259    SINT_TO_FP,
260    UINT_TO_FP,
261
262    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
263    // sign extend a small value in a large integer register (e.g. sign
264    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
265    // with the 7th bit).  The size of the smaller type is indicated by the 1th
266    // operand, a ValueType node.
267    SIGN_EXTEND_INREG,
268
269    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
270    // integer.
271    FP_TO_SINT,
272    FP_TO_UINT,
273
274    // FP_ROUND - Perform a rounding operation from the current
275    // precision down to the specified precision (currently always 64->32).
276    FP_ROUND,
277
278    // FP_ROUND_INREG - This operator takes a floating point register, and
279    // rounds it to a floating point value.  It then promotes it and returns it
280    // in a register of the same size.  This operation effectively just discards
281    // excess precision.  The type to round down to is specified by the 1th
282    // operation, a VTSDNode (currently always 64->32->64).
283    FP_ROUND_INREG,
284
285    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
286    FP_EXTEND,
287
288    // BIT_CONVERT - Theis operator converts between integer and FP values, as
289    // if one was stored to memory as integer and the other was loaded from the
290    // same address (or equivalently for vector format conversions, etc).  The
291    // source and result are required to have the same bit size (e.g.
292    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
293    // conversions, but that is a noop, deleted by getNode().
294    BIT_CONVERT,
295
296    // FNEG, FABS, FSQRT, FSIN, FCOS - Perform unary floating point negation,
297    // absolute value, square root, sine and cosine operations.
298    FNEG, FABS, FSQRT, FSIN, FCOS,
299
300    // Other operators.  LOAD and STORE have token chains as their first
301    // operand, then the same operands as an LLVM load/store instruction, then a
302    // SRCVALUE node that provides alias analysis information.
303    LOAD, STORE,
304
305    // Abstract vector version of LOAD.  VLOAD has a constant element count as
306    // the first operand, followed by a value type node indicating the type of
307    // the elements, a token chain, a pointer operand, and a SRCVALUE node.
308    VLOAD,
309
310    // EXTLOAD, SEXTLOAD, ZEXTLOAD - These three operators all load a value from
311    // memory and extend them to a larger value (e.g. load a byte into a word
312    // register).  All three of these have four operands, a token chain, a
313    // pointer to load from, a SRCVALUE for alias analysis, and a VALUETYPE node
314    // indicating the type to load.
315    //
316    // SEXTLOAD loads the integer operand and sign extends it to a larger
317    //          integer result type.
318    // ZEXTLOAD loads the integer operand and zero extends it to a larger
319    //          integer result type.
320    // EXTLOAD  is used for three things: floating point extending loads,
321    //          integer extending loads [the top bits are undefined], and vector
322    //          extending loads [load into low elt].
323    EXTLOAD, SEXTLOAD, ZEXTLOAD,
324
325    // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
326    // value and stores it to memory in one operation.  This can be used for
327    // either integer or floating point operands.  The first four operands of
328    // this are the same as a standard store.  The fifth is the ValueType to
329    // store it as (which will be smaller than the source value).
330    TRUNCSTORE,
331
332    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
333    // to a specified boundary.  The first operand is the token chain, the
334    // second is the number of bytes to allocate, and the third is the alignment
335    // boundary.  The size is guaranteed to be a multiple of the stack
336    // alignment, and the alignment is guaranteed to be bigger than the stack
337    // alignment (if required) or 0 to get standard stack alignment.
338    DYNAMIC_STACKALLOC,
339
340    // Control flow instructions.  These all have token chains.
341
342    // BR - Unconditional branch.  The first operand is the chain
343    // operand, the second is the MBB to branch to.
344    BR,
345
346    // BRCOND - Conditional branch.  The first operand is the chain,
347    // the second is the condition, the third is the block to branch
348    // to if the condition is true.
349    BRCOND,
350
351    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
352    // that the condition is represented as condition code, and two nodes to
353    // compare, rather than as a combined SetCC node.  The operands in order are
354    // chain, cc, lhs, rhs, block to branch to if condition is true.
355    BR_CC,
356
357    // RET - Return from function.  The first operand is the chain,
358    // and any subsequent operands are the return values for the
359    // function.  This operation can have variable number of operands.
360    RET,
361
362    // INLINEASM - Represents an inline asm block.  This node always has two
363    // return values: a chain and a flag result.  The inputs are as follows:
364    //   Operand #0   : Input chain.
365    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
366    //   Operand #2n+2: A RegisterNode.
367    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
368    //   Operand #last: Optional, an incoming flag.
369    INLINEASM,
370
371    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
372    // value, the same type as the pointer type for the system, and an output
373    // chain.
374    STACKSAVE,
375
376    // STACKRESTORE has two operands, an input chain and a pointer to restore to
377    // it returns an output chain.
378    STACKRESTORE,
379
380    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
381    // correspond to the operands of the LLVM intrinsic functions.  The only
382    // result is a token chain.  The alignment argument is guaranteed to be a
383    // Constant node.
384    MEMSET,
385    MEMMOVE,
386    MEMCPY,
387
388    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
389    // a call sequence, and carry arbitrary information that target might want
390    // to know.  The first operand is a chain, the rest are specified by the
391    // target and not touched by the DAG optimizers.
392    CALLSEQ_START,  // Beginning of a call sequence
393    CALLSEQ_END,    // End of a call sequence
394
395    // VAARG - VAARG has three operands: an input chain, a pointer, and a
396    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
397    VAARG,
398
399    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
400    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
401    // source.
402    VACOPY,
403
404    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
405    // pointer, and a SRCVALUE.
406    VAEND, VASTART,
407
408    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
409    // locations with their value.  This allows one use alias analysis
410    // information in the backend.
411    SRCVALUE,
412
413    // PCMARKER - This corresponds to the pcmarker intrinsic.
414    PCMARKER,
415
416    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
417    // The only operand is a chain and a value and a chain are produced.  The
418    // value is the contents of the architecture specific cycle counter like
419    // register (or other high accuracy low latency clock source)
420    READCYCLECOUNTER,
421
422    // HANDLENODE node - Used as a handle for various purposes.
423    HANDLENODE,
424
425    // LOCATION - This node is used to represent a source location for debug
426    // info.  It takes token chain as input, then a line number, then a column
427    // number, then a filename, then a working dir.  It produces a token chain
428    // as output.
429    LOCATION,
430
431    // DEBUG_LOC - This node is used to represent source line information
432    // embedded in the code.  It takes a token chain as input, then a line
433    // number, then a column then a file id (provided by MachineDebugInfo.) It
434    // produces a token chain as output.
435    DEBUG_LOC,
436
437    // DEBUG_LABEL - This node is used to mark a location in the code where a
438    // label should be generated for use by the debug information.  It takes a
439    // token chain as input and then a unique id (provided by MachineDebugInfo.)
440    // It produces a token chain as output.
441    DEBUG_LABEL,
442
443    // BUILTIN_OP_END - This must be the last enum value in this list.
444    BUILTIN_OP_END
445  };
446
447  //===--------------------------------------------------------------------===//
448  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
449  /// below work out, when considering SETFALSE (something that never exists
450  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
451  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
452  /// to.  If the "N" column is 1, the result of the comparison is undefined if
453  /// the input is a NAN.
454  ///
455  /// All of these (except for the 'always folded ops') should be handled for
456  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
457  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
458  ///
459  /// Note that these are laid out in a specific order to allow bit-twiddling
460  /// to transform conditions.
461  enum CondCode {
462    // Opcode          N U L G E       Intuitive operation
463    SETFALSE,      //    0 0 0 0       Always false (always folded)
464    SETOEQ,        //    0 0 0 1       True if ordered and equal
465    SETOGT,        //    0 0 1 0       True if ordered and greater than
466    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
467    SETOLT,        //    0 1 0 0       True if ordered and less than
468    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
469    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
470    SETO,          //    0 1 1 1       True if ordered (no nans)
471    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
472    SETUEQ,        //    1 0 0 1       True if unordered or equal
473    SETUGT,        //    1 0 1 0       True if unordered or greater than
474    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
475    SETULT,        //    1 1 0 0       True if unordered or less than
476    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
477    SETUNE,        //    1 1 1 0       True if unordered or not equal
478    SETTRUE,       //    1 1 1 1       Always true (always folded)
479    // Don't care operations: undefined if the input is a nan.
480    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
481    SETEQ,         //  1 X 0 0 1       True if equal
482    SETGT,         //  1 X 0 1 0       True if greater than
483    SETGE,         //  1 X 0 1 1       True if greater than or equal
484    SETLT,         //  1 X 1 0 0       True if less than
485    SETLE,         //  1 X 1 0 1       True if less than or equal
486    SETNE,         //  1 X 1 1 0       True if not equal
487    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
488
489    SETCC_INVALID       // Marker value.
490  };
491
492  /// isSignedIntSetCC - Return true if this is a setcc instruction that
493  /// performs a signed comparison when used with integer operands.
494  inline bool isSignedIntSetCC(CondCode Code) {
495    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
496  }
497
498  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
499  /// performs an unsigned comparison when used with integer operands.
500  inline bool isUnsignedIntSetCC(CondCode Code) {
501    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
502  }
503
504  /// isTrueWhenEqual - Return true if the specified condition returns true if
505  /// the two operands to the condition are equal.  Note that if one of the two
506  /// operands is a NaN, this value is meaningless.
507  inline bool isTrueWhenEqual(CondCode Cond) {
508    return ((int)Cond & 1) != 0;
509  }
510
511  /// getUnorderedFlavor - This function returns 0 if the condition is always
512  /// false if an operand is a NaN, 1 if the condition is always true if the
513  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
514  /// NaN.
515  inline unsigned getUnorderedFlavor(CondCode Cond) {
516    return ((int)Cond >> 3) & 3;
517  }
518
519  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
520  /// 'op' is a valid SetCC operation.
521  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
522
523  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
524  /// when given the operation for (X op Y).
525  CondCode getSetCCSwappedOperands(CondCode Operation);
526
527  /// getSetCCOrOperation - Return the result of a logical OR between different
528  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
529  /// function returns SETCC_INVALID if it is not possible to represent the
530  /// resultant comparison.
531  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
532
533  /// getSetCCAndOperation - Return the result of a logical AND between
534  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
535  /// function returns SETCC_INVALID if it is not possible to represent the
536  /// resultant comparison.
537  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
538}  // end llvm::ISD namespace
539
540
541//===----------------------------------------------------------------------===//
542/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
543/// values as the result of a computation.  Many nodes return multiple values,
544/// from loads (which define a token and a return value) to ADDC (which returns
545/// a result and a carry value), to calls (which may return an arbitrary number
546/// of values).
547///
548/// As such, each use of a SelectionDAG computation must indicate the node that
549/// computes it as well as which return value to use from that node.  This pair
550/// of information is represented with the SDOperand value type.
551///
552class SDOperand {
553public:
554  SDNode *Val;        // The node defining the value we are using.
555  unsigned ResNo;     // Which return value of the node we are using.
556
557  SDOperand() : Val(0) {}
558  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
559
560  bool operator==(const SDOperand &O) const {
561    return Val == O.Val && ResNo == O.ResNo;
562  }
563  bool operator!=(const SDOperand &O) const {
564    return !operator==(O);
565  }
566  bool operator<(const SDOperand &O) const {
567    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
568  }
569
570  SDOperand getValue(unsigned R) const {
571    return SDOperand(Val, R);
572  }
573
574  // isOperand - Return true if this node is an operand of N.
575  bool isOperand(SDNode *N) const;
576
577  /// getValueType - Return the ValueType of the referenced return value.
578  ///
579  inline MVT::ValueType getValueType() const;
580
581  // Forwarding methods - These forward to the corresponding methods in SDNode.
582  inline unsigned getOpcode() const;
583  inline unsigned getNodeDepth() const;
584  inline unsigned getNumOperands() const;
585  inline const SDOperand &getOperand(unsigned i) const;
586  inline bool isTargetOpcode() const;
587  inline unsigned getTargetOpcode() const;
588
589  /// hasOneUse - Return true if there is exactly one operation using this
590  /// result value of the defining operator.
591  inline bool hasOneUse() const;
592};
593
594
595/// simplify_type specializations - Allow casting operators to work directly on
596/// SDOperands as if they were SDNode*'s.
597template<> struct simplify_type<SDOperand> {
598  typedef SDNode* SimpleType;
599  static SimpleType getSimplifiedValue(const SDOperand &Val) {
600    return static_cast<SimpleType>(Val.Val);
601  }
602};
603template<> struct simplify_type<const SDOperand> {
604  typedef SDNode* SimpleType;
605  static SimpleType getSimplifiedValue(const SDOperand &Val) {
606    return static_cast<SimpleType>(Val.Val);
607  }
608};
609
610
611/// SDNode - Represents one node in the SelectionDAG.
612///
613class SDNode {
614  /// NodeType - The operation that this node performs.
615  ///
616  unsigned short NodeType;
617
618  /// NodeDepth - Node depth is defined as MAX(Node depth of children)+1.  This
619  /// means that leaves have a depth of 1, things that use only leaves have a
620  /// depth of 2, etc.
621  unsigned short NodeDepth;
622
623  /// OperandList - The values that are used by this operation.
624  ///
625  SDOperand *OperandList;
626
627  /// ValueList - The types of the values this node defines.  SDNode's may
628  /// define multiple values simultaneously.
629  MVT::ValueType *ValueList;
630
631  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
632  unsigned short NumOperands, NumValues;
633
634  /// Prev/Next pointers - These pointers form the linked list of of the
635  /// AllNodes list in the current DAG.
636  SDNode *Prev, *Next;
637  friend struct ilist_traits<SDNode>;
638
639  /// Uses - These are all of the SDNode's that use a value produced by this
640  /// node.
641  std::vector<SDNode*> Uses;
642public:
643  virtual ~SDNode() {
644    assert(NumOperands == 0 && "Operand list not cleared before deletion");
645  }
646
647  //===--------------------------------------------------------------------===//
648  //  Accessors
649  //
650  unsigned getOpcode()  const { return NodeType; }
651  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
652  unsigned getTargetOpcode() const {
653    assert(isTargetOpcode() && "Not a target opcode!");
654    return NodeType - ISD::BUILTIN_OP_END;
655  }
656
657  size_t use_size() const { return Uses.size(); }
658  bool use_empty() const { return Uses.empty(); }
659  bool hasOneUse() const { return Uses.size() == 1; }
660
661  /// getNodeDepth - Return the distance from this node to the leaves in the
662  /// graph.  The leaves have a depth of 1.
663  unsigned getNodeDepth() const { return NodeDepth; }
664
665  typedef std::vector<SDNode*>::const_iterator use_iterator;
666  use_iterator use_begin() const { return Uses.begin(); }
667  use_iterator use_end() const { return Uses.end(); }
668
669  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
670  /// indicated value.  This method ignores uses of other values defined by this
671  /// operation.
672  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
673
674  // isOnlyUse - Return true if this node is the only use of N.
675  bool isOnlyUse(SDNode *N) const;
676
677  // isOperand - Return true if this node is an operand of N.
678  bool isOperand(SDNode *N) const;
679
680  /// getNumOperands - Return the number of values used by this operation.
681  ///
682  unsigned getNumOperands() const { return NumOperands; }
683
684  const SDOperand &getOperand(unsigned Num) const {
685    assert(Num < NumOperands && "Invalid child # of SDNode!");
686    return OperandList[Num];
687  }
688  typedef const SDOperand* op_iterator;
689  op_iterator op_begin() const { return OperandList; }
690  op_iterator op_end() const { return OperandList+NumOperands; }
691
692
693  /// getNumValues - Return the number of values defined/returned by this
694  /// operator.
695  ///
696  unsigned getNumValues() const { return NumValues; }
697
698  /// getValueType - Return the type of a specified result.
699  ///
700  MVT::ValueType getValueType(unsigned ResNo) const {
701    assert(ResNo < NumValues && "Illegal result number!");
702    return ValueList[ResNo];
703  }
704
705  typedef const MVT::ValueType* value_iterator;
706  value_iterator value_begin() const { return ValueList; }
707  value_iterator value_end() const { return ValueList+NumValues; }
708
709  /// getOperationName - Return the opcode of this operation for printing.
710  ///
711  const char* getOperationName(const SelectionDAG *G = 0) const;
712  void dump() const;
713  void dump(const SelectionDAG *G) const;
714
715  static bool classof(const SDNode *) { return true; }
716
717protected:
718  friend class SelectionDAG;
719
720  /// getValueTypeList - Return a pointer to the specified value type.
721  ///
722  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
723
724  SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeDepth(1) {
725    OperandList = 0; NumOperands = 0;
726    ValueList = getValueTypeList(VT);
727    NumValues = 1;
728    Prev = 0; Next = 0;
729  }
730  SDNode(unsigned NT, SDOperand Op)
731    : NodeType(NT), NodeDepth(Op.Val->getNodeDepth()+1) {
732    OperandList = new SDOperand[1];
733    OperandList[0] = Op;
734    NumOperands = 1;
735    Op.Val->Uses.push_back(this);
736    ValueList = 0;
737    NumValues = 0;
738    Prev = 0; Next = 0;
739  }
740  SDNode(unsigned NT, SDOperand N1, SDOperand N2)
741    : NodeType(NT) {
742    if (N1.Val->getNodeDepth() > N2.Val->getNodeDepth())
743      NodeDepth = N1.Val->getNodeDepth()+1;
744    else
745      NodeDepth = N2.Val->getNodeDepth()+1;
746    OperandList = new SDOperand[2];
747    OperandList[0] = N1;
748    OperandList[1] = N2;
749    NumOperands = 2;
750    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
751    ValueList = 0;
752    NumValues = 0;
753    Prev = 0; Next = 0;
754  }
755  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
756    : NodeType(NT) {
757    unsigned ND = N1.Val->getNodeDepth();
758    if (ND < N2.Val->getNodeDepth())
759      ND = N2.Val->getNodeDepth();
760    if (ND < N3.Val->getNodeDepth())
761      ND = N3.Val->getNodeDepth();
762    NodeDepth = ND+1;
763
764    OperandList = new SDOperand[3];
765    OperandList[0] = N1;
766    OperandList[1] = N2;
767    OperandList[2] = N3;
768    NumOperands = 3;
769
770    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
771    N3.Val->Uses.push_back(this);
772    ValueList = 0;
773    NumValues = 0;
774    Prev = 0; Next = 0;
775  }
776  SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
777    : NodeType(NT) {
778    unsigned ND = N1.Val->getNodeDepth();
779    if (ND < N2.Val->getNodeDepth())
780      ND = N2.Val->getNodeDepth();
781    if (ND < N3.Val->getNodeDepth())
782      ND = N3.Val->getNodeDepth();
783    if (ND < N4.Val->getNodeDepth())
784      ND = N4.Val->getNodeDepth();
785    NodeDepth = ND+1;
786
787    OperandList = new SDOperand[4];
788    OperandList[0] = N1;
789    OperandList[1] = N2;
790    OperandList[2] = N3;
791    OperandList[3] = N4;
792    NumOperands = 4;
793
794    N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
795    N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
796    ValueList = 0;
797    NumValues = 0;
798    Prev = 0; Next = 0;
799  }
800  SDNode(unsigned Opc, const std::vector<SDOperand> &Nodes) : NodeType(Opc) {
801    NumOperands = Nodes.size();
802    OperandList = new SDOperand[NumOperands];
803
804    unsigned ND = 0;
805    for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
806      OperandList[i] = Nodes[i];
807      SDNode *N = OperandList[i].Val;
808      N->Uses.push_back(this);
809      if (ND < N->getNodeDepth()) ND = N->getNodeDepth();
810    }
811    NodeDepth = ND+1;
812    ValueList = 0;
813    NumValues = 0;
814    Prev = 0; Next = 0;
815  }
816
817  /// MorphNodeTo - This clears the return value and operands list, and sets the
818  /// opcode of the node to the specified value.  This should only be used by
819  /// the SelectionDAG class.
820  void MorphNodeTo(unsigned Opc) {
821    NodeType = Opc;
822    ValueList = 0;
823    NumValues = 0;
824
825    // Clear the operands list, updating used nodes to remove this from their
826    // use list.
827    for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
828      I->Val->removeUser(this);
829    delete [] OperandList;
830    OperandList = 0;
831    NumOperands = 0;
832  }
833
834  void setValueTypes(MVT::ValueType VT) {
835    assert(NumValues == 0 && "Should not have values yet!");
836    ValueList = getValueTypeList(VT);
837    NumValues = 1;
838  }
839  void setValueTypes(MVT::ValueType *List, unsigned NumVal) {
840    assert(NumValues == 0 && "Should not have values yet!");
841    ValueList = List;
842    NumValues = NumVal;
843  }
844
845  void setOperands(SDOperand Op0) {
846    assert(NumOperands == 0 && "Should not have operands yet!");
847    OperandList = new SDOperand[1];
848    OperandList[0] = Op0;
849    NumOperands = 1;
850    Op0.Val->Uses.push_back(this);
851  }
852  void setOperands(SDOperand Op0, SDOperand Op1) {
853    assert(NumOperands == 0 && "Should not have operands yet!");
854    OperandList = new SDOperand[2];
855    OperandList[0] = Op0;
856    OperandList[1] = Op1;
857    NumOperands = 2;
858    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
859  }
860  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
861    assert(NumOperands == 0 && "Should not have operands yet!");
862    OperandList = new SDOperand[3];
863    OperandList[0] = Op0;
864    OperandList[1] = Op1;
865    OperandList[2] = Op2;
866    NumOperands = 3;
867    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
868    Op2.Val->Uses.push_back(this);
869  }
870  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
871    assert(NumOperands == 0 && "Should not have operands yet!");
872    OperandList = new SDOperand[4];
873    OperandList[0] = Op0;
874    OperandList[1] = Op1;
875    OperandList[2] = Op2;
876    OperandList[3] = Op3;
877    NumOperands = 4;
878    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
879    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
880  }
881  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
882                   SDOperand Op4) {
883    assert(NumOperands == 0 && "Should not have operands yet!");
884    OperandList = new SDOperand[5];
885    OperandList[0] = Op0;
886    OperandList[1] = Op1;
887    OperandList[2] = Op2;
888    OperandList[3] = Op3;
889    OperandList[4] = Op4;
890    NumOperands = 5;
891    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
892    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
893    Op4.Val->Uses.push_back(this);
894  }
895  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
896                   SDOperand Op4, SDOperand Op5) {
897    assert(NumOperands == 0 && "Should not have operands yet!");
898    OperandList = new SDOperand[6];
899    OperandList[0] = Op0;
900    OperandList[1] = Op1;
901    OperandList[2] = Op2;
902    OperandList[3] = Op3;
903    OperandList[4] = Op4;
904    OperandList[5] = Op5;
905    NumOperands = 6;
906    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
907    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
908    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
909  }
910  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
911                   SDOperand Op4, SDOperand Op5, SDOperand Op6) {
912    assert(NumOperands == 0 && "Should not have operands yet!");
913    OperandList = new SDOperand[7];
914    OperandList[0] = Op0;
915    OperandList[1] = Op1;
916    OperandList[2] = Op2;
917    OperandList[3] = Op3;
918    OperandList[4] = Op4;
919    OperandList[5] = Op5;
920    OperandList[6] = Op6;
921    NumOperands = 7;
922    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
923    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
924    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
925    Op6.Val->Uses.push_back(this);
926  }
927  void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2, SDOperand Op3,
928                   SDOperand Op4, SDOperand Op5, SDOperand Op6, SDOperand Op7) {
929    assert(NumOperands == 0 && "Should not have operands yet!");
930    OperandList = new SDOperand[8];
931    OperandList[0] = Op0;
932    OperandList[1] = Op1;
933    OperandList[2] = Op2;
934    OperandList[3] = Op3;
935    OperandList[4] = Op4;
936    OperandList[5] = Op5;
937    OperandList[6] = Op6;
938    OperandList[7] = Op7;
939    NumOperands = 8;
940    Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
941    Op2.Val->Uses.push_back(this); Op3.Val->Uses.push_back(this);
942    Op4.Val->Uses.push_back(this); Op5.Val->Uses.push_back(this);
943    Op6.Val->Uses.push_back(this); Op7.Val->Uses.push_back(this);
944  }
945
946  void addUser(SDNode *User) {
947    Uses.push_back(User);
948  }
949  void removeUser(SDNode *User) {
950    // Remove this user from the operand's use list.
951    for (unsigned i = Uses.size(); ; --i) {
952      assert(i != 0 && "Didn't find user!");
953      if (Uses[i-1] == User) {
954        Uses[i-1] = Uses.back();
955        Uses.pop_back();
956        return;
957      }
958    }
959  }
960};
961
962
963// Define inline functions from the SDOperand class.
964
965inline unsigned SDOperand::getOpcode() const {
966  return Val->getOpcode();
967}
968inline unsigned SDOperand::getNodeDepth() const {
969  return Val->getNodeDepth();
970}
971inline MVT::ValueType SDOperand::getValueType() const {
972  return Val->getValueType(ResNo);
973}
974inline unsigned SDOperand::getNumOperands() const {
975  return Val->getNumOperands();
976}
977inline const SDOperand &SDOperand::getOperand(unsigned i) const {
978  return Val->getOperand(i);
979}
980inline bool SDOperand::isTargetOpcode() const {
981  return Val->isTargetOpcode();
982}
983inline unsigned SDOperand::getTargetOpcode() const {
984  return Val->getTargetOpcode();
985}
986inline bool SDOperand::hasOneUse() const {
987  return Val->hasNUsesOfValue(1, ResNo);
988}
989
990/// HandleSDNode - This class is used to form a handle around another node that
991/// is persistant and is updated across invocations of replaceAllUsesWith on its
992/// operand.  This node should be directly created by end-users and not added to
993/// the AllNodes list.
994class HandleSDNode : public SDNode {
995public:
996  HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
997  ~HandleSDNode() {
998    MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
999  }
1000
1001  SDOperand getValue() const { return getOperand(0); }
1002};
1003
1004class StringSDNode : public SDNode {
1005  std::string Value;
1006protected:
1007  friend class SelectionDAG;
1008  StringSDNode(const std::string &val)
1009    : SDNode(ISD::STRING, MVT::Other), Value(val) {
1010  }
1011public:
1012  const std::string &getValue() const { return Value; }
1013  static bool classof(const StringSDNode *) { return true; }
1014  static bool classof(const SDNode *N) {
1015    return N->getOpcode() == ISD::STRING;
1016  }
1017};
1018
1019class ConstantSDNode : public SDNode {
1020  uint64_t Value;
1021protected:
1022  friend class SelectionDAG;
1023  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1024    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
1025  }
1026public:
1027
1028  uint64_t getValue() const { return Value; }
1029
1030  int64_t getSignExtended() const {
1031    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1032    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1033  }
1034
1035  bool isNullValue() const { return Value == 0; }
1036  bool isAllOnesValue() const {
1037    int NumBits = MVT::getSizeInBits(getValueType(0));
1038    if (NumBits == 64) return Value+1 == 0;
1039    return Value == (1ULL << NumBits)-1;
1040  }
1041
1042  static bool classof(const ConstantSDNode *) { return true; }
1043  static bool classof(const SDNode *N) {
1044    return N->getOpcode() == ISD::Constant ||
1045           N->getOpcode() == ISD::TargetConstant;
1046  }
1047};
1048
1049class ConstantFPSDNode : public SDNode {
1050  double Value;
1051protected:
1052  friend class SelectionDAG;
1053  ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
1054    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT),
1055      Value(val) {
1056  }
1057public:
1058
1059  double getValue() const { return Value; }
1060
1061  /// isExactlyValue - We don't rely on operator== working on double values, as
1062  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1063  /// As such, this method can be used to do an exact bit-for-bit comparison of
1064  /// two floating point values.
1065  bool isExactlyValue(double V) const;
1066
1067  static bool classof(const ConstantFPSDNode *) { return true; }
1068  static bool classof(const SDNode *N) {
1069    return N->getOpcode() == ISD::ConstantFP ||
1070           N->getOpcode() == ISD::TargetConstantFP;
1071  }
1072};
1073
1074class GlobalAddressSDNode : public SDNode {
1075  GlobalValue *TheGlobal;
1076  int Offset;
1077protected:
1078  friend class SelectionDAG;
1079  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1080                      int o=0)
1081    : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
1082      Offset(o) {
1083    TheGlobal = const_cast<GlobalValue*>(GA);
1084  }
1085public:
1086
1087  GlobalValue *getGlobal() const { return TheGlobal; }
1088  int getOffset() const { return Offset; }
1089
1090  static bool classof(const GlobalAddressSDNode *) { return true; }
1091  static bool classof(const SDNode *N) {
1092    return N->getOpcode() == ISD::GlobalAddress ||
1093           N->getOpcode() == ISD::TargetGlobalAddress;
1094  }
1095};
1096
1097
1098class FrameIndexSDNode : public SDNode {
1099  int FI;
1100protected:
1101  friend class SelectionDAG;
1102  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1103    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
1104public:
1105
1106  int getIndex() const { return FI; }
1107
1108  static bool classof(const FrameIndexSDNode *) { return true; }
1109  static bool classof(const SDNode *N) {
1110    return N->getOpcode() == ISD::FrameIndex ||
1111           N->getOpcode() == ISD::TargetFrameIndex;
1112  }
1113};
1114
1115class ConstantPoolSDNode : public SDNode {
1116  Constant *C;
1117  int Offset;
1118  unsigned Alignment;
1119protected:
1120  friend class SelectionDAG;
1121  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1122                     int o=0)
1123    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1124      C(c), Offset(o), Alignment(0) {}
1125  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1126                     unsigned Align)
1127    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
1128      C(c), Offset(o), Alignment(Align) {}
1129public:
1130
1131  Constant *get() const { return C; }
1132  int getOffset() const { return Offset; }
1133
1134  // Return the alignment of this constant pool object, which is either 0 (for
1135  // default alignment) or log2 of the desired value.
1136  unsigned getAlignment() const { return Alignment; }
1137
1138  static bool classof(const ConstantPoolSDNode *) { return true; }
1139  static bool classof(const SDNode *N) {
1140    return N->getOpcode() == ISD::ConstantPool ||
1141           N->getOpcode() == ISD::TargetConstantPool;
1142  }
1143};
1144
1145class BasicBlockSDNode : public SDNode {
1146  MachineBasicBlock *MBB;
1147protected:
1148  friend class SelectionDAG;
1149  BasicBlockSDNode(MachineBasicBlock *mbb)
1150    : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
1151public:
1152
1153  MachineBasicBlock *getBasicBlock() const { return MBB; }
1154
1155  static bool classof(const BasicBlockSDNode *) { return true; }
1156  static bool classof(const SDNode *N) {
1157    return N->getOpcode() == ISD::BasicBlock;
1158  }
1159};
1160
1161class SrcValueSDNode : public SDNode {
1162  const Value *V;
1163  int offset;
1164protected:
1165  friend class SelectionDAG;
1166  SrcValueSDNode(const Value* v, int o)
1167    : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
1168
1169public:
1170  const Value *getValue() const { return V; }
1171  int getOffset() const { return offset; }
1172
1173  static bool classof(const SrcValueSDNode *) { return true; }
1174  static bool classof(const SDNode *N) {
1175    return N->getOpcode() == ISD::SRCVALUE;
1176  }
1177};
1178
1179
1180class RegisterSDNode : public SDNode {
1181  unsigned Reg;
1182protected:
1183  friend class SelectionDAG;
1184  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1185    : SDNode(ISD::Register, VT), Reg(reg) {}
1186public:
1187
1188  unsigned getReg() const { return Reg; }
1189
1190  static bool classof(const RegisterSDNode *) { return true; }
1191  static bool classof(const SDNode *N) {
1192    return N->getOpcode() == ISD::Register;
1193  }
1194};
1195
1196class ExternalSymbolSDNode : public SDNode {
1197  const char *Symbol;
1198protected:
1199  friend class SelectionDAG;
1200  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1201    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
1202      Symbol(Sym) {
1203    }
1204public:
1205
1206  const char *getSymbol() const { return Symbol; }
1207
1208  static bool classof(const ExternalSymbolSDNode *) { return true; }
1209  static bool classof(const SDNode *N) {
1210    return N->getOpcode() == ISD::ExternalSymbol ||
1211           N->getOpcode() == ISD::TargetExternalSymbol;
1212  }
1213};
1214
1215class CondCodeSDNode : public SDNode {
1216  ISD::CondCode Condition;
1217protected:
1218  friend class SelectionDAG;
1219  CondCodeSDNode(ISD::CondCode Cond)
1220    : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
1221  }
1222public:
1223
1224  ISD::CondCode get() const { return Condition; }
1225
1226  static bool classof(const CondCodeSDNode *) { return true; }
1227  static bool classof(const SDNode *N) {
1228    return N->getOpcode() == ISD::CONDCODE;
1229  }
1230};
1231
1232/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1233/// to parameterize some operations.
1234class VTSDNode : public SDNode {
1235  MVT::ValueType ValueType;
1236protected:
1237  friend class SelectionDAG;
1238  VTSDNode(MVT::ValueType VT)
1239    : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
1240public:
1241
1242  MVT::ValueType getVT() const { return ValueType; }
1243
1244  static bool classof(const VTSDNode *) { return true; }
1245  static bool classof(const SDNode *N) {
1246    return N->getOpcode() == ISD::VALUETYPE;
1247  }
1248};
1249
1250
1251class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1252  SDNode *Node;
1253  unsigned Operand;
1254
1255  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1256public:
1257  bool operator==(const SDNodeIterator& x) const {
1258    return Operand == x.Operand;
1259  }
1260  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1261
1262  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1263    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1264    Operand = I.Operand;
1265    return *this;
1266  }
1267
1268  pointer operator*() const {
1269    return Node->getOperand(Operand).Val;
1270  }
1271  pointer operator->() const { return operator*(); }
1272
1273  SDNodeIterator& operator++() {                // Preincrement
1274    ++Operand;
1275    return *this;
1276  }
1277  SDNodeIterator operator++(int) { // Postincrement
1278    SDNodeIterator tmp = *this; ++*this; return tmp;
1279  }
1280
1281  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1282  static SDNodeIterator end  (SDNode *N) {
1283    return SDNodeIterator(N, N->getNumOperands());
1284  }
1285
1286  unsigned getOperand() const { return Operand; }
1287  const SDNode *getNode() const { return Node; }
1288};
1289
1290template <> struct GraphTraits<SDNode*> {
1291  typedef SDNode NodeType;
1292  typedef SDNodeIterator ChildIteratorType;
1293  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1294  static inline ChildIteratorType child_begin(NodeType *N) {
1295    return SDNodeIterator::begin(N);
1296  }
1297  static inline ChildIteratorType child_end(NodeType *N) {
1298    return SDNodeIterator::end(N);
1299  }
1300};
1301
1302template<>
1303struct ilist_traits<SDNode> {
1304  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1305  static SDNode *getNext(const SDNode *N) { return N->Next; }
1306
1307  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1308  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1309
1310  static SDNode *createSentinel() {
1311    return new SDNode(ISD::EntryToken, MVT::Other);
1312  }
1313  static void destroySentinel(SDNode *N) { delete N; }
1314  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1315
1316
1317  void addNodeToList(SDNode *NTy) {}
1318  void removeNodeFromList(SDNode *NTy) {}
1319  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1320                             const ilist_iterator<SDNode> &X,
1321                             const ilist_iterator<SDNode> &Y) {}
1322};
1323
1324} // end llvm namespace
1325
1326#endif
1327