SelectionDAGNodes.h revision 7810bfed5570c192e0714a8fd0e5130a0c38dd2e
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/Constants.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/ilist_node.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/RecyclingAllocator.h"
33#include "llvm/Support/DataTypes.h"
34#include <cassert>
35
36namespace llvm {
37
38class SelectionDAG;
39class GlobalValue;
40class MachineBasicBlock;
41class MachineConstantPoolValue;
42class SDNode;
43class CompileUnitDesc;
44template <typename T> struct DenseMapInfo;
45template <typename T> struct simplify_type;
46template <typename T> struct ilist_traits;
47
48/// SDVTList - This represents a list of ValueType's that has been intern'd by
49/// a SelectionDAG.  Instances of this simple value class are returned by
50/// SelectionDAG::getVTList(...).
51///
52struct SDVTList {
53  const MVT *VTs;
54  unsigned short NumVTs;
55};
56
57/// ISD namespace - This namespace contains an enum which represents all of the
58/// SelectionDAG node types and value types.
59///
60/// If you add new elements here you should increase OpActionsCapacity in
61/// TargetLowering.h by the number of new elements.
62namespace ISD {
63
64  //===--------------------------------------------------------------------===//
65  /// ISD::NodeType enum - This enum defines all of the operators valid in a
66  /// SelectionDAG.
67  ///
68  enum NodeType {
69    // DELETED_NODE - This is an illegal flag value that is used to catch
70    // errors.  This opcode is not a legal opcode for any node.
71    DELETED_NODE,
72
73    // EntryToken - This is the marker used to indicate the start of the region.
74    EntryToken,
75
76    // Token factor - This node takes multiple tokens as input and produces a
77    // single token result.  This is used to represent the fact that the operand
78    // operators are independent of each other.
79    TokenFactor,
80
81    // AssertSext, AssertZext - These nodes record if a register contains a
82    // value that has already been zero or sign extended from a narrower type.
83    // These nodes take two operands.  The first is the node that has already
84    // been extended, and the second is a value type node indicating the width
85    // of the extension
86    AssertSext, AssertZext,
87
88    // Various leaf nodes.
89    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
90    Constant, ConstantFP,
91    GlobalAddress, GlobalTLSAddress, FrameIndex,
92    JumpTable, ConstantPool, ExternalSymbol,
93
94    // The address of the GOT
95    GLOBAL_OFFSET_TABLE,
96
97    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
98    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
99    // of the frame or return address to return.  An index of zero corresponds
100    // to the current function's frame or return address, an index of one to the
101    // parent's frame or return address, and so on.
102    FRAMEADDR, RETURNADDR,
103
104    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
105    // first (possible) on-stack argument. This is needed for correct stack
106    // adjustment during unwind.
107    FRAME_TO_ARGS_OFFSET,
108
109    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
110    // address of the exception block on entry to an landing pad block.
111    EXCEPTIONADDR,
112
113    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
114    // the selection index of the exception thrown.
115    EHSELECTION,
116
117    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
118    // 'eh_return' gcc dwarf builtin, which is used to return from
119    // exception. The general meaning is: adjust stack by OFFSET and pass
120    // execution to HANDLER. Many platform-related details also :)
121    EH_RETURN,
122
123    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
124    // simplification of the constant.
125    TargetConstant,
126    TargetConstantFP,
127
128    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
129    // anything else with this node, and this is valid in the target-specific
130    // dag, turning into a GlobalAddress operand.
131    TargetGlobalAddress,
132    TargetGlobalTLSAddress,
133    TargetFrameIndex,
134    TargetJumpTable,
135    TargetConstantPool,
136    TargetExternalSymbol,
137
138    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
139    /// This node represents a target intrinsic function with no side effects.
140    /// The first operand is the ID number of the intrinsic from the
141    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
142    /// node has returns the result of the intrinsic.
143    INTRINSIC_WO_CHAIN,
144
145    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
146    /// This node represents a target intrinsic function with side effects that
147    /// returns a result.  The first operand is a chain pointer.  The second is
148    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
149    /// operands to the intrinsic follow.  The node has two results, the result
150    /// of the intrinsic and an output chain.
151    INTRINSIC_W_CHAIN,
152
153    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
154    /// This node represents a target intrinsic function with side effects that
155    /// does not return a result.  The first operand is a chain pointer.  The
156    /// second is the ID number of the intrinsic from the llvm::Intrinsic
157    /// namespace.  The operands to the intrinsic follow.
158    INTRINSIC_VOID,
159
160    // CopyToReg - This node has three operands: a chain, a register number to
161    // set to this value, and a value.
162    CopyToReg,
163
164    // CopyFromReg - This node indicates that the input value is a virtual or
165    // physical register that is defined outside of the scope of this
166    // SelectionDAG.  The register is available from the RegisterSDNode object.
167    CopyFromReg,
168
169    // UNDEF - An undefined node
170    UNDEF,
171
172    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
173    /// represents the formal arguments for a function.  CC# is a Constant value
174    /// indicating the calling convention of the function, and ISVARARG is a
175    /// flag that indicates whether the function is varargs or not. This node
176    /// has one result value for each incoming argument, plus one for the output
177    /// chain. It must be custom legalized. See description of CALL node for
178    /// FLAG argument contents explanation.
179    ///
180    FORMAL_ARGUMENTS,
181
182    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
183    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
184    /// This node represents a fully general function call, before the legalizer
185    /// runs.  This has one result value for each argument / flag pair, plus
186    /// a chain result. It must be custom legalized. Flag argument indicates
187    /// misc. argument attributes. Currently:
188    /// Bit 0 - signness
189    /// Bit 1 - 'inreg' attribute
190    /// Bit 2 - 'sret' attribute
191    /// Bit 4 - 'byval' attribute
192    /// Bit 5 - 'nest' attribute
193    /// Bit 6-9 - alignment of byval structures
194    /// Bit 10-26 - size of byval structures
195    /// Bits 31:27 - argument ABI alignment in the first argument piece and
196    /// alignment '1' in other argument pieces.
197    ///
198    /// CALL nodes use the CallSDNode subclass of SDNode, which
199    /// additionally carries information about the calling convention,
200    /// whether the call is varargs, and if it's marked as a tail call.
201    ///
202    CALL,
203
204    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
205    // a Constant, which is required to be operand #1) half of the integer or
206    // float value specified as operand #0.  This is only for use before
207    // legalization, for values that will be broken into multiple registers.
208    EXTRACT_ELEMENT,
209
210    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
211    // two values of the same integer value type, this produces a value twice as
212    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
213    BUILD_PAIR,
214
215    // MERGE_VALUES - This node takes multiple discrete operands and returns
216    // them all as its individual results.  This nodes has exactly the same
217    // number of inputs and outputs, and is only valid before legalization.
218    // This node is useful for some pieces of the code generator that want to
219    // think about a single node with multiple results, not multiple nodes.
220    MERGE_VALUES,
221
222    // Simple integer binary arithmetic operators.
223    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
224
225    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
226    // a signed/unsigned value of type i[2*N], and return the full value as
227    // two results, each of type iN.
228    SMUL_LOHI, UMUL_LOHI,
229
230    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
231    // remainder result.
232    SDIVREM, UDIVREM,
233
234    // CARRY_FALSE - This node is used when folding other nodes,
235    // like ADDC/SUBC, which indicate the carry result is always false.
236    CARRY_FALSE,
237
238    // Carry-setting nodes for multiple precision addition and subtraction.
239    // These nodes take two operands of the same value type, and produce two
240    // results.  The first result is the normal add or sub result, the second
241    // result is the carry flag result.
242    ADDC, SUBC,
243
244    // Carry-using nodes for multiple precision addition and subtraction.  These
245    // nodes take three operands: The first two are the normal lhs and rhs to
246    // the add or sub, and the third is the input carry flag.  These nodes
247    // produce two results; the normal result of the add or sub, and the output
248    // carry flag.  These nodes both read and write a carry flag to allow them
249    // to them to be chained together for add and sub of arbitrarily large
250    // values.
251    ADDE, SUBE,
252
253    // Simple binary floating point operators.
254    FADD, FSUB, FMUL, FDIV, FREM,
255
256    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
257    // DAG node does not require that X and Y have the same type, just that they
258    // are both floating point.  X and the result must have the same type.
259    // FCOPYSIGN(f32, f64) is allowed.
260    FCOPYSIGN,
261
262    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
263    // value as an integer 0/1 value.
264    FGETSIGN,
265
266    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
267    /// with the specified, possibly variable, elements.  The number of elements
268    /// is required to be a power of two.
269    BUILD_VECTOR,
270
271    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
272    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
273    /// element type then VAL is truncated before replacement.
274    INSERT_VECTOR_ELT,
275
276    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
277    /// identified by the (potentially variable) element number IDX.
278    EXTRACT_VECTOR_ELT,
279
280    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
281    /// vector type with the same length and element type, this produces a
282    /// concatenated vector result value, with length equal to the sum of the
283    /// lengths of the input vectors.
284    CONCAT_VECTORS,
285
286    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
287    /// vector value) starting with the (potentially variable) element number
288    /// IDX, which must be a multiple of the result vector length.
289    EXTRACT_SUBVECTOR,
290
291    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
292    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
293    /// (maybe of an illegal datatype) or undef that indicate which value each
294    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
295    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
296    /// that the indices must be constants and are in terms of the element size
297    /// of VEC1/VEC2, not in terms of bytes.
298    VECTOR_SHUFFLE,
299
300    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
301    /// scalar value into element 0 of the resultant vector type.  The top
302    /// elements 1 to N-1 of the N-element vector are undefined.
303    SCALAR_TO_VECTOR,
304
305    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
306    // This node takes a superreg and a constant sub-register index as operands.
307    // Note sub-register indices must be increasing. That is, if the
308    // sub-register index of a 8-bit sub-register is N, then the index for a
309    // 16-bit sub-register must be at least N+1.
310    EXTRACT_SUBREG,
311
312    // INSERT_SUBREG - This node is used to insert a sub-register value.
313    // This node takes a superreg, a subreg value, and a constant sub-register
314    // index as operands.
315    INSERT_SUBREG,
316
317    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
318    // an unsigned/signed value of type i[2*N], then return the top part.
319    MULHU, MULHS,
320
321    // Bitwise operators - logical and, logical or, logical xor, shift left,
322    // shift right algebraic (shift in sign bits), shift right logical (shift in
323    // zeroes), rotate left, rotate right, and byteswap.
324    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
325
326    // Counting operators
327    CTTZ, CTLZ, CTPOP,
328
329    // Select(COND, TRUEVAL, FALSEVAL)
330    SELECT,
331
332    // Select with condition operator - This selects between a true value and
333    // a false value (ops #2 and #3) based on the boolean result of comparing
334    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
335    // condition code in op #4, a CondCodeSDNode.
336    SELECT_CC,
337
338    // SetCC operator - This evaluates to a boolean (i1) true value if the
339    // condition is true.  The operands to this are the left and right operands
340    // to compare (ops #0, and #1) and the condition code to compare them with
341    // (op #2) as a CondCodeSDNode.
342    SETCC,
343
344    // Vector SetCC operator - This evaluates to a vector of integer elements
345    // with the high bit in each element set to true if the comparison is true
346    // and false if the comparison is false.  All other bits in each element
347    // are undefined.  The operands to this are the left and right operands
348    // to compare (ops #0, and #1) and the condition code to compare them with
349    // (op #2) as a CondCodeSDNode.
350    VSETCC,
351
352    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
353    // integer shift operations, just like ADD/SUB_PARTS.  The operation
354    // ordering is:
355    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
356    SHL_PARTS, SRA_PARTS, SRL_PARTS,
357
358    // Conversion operators.  These are all single input single output
359    // operations.  For all of these, the result type must be strictly
360    // wider or narrower (depending on the operation) than the source
361    // type.
362
363    // SIGN_EXTEND - Used for integer types, replicating the sign bit
364    // into new bits.
365    SIGN_EXTEND,
366
367    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
368    ZERO_EXTEND,
369
370    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
371    ANY_EXTEND,
372
373    // TRUNCATE - Completely drop the high bits.
374    TRUNCATE,
375
376    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
377    // depends on the first letter) to floating point.
378    SINT_TO_FP,
379    UINT_TO_FP,
380
381    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
382    // sign extend a small value in a large integer register (e.g. sign
383    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
384    // with the 7th bit).  The size of the smaller type is indicated by the 1th
385    // operand, a ValueType node.
386    SIGN_EXTEND_INREG,
387
388    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
389    /// integer.
390    FP_TO_SINT,
391    FP_TO_UINT,
392
393    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
394    /// down to the precision of the destination VT.  TRUNC is a flag, which is
395    /// always an integer that is zero or one.  If TRUNC is 0, this is a
396    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
397    /// value of Y.
398    ///
399    /// The TRUNC = 1 case is used in cases where we know that the value will
400    /// not be modified by the node, because Y is not using any of the extra
401    /// precision of source type.  This allows certain transformations like
402    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
403    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
404    FP_ROUND,
405
406    // FLT_ROUNDS_ - Returns current rounding mode:
407    // -1 Undefined
408    //  0 Round to 0
409    //  1 Round to nearest
410    //  2 Round to +inf
411    //  3 Round to -inf
412    FLT_ROUNDS_,
413
414    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
415    /// rounds it to a floating point value.  It then promotes it and returns it
416    /// in a register of the same size.  This operation effectively just
417    /// discards excess precision.  The type to round down to is specified by
418    /// the VT operand, a VTSDNode.
419    FP_ROUND_INREG,
420
421    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
422    FP_EXTEND,
423
424    // BIT_CONVERT - Theis operator converts between integer and FP values, as
425    // if one was stored to memory as integer and the other was loaded from the
426    // same address (or equivalently for vector format conversions, etc).  The
427    // source and result are required to have the same bit size (e.g.
428    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
429    // conversions, but that is a noop, deleted by getNode().
430    BIT_CONVERT,
431
432    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
433    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
434    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
435    // point operations. These are inspired by libm.
436    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
437    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
438    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
439
440    // LOAD and STORE have token chains as their first operand, then the same
441    // operands as an LLVM load/store instruction, then an offset node that
442    // is added / subtracted from the base pointer to form the address (for
443    // indexed memory ops).
444    LOAD, STORE,
445
446    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
447    // to a specified boundary.  This node always has two return values: a new
448    // stack pointer value and a chain. The first operand is the token chain,
449    // the second is the number of bytes to allocate, and the third is the
450    // alignment boundary.  The size is guaranteed to be a multiple of the stack
451    // alignment, and the alignment is guaranteed to be bigger than the stack
452    // alignment (if required) or 0 to get standard stack alignment.
453    DYNAMIC_STACKALLOC,
454
455    // Control flow instructions.  These all have token chains.
456
457    // BR - Unconditional branch.  The first operand is the chain
458    // operand, the second is the MBB to branch to.
459    BR,
460
461    // BRIND - Indirect branch.  The first operand is the chain, the second
462    // is the value to branch to, which must be of the same type as the target's
463    // pointer type.
464    BRIND,
465
466    // BR_JT - Jumptable branch. The first operand is the chain, the second
467    // is the jumptable index, the last one is the jumptable entry index.
468    BR_JT,
469
470    // BRCOND - Conditional branch.  The first operand is the chain,
471    // the second is the condition, the third is the block to branch
472    // to if the condition is true.
473    BRCOND,
474
475    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
476    // that the condition is represented as condition code, and two nodes to
477    // compare, rather than as a combined SetCC node.  The operands in order are
478    // chain, cc, lhs, rhs, block to branch to if condition is true.
479    BR_CC,
480
481    // RET - Return from function.  The first operand is the chain,
482    // and any subsequent operands are pairs of return value and return value
483    // attributes (see CALL for description of attributes) for the function.
484    // This operation can have variable number of operands.
485    RET,
486
487    // INLINEASM - Represents an inline asm block.  This node always has two
488    // return values: a chain and a flag result.  The inputs are as follows:
489    //   Operand #0   : Input chain.
490    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
491    //   Operand #2n+2: A RegisterNode.
492    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
493    //   Operand #last: Optional, an incoming flag.
494    INLINEASM,
495
496    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
497    // locations needed for debug and exception handling tables.  These nodes
498    // take a chain as input and return a chain.
499    DBG_LABEL,
500    EH_LABEL,
501
502    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
503    // local variable declarations for debugging information. First operand is
504    // a chain, while the next two operands are first two arguments (address
505    // and variable) of a llvm.dbg.declare instruction.
506    DECLARE,
507
508    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
509    // value, the same type as the pointer type for the system, and an output
510    // chain.
511    STACKSAVE,
512
513    // STACKRESTORE has two operands, an input chain and a pointer to restore to
514    // it returns an output chain.
515    STACKRESTORE,
516
517    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
518    // a call sequence, and carry arbitrary information that target might want
519    // to know.  The first operand is a chain, the rest are specified by the
520    // target and not touched by the DAG optimizers.
521    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
522    CALLSEQ_START,  // Beginning of a call sequence
523    CALLSEQ_END,    // End of a call sequence
524
525    // VAARG - VAARG has three operands: an input chain, a pointer, and a
526    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
527    VAARG,
528
529    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
530    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
531    // source.
532    VACOPY,
533
534    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
535    // pointer, and a SRCVALUE.
536    VAEND, VASTART,
537
538    // SRCVALUE - This is a node type that holds a Value* that is used to
539    // make reference to a value in the LLVM IR.
540    SRCVALUE,
541
542    // MEMOPERAND - This is a node that contains a MachineMemOperand which
543    // records information about a memory reference. This is used to make
544    // AliasAnalysis queries from the backend.
545    MEMOPERAND,
546
547    // PCMARKER - This corresponds to the pcmarker intrinsic.
548    PCMARKER,
549
550    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
551    // The only operand is a chain and a value and a chain are produced.  The
552    // value is the contents of the architecture specific cycle counter like
553    // register (or other high accuracy low latency clock source)
554    READCYCLECOUNTER,
555
556    // HANDLENODE node - Used as a handle for various purposes.
557    HANDLENODE,
558
559    // DBG_STOPPOINT - This node is used to represent a source location for
560    // debug info.  It takes token chain as input, and carries a line number,
561    // column number, and a pointer to a CompileUnitDesc object identifying
562    // the containing compilation unit.  It produces a token chain as output.
563    DBG_STOPPOINT,
564
565    // DEBUG_LOC - This node is used to represent source line information
566    // embedded in the code.  It takes a token chain as input, then a line
567    // number, then a column then a file id (provided by MachineModuleInfo.) It
568    // produces a token chain as output.
569    DEBUG_LOC,
570
571    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
572    // It takes as input a token chain, the pointer to the trampoline,
573    // the pointer to the nested function, the pointer to pass for the
574    // 'nest' parameter, a SRCVALUE for the trampoline and another for
575    // the nested function (allowing targets to access the original
576    // Function*).  It produces the result of the intrinsic and a token
577    // chain as output.
578    TRAMPOLINE,
579
580    // TRAP - Trapping instruction
581    TRAP,
582
583    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
584    // their first operand. The other operands are the address to prefetch,
585    // read / write specifier, and locality specifier.
586    PREFETCH,
587
588    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
589    //                       store-store, device)
590    // This corresponds to the memory.barrier intrinsic.
591    // it takes an input chain, 4 operands to specify the type of barrier, an
592    // operand specifying if the barrier applies to device and uncached memory
593    // and produces an output chain.
594    MEMBARRIER,
595
596    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
597    // this corresponds to the atomic.lcs intrinsic.
598    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
599    // the return is always the original value in *ptr
600    ATOMIC_CMP_SWAP_8,
601    ATOMIC_CMP_SWAP_16,
602    ATOMIC_CMP_SWAP_32,
603    ATOMIC_CMP_SWAP_64,
604
605    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
606    // this corresponds to the atomic.swap intrinsic.
607    // amt is stored to *ptr atomically.
608    // the return is always the original value in *ptr
609    ATOMIC_SWAP_8,
610    ATOMIC_SWAP_16,
611    ATOMIC_SWAP_32,
612    ATOMIC_SWAP_64,
613
614    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
615    // this corresponds to the atomic.[OpName] intrinsic.
616    // op(*ptr, amt) is stored to *ptr atomically.
617    // the return is always the original value in *ptr
618    ATOMIC_LOAD_ADD_8,
619    ATOMIC_LOAD_SUB_8,
620    ATOMIC_LOAD_AND_8,
621    ATOMIC_LOAD_OR_8,
622    ATOMIC_LOAD_XOR_8,
623    ATOMIC_LOAD_NAND_8,
624    ATOMIC_LOAD_MIN_8,
625    ATOMIC_LOAD_MAX_8,
626    ATOMIC_LOAD_UMIN_8,
627    ATOMIC_LOAD_UMAX_8,
628    ATOMIC_LOAD_ADD_16,
629    ATOMIC_LOAD_SUB_16,
630    ATOMIC_LOAD_AND_16,
631    ATOMIC_LOAD_OR_16,
632    ATOMIC_LOAD_XOR_16,
633    ATOMIC_LOAD_NAND_16,
634    ATOMIC_LOAD_MIN_16,
635    ATOMIC_LOAD_MAX_16,
636    ATOMIC_LOAD_UMIN_16,
637    ATOMIC_LOAD_UMAX_16,
638    ATOMIC_LOAD_ADD_32,
639    ATOMIC_LOAD_SUB_32,
640    ATOMIC_LOAD_AND_32,
641    ATOMIC_LOAD_OR_32,
642    ATOMIC_LOAD_XOR_32,
643    ATOMIC_LOAD_NAND_32,
644    ATOMIC_LOAD_MIN_32,
645    ATOMIC_LOAD_MAX_32,
646    ATOMIC_LOAD_UMIN_32,
647    ATOMIC_LOAD_UMAX_32,
648    ATOMIC_LOAD_ADD_64,
649    ATOMIC_LOAD_SUB_64,
650    ATOMIC_LOAD_AND_64,
651    ATOMIC_LOAD_OR_64,
652    ATOMIC_LOAD_XOR_64,
653    ATOMIC_LOAD_NAND_64,
654    ATOMIC_LOAD_MIN_64,
655    ATOMIC_LOAD_MAX_64,
656    ATOMIC_LOAD_UMIN_64,
657    ATOMIC_LOAD_UMAX_64,
658
659    // BUILTIN_OP_END - This must be the last enum value in this list.
660    BUILTIN_OP_END
661  };
662
663  /// Node predicates
664
665  /// isBuildVectorAllOnes - Return true if the specified node is a
666  /// BUILD_VECTOR where all of the elements are ~0 or undef.
667  bool isBuildVectorAllOnes(const SDNode *N);
668
669  /// isBuildVectorAllZeros - Return true if the specified node is a
670  /// BUILD_VECTOR where all of the elements are 0 or undef.
671  bool isBuildVectorAllZeros(const SDNode *N);
672
673  /// isScalarToVector - Return true if the specified node is a
674  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
675  /// element is not an undef.
676  bool isScalarToVector(const SDNode *N);
677
678  /// isDebugLabel - Return true if the specified node represents a debug
679  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
680  bool isDebugLabel(const SDNode *N);
681
682  //===--------------------------------------------------------------------===//
683  /// MemIndexedMode enum - This enum defines the load / store indexed
684  /// addressing modes.
685  ///
686  /// UNINDEXED    "Normal" load / store. The effective address is already
687  ///              computed and is available in the base pointer. The offset
688  ///              operand is always undefined. In addition to producing a
689  ///              chain, an unindexed load produces one value (result of the
690  ///              load); an unindexed store does not produce a value.
691  ///
692  /// PRE_INC      Similar to the unindexed mode where the effective address is
693  /// PRE_DEC      the value of the base pointer add / subtract the offset.
694  ///              It considers the computation as being folded into the load /
695  ///              store operation (i.e. the load / store does the address
696  ///              computation as well as performing the memory transaction).
697  ///              The base operand is always undefined. In addition to
698  ///              producing a chain, pre-indexed load produces two values
699  ///              (result of the load and the result of the address
700  ///              computation); a pre-indexed store produces one value (result
701  ///              of the address computation).
702  ///
703  /// POST_INC     The effective address is the value of the base pointer. The
704  /// POST_DEC     value of the offset operand is then added to / subtracted
705  ///              from the base after memory transaction. In addition to
706  ///              producing a chain, post-indexed load produces two values
707  ///              (the result of the load and the result of the base +/- offset
708  ///              computation); a post-indexed store produces one value (the
709  ///              the result of the base +/- offset computation).
710  ///
711  enum MemIndexedMode {
712    UNINDEXED = 0,
713    PRE_INC,
714    PRE_DEC,
715    POST_INC,
716    POST_DEC,
717    LAST_INDEXED_MODE
718  };
719
720  //===--------------------------------------------------------------------===//
721  /// LoadExtType enum - This enum defines the three variants of LOADEXT
722  /// (load with extension).
723  ///
724  /// SEXTLOAD loads the integer operand and sign extends it to a larger
725  ///          integer result type.
726  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
727  ///          integer result type.
728  /// EXTLOAD  is used for three things: floating point extending loads,
729  ///          integer extending loads [the top bits are undefined], and vector
730  ///          extending loads [load into low elt].
731  ///
732  enum LoadExtType {
733    NON_EXTLOAD = 0,
734    EXTLOAD,
735    SEXTLOAD,
736    ZEXTLOAD,
737    LAST_LOADX_TYPE
738  };
739
740  //===--------------------------------------------------------------------===//
741  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
742  /// below work out, when considering SETFALSE (something that never exists
743  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
744  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
745  /// to.  If the "N" column is 1, the result of the comparison is undefined if
746  /// the input is a NAN.
747  ///
748  /// All of these (except for the 'always folded ops') should be handled for
749  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
750  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
751  ///
752  /// Note that these are laid out in a specific order to allow bit-twiddling
753  /// to transform conditions.
754  enum CondCode {
755    // Opcode          N U L G E       Intuitive operation
756    SETFALSE,      //    0 0 0 0       Always false (always folded)
757    SETOEQ,        //    0 0 0 1       True if ordered and equal
758    SETOGT,        //    0 0 1 0       True if ordered and greater than
759    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
760    SETOLT,        //    0 1 0 0       True if ordered and less than
761    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
762    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
763    SETO,          //    0 1 1 1       True if ordered (no nans)
764    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
765    SETUEQ,        //    1 0 0 1       True if unordered or equal
766    SETUGT,        //    1 0 1 0       True if unordered or greater than
767    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
768    SETULT,        //    1 1 0 0       True if unordered or less than
769    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
770    SETUNE,        //    1 1 1 0       True if unordered or not equal
771    SETTRUE,       //    1 1 1 1       Always true (always folded)
772    // Don't care operations: undefined if the input is a nan.
773    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
774    SETEQ,         //  1 X 0 0 1       True if equal
775    SETGT,         //  1 X 0 1 0       True if greater than
776    SETGE,         //  1 X 0 1 1       True if greater than or equal
777    SETLT,         //  1 X 1 0 0       True if less than
778    SETLE,         //  1 X 1 0 1       True if less than or equal
779    SETNE,         //  1 X 1 1 0       True if not equal
780    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
781
782    SETCC_INVALID       // Marker value.
783  };
784
785  /// isSignedIntSetCC - Return true if this is a setcc instruction that
786  /// performs a signed comparison when used with integer operands.
787  inline bool isSignedIntSetCC(CondCode Code) {
788    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
789  }
790
791  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
792  /// performs an unsigned comparison when used with integer operands.
793  inline bool isUnsignedIntSetCC(CondCode Code) {
794    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
795  }
796
797  /// isTrueWhenEqual - Return true if the specified condition returns true if
798  /// the two operands to the condition are equal.  Note that if one of the two
799  /// operands is a NaN, this value is meaningless.
800  inline bool isTrueWhenEqual(CondCode Cond) {
801    return ((int)Cond & 1) != 0;
802  }
803
804  /// getUnorderedFlavor - This function returns 0 if the condition is always
805  /// false if an operand is a NaN, 1 if the condition is always true if the
806  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
807  /// NaN.
808  inline unsigned getUnorderedFlavor(CondCode Cond) {
809    return ((int)Cond >> 3) & 3;
810  }
811
812  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
813  /// 'op' is a valid SetCC operation.
814  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
815
816  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
817  /// when given the operation for (X op Y).
818  CondCode getSetCCSwappedOperands(CondCode Operation);
819
820  /// getSetCCOrOperation - Return the result of a logical OR between different
821  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
822  /// function returns SETCC_INVALID if it is not possible to represent the
823  /// resultant comparison.
824  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
825
826  /// getSetCCAndOperation - Return the result of a logical AND between
827  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
828  /// function returns SETCC_INVALID if it is not possible to represent the
829  /// resultant comparison.
830  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
831}  // end llvm::ISD namespace
832
833
834//===----------------------------------------------------------------------===//
835/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
836/// values as the result of a computation.  Many nodes return multiple values,
837/// from loads (which define a token and a return value) to ADDC (which returns
838/// a result and a carry value), to calls (which may return an arbitrary number
839/// of values).
840///
841/// As such, each use of a SelectionDAG computation must indicate the node that
842/// computes it as well as which return value to use from that node.  This pair
843/// of information is represented with the SDValue value type.
844///
845class SDValue {
846  SDNode *Node;       // The node defining the value we are using.
847  unsigned ResNo;     // Which return value of the node we are using.
848public:
849  SDValue() : Node(0), ResNo(0) {}
850  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
851
852  /// get the index which selects a specific result in the SDNode
853  unsigned getResNo() const { return ResNo; }
854
855  /// get the SDNode which holds the desired result
856  SDNode *getNode() const { return Node; }
857
858  /// set the SDNode
859  void setNode(SDNode *N) { Node = N; }
860
861  bool operator==(const SDValue &O) const {
862    return Node == O.Node && ResNo == O.ResNo;
863  }
864  bool operator!=(const SDValue &O) const {
865    return !operator==(O);
866  }
867  bool operator<(const SDValue &O) const {
868    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
869  }
870
871  SDValue getValue(unsigned R) const {
872    return SDValue(Node, R);
873  }
874
875  // isOperandOf - Return true if this node is an operand of N.
876  bool isOperandOf(SDNode *N) const;
877
878  /// getValueType - Return the ValueType of the referenced return value.
879  ///
880  inline MVT getValueType() const;
881
882  /// getValueSizeInBits - Returns the size of the value in bits.
883  ///
884  unsigned getValueSizeInBits() const {
885    return getValueType().getSizeInBits();
886  }
887
888  // Forwarding methods - These forward to the corresponding methods in SDNode.
889  inline unsigned getOpcode() const;
890  inline unsigned getNumOperands() const;
891  inline const SDValue &getOperand(unsigned i) const;
892  inline uint64_t getConstantOperandVal(unsigned i) const;
893  inline bool isTargetOpcode() const;
894  inline bool isMachineOpcode() const;
895  inline unsigned getMachineOpcode() const;
896
897
898  /// reachesChainWithoutSideEffects - Return true if this operand (which must
899  /// be a chain) reaches the specified operand without crossing any
900  /// side-effecting instructions.  In practice, this looks through token
901  /// factors and non-volatile loads.  In order to remain efficient, this only
902  /// looks a couple of nodes in, it does not do an exhaustive search.
903  bool reachesChainWithoutSideEffects(SDValue Dest,
904                                      unsigned Depth = 2) const;
905
906  /// use_empty - Return true if there are no nodes using value ResNo
907  /// of Node.
908  ///
909  inline bool use_empty() const;
910
911  /// hasOneUse - Return true if there is exactly one node using value
912  /// ResNo of Node.
913  ///
914  inline bool hasOneUse() const;
915};
916
917
918template<> struct DenseMapInfo<SDValue> {
919  static inline SDValue getEmptyKey() {
920    return SDValue((SDNode*)-1, -1U);
921  }
922  static inline SDValue getTombstoneKey() {
923    return SDValue((SDNode*)-1, 0);
924  }
925  static unsigned getHashValue(const SDValue &Val) {
926    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
927            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
928  }
929  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
930    return LHS == RHS;
931  }
932  static bool isPod() { return true; }
933};
934
935/// simplify_type specializations - Allow casting operators to work directly on
936/// SDValues as if they were SDNode*'s.
937template<> struct simplify_type<SDValue> {
938  typedef SDNode* SimpleType;
939  static SimpleType getSimplifiedValue(const SDValue &Val) {
940    return static_cast<SimpleType>(Val.getNode());
941  }
942};
943template<> struct simplify_type<const SDValue> {
944  typedef SDNode* SimpleType;
945  static SimpleType getSimplifiedValue(const SDValue &Val) {
946    return static_cast<SimpleType>(Val.getNode());
947  }
948};
949
950/// SDUse - Represents a use of the SDNode referred by
951/// the SDValue.
952class SDUse {
953  SDValue Operand;
954  /// User - Parent node of this operand.
955  SDNode    *User;
956  /// Prev, next - Pointers to the uses list of the SDNode referred by
957  /// this operand.
958  SDUse **Prev, *Next;
959public:
960  friend class SDNode;
961  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}
962
963  SDUse(SDNode *val, unsigned resno) :
964    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}
965
966  SDUse& operator= (const SDValue& Op) {
967      Operand = Op;
968      Next = NULL;
969      Prev = NULL;
970      return *this;
971  }
972
973  SDUse& operator= (const SDUse& Op) {
974      Operand = Op;
975      Next = NULL;
976      Prev = NULL;
977      return *this;
978  }
979
980  SDUse *getNext() { return Next; }
981
982  SDNode *getUser() { return User; }
983
984  void setUser(SDNode *p) { User = p; }
985
986  operator SDValue() const { return Operand; }
987
988  const SDValue& getSDValue() const { return Operand; }
989
990  SDValue &getSDValue() { return Operand; }
991  SDNode *getVal() { return Operand.getNode(); }
992  SDNode *getVal() const { return Operand.getNode(); } // FIXME: const correct?
993
994  bool operator==(const SDValue &O) const {
995    return Operand == O;
996  }
997
998  bool operator!=(const SDValue &O) const {
999    return !(Operand == O);
1000  }
1001
1002  bool operator<(const SDValue &O) const {
1003    return Operand < O;
1004  }
1005
1006protected:
1007  void addToList(SDUse **List) {
1008    Next = *List;
1009    if (Next) Next->Prev = &Next;
1010    Prev = List;
1011    *List = this;
1012  }
1013
1014  void removeFromList() {
1015    *Prev = Next;
1016    if (Next) Next->Prev = Prev;
1017  }
1018};
1019
1020
1021/// simplify_type specializations - Allow casting operators to work directly on
1022/// SDValues as if they were SDNode*'s.
1023template<> struct simplify_type<SDUse> {
1024  typedef SDNode* SimpleType;
1025  static SimpleType getSimplifiedValue(const SDUse &Val) {
1026    return static_cast<SimpleType>(Val.getVal());
1027  }
1028};
1029template<> struct simplify_type<const SDUse> {
1030  typedef SDNode* SimpleType;
1031  static SimpleType getSimplifiedValue(const SDUse &Val) {
1032    return static_cast<SimpleType>(Val.getVal());
1033  }
1034};
1035
1036
1037/// SDOperandPtr - A helper SDValue pointer class, that can handle
1038/// arrays of SDUse and arrays of SDValue objects. This is required
1039/// in many places inside the SelectionDAG.
1040///
1041class SDOperandPtr {
1042  const SDValue *ptr; // The pointer to the SDValue object
1043  int object_size;      // The size of the object containg the SDValue
1044public:
1045  SDOperandPtr() : ptr(0), object_size(0) {}
1046
1047  SDOperandPtr(SDUse * use_ptr) {
1048    ptr = &use_ptr->getSDValue();
1049    object_size = (int)sizeof(SDUse);
1050  }
1051
1052  SDOperandPtr(const SDValue * op_ptr) {
1053    ptr = op_ptr;
1054    object_size = (int)sizeof(SDValue);
1055  }
1056
1057  const SDValue operator *() { return *ptr; }
1058  const SDValue *operator ->() { return ptr; }
1059  SDOperandPtr operator ++ () {
1060    ptr = (SDValue*)((char *)ptr + object_size);
1061    return *this;
1062  }
1063
1064  SDOperandPtr operator ++ (int) {
1065    SDOperandPtr tmp = *this;
1066    ptr = (SDValue*)((char *)ptr + object_size);
1067    return tmp;
1068  }
1069
1070  SDValue operator[] (int idx) const {
1071    return *(SDValue*)((char*) ptr + object_size * idx);
1072  }
1073};
1074
1075/// SDNode - Represents one node in the SelectionDAG.
1076///
1077class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1078private:
1079  /// NodeType - The operation that this node performs.
1080  ///
1081  short NodeType;
1082
1083  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1084  /// then they will be delete[]'d when the node is destroyed.
1085  unsigned short OperandsNeedDelete : 1;
1086
1087protected:
1088  /// SubclassData - This member is defined by this class, but is not used for
1089  /// anything.  Subclasses can use it to hold whatever state they find useful.
1090  /// This field is initialized to zero by the ctor.
1091  unsigned short SubclassData : 15;
1092
1093private:
1094  /// NodeId - Unique id per SDNode in the DAG.
1095  int NodeId;
1096
1097  /// OperandList - The values that are used by this operation.
1098  ///
1099  SDUse *OperandList;
1100
1101  /// ValueList - The types of the values this node defines.  SDNode's may
1102  /// define multiple values simultaneously.
1103  const MVT *ValueList;
1104
1105  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1106  unsigned short NumOperands, NumValues;
1107
1108  /// Uses - List of uses for this SDNode.
1109  SDUse *Uses;
1110
1111  /// addUse - add SDUse to the list of uses.
1112  void addUse(SDUse &U) { U.addToList(&Uses); }
1113
1114  // Out-of-line virtual method to give class a home.
1115  virtual void ANCHOR();
1116public:
1117  virtual ~SDNode() {
1118    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1119    NodeType = ISD::DELETED_NODE;
1120  }
1121
1122  //===--------------------------------------------------------------------===//
1123  //  Accessors
1124  //
1125
1126  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1127  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1128  /// are the opcode values in the ISD and <target>ISD namespaces. For
1129  /// post-isel opcodes, see getMachineOpcode.
1130  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1131
1132  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1133  /// <target>ISD namespace).
1134  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1135
1136  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1137  /// corresponding to a MachineInstr opcode.
1138  bool isMachineOpcode() const { return NodeType < 0; }
1139
1140  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1141  /// true. It returns the MachineInstr opcode value that the node's opcode
1142  /// corresponds to.
1143  unsigned getMachineOpcode() const {
1144    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1145    return ~NodeType;
1146  }
1147
1148  /// use_empty - Return true if there are no uses of this node.
1149  ///
1150  bool use_empty() const { return Uses == NULL; }
1151
1152  /// hasOneUse - Return true if there is exactly one use of this node.
1153  ///
1154  bool hasOneUse() const {
1155    return !use_empty() && next(use_begin()) == use_end();
1156  }
1157
1158  /// use_size - Return the number of uses of this node. This method takes
1159  /// time proportional to the number of uses.
1160  ///
1161  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1162
1163  /// getNodeId - Return the unique node id.
1164  ///
1165  int getNodeId() const { return NodeId; }
1166
1167  /// setNodeId - Set unique node id.
1168  void setNodeId(int Id) { NodeId = Id; }
1169
1170  /// use_iterator - This class provides iterator support for SDUse
1171  /// operands that use a specific SDNode.
1172  class use_iterator
1173    : public forward_iterator<SDUse, ptrdiff_t> {
1174    SDUse *Op;
1175    explicit use_iterator(SDUse *op) : Op(op) {
1176    }
1177    friend class SDNode;
1178  public:
1179    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1180    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1181
1182    use_iterator(const use_iterator &I) : Op(I.Op) {}
1183    use_iterator() : Op(0) {}
1184
1185    bool operator==(const use_iterator &x) const {
1186      return Op == x.Op;
1187    }
1188    bool operator!=(const use_iterator &x) const {
1189      return !operator==(x);
1190    }
1191
1192    /// atEnd - return true if this iterator is at the end of uses list.
1193    bool atEnd() const { return Op == 0; }
1194
1195    // Iterator traversal: forward iteration only.
1196    use_iterator &operator++() {          // Preincrement
1197      assert(Op && "Cannot increment end iterator!");
1198      Op = Op->getNext();
1199      return *this;
1200    }
1201
1202    use_iterator operator++(int) {        // Postincrement
1203      use_iterator tmp = *this; ++*this; return tmp;
1204    }
1205
1206    /// Retrieve a pointer to the current user node.
1207    SDNode *operator*() const {
1208      assert(Op && "Cannot dereference end iterator!");
1209      return Op->getUser();
1210    }
1211
1212    SDNode *operator->() const { return operator*(); }
1213
1214    SDUse &getUse() const { return *Op; }
1215
1216    /// getOperandNo - Retrive the operand # of this use in its user.
1217    ///
1218    unsigned getOperandNo() const {
1219      assert(Op && "Cannot dereference end iterator!");
1220      return (unsigned)(Op - Op->getUser()->OperandList);
1221    }
1222  };
1223
1224  /// use_begin/use_end - Provide iteration support to walk over all uses
1225  /// of an SDNode.
1226
1227  use_iterator use_begin() const {
1228    return use_iterator(Uses);
1229  }
1230
1231  static use_iterator use_end() { return use_iterator(0); }
1232
1233
1234  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1235  /// indicated value.  This method ignores uses of other values defined by this
1236  /// operation.
1237  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1238
1239  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1240  /// value. This method ignores uses of other values defined by this operation.
1241  bool hasAnyUseOfValue(unsigned Value) const;
1242
1243  /// isOnlyUserOf - Return true if this node is the only use of N.
1244  ///
1245  bool isOnlyUserOf(SDNode *N) const;
1246
1247  /// isOperandOf - Return true if this node is an operand of N.
1248  ///
1249  bool isOperandOf(SDNode *N) const;
1250
1251  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1252  /// node is either an operand of N or it can be reached by recursively
1253  /// traversing up the operands.
1254  /// NOTE: this is an expensive method. Use it carefully.
1255  bool isPredecessorOf(SDNode *N) const;
1256
1257  /// getNumOperands - Return the number of values used by this operation.
1258  ///
1259  unsigned getNumOperands() const { return NumOperands; }
1260
1261  /// getConstantOperandVal - Helper method returns the integer value of a
1262  /// ConstantSDNode operand.
1263  uint64_t getConstantOperandVal(unsigned Num) const;
1264
1265  const SDValue &getOperand(unsigned Num) const {
1266    assert(Num < NumOperands && "Invalid child # of SDNode!");
1267    return OperandList[Num].getSDValue();
1268  }
1269
1270  typedef SDUse* op_iterator;
1271  op_iterator op_begin() const { return OperandList; }
1272  op_iterator op_end() const { return OperandList+NumOperands; }
1273
1274
1275  SDVTList getVTList() const {
1276    SDVTList X = { ValueList, NumValues };
1277    return X;
1278  };
1279
1280  /// getNumValues - Return the number of values defined/returned by this
1281  /// operator.
1282  ///
1283  unsigned getNumValues() const { return NumValues; }
1284
1285  /// getValueType - Return the type of a specified result.
1286  ///
1287  MVT getValueType(unsigned ResNo) const {
1288    assert(ResNo < NumValues && "Illegal result number!");
1289    return ValueList[ResNo];
1290  }
1291
1292  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1293  ///
1294  unsigned getValueSizeInBits(unsigned ResNo) const {
1295    return getValueType(ResNo).getSizeInBits();
1296  }
1297
1298  typedef const MVT* value_iterator;
1299  value_iterator value_begin() const { return ValueList; }
1300  value_iterator value_end() const { return ValueList+NumValues; }
1301
1302  /// getOperationName - Return the opcode of this operation for printing.
1303  ///
1304  std::string getOperationName(const SelectionDAG *G = 0) const;
1305  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1306  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1307  void dump() const;
1308  void dump(const SelectionDAG *G) const;
1309
1310  static bool classof(const SDNode *) { return true; }
1311
1312  /// Profile - Gather unique data for the node.
1313  ///
1314  void Profile(FoldingSetNodeID &ID) const;
1315
1316protected:
1317  friend class SelectionDAG;
1318  friend struct ilist_traits<SDNode>;
1319
1320  /// getValueTypeList - Return a pointer to the specified value type.
1321  ///
1322  static const MVT *getValueTypeList(MVT VT);
1323  static SDVTList getSDVTList(MVT VT) {
1324    SDVTList Ret = { getValueTypeList(VT), 1 };
1325    return Ret;
1326  }
1327
1328  SDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps)
1329    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1330      NodeId(-1), Uses(NULL) {
1331    NumOperands = NumOps;
1332    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1333
1334    for (unsigned i = 0; i != NumOps; ++i) {
1335      OperandList[i] = Ops[i];
1336      OperandList[i].setUser(this);
1337      Ops[i].getNode()->addUse(OperandList[i]);
1338    }
1339
1340    ValueList = VTs.VTs;
1341    NumValues = VTs.NumVTs;
1342  }
1343
1344  SDNode(unsigned Opc, SDVTList VTs, const SDUse *Ops, unsigned NumOps)
1345    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1346      NodeId(-1), Uses(NULL) {
1347    OperandsNeedDelete = true;
1348    NumOperands = NumOps;
1349    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1350
1351    for (unsigned i = 0; i != NumOps; ++i) {
1352      OperandList[i] = Ops[i];
1353      OperandList[i].setUser(this);
1354      Ops[i].getVal()->addUse(OperandList[i]);
1355    }
1356
1357    ValueList = VTs.VTs;
1358    NumValues = VTs.NumVTs;
1359  }
1360
1361  /// This constructor adds no operands itself; operands can be
1362  /// set later with InitOperands.
1363  SDNode(unsigned Opc, SDVTList VTs)
1364    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1365      NodeId(-1), Uses(NULL) {
1366    NumOperands = 0;
1367    OperandList = 0;
1368    ValueList = VTs.VTs;
1369    NumValues = VTs.NumVTs;
1370  }
1371
1372  /// InitOperands - Initialize the operands list of this node with the
1373  /// specified values, which are part of the node (thus they don't need to be
1374  /// copied in or allocated).
1375  void InitOperands(SDUse *Ops, unsigned NumOps) {
1376    assert(OperandList == 0 && "Operands already set!");
1377    NumOperands = NumOps;
1378    OperandList = Ops;
1379    Uses = NULL;
1380
1381    for (unsigned i = 0; i != NumOps; ++i) {
1382      OperandList[i].setUser(this);
1383      Ops[i].getVal()->addUse(OperandList[i]);
1384    }
1385  }
1386
1387  /// DropOperands - Release the operands and set this node to have
1388  /// zero operands.
1389  void DropOperands();
1390
1391  void addUser(unsigned i, SDNode *User) {
1392    assert(User->OperandList[i].getUser() && "Node without parent");
1393    addUse(User->OperandList[i]);
1394  }
1395
1396  void removeUser(unsigned i, SDNode *User) {
1397    assert(User->OperandList[i].getUser() && "Node without parent");
1398    SDUse &Op = User->OperandList[i];
1399    Op.removeFromList();
1400  }
1401};
1402
1403
1404// Define inline functions from the SDValue class.
1405
1406inline unsigned SDValue::getOpcode() const {
1407  return Node->getOpcode();
1408}
1409inline MVT SDValue::getValueType() const {
1410  return Node->getValueType(ResNo);
1411}
1412inline unsigned SDValue::getNumOperands() const {
1413  return Node->getNumOperands();
1414}
1415inline const SDValue &SDValue::getOperand(unsigned i) const {
1416  return Node->getOperand(i);
1417}
1418inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1419  return Node->getConstantOperandVal(i);
1420}
1421inline bool SDValue::isTargetOpcode() const {
1422  return Node->isTargetOpcode();
1423}
1424inline bool SDValue::isMachineOpcode() const {
1425  return Node->isMachineOpcode();
1426}
1427inline unsigned SDValue::getMachineOpcode() const {
1428  return Node->getMachineOpcode();
1429}
1430inline bool SDValue::use_empty() const {
1431  return !Node->hasAnyUseOfValue(ResNo);
1432}
1433inline bool SDValue::hasOneUse() const {
1434  return Node->hasNUsesOfValue(1, ResNo);
1435}
1436
1437/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1438/// to allow co-allocation of node operands with the node itself.
1439class UnarySDNode : public SDNode {
1440  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1441  SDUse Op;
1442public:
1443  UnarySDNode(unsigned Opc, SDVTList VTs, SDValue X)
1444    : SDNode(Opc, VTs) {
1445    Op = X;
1446    InitOperands(&Op, 1);
1447  }
1448};
1449
1450/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1451/// to allow co-allocation of node operands with the node itself.
1452class BinarySDNode : public SDNode {
1453  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1454  SDUse Ops[2];
1455public:
1456  BinarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y)
1457    : SDNode(Opc, VTs) {
1458    Ops[0] = X;
1459    Ops[1] = Y;
1460    InitOperands(Ops, 2);
1461  }
1462};
1463
1464/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1465/// to allow co-allocation of node operands with the node itself.
1466class TernarySDNode : public SDNode {
1467  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1468  SDUse Ops[3];
1469public:
1470  TernarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y,
1471                SDValue Z)
1472    : SDNode(Opc, VTs) {
1473    Ops[0] = X;
1474    Ops[1] = Y;
1475    Ops[2] = Z;
1476    InitOperands(Ops, 3);
1477  }
1478};
1479
1480
1481/// HandleSDNode - This class is used to form a handle around another node that
1482/// is persistant and is updated across invocations of replaceAllUsesWith on its
1483/// operand.  This node should be directly created by end-users and not added to
1484/// the AllNodes list.
1485class HandleSDNode : public SDNode {
1486  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1487  SDUse Op;
1488public:
1489  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1490  // fixed.
1491#ifdef __GNUC__
1492  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1493#else
1494  explicit HandleSDNode(SDValue X)
1495#endif
1496    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1497    Op = X;
1498    InitOperands(&Op, 1);
1499  }
1500  ~HandleSDNode();
1501  const SDValue &getValue() const { return Op.getSDValue(); }
1502};
1503
1504/// Abstact virtual class for operations for memory operations
1505class MemSDNode : public SDNode {
1506  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1507
1508private:
1509  // MemoryVT - VT of in-memory value.
1510  MVT MemoryVT;
1511
1512  //! SrcValue - Memory location for alias analysis.
1513  const Value *SrcValue;
1514
1515  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1516  int SVOffset;
1517
1518  /// Flags - the low bit indicates whether this is a volatile reference;
1519  /// the remainder is a log2 encoding of the alignment in bytes.
1520  unsigned Flags;
1521
1522public:
1523  MemSDNode(unsigned Opc, SDVTList VTs, MVT MemoryVT,
1524            const Value *srcValue, int SVOff,
1525            unsigned alignment, bool isvolatile);
1526
1527  /// Returns alignment and volatility of the memory access
1528  unsigned getAlignment() const { return (1u << (Flags >> 1)) >> 1; }
1529  bool isVolatile() const { return Flags & 1; }
1530
1531  /// Returns the SrcValue and offset that describes the location of the access
1532  const Value *getSrcValue() const { return SrcValue; }
1533  int getSrcValueOffset() const { return SVOffset; }
1534
1535  /// getMemoryVT - Return the type of the in-memory value.
1536  MVT getMemoryVT() const { return MemoryVT; }
1537
1538  /// getMemOperand - Return a MachineMemOperand object describing the memory
1539  /// reference performed by operation.
1540  MachineMemOperand getMemOperand() const;
1541
1542  const SDValue &getChain() const { return getOperand(0); }
1543  const SDValue &getBasePtr() const {
1544    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1545  }
1546
1547  /// getRawFlags - Represent the flags as a bunch of bits.
1548  ///
1549  unsigned getRawFlags() const { return Flags; }
1550
1551  // Methods to support isa and dyn_cast
1552  static bool classof(const MemSDNode *) { return true; }
1553  static bool classof(const SDNode *N) {
1554    return N->getOpcode() == ISD::LOAD                ||
1555           N->getOpcode() == ISD::STORE               ||
1556           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_8   ||
1557           N->getOpcode() == ISD::ATOMIC_SWAP_8       ||
1558           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_8   ||
1559           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_8   ||
1560           N->getOpcode() == ISD::ATOMIC_LOAD_AND_8   ||
1561           N->getOpcode() == ISD::ATOMIC_LOAD_OR_8    ||
1562           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_8   ||
1563           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_8  ||
1564           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_8   ||
1565           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_8   ||
1566           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_8  ||
1567           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_8  ||
1568
1569           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_16  ||
1570           N->getOpcode() == ISD::ATOMIC_SWAP_16      ||
1571           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_16  ||
1572           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_16  ||
1573           N->getOpcode() == ISD::ATOMIC_LOAD_AND_16  ||
1574           N->getOpcode() == ISD::ATOMIC_LOAD_OR_16   ||
1575           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_16  ||
1576           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_16 ||
1577           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_16  ||
1578           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_16  ||
1579           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_16 ||
1580           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_16 ||
1581
1582           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_32  ||
1583           N->getOpcode() == ISD::ATOMIC_SWAP_32      ||
1584           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_32  ||
1585           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_32  ||
1586           N->getOpcode() == ISD::ATOMIC_LOAD_AND_32  ||
1587           N->getOpcode() == ISD::ATOMIC_LOAD_OR_32   ||
1588           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_32  ||
1589           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_32 ||
1590           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_32  ||
1591           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_32  ||
1592           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_32 ||
1593           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_32 ||
1594
1595           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_64  ||
1596           N->getOpcode() == ISD::ATOMIC_SWAP_64      ||
1597           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_64  ||
1598           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_64  ||
1599           N->getOpcode() == ISD::ATOMIC_LOAD_AND_64  ||
1600           N->getOpcode() == ISD::ATOMIC_LOAD_OR_64   ||
1601           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_64  ||
1602           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_64 ||
1603           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_64  ||
1604           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_64  ||
1605           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_64 ||
1606           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_64;
1607  }
1608};
1609
1610/// Atomic operations node
1611class AtomicSDNode : public MemSDNode {
1612  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1613  SDUse Ops[4];
1614
1615 public:
1616  // Opc:   opcode for atomic
1617  // VTL:    value type list
1618  // Chain:  memory chain for operaand
1619  // Ptr:    address to update as a SDValue
1620  // Cmp:    compare value
1621  // Swp:    swap value
1622  // SrcVal: address to update as a Value (used for MemOperand)
1623  // Align:  alignment of memory
1624  AtomicSDNode(unsigned Opc, SDVTList VTL, SDValue Chain, SDValue Ptr,
1625               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1626               unsigned Align=0)
1627    : MemSDNode(Opc, VTL, Cmp.getValueType(), SrcVal, /*SVOffset=*/0,
1628                Align, /*isVolatile=*/true) {
1629    Ops[0] = Chain;
1630    Ops[1] = Ptr;
1631    Ops[2] = Cmp;
1632    Ops[3] = Swp;
1633    InitOperands(Ops, 4);
1634  }
1635  AtomicSDNode(unsigned Opc, SDVTList VTL, SDValue Chain, SDValue Ptr,
1636               SDValue Val, const Value* SrcVal, unsigned Align=0)
1637    : MemSDNode(Opc, VTL, Val.getValueType(), SrcVal, /*SVOffset=*/0,
1638                Align, /*isVolatile=*/true) {
1639    Ops[0] = Chain;
1640    Ops[1] = Ptr;
1641    Ops[2] = Val;
1642    InitOperands(Ops, 3);
1643  }
1644
1645  const SDValue &getBasePtr() const { return getOperand(1); }
1646  const SDValue &getVal() const { return getOperand(2); }
1647
1648  bool isCompareAndSwap() const {
1649    unsigned Op = getOpcode();
1650    return Op == ISD::ATOMIC_CMP_SWAP_8 ||
1651           Op == ISD::ATOMIC_CMP_SWAP_16 ||
1652           Op == ISD::ATOMIC_CMP_SWAP_32 ||
1653           Op == ISD::ATOMIC_CMP_SWAP_64;
1654  }
1655
1656  // Methods to support isa and dyn_cast
1657  static bool classof(const AtomicSDNode *) { return true; }
1658  static bool classof(const SDNode *N) {
1659    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP_8   ||
1660           N->getOpcode() == ISD::ATOMIC_SWAP_8       ||
1661           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_8   ||
1662           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_8   ||
1663           N->getOpcode() == ISD::ATOMIC_LOAD_AND_8   ||
1664           N->getOpcode() == ISD::ATOMIC_LOAD_OR_8    ||
1665           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_8   ||
1666           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_8  ||
1667           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_8   ||
1668           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_8   ||
1669           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_8  ||
1670           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_8  ||
1671           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_16  ||
1672           N->getOpcode() == ISD::ATOMIC_SWAP_16      ||
1673           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_16  ||
1674           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_16  ||
1675           N->getOpcode() == ISD::ATOMIC_LOAD_AND_16  ||
1676           N->getOpcode() == ISD::ATOMIC_LOAD_OR_16   ||
1677           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_16  ||
1678           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_16 ||
1679           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_16  ||
1680           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_16  ||
1681           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_16 ||
1682           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_16 ||
1683           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_32  ||
1684           N->getOpcode() == ISD::ATOMIC_SWAP_32      ||
1685           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_32  ||
1686           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_32  ||
1687           N->getOpcode() == ISD::ATOMIC_LOAD_AND_32  ||
1688           N->getOpcode() == ISD::ATOMIC_LOAD_OR_32   ||
1689           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_32  ||
1690           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_32 ||
1691           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_32  ||
1692           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_32  ||
1693           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_32 ||
1694           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_32 ||
1695           N->getOpcode() == ISD::ATOMIC_CMP_SWAP_64  ||
1696           N->getOpcode() == ISD::ATOMIC_SWAP_64      ||
1697           N->getOpcode() == ISD::ATOMIC_LOAD_ADD_64  ||
1698           N->getOpcode() == ISD::ATOMIC_LOAD_SUB_64  ||
1699           N->getOpcode() == ISD::ATOMIC_LOAD_AND_64  ||
1700           N->getOpcode() == ISD::ATOMIC_LOAD_OR_64   ||
1701           N->getOpcode() == ISD::ATOMIC_LOAD_XOR_64  ||
1702           N->getOpcode() == ISD::ATOMIC_LOAD_NAND_64 ||
1703           N->getOpcode() == ISD::ATOMIC_LOAD_MIN_64  ||
1704           N->getOpcode() == ISD::ATOMIC_LOAD_MAX_64  ||
1705           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN_64 ||
1706           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX_64;
1707  }
1708};
1709
1710class ConstantSDNode : public SDNode {
1711  const ConstantInt *Value;
1712  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1713protected:
1714  friend class SelectionDAG;
1715  ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
1716    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1717      Value(val) {
1718  }
1719public:
1720
1721  const ConstantInt *getConstantIntValue() const { return Value; }
1722  const APInt &getAPIntValue() const { return Value->getValue(); }
1723  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1724  int64_t getSExtValue() const { return Value->getSExtValue(); }
1725
1726  bool isNullValue() const { return Value->isNullValue(); }
1727  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1728
1729  static bool classof(const ConstantSDNode *) { return true; }
1730  static bool classof(const SDNode *N) {
1731    return N->getOpcode() == ISD::Constant ||
1732           N->getOpcode() == ISD::TargetConstant;
1733  }
1734};
1735
1736class ConstantFPSDNode : public SDNode {
1737  const ConstantFP *Value;
1738  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1739protected:
1740  friend class SelectionDAG;
1741  ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
1742    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1743             getSDVTList(VT)), Value(val) {
1744  }
1745public:
1746
1747  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1748  const ConstantFP *getConstantFPValue() const { return Value; }
1749
1750  /// isExactlyValue - We don't rely on operator== working on double values, as
1751  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1752  /// As such, this method can be used to do an exact bit-for-bit comparison of
1753  /// two floating point values.
1754
1755  /// We leave the version with the double argument here because it's just so
1756  /// convenient to write "2.0" and the like.  Without this function we'd
1757  /// have to duplicate its logic everywhere it's called.
1758  bool isExactlyValue(double V) const {
1759    // convert is not supported on this type
1760    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1761      return false;
1762    APFloat Tmp(V);
1763    Tmp.convert(Value->getValueAPF().getSemantics(),
1764                APFloat::rmNearestTiesToEven);
1765    return isExactlyValue(Tmp);
1766  }
1767  bool isExactlyValue(const APFloat& V) const;
1768
1769  bool isValueValidForType(MVT VT, const APFloat& Val);
1770
1771  static bool classof(const ConstantFPSDNode *) { return true; }
1772  static bool classof(const SDNode *N) {
1773    return N->getOpcode() == ISD::ConstantFP ||
1774           N->getOpcode() == ISD::TargetConstantFP;
1775  }
1776};
1777
1778class GlobalAddressSDNode : public SDNode {
1779  GlobalValue *TheGlobal;
1780  int Offset;
1781  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1782protected:
1783  friend class SelectionDAG;
1784  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT, int o = 0);
1785public:
1786
1787  GlobalValue *getGlobal() const { return TheGlobal; }
1788  int getOffset() const { return Offset; }
1789
1790  static bool classof(const GlobalAddressSDNode *) { return true; }
1791  static bool classof(const SDNode *N) {
1792    return N->getOpcode() == ISD::GlobalAddress ||
1793           N->getOpcode() == ISD::TargetGlobalAddress ||
1794           N->getOpcode() == ISD::GlobalTLSAddress ||
1795           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1796  }
1797};
1798
1799class FrameIndexSDNode : public SDNode {
1800  int FI;
1801  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1802protected:
1803  friend class SelectionDAG;
1804  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1805    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1806      FI(fi) {
1807  }
1808public:
1809
1810  int getIndex() const { return FI; }
1811
1812  static bool classof(const FrameIndexSDNode *) { return true; }
1813  static bool classof(const SDNode *N) {
1814    return N->getOpcode() == ISD::FrameIndex ||
1815           N->getOpcode() == ISD::TargetFrameIndex;
1816  }
1817};
1818
1819class JumpTableSDNode : public SDNode {
1820  int JTI;
1821  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1822protected:
1823  friend class SelectionDAG;
1824  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1825    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1826      JTI(jti) {
1827  }
1828public:
1829
1830  int getIndex() const { return JTI; }
1831
1832  static bool classof(const JumpTableSDNode *) { return true; }
1833  static bool classof(const SDNode *N) {
1834    return N->getOpcode() == ISD::JumpTable ||
1835           N->getOpcode() == ISD::TargetJumpTable;
1836  }
1837};
1838
1839class ConstantPoolSDNode : public SDNode {
1840  union {
1841    Constant *ConstVal;
1842    MachineConstantPoolValue *MachineCPVal;
1843  } Val;
1844  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1845  unsigned Alignment;
1846  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1847protected:
1848  friend class SelectionDAG;
1849  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1850    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1851             getSDVTList(VT)), Offset(o), Alignment(0) {
1852    assert((int)Offset >= 0 && "Offset is too large");
1853    Val.ConstVal = c;
1854  }
1855  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1856    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1857             getSDVTList(VT)), Offset(o), Alignment(Align) {
1858    assert((int)Offset >= 0 && "Offset is too large");
1859    Val.ConstVal = c;
1860  }
1861  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1862                     MVT VT, int o=0)
1863    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1864             getSDVTList(VT)), Offset(o), Alignment(0) {
1865    assert((int)Offset >= 0 && "Offset is too large");
1866    Val.MachineCPVal = v;
1867    Offset |= 1 << (sizeof(unsigned)*8-1);
1868  }
1869  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1870                     MVT VT, int o, unsigned Align)
1871    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1872             getSDVTList(VT)), Offset(o), Alignment(Align) {
1873    assert((int)Offset >= 0 && "Offset is too large");
1874    Val.MachineCPVal = v;
1875    Offset |= 1 << (sizeof(unsigned)*8-1);
1876  }
1877public:
1878
1879  bool isMachineConstantPoolEntry() const {
1880    return (int)Offset < 0;
1881  }
1882
1883  Constant *getConstVal() const {
1884    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1885    return Val.ConstVal;
1886  }
1887
1888  MachineConstantPoolValue *getMachineCPVal() const {
1889    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1890    return Val.MachineCPVal;
1891  }
1892
1893  int getOffset() const {
1894    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1895  }
1896
1897  // Return the alignment of this constant pool object, which is either 0 (for
1898  // default alignment) or log2 of the desired value.
1899  unsigned getAlignment() const { return Alignment; }
1900
1901  const Type *getType() const;
1902
1903  static bool classof(const ConstantPoolSDNode *) { return true; }
1904  static bool classof(const SDNode *N) {
1905    return N->getOpcode() == ISD::ConstantPool ||
1906           N->getOpcode() == ISD::TargetConstantPool;
1907  }
1908};
1909
1910class BasicBlockSDNode : public SDNode {
1911  MachineBasicBlock *MBB;
1912  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1913protected:
1914  friend class SelectionDAG;
1915  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1916    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1917  }
1918public:
1919
1920  MachineBasicBlock *getBasicBlock() const { return MBB; }
1921
1922  static bool classof(const BasicBlockSDNode *) { return true; }
1923  static bool classof(const SDNode *N) {
1924    return N->getOpcode() == ISD::BasicBlock;
1925  }
1926};
1927
1928/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1929/// used when the SelectionDAG needs to make a simple reference to something
1930/// in the LLVM IR representation.
1931///
1932/// Note that this is not used for carrying alias information; that is done
1933/// with MemOperandSDNode, which includes a Value which is required to be a
1934/// pointer, and several other fields specific to memory references.
1935///
1936class SrcValueSDNode : public SDNode {
1937  const Value *V;
1938  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1939protected:
1940  friend class SelectionDAG;
1941  /// Create a SrcValue for a general value.
1942  explicit SrcValueSDNode(const Value *v)
1943    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1944
1945public:
1946  /// getValue - return the contained Value.
1947  const Value *getValue() const { return V; }
1948
1949  static bool classof(const SrcValueSDNode *) { return true; }
1950  static bool classof(const SDNode *N) {
1951    return N->getOpcode() == ISD::SRCVALUE;
1952  }
1953};
1954
1955
1956/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
1957/// used to represent a reference to memory after ISD::LOAD
1958/// and ISD::STORE have been lowered.
1959///
1960class MemOperandSDNode : public SDNode {
1961  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1962protected:
1963  friend class SelectionDAG;
1964  /// Create a MachineMemOperand node
1965  explicit MemOperandSDNode(const MachineMemOperand &mo)
1966    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
1967
1968public:
1969  /// MO - The contained MachineMemOperand.
1970  const MachineMemOperand MO;
1971
1972  static bool classof(const MemOperandSDNode *) { return true; }
1973  static bool classof(const SDNode *N) {
1974    return N->getOpcode() == ISD::MEMOPERAND;
1975  }
1976};
1977
1978
1979class RegisterSDNode : public SDNode {
1980  unsigned Reg;
1981  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1982protected:
1983  friend class SelectionDAG;
1984  RegisterSDNode(unsigned reg, MVT VT)
1985    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1986  }
1987public:
1988
1989  unsigned getReg() const { return Reg; }
1990
1991  static bool classof(const RegisterSDNode *) { return true; }
1992  static bool classof(const SDNode *N) {
1993    return N->getOpcode() == ISD::Register;
1994  }
1995};
1996
1997class DbgStopPointSDNode : public SDNode {
1998  SDUse Chain;
1999  unsigned Line;
2000  unsigned Column;
2001  const CompileUnitDesc *CU;
2002  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2003protected:
2004  friend class SelectionDAG;
2005  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2006                     const CompileUnitDesc *cu)
2007    : SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
2008      Line(l), Column(c), CU(cu) {
2009    Chain = ch;
2010    InitOperands(&Chain, 1);
2011  }
2012public:
2013  unsigned getLine() const { return Line; }
2014  unsigned getColumn() const { return Column; }
2015  const CompileUnitDesc *getCompileUnit() const { return CU; }
2016
2017  static bool classof(const DbgStopPointSDNode *) { return true; }
2018  static bool classof(const SDNode *N) {
2019    return N->getOpcode() == ISD::DBG_STOPPOINT;
2020  }
2021};
2022
2023class LabelSDNode : public SDNode {
2024  SDUse Chain;
2025  unsigned LabelID;
2026  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2027protected:
2028  friend class SelectionDAG;
2029  LabelSDNode(unsigned NodeTy, SDValue ch, unsigned id)
2030    : SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
2031    Chain = ch;
2032    InitOperands(&Chain, 1);
2033  }
2034public:
2035  unsigned getLabelID() const { return LabelID; }
2036
2037  static bool classof(const LabelSDNode *) { return true; }
2038  static bool classof(const SDNode *N) {
2039    return N->getOpcode() == ISD::DBG_LABEL ||
2040           N->getOpcode() == ISD::EH_LABEL;
2041  }
2042};
2043
2044class ExternalSymbolSDNode : public SDNode {
2045  const char *Symbol;
2046  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2047protected:
2048  friend class SelectionDAG;
2049  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
2050    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2051             getSDVTList(VT)), Symbol(Sym) {
2052  }
2053public:
2054
2055  const char *getSymbol() const { return Symbol; }
2056
2057  static bool classof(const ExternalSymbolSDNode *) { return true; }
2058  static bool classof(const SDNode *N) {
2059    return N->getOpcode() == ISD::ExternalSymbol ||
2060           N->getOpcode() == ISD::TargetExternalSymbol;
2061  }
2062};
2063
2064class CondCodeSDNode : public SDNode {
2065  ISD::CondCode Condition;
2066  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2067protected:
2068  friend class SelectionDAG;
2069  explicit CondCodeSDNode(ISD::CondCode Cond)
2070    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
2071  }
2072public:
2073
2074  ISD::CondCode get() const { return Condition; }
2075
2076  static bool classof(const CondCodeSDNode *) { return true; }
2077  static bool classof(const SDNode *N) {
2078    return N->getOpcode() == ISD::CONDCODE;
2079  }
2080};
2081
2082namespace ISD {
2083  struct ArgFlagsTy {
2084  private:
2085    static const uint64_t NoFlagSet      = 0ULL;
2086    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2087    static const uint64_t ZExtOffs       = 0;
2088    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2089    static const uint64_t SExtOffs       = 1;
2090    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2091    static const uint64_t InRegOffs      = 2;
2092    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2093    static const uint64_t SRetOffs       = 3;
2094    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2095    static const uint64_t ByValOffs      = 4;
2096    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2097    static const uint64_t NestOffs       = 5;
2098    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2099    static const uint64_t ByValAlignOffs = 6;
2100    static const uint64_t Split          = 1ULL << 10;
2101    static const uint64_t SplitOffs      = 10;
2102    static const uint64_t OrigAlign      = 0x1FULL<<27;
2103    static const uint64_t OrigAlignOffs  = 27;
2104    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2105    static const uint64_t ByValSizeOffs  = 32;
2106
2107    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2108
2109    uint64_t Flags;
2110  public:
2111    ArgFlagsTy() : Flags(0) { }
2112
2113    bool isZExt()   const { return Flags & ZExt; }
2114    void setZExt()  { Flags |= One << ZExtOffs; }
2115
2116    bool isSExt()   const { return Flags & SExt; }
2117    void setSExt()  { Flags |= One << SExtOffs; }
2118
2119    bool isInReg()  const { return Flags & InReg; }
2120    void setInReg() { Flags |= One << InRegOffs; }
2121
2122    bool isSRet()   const { return Flags & SRet; }
2123    void setSRet()  { Flags |= One << SRetOffs; }
2124
2125    bool isByVal()  const { return Flags & ByVal; }
2126    void setByVal() { Flags |= One << ByValOffs; }
2127
2128    bool isNest()   const { return Flags & Nest; }
2129    void setNest()  { Flags |= One << NestOffs; }
2130
2131    unsigned getByValAlign() const {
2132      return (unsigned)
2133        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2134    }
2135    void setByValAlign(unsigned A) {
2136      Flags = (Flags & ~ByValAlign) |
2137        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2138    }
2139
2140    bool isSplit()   const { return Flags & Split; }
2141    void setSplit()  { Flags |= One << SplitOffs; }
2142
2143    unsigned getOrigAlign() const {
2144      return (unsigned)
2145        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2146    }
2147    void setOrigAlign(unsigned A) {
2148      Flags = (Flags & ~OrigAlign) |
2149        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2150    }
2151
2152    unsigned getByValSize() const {
2153      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2154    }
2155    void setByValSize(unsigned S) {
2156      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2157    }
2158
2159    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2160    std::string getArgFlagsString();
2161
2162    /// getRawBits - Represent the flags as a bunch of bits.
2163    uint64_t getRawBits() const { return Flags; }
2164  };
2165}
2166
2167/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2168class ARG_FLAGSSDNode : public SDNode {
2169  ISD::ArgFlagsTy TheFlags;
2170  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2171protected:
2172  friend class SelectionDAG;
2173  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2174    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
2175  }
2176public:
2177  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2178
2179  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2180  static bool classof(const SDNode *N) {
2181    return N->getOpcode() == ISD::ARG_FLAGS;
2182  }
2183};
2184
2185/// CallSDNode - Node for calls -- ISD::CALL.
2186class CallSDNode : public SDNode {
2187  unsigned CallingConv;
2188  bool IsVarArg;
2189  bool IsTailCall;
2190  // We might eventually want a full-blown Attributes for the result; that
2191  // will expand the size of the representation.  At the moment we only
2192  // need Inreg.
2193  bool Inreg;
2194  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2195protected:
2196  friend class SelectionDAG;
2197  CallSDNode(unsigned cc, bool isvararg, bool istailcall, bool isinreg,
2198             SDVTList VTs, const SDValue *Operands, unsigned numOperands)
2199    : SDNode(ISD::CALL, VTs, Operands, numOperands),
2200      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2201      Inreg(isinreg) {}
2202public:
2203  unsigned getCallingConv() const { return CallingConv; }
2204  unsigned isVarArg() const { return IsVarArg; }
2205  unsigned isTailCall() const { return IsTailCall; }
2206  unsigned isInreg() const { return Inreg; }
2207
2208  /// Set this call to not be marked as a tail call. Normally setter
2209  /// methods in SDNodes are unsafe because it breaks the CSE map,
2210  /// but we don't include the tail call flag for calls so it's ok
2211  /// in this case.
2212  void setNotTailCall() { IsTailCall = false; }
2213
2214  SDValue getChain() const { return getOperand(0); }
2215  SDValue getCallee() const { return getOperand(1); }
2216
2217  unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
2218  SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
2219  SDValue getArgFlagsVal(unsigned i) const {
2220    return getOperand(3+2*i);
2221  }
2222  ISD::ArgFlagsTy getArgFlags(unsigned i) const {
2223    return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
2224  }
2225
2226  unsigned getNumRetVals() const { return getNumValues() - 1; }
2227  MVT getRetValType(unsigned i) const { return getValueType(i); }
2228
2229  static bool classof(const CallSDNode *) { return true; }
2230  static bool classof(const SDNode *N) {
2231    return N->getOpcode() == ISD::CALL;
2232  }
2233};
2234
2235/// VTSDNode - This class is used to represent MVT's, which are used
2236/// to parameterize some operations.
2237class VTSDNode : public SDNode {
2238  MVT ValueType;
2239  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2240protected:
2241  friend class SelectionDAG;
2242  explicit VTSDNode(MVT VT)
2243    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
2244  }
2245public:
2246
2247  MVT getVT() const { return ValueType; }
2248
2249  static bool classof(const VTSDNode *) { return true; }
2250  static bool classof(const SDNode *N) {
2251    return N->getOpcode() == ISD::VALUETYPE;
2252  }
2253};
2254
2255/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2256///
2257class LSBaseSDNode : public MemSDNode {
2258protected:
2259  //! Operand array for load and store
2260  /*!
2261    \note Moving this array to the base class captures more
2262    common functionality shared between LoadSDNode and
2263    StoreSDNode
2264   */
2265  SDUse Ops[4];
2266public:
2267  LSBaseSDNode(ISD::NodeType NodeTy, SDValue *Operands, unsigned numOperands,
2268               SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
2269               const Value *SV, int SVO, unsigned Align, bool Vol)
2270    : MemSDNode(NodeTy, VTs, VT, SV, SVO, Align, Vol) {
2271    SubclassData = AM;
2272    for (unsigned i = 0; i != numOperands; ++i)
2273      Ops[i] = Operands[i];
2274    InitOperands(Ops, numOperands);
2275    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2276    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2277           "Only indexed loads and stores have a non-undef offset operand");
2278  }
2279
2280  const SDValue &getOffset() const {
2281    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2282  }
2283
2284  /// getAddressingMode - Return the addressing mode for this load or store:
2285  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2286  ISD::MemIndexedMode getAddressingMode() const {
2287    return ISD::MemIndexedMode(SubclassData & 7);
2288  }
2289
2290  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2291  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2292
2293  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2294  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2295
2296  static bool classof(const LSBaseSDNode *) { return true; }
2297  static bool classof(const SDNode *N) {
2298    return N->getOpcode() == ISD::LOAD ||
2299           N->getOpcode() == ISD::STORE;
2300  }
2301};
2302
2303/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2304///
2305class LoadSDNode : public LSBaseSDNode {
2306  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2307protected:
2308  friend class SelectionDAG;
2309  LoadSDNode(SDValue *ChainPtrOff, SDVTList VTs,
2310             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2311             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2312    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2313                   VTs, AM, LVT, SV, O, Align, Vol) {
2314    SubclassData |= (unsigned short)ETy << 3;
2315  }
2316public:
2317
2318  /// getExtensionType - Return whether this is a plain node,
2319  /// or one of the varieties of value-extending loads.
2320  ISD::LoadExtType getExtensionType() const {
2321    return ISD::LoadExtType((SubclassData >> 3) & 3);
2322  }
2323
2324  const SDValue &getBasePtr() const { return getOperand(1); }
2325  const SDValue &getOffset() const { return getOperand(2); }
2326
2327  static bool classof(const LoadSDNode *) { return true; }
2328  static bool classof(const SDNode *N) {
2329    return N->getOpcode() == ISD::LOAD;
2330  }
2331};
2332
2333/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2334///
2335class StoreSDNode : public LSBaseSDNode {
2336  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2337protected:
2338  friend class SelectionDAG;
2339  StoreSDNode(SDValue *ChainValuePtrOff, SDVTList VTs,
2340              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2341              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2342    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2343                   VTs, AM, SVT, SV, O, Align, Vol) {
2344    SubclassData |= (unsigned short)isTrunc << 3;
2345  }
2346public:
2347
2348  /// isTruncatingStore - Return true if the op does a truncation before store.
2349  /// For integers this is the same as doing a TRUNCATE and storing the result.
2350  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2351  bool isTruncatingStore() const { return (SubclassData >> 3) & 1; }
2352
2353  const SDValue &getValue() const { return getOperand(1); }
2354  const SDValue &getBasePtr() const { return getOperand(2); }
2355  const SDValue &getOffset() const { return getOperand(3); }
2356
2357  static bool classof(const StoreSDNode *) { return true; }
2358  static bool classof(const SDNode *N) {
2359    return N->getOpcode() == ISD::STORE;
2360  }
2361};
2362
2363
2364class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2365  SDNode *Node;
2366  unsigned Operand;
2367
2368  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2369public:
2370  bool operator==(const SDNodeIterator& x) const {
2371    return Operand == x.Operand;
2372  }
2373  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2374
2375  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2376    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2377    Operand = I.Operand;
2378    return *this;
2379  }
2380
2381  pointer operator*() const {
2382    return Node->getOperand(Operand).getNode();
2383  }
2384  pointer operator->() const { return operator*(); }
2385
2386  SDNodeIterator& operator++() {                // Preincrement
2387    ++Operand;
2388    return *this;
2389  }
2390  SDNodeIterator operator++(int) { // Postincrement
2391    SDNodeIterator tmp = *this; ++*this; return tmp;
2392  }
2393
2394  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2395  static SDNodeIterator end  (SDNode *N) {
2396    return SDNodeIterator(N, N->getNumOperands());
2397  }
2398
2399  unsigned getOperand() const { return Operand; }
2400  const SDNode *getNode() const { return Node; }
2401};
2402
2403template <> struct GraphTraits<SDNode*> {
2404  typedef SDNode NodeType;
2405  typedef SDNodeIterator ChildIteratorType;
2406  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2407  static inline ChildIteratorType child_begin(NodeType *N) {
2408    return SDNodeIterator::begin(N);
2409  }
2410  static inline ChildIteratorType child_end(NodeType *N) {
2411    return SDNodeIterator::end(N);
2412  }
2413};
2414
2415/// LargestSDNode - The largest SDNode class.
2416///
2417typedef LoadSDNode LargestSDNode;
2418
2419/// MostAlignedSDNode - The SDNode class with the greatest alignment
2420/// requirement.
2421///
2422typedef ARG_FLAGSSDNode MostAlignedSDNode;
2423
2424namespace ISD {
2425  /// isNormalLoad - Returns true if the specified node is a non-extending
2426  /// and unindexed load.
2427  inline bool isNormalLoad(const SDNode *N) {
2428    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2429    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2430      Ld->getAddressingMode() == ISD::UNINDEXED;
2431  }
2432
2433  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2434  /// load.
2435  inline bool isNON_EXTLoad(const SDNode *N) {
2436    return isa<LoadSDNode>(N) &&
2437      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2438  }
2439
2440  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2441  ///
2442  inline bool isEXTLoad(const SDNode *N) {
2443    return isa<LoadSDNode>(N) &&
2444      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2445  }
2446
2447  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2448  ///
2449  inline bool isSEXTLoad(const SDNode *N) {
2450    return isa<LoadSDNode>(N) &&
2451      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2452  }
2453
2454  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2455  ///
2456  inline bool isZEXTLoad(const SDNode *N) {
2457    return isa<LoadSDNode>(N) &&
2458      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2459  }
2460
2461  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2462  ///
2463  inline bool isUNINDEXEDLoad(const SDNode *N) {
2464    return isa<LoadSDNode>(N) &&
2465      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2466  }
2467
2468  /// isNormalStore - Returns true if the specified node is a non-truncating
2469  /// and unindexed store.
2470  inline bool isNormalStore(const SDNode *N) {
2471    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2472    return St && !St->isTruncatingStore() &&
2473      St->getAddressingMode() == ISD::UNINDEXED;
2474  }
2475
2476  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2477  /// store.
2478  inline bool isNON_TRUNCStore(const SDNode *N) {
2479    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2480  }
2481
2482  /// isTRUNCStore - Returns true if the specified node is a truncating
2483  /// store.
2484  inline bool isTRUNCStore(const SDNode *N) {
2485    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2486  }
2487
2488  /// isUNINDEXEDStore - Returns true if the specified node is an
2489  /// unindexed store.
2490  inline bool isUNINDEXEDStore(const SDNode *N) {
2491    return isa<StoreSDNode>(N) &&
2492      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2493  }
2494}
2495
2496
2497} // end llvm namespace
2498
2499#endif
2500