SelectionDAGNodes.h revision 990f032907ae171cc3d465a694e8e6d2a6545f57
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APInt.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/Support/DataTypes.h"
31#include <cassert>
32
33namespace llvm {
34
35class SelectionDAG;
36class GlobalValue;
37class MachineBasicBlock;
38class MachineConstantPoolValue;
39class SDNode;
40class CompileUnitDesc;
41template <typename T> struct DenseMapInfo;
42template <typename T> struct simplify_type;
43template <typename T> struct ilist_traits;
44template<typename NodeTy, typename Traits> class iplist;
45template<typename NodeTy> class ilist_iterator;
46
47/// SDVTList - This represents a list of ValueType's that has been intern'd by
48/// a SelectionDAG.  Instances of this simple value class are returned by
49/// SelectionDAG::getVTList(...).
50///
51struct SDVTList {
52  const MVT *VTs;
53  unsigned short NumVTs;
54};
55
56/// ISD namespace - This namespace contains an enum which represents all of the
57/// SelectionDAG node types and value types.
58///
59namespace ISD {
60
61  //===--------------------------------------------------------------------===//
62  /// ISD::NodeType enum - This enum defines all of the operators valid in a
63  /// SelectionDAG.
64  ///
65  enum NodeType {
66    // DELETED_NODE - This is an illegal flag value that is used to catch
67    // errors.  This opcode is not a legal opcode for any node.
68    DELETED_NODE,
69
70    // EntryToken - This is the marker used to indicate the start of the region.
71    EntryToken,
72
73    // Token factor - This node takes multiple tokens as input and produces a
74    // single token result.  This is used to represent the fact that the operand
75    // operators are independent of each other.
76    TokenFactor,
77
78    // AssertSext, AssertZext - These nodes record if a register contains a
79    // value that has already been zero or sign extended from a narrower type.
80    // These nodes take two operands.  The first is the node that has already
81    // been extended, and the second is a value type node indicating the width
82    // of the extension
83    AssertSext, AssertZext,
84
85    // Various leaf nodes.
86    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
87    Constant, ConstantFP,
88    GlobalAddress, GlobalTLSAddress, FrameIndex,
89    JumpTable, ConstantPool, ExternalSymbol,
90
91    // The address of the GOT
92    GLOBAL_OFFSET_TABLE,
93
94    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
95    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
96    // of the frame or return address to return.  An index of zero corresponds
97    // to the current function's frame or return address, an index of one to the
98    // parent's frame or return address, and so on.
99    FRAMEADDR, RETURNADDR,
100
101    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
102    // first (possible) on-stack argument. This is needed for correct stack
103    // adjustment during unwind.
104    FRAME_TO_ARGS_OFFSET,
105
106    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
107    // address of the exception block on entry to an landing pad block.
108    EXCEPTIONADDR,
109
110    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
111    // the selection index of the exception thrown.
112    EHSELECTION,
113
114    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
115    // 'eh_return' gcc dwarf builtin, which is used to return from
116    // exception. The general meaning is: adjust stack by OFFSET and pass
117    // execution to HANDLER. Many platform-related details also :)
118    EH_RETURN,
119
120    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
121    // simplification of the constant.
122    TargetConstant,
123    TargetConstantFP,
124
125    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
126    // anything else with this node, and this is valid in the target-specific
127    // dag, turning into a GlobalAddress operand.
128    TargetGlobalAddress,
129    TargetGlobalTLSAddress,
130    TargetFrameIndex,
131    TargetJumpTable,
132    TargetConstantPool,
133    TargetExternalSymbol,
134
135    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
136    /// This node represents a target intrinsic function with no side effects.
137    /// The first operand is the ID number of the intrinsic from the
138    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
139    /// node has returns the result of the intrinsic.
140    INTRINSIC_WO_CHAIN,
141
142    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
143    /// This node represents a target intrinsic function with side effects that
144    /// returns a result.  The first operand is a chain pointer.  The second is
145    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
146    /// operands to the intrinsic follow.  The node has two results, the result
147    /// of the intrinsic and an output chain.
148    INTRINSIC_W_CHAIN,
149
150    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
151    /// This node represents a target intrinsic function with side effects that
152    /// does not return a result.  The first operand is a chain pointer.  The
153    /// second is the ID number of the intrinsic from the llvm::Intrinsic
154    /// namespace.  The operands to the intrinsic follow.
155    INTRINSIC_VOID,
156
157    // CopyToReg - This node has three operands: a chain, a register number to
158    // set to this value, and a value.
159    CopyToReg,
160
161    // CopyFromReg - This node indicates that the input value is a virtual or
162    // physical register that is defined outside of the scope of this
163    // SelectionDAG.  The register is available from the RegisterSDNode object.
164    CopyFromReg,
165
166    // UNDEF - An undefined node
167    UNDEF,
168
169    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
170    /// represents the formal arguments for a function.  CC# is a Constant value
171    /// indicating the calling convention of the function, and ISVARARG is a
172    /// flag that indicates whether the function is varargs or not. This node
173    /// has one result value for each incoming argument, plus one for the output
174    /// chain. It must be custom legalized. See description of CALL node for
175    /// FLAG argument contents explanation.
176    ///
177    FORMAL_ARGUMENTS,
178
179    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
180    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
181    /// This node represents a fully general function call, before the legalizer
182    /// runs.  This has one result value for each argument / flag pair, plus
183    /// a chain result. It must be custom legalized. Flag argument indicates
184    /// misc. argument attributes. Currently:
185    /// Bit 0 - signness
186    /// Bit 1 - 'inreg' attribute
187    /// Bit 2 - 'sret' attribute
188    /// Bit 4 - 'byval' attribute
189    /// Bit 5 - 'nest' attribute
190    /// Bit 6-9 - alignment of byval structures
191    /// Bit 10-26 - size of byval structures
192    /// Bits 31:27 - argument ABI alignment in the first argument piece and
193    /// alignment '1' in other argument pieces.
194    CALL,
195
196    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
197    // a Constant, which is required to be operand #1) half of the integer or
198    // float value specified as operand #0.  This is only for use before
199    // legalization, for values that will be broken into multiple registers.
200    EXTRACT_ELEMENT,
201
202    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
203    // two values of the same integer value type, this produces a value twice as
204    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
205    BUILD_PAIR,
206
207    // MERGE_VALUES - This node takes multiple discrete operands and returns
208    // them all as its individual results.  This nodes has exactly the same
209    // number of inputs and outputs, and is only valid before legalization.
210    // This node is useful for some pieces of the code generator that want to
211    // think about a single node with multiple results, not multiple nodes.
212    MERGE_VALUES,
213
214    // Simple integer binary arithmetic operators.
215    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
216
217    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
218    // a signed/unsigned value of type i[2*N], and return the full value as
219    // two results, each of type iN.
220    SMUL_LOHI, UMUL_LOHI,
221
222    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
223    // remainder result.
224    SDIVREM, UDIVREM,
225
226    // CARRY_FALSE - This node is used when folding other nodes,
227    // like ADDC/SUBC, which indicate the carry result is always false.
228    CARRY_FALSE,
229
230    // Carry-setting nodes for multiple precision addition and subtraction.
231    // These nodes take two operands of the same value type, and produce two
232    // results.  The first result is the normal add or sub result, the second
233    // result is the carry flag result.
234    ADDC, SUBC,
235
236    // Carry-using nodes for multiple precision addition and subtraction.  These
237    // nodes take three operands: The first two are the normal lhs and rhs to
238    // the add or sub, and the third is the input carry flag.  These nodes
239    // produce two results; the normal result of the add or sub, and the output
240    // carry flag.  These nodes both read and write a carry flag to allow them
241    // to them to be chained together for add and sub of arbitrarily large
242    // values.
243    ADDE, SUBE,
244
245    // Simple binary floating point operators.
246    FADD, FSUB, FMUL, FDIV, FREM,
247
248    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
249    // DAG node does not require that X and Y have the same type, just that they
250    // are both floating point.  X and the result must have the same type.
251    // FCOPYSIGN(f32, f64) is allowed.
252    FCOPYSIGN,
253
254    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
255    // value as an integer 0/1 value.
256    FGETSIGN,
257
258    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
259    /// with the specified, possibly variable, elements.  The number of elements
260    /// is required to be a power of two.
261    BUILD_VECTOR,
262
263    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
264    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
265    /// element type then VAL is truncated before replacement.
266    INSERT_VECTOR_ELT,
267
268    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
269    /// identified by the (potentially variable) element number IDX.
270    EXTRACT_VECTOR_ELT,
271
272    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
273    /// vector type with the same length and element type, this produces a
274    /// concatenated vector result value, with length equal to the sum of the
275    /// lengths of the input vectors.
276    CONCAT_VECTORS,
277
278    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
279    /// vector value) starting with the (potentially variable) element number
280    /// IDX, which must be a multiple of the result vector length.
281    EXTRACT_SUBVECTOR,
282
283    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
284    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
285    /// (maybe of an illegal datatype) or undef that indicate which value each
286    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
287    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
288    /// that the indices must be constants and are in terms of the element size
289    /// of VEC1/VEC2, not in terms of bytes.
290    VECTOR_SHUFFLE,
291
292    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
293    /// scalar value into element 0 of the resultant vector type.  The top
294    /// elements 1 to N-1 of the N-element vector are undefined.
295    SCALAR_TO_VECTOR,
296
297    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
298    // This node takes a superreg and a constant sub-register index as operands.
299    // Note sub-register indices must be increasing. That is, if the
300    // sub-register index of a 8-bit sub-register is N, then the index for a
301    // 16-bit sub-register must be at least N+1.
302    EXTRACT_SUBREG,
303
304    // INSERT_SUBREG - This node is used to insert a sub-register value.
305    // This node takes a superreg, a subreg value, and a constant sub-register
306    // index as operands.
307    INSERT_SUBREG,
308
309    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
310    // an unsigned/signed value of type i[2*N], then return the top part.
311    MULHU, MULHS,
312
313    // Bitwise operators - logical and, logical or, logical xor, shift left,
314    // shift right algebraic (shift in sign bits), shift right logical (shift in
315    // zeroes), rotate left, rotate right, and byteswap.
316    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
317
318    // Counting operators
319    CTTZ, CTLZ, CTPOP,
320
321    // Select(COND, TRUEVAL, FALSEVAL)
322    SELECT,
323
324    // Select with condition operator - This selects between a true value and
325    // a false value (ops #2 and #3) based on the boolean result of comparing
326    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
327    // condition code in op #4, a CondCodeSDNode.
328    SELECT_CC,
329
330    // SetCC operator - This evaluates to a boolean (i1) true value if the
331    // condition is true.  The operands to this are the left and right operands
332    // to compare (ops #0, and #1) and the condition code to compare them with
333    // (op #2) as a CondCodeSDNode.
334    SETCC,
335
336    // Vector SetCC operator - This evaluates to a vector of integer elements
337    // with the high bit in each element set to true if the comparison is true
338    // and false if the comparison is false.  All other bits in each element
339    // are undefined.  The operands to this are the left and right operands
340    // to compare (ops #0, and #1) and the condition code to compare them with
341    // (op #2) as a CondCodeSDNode.
342    VSETCC,
343
344    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
345    // integer shift operations, just like ADD/SUB_PARTS.  The operation
346    // ordering is:
347    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
348    SHL_PARTS, SRA_PARTS, SRL_PARTS,
349
350    // Conversion operators.  These are all single input single output
351    // operations.  For all of these, the result type must be strictly
352    // wider or narrower (depending on the operation) than the source
353    // type.
354
355    // SIGN_EXTEND - Used for integer types, replicating the sign bit
356    // into new bits.
357    SIGN_EXTEND,
358
359    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
360    ZERO_EXTEND,
361
362    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
363    ANY_EXTEND,
364
365    // TRUNCATE - Completely drop the high bits.
366    TRUNCATE,
367
368    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
369    // depends on the first letter) to floating point.
370    SINT_TO_FP,
371    UINT_TO_FP,
372
373    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
374    // sign extend a small value in a large integer register (e.g. sign
375    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
376    // with the 7th bit).  The size of the smaller type is indicated by the 1th
377    // operand, a ValueType node.
378    SIGN_EXTEND_INREG,
379
380    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
381    /// integer.
382    FP_TO_SINT,
383    FP_TO_UINT,
384
385    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
386    /// down to the precision of the destination VT.  TRUNC is a flag, which is
387    /// always an integer that is zero or one.  If TRUNC is 0, this is a
388    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
389    /// value of Y.
390    ///
391    /// The TRUNC = 1 case is used in cases where we know that the value will
392    /// not be modified by the node, because Y is not using any of the extra
393    /// precision of source type.  This allows certain transformations like
394    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
395    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
396    FP_ROUND,
397
398    // FLT_ROUNDS_ - Returns current rounding mode:
399    // -1 Undefined
400    //  0 Round to 0
401    //  1 Round to nearest
402    //  2 Round to +inf
403    //  3 Round to -inf
404    FLT_ROUNDS_,
405
406    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
407    /// rounds it to a floating point value.  It then promotes it and returns it
408    /// in a register of the same size.  This operation effectively just
409    /// discards excess precision.  The type to round down to is specified by
410    /// the VT operand, a VTSDNode.
411    FP_ROUND_INREG,
412
413    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
414    FP_EXTEND,
415
416    // BIT_CONVERT - Theis operator converts between integer and FP values, as
417    // if one was stored to memory as integer and the other was loaded from the
418    // same address (or equivalently for vector format conversions, etc).  The
419    // source and result are required to have the same bit size (e.g.
420    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
421    // conversions, but that is a noop, deleted by getNode().
422    BIT_CONVERT,
423
424    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
425    // negation, absolute value, square root, sine and cosine, powi, and pow
426    // operations.
427    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
428
429    // LOAD and STORE have token chains as their first operand, then the same
430    // operands as an LLVM load/store instruction, then an offset node that
431    // is added / subtracted from the base pointer to form the address (for
432    // indexed memory ops).
433    LOAD, STORE,
434
435    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
436    // to a specified boundary.  This node always has two return values: a new
437    // stack pointer value and a chain. The first operand is the token chain,
438    // the second is the number of bytes to allocate, and the third is the
439    // alignment boundary.  The size is guaranteed to be a multiple of the stack
440    // alignment, and the alignment is guaranteed to be bigger than the stack
441    // alignment (if required) or 0 to get standard stack alignment.
442    DYNAMIC_STACKALLOC,
443
444    // Control flow instructions.  These all have token chains.
445
446    // BR - Unconditional branch.  The first operand is the chain
447    // operand, the second is the MBB to branch to.
448    BR,
449
450    // BRIND - Indirect branch.  The first operand is the chain, the second
451    // is the value to branch to, which must be of the same type as the target's
452    // pointer type.
453    BRIND,
454
455    // BR_JT - Jumptable branch. The first operand is the chain, the second
456    // is the jumptable index, the last one is the jumptable entry index.
457    BR_JT,
458
459    // BRCOND - Conditional branch.  The first operand is the chain,
460    // the second is the condition, the third is the block to branch
461    // to if the condition is true.
462    BRCOND,
463
464    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
465    // that the condition is represented as condition code, and two nodes to
466    // compare, rather than as a combined SetCC node.  The operands in order are
467    // chain, cc, lhs, rhs, block to branch to if condition is true.
468    BR_CC,
469
470    // RET - Return from function.  The first operand is the chain,
471    // and any subsequent operands are pairs of return value and return value
472    // signness for the function.  This operation can have variable number of
473    // operands.
474    RET,
475
476    // INLINEASM - Represents an inline asm block.  This node always has two
477    // return values: a chain and a flag result.  The inputs are as follows:
478    //   Operand #0   : Input chain.
479    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
480    //   Operand #2n+2: A RegisterNode.
481    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
482    //   Operand #last: Optional, an incoming flag.
483    INLINEASM,
484
485    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
486    // locations needed for debug and exception handling tables.  These nodes
487    // take a chain as input and return a chain.
488    DBG_LABEL,
489    EH_LABEL,
490
491    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
492    // local variable declarations for debugging information. First operand is
493    // a chain, while the next two operands are first two arguments (address
494    // and variable) of a llvm.dbg.declare instruction.
495    DECLARE,
496
497    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
498    // value, the same type as the pointer type for the system, and an output
499    // chain.
500    STACKSAVE,
501
502    // STACKRESTORE has two operands, an input chain and a pointer to restore to
503    // it returns an output chain.
504    STACKRESTORE,
505
506    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
507    // a call sequence, and carry arbitrary information that target might want
508    // to know.  The first operand is a chain, the rest are specified by the
509    // target and not touched by the DAG optimizers.
510    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
511    CALLSEQ_START,  // Beginning of a call sequence
512    CALLSEQ_END,    // End of a call sequence
513
514    // VAARG - VAARG has three operands: an input chain, a pointer, and a
515    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
516    VAARG,
517
518    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
519    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
520    // source.
521    VACOPY,
522
523    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
524    // pointer, and a SRCVALUE.
525    VAEND, VASTART,
526
527    // SRCVALUE - This is a node type that holds a Value* that is used to
528    // make reference to a value in the LLVM IR.
529    SRCVALUE,
530
531    // MEMOPERAND - This is a node that contains a MachineMemOperand which
532    // records information about a memory reference. This is used to make
533    // AliasAnalysis queries from the backend.
534    MEMOPERAND,
535
536    // PCMARKER - This corresponds to the pcmarker intrinsic.
537    PCMARKER,
538
539    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
540    // The only operand is a chain and a value and a chain are produced.  The
541    // value is the contents of the architecture specific cycle counter like
542    // register (or other high accuracy low latency clock source)
543    READCYCLECOUNTER,
544
545    // HANDLENODE node - Used as a handle for various purposes.
546    HANDLENODE,
547
548    // DBG_STOPPOINT - This node is used to represent a source location for
549    // debug info.  It takes token chain as input, and carries a line number,
550    // column number, and a pointer to a CompileUnitDesc object identifying
551    // the containing compilation unit.  It produces a token chain as output.
552    DBG_STOPPOINT,
553
554    // DEBUG_LOC - This node is used to represent source line information
555    // embedded in the code.  It takes a token chain as input, then a line
556    // number, then a column then a file id (provided by MachineModuleInfo.) It
557    // produces a token chain as output.
558    DEBUG_LOC,
559
560    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
561    // It takes as input a token chain, the pointer to the trampoline,
562    // the pointer to the nested function, the pointer to pass for the
563    // 'nest' parameter, a SRCVALUE for the trampoline and another for
564    // the nested function (allowing targets to access the original
565    // Function*).  It produces the result of the intrinsic and a token
566    // chain as output.
567    TRAMPOLINE,
568
569    // TRAP - Trapping instruction
570    TRAP,
571
572    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
573    // their first operand. The other operands are the address to prefetch,
574    // read / write specifier, and locality specifier.
575    PREFETCH,
576
577    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
578    //                       store-store, device)
579    // This corresponds to the memory.barrier intrinsic.
580    // it takes an input chain, 4 operands to specify the type of barrier, an
581    // operand specifying if the barrier applies to device and uncached memory
582    // and produces an output chain.
583    MEMBARRIER,
584
585    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
586    // this corresponds to the atomic.lcs intrinsic.
587    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
588    // the return is always the original value in *ptr
589    ATOMIC_CMP_SWAP,
590
591    // Val, OUTCHAIN = ATOMIC_LOAD_ADD(INCHAIN, ptr, amt)
592    // this corresponds to the atomic.las intrinsic.
593    // *ptr + amt is stored to *ptr atomically.
594    // the return is always the original value in *ptr
595    ATOMIC_LOAD_ADD,
596
597    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
598    // this corresponds to the atomic.swap intrinsic.
599    // amt is stored to *ptr atomically.
600    // the return is always the original value in *ptr
601    ATOMIC_SWAP,
602
603    // Val, OUTCHAIN = ATOMIC_LOAD_SUB(INCHAIN, ptr, amt)
604    // this corresponds to the atomic.lss intrinsic.
605    // *ptr - amt is stored to *ptr atomically.
606    // the return is always the original value in *ptr
607    ATOMIC_LOAD_SUB,
608
609    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
610    // this corresponds to the atomic.[OpName] intrinsic.
611    // op(*ptr, amt) is stored to *ptr atomically.
612    // the return is always the original value in *ptr
613    ATOMIC_LOAD_AND,
614    ATOMIC_LOAD_OR,
615    ATOMIC_LOAD_XOR,
616    ATOMIC_LOAD_NAND,
617    ATOMIC_LOAD_MIN,
618    ATOMIC_LOAD_MAX,
619    ATOMIC_LOAD_UMIN,
620    ATOMIC_LOAD_UMAX,
621
622    // BUILTIN_OP_END - This must be the last enum value in this list.
623    BUILTIN_OP_END
624  };
625
626  /// Node predicates
627
628  /// isBuildVectorAllOnes - Return true if the specified node is a
629  /// BUILD_VECTOR where all of the elements are ~0 or undef.
630  bool isBuildVectorAllOnes(const SDNode *N);
631
632  /// isBuildVectorAllZeros - Return true if the specified node is a
633  /// BUILD_VECTOR where all of the elements are 0 or undef.
634  bool isBuildVectorAllZeros(const SDNode *N);
635
636  /// isScalarToVector - Return true if the specified node is a
637  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
638  /// element is not an undef.
639  bool isScalarToVector(const SDNode *N);
640
641  /// isDebugLabel - Return true if the specified node represents a debug
642  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
643  bool isDebugLabel(const SDNode *N);
644
645  //===--------------------------------------------------------------------===//
646  /// MemIndexedMode enum - This enum defines the load / store indexed
647  /// addressing modes.
648  ///
649  /// UNINDEXED    "Normal" load / store. The effective address is already
650  ///              computed and is available in the base pointer. The offset
651  ///              operand is always undefined. In addition to producing a
652  ///              chain, an unindexed load produces one value (result of the
653  ///              load); an unindexed store does not produce a value.
654  ///
655  /// PRE_INC      Similar to the unindexed mode where the effective address is
656  /// PRE_DEC      the value of the base pointer add / subtract the offset.
657  ///              It considers the computation as being folded into the load /
658  ///              store operation (i.e. the load / store does the address
659  ///              computation as well as performing the memory transaction).
660  ///              The base operand is always undefined. In addition to
661  ///              producing a chain, pre-indexed load produces two values
662  ///              (result of the load and the result of the address
663  ///              computation); a pre-indexed store produces one value (result
664  ///              of the address computation).
665  ///
666  /// POST_INC     The effective address is the value of the base pointer. The
667  /// POST_DEC     value of the offset operand is then added to / subtracted
668  ///              from the base after memory transaction. In addition to
669  ///              producing a chain, post-indexed load produces two values
670  ///              (the result of the load and the result of the base +/- offset
671  ///              computation); a post-indexed store produces one value (the
672  ///              the result of the base +/- offset computation).
673  ///
674  enum MemIndexedMode {
675    UNINDEXED = 0,
676    PRE_INC,
677    PRE_DEC,
678    POST_INC,
679    POST_DEC,
680    LAST_INDEXED_MODE
681  };
682
683  //===--------------------------------------------------------------------===//
684  /// LoadExtType enum - This enum defines the three variants of LOADEXT
685  /// (load with extension).
686  ///
687  /// SEXTLOAD loads the integer operand and sign extends it to a larger
688  ///          integer result type.
689  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
690  ///          integer result type.
691  /// EXTLOAD  is used for three things: floating point extending loads,
692  ///          integer extending loads [the top bits are undefined], and vector
693  ///          extending loads [load into low elt].
694  ///
695  enum LoadExtType {
696    NON_EXTLOAD = 0,
697    EXTLOAD,
698    SEXTLOAD,
699    ZEXTLOAD,
700    LAST_LOADX_TYPE
701  };
702
703  //===--------------------------------------------------------------------===//
704  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
705  /// below work out, when considering SETFALSE (something that never exists
706  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
707  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
708  /// to.  If the "N" column is 1, the result of the comparison is undefined if
709  /// the input is a NAN.
710  ///
711  /// All of these (except for the 'always folded ops') should be handled for
712  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
713  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
714  ///
715  /// Note that these are laid out in a specific order to allow bit-twiddling
716  /// to transform conditions.
717  enum CondCode {
718    // Opcode          N U L G E       Intuitive operation
719    SETFALSE,      //    0 0 0 0       Always false (always folded)
720    SETOEQ,        //    0 0 0 1       True if ordered and equal
721    SETOGT,        //    0 0 1 0       True if ordered and greater than
722    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
723    SETOLT,        //    0 1 0 0       True if ordered and less than
724    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
725    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
726    SETO,          //    0 1 1 1       True if ordered (no nans)
727    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
728    SETUEQ,        //    1 0 0 1       True if unordered or equal
729    SETUGT,        //    1 0 1 0       True if unordered or greater than
730    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
731    SETULT,        //    1 1 0 0       True if unordered or less than
732    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
733    SETUNE,        //    1 1 1 0       True if unordered or not equal
734    SETTRUE,       //    1 1 1 1       Always true (always folded)
735    // Don't care operations: undefined if the input is a nan.
736    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
737    SETEQ,         //  1 X 0 0 1       True if equal
738    SETGT,         //  1 X 0 1 0       True if greater than
739    SETGE,         //  1 X 0 1 1       True if greater than or equal
740    SETLT,         //  1 X 1 0 0       True if less than
741    SETLE,         //  1 X 1 0 1       True if less than or equal
742    SETNE,         //  1 X 1 1 0       True if not equal
743    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
744
745    SETCC_INVALID       // Marker value.
746  };
747
748  /// isSignedIntSetCC - Return true if this is a setcc instruction that
749  /// performs a signed comparison when used with integer operands.
750  inline bool isSignedIntSetCC(CondCode Code) {
751    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
752  }
753
754  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
755  /// performs an unsigned comparison when used with integer operands.
756  inline bool isUnsignedIntSetCC(CondCode Code) {
757    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
758  }
759
760  /// isTrueWhenEqual - Return true if the specified condition returns true if
761  /// the two operands to the condition are equal.  Note that if one of the two
762  /// operands is a NaN, this value is meaningless.
763  inline bool isTrueWhenEqual(CondCode Cond) {
764    return ((int)Cond & 1) != 0;
765  }
766
767  /// getUnorderedFlavor - This function returns 0 if the condition is always
768  /// false if an operand is a NaN, 1 if the condition is always true if the
769  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
770  /// NaN.
771  inline unsigned getUnorderedFlavor(CondCode Cond) {
772    return ((int)Cond >> 3) & 3;
773  }
774
775  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
776  /// 'op' is a valid SetCC operation.
777  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
778
779  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
780  /// when given the operation for (X op Y).
781  CondCode getSetCCSwappedOperands(CondCode Operation);
782
783  /// getSetCCOrOperation - Return the result of a logical OR between different
784  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
785  /// function returns SETCC_INVALID if it is not possible to represent the
786  /// resultant comparison.
787  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
788
789  /// getSetCCAndOperation - Return the result of a logical AND between
790  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
791  /// function returns SETCC_INVALID if it is not possible to represent the
792  /// resultant comparison.
793  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
794}  // end llvm::ISD namespace
795
796
797//===----------------------------------------------------------------------===//
798/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
799/// values as the result of a computation.  Many nodes return multiple values,
800/// from loads (which define a token and a return value) to ADDC (which returns
801/// a result and a carry value), to calls (which may return an arbitrary number
802/// of values).
803///
804/// As such, each use of a SelectionDAG computation must indicate the node that
805/// computes it as well as which return value to use from that node.  This pair
806/// of information is represented with the SDOperand value type.
807///
808class SDOperand {
809public:
810  SDNode *Val;        // The node defining the value we are using.
811  unsigned ResNo;     // Which return value of the node we are using.
812
813  SDOperand() : Val(0), ResNo(0) {}
814  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
815
816  bool operator==(const SDOperand &O) const {
817    return Val == O.Val && ResNo == O.ResNo;
818  }
819  bool operator!=(const SDOperand &O) const {
820    return !operator==(O);
821  }
822  bool operator<(const SDOperand &O) const {
823    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
824  }
825
826  SDOperand getValue(unsigned R) const {
827    return SDOperand(Val, R);
828  }
829
830  // isOperandOf - Return true if this node is an operand of N.
831  bool isOperandOf(SDNode *N) const;
832
833  /// getValueType - Return the ValueType of the referenced return value.
834  ///
835  inline MVT getValueType() const;
836
837  /// getValueSizeInBits - Returns the size of the value in bits.
838  ///
839  unsigned getValueSizeInBits() const {
840    return getValueType().getSizeInBits();
841  }
842
843  // Forwarding methods - These forward to the corresponding methods in SDNode.
844  inline unsigned getOpcode() const;
845  inline unsigned getNumOperands() const;
846  inline const SDOperand &getOperand(unsigned i) const;
847  inline uint64_t getConstantOperandVal(unsigned i) const;
848  inline bool isTargetOpcode() const;
849  inline unsigned getTargetOpcode() const;
850
851
852  /// reachesChainWithoutSideEffects - Return true if this operand (which must
853  /// be a chain) reaches the specified operand without crossing any
854  /// side-effecting instructions.  In practice, this looks through token
855  /// factors and non-volatile loads.  In order to remain efficient, this only
856  /// looks a couple of nodes in, it does not do an exhaustive search.
857  bool reachesChainWithoutSideEffects(SDOperand Dest,
858                                      unsigned Depth = 2) const;
859
860  /// hasOneUse - Return true if there is exactly one operation using this
861  /// result value of the defining operator.
862  inline bool hasOneUse() const;
863
864  /// use_empty - Return true if there are no operations using this
865  /// result value of the defining operator.
866  inline bool use_empty() const;
867};
868
869
870template<> struct DenseMapInfo<SDOperand> {
871  static inline SDOperand getEmptyKey() {
872    return SDOperand((SDNode*)-1, -1U);
873  }
874  static inline SDOperand getTombstoneKey() {
875    return SDOperand((SDNode*)-1, 0);
876  }
877  static unsigned getHashValue(const SDOperand &Val) {
878    return ((unsigned)((uintptr_t)Val.Val >> 4) ^
879            (unsigned)((uintptr_t)Val.Val >> 9)) + Val.ResNo;
880  }
881  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
882    return LHS == RHS;
883  }
884  static bool isPod() { return true; }
885};
886
887/// simplify_type specializations - Allow casting operators to work directly on
888/// SDOperands as if they were SDNode*'s.
889template<> struct simplify_type<SDOperand> {
890  typedef SDNode* SimpleType;
891  static SimpleType getSimplifiedValue(const SDOperand &Val) {
892    return static_cast<SimpleType>(Val.Val);
893  }
894};
895template<> struct simplify_type<const SDOperand> {
896  typedef SDNode* SimpleType;
897  static SimpleType getSimplifiedValue(const SDOperand &Val) {
898    return static_cast<SimpleType>(Val.Val);
899  }
900};
901
902/// SDUse - Represents a use of the SDNode referred by
903/// the SDOperand.
904class SDUse {
905  SDOperand Operand;
906  /// User - Parent node of this operand.
907  SDNode    *User;
908  /// Prev, next - Pointers to the uses list of the SDNode referred by
909  /// this operand.
910  SDUse **Prev, *Next;
911public:
912  friend class SDNode;
913  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}
914
915  SDUse(SDNode *val, unsigned resno) :
916    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}
917
918  SDUse& operator= (const SDOperand& Op) {
919      Operand = Op;
920      Next = NULL;
921      Prev = NULL;
922      return *this;
923  }
924
925  SDUse& operator= (const SDUse& Op) {
926      Operand = Op;
927      Next = NULL;
928      Prev = NULL;
929      return *this;
930  }
931
932  SDUse * getNext() { return Next; }
933
934  SDNode *getUser() { return User; }
935
936  void setUser(SDNode *p) { User = p; }
937
938  operator SDOperand() const { return Operand; }
939
940  const SDOperand& getSDOperand() const { return Operand; }
941
942  SDNode* &getVal () { return Operand.Val; }
943
944  bool operator==(const SDOperand &O) const {
945    return Operand == O;
946  }
947
948  bool operator!=(const SDOperand &O) const {
949    return !(Operand == O);
950  }
951
952  bool operator<(const SDOperand &O) const {
953    return Operand < O;
954  }
955
956protected:
957  void addToList(SDUse **List) {
958    Next = *List;
959    if (Next) Next->Prev = &Next;
960    Prev = List;
961    *List = this;
962  }
963
964  void removeFromList() {
965    *Prev = Next;
966    if (Next) Next->Prev = Prev;
967  }
968};
969
970
971/// simplify_type specializations - Allow casting operators to work directly on
972/// SDOperands as if they were SDNode*'s.
973template<> struct simplify_type<SDUse> {
974  typedef SDNode* SimpleType;
975  static SimpleType getSimplifiedValue(const SDUse &Val) {
976    return static_cast<SimpleType>(Val.getSDOperand().Val);
977  }
978};
979template<> struct simplify_type<const SDUse> {
980  typedef SDNode* SimpleType;
981  static SimpleType getSimplifiedValue(const SDUse &Val) {
982    return static_cast<SimpleType>(Val.getSDOperand().Val);
983  }
984};
985
986
987/// SDOperandPtr - A helper SDOperand pointer class, that can handle
988/// arrays of SDUse and arrays of SDOperand objects. This is required
989/// in many places inside the SelectionDAG.
990///
991class SDOperandPtr {
992  const SDOperand *ptr; // The pointer to the SDOperand object
993  int object_size;      // The size of the object containg the SDOperand
994public:
995  SDOperandPtr() : ptr(0), object_size(0) {}
996
997  SDOperandPtr(SDUse * use_ptr) {
998    ptr = &use_ptr->getSDOperand();
999    object_size = (int)sizeof(SDUse);
1000  }
1001
1002  SDOperandPtr(const SDOperand * op_ptr) {
1003    ptr = op_ptr;
1004    object_size = (int)sizeof(SDOperand);
1005  }
1006
1007  const SDOperand operator *() { return *ptr; }
1008  const SDOperand *operator ->() { return ptr; }
1009  SDOperandPtr operator ++ () {
1010    ptr = (SDOperand*)((char *)ptr + object_size);
1011    return *this;
1012  }
1013
1014  SDOperandPtr operator ++ (int) {
1015    SDOperandPtr tmp = *this;
1016    ptr = (SDOperand*)((char *)ptr + object_size);
1017    return tmp;
1018  }
1019
1020  SDOperand operator[] (int idx) const {
1021    return *(SDOperand*)((char*) ptr + object_size * idx);
1022  }
1023};
1024
1025/// SDNode - Represents one node in the SelectionDAG.
1026///
1027class SDNode : public FoldingSetNode {
1028private:
1029  /// NodeType - The operation that this node performs.
1030  ///
1031  unsigned short NodeType;
1032
1033  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1034  /// then they will be delete[]'d when the node is destroyed.
1035  bool OperandsNeedDelete : 1;
1036
1037  /// NodeId - Unique id per SDNode in the DAG.
1038  int NodeId;
1039
1040  /// OperandList - The values that are used by this operation.
1041  ///
1042  SDUse *OperandList;
1043
1044  /// ValueList - The types of the values this node defines.  SDNode's may
1045  /// define multiple values simultaneously.
1046  const MVT *ValueList;
1047
1048  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1049  unsigned short NumOperands, NumValues;
1050
1051  /// UsesSize - The size of the uses list.
1052  unsigned UsesSize;
1053
1054  /// Uses - List of uses for this SDNode.
1055  SDUse *Uses;
1056
1057  /// Prev/Next pointers - These pointers form the linked list of of the
1058  /// AllNodes list in the current DAG.
1059  SDNode *Prev, *Next;
1060  friend struct ilist_traits<SDNode>;
1061
1062  /// addUse - add SDUse to the list of uses.
1063  void addUse(SDUse &U) { U.addToList(&Uses); }
1064
1065  // Out-of-line virtual method to give class a home.
1066  virtual void ANCHOR();
1067public:
1068  virtual ~SDNode() {
1069    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1070    NodeType = ISD::DELETED_NODE;
1071  }
1072
1073  //===--------------------------------------------------------------------===//
1074  //  Accessors
1075  //
1076  unsigned getOpcode()  const { return NodeType; }
1077  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1078  unsigned getTargetOpcode() const {
1079    assert(isTargetOpcode() && "Not a target opcode!");
1080    return NodeType - ISD::BUILTIN_OP_END;
1081  }
1082
1083  size_t use_size() const { return UsesSize; }
1084  bool use_empty() const { return Uses == NULL; }
1085  bool hasOneUse() const { return use_size() == 1; }
1086
1087  /// getNodeId - Return the unique node id.
1088  ///
1089  int getNodeId() const { return NodeId; }
1090
1091  /// setNodeId - Set unique node id.
1092  void setNodeId(int Id) { NodeId = Id; }
1093
1094  /// use_iterator - This class provides iterator support for SDUse
1095  /// operands that use a specific SDNode.
1096  class use_iterator
1097    : public forward_iterator<SDUse, ptrdiff_t> {
1098    SDUse *Op;
1099    explicit use_iterator(SDUse *op) : Op(op) {
1100    }
1101    friend class SDNode;
1102  public:
1103    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1104    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1105
1106    use_iterator(const use_iterator &I) : Op(I.Op) {}
1107    use_iterator() : Op(0) {}
1108
1109    bool operator==(const use_iterator &x) const {
1110      return Op == x.Op;
1111    }
1112    bool operator!=(const use_iterator &x) const {
1113      return !operator==(x);
1114    }
1115
1116    /// atEnd - return true if this iterator is at the end of uses list.
1117    bool atEnd() const { return Op == 0; }
1118
1119    // Iterator traversal: forward iteration only.
1120    use_iterator &operator++() {          // Preincrement
1121      assert(Op && "Cannot increment end iterator!");
1122      Op = Op->getNext();
1123      return *this;
1124    }
1125
1126    use_iterator operator++(int) {        // Postincrement
1127      use_iterator tmp = *this; ++*this; return tmp;
1128    }
1129
1130
1131    /// getOperandNum - Retrive a number of a current operand.
1132    unsigned getOperandNum() const {
1133      assert(Op && "Cannot dereference end iterator!");
1134      return (unsigned)(Op - Op->getUser()->OperandList);
1135    }
1136
1137    /// Retrieve a reference to the current operand.
1138    SDUse &operator*() const {
1139      assert(Op && "Cannot dereference end iterator!");
1140      return *Op;
1141    }
1142
1143    /// Retrieve a pointer to the current operand.
1144    SDUse *operator->() const {
1145      assert(Op && "Cannot dereference end iterator!");
1146      return Op;
1147    }
1148  };
1149
1150  /// use_begin/use_end - Provide iteration support to walk over all uses
1151  /// of an SDNode.
1152
1153  use_iterator use_begin(SDNode *node) const {
1154    return use_iterator(node->Uses);
1155  }
1156
1157  use_iterator use_begin() const {
1158    return use_iterator(Uses);
1159  }
1160
1161  static use_iterator use_end() { return use_iterator(0); }
1162
1163
1164  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1165  /// indicated value.  This method ignores uses of other values defined by this
1166  /// operation.
1167  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1168
1169  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1170  /// value. This method ignores uses of other values defined by this operation.
1171  bool hasAnyUseOfValue(unsigned Value) const;
1172
1173  /// isOnlyUseOf - Return true if this node is the only use of N.
1174  ///
1175  bool isOnlyUseOf(SDNode *N) const;
1176
1177  /// isOperandOf - Return true if this node is an operand of N.
1178  ///
1179  bool isOperandOf(SDNode *N) const;
1180
1181  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1182  /// node is either an operand of N or it can be reached by recursively
1183  /// traversing up the operands.
1184  /// NOTE: this is an expensive method. Use it carefully.
1185  bool isPredecessorOf(SDNode *N) const;
1186
1187  /// getNumOperands - Return the number of values used by this operation.
1188  ///
1189  unsigned getNumOperands() const { return NumOperands; }
1190
1191  /// getConstantOperandVal - Helper method returns the integer value of a
1192  /// ConstantSDNode operand.
1193  uint64_t getConstantOperandVal(unsigned Num) const;
1194
1195  const SDOperand &getOperand(unsigned Num) const {
1196    assert(Num < NumOperands && "Invalid child # of SDNode!");
1197    return OperandList[Num].getSDOperand();
1198  }
1199
1200  typedef SDUse* op_iterator;
1201  op_iterator op_begin() const { return OperandList; }
1202  op_iterator op_end() const { return OperandList+NumOperands; }
1203
1204
1205  SDVTList getVTList() const {
1206    SDVTList X = { ValueList, NumValues };
1207    return X;
1208  };
1209
1210  /// getNumValues - Return the number of values defined/returned by this
1211  /// operator.
1212  ///
1213  unsigned getNumValues() const { return NumValues; }
1214
1215  /// getValueType - Return the type of a specified result.
1216  ///
1217  MVT getValueType(unsigned ResNo) const {
1218    assert(ResNo < NumValues && "Illegal result number!");
1219    return ValueList[ResNo];
1220  }
1221
1222  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1223  ///
1224  unsigned getValueSizeInBits(unsigned ResNo) const {
1225    return getValueType(ResNo).getSizeInBits();
1226  }
1227
1228  typedef const MVT* value_iterator;
1229  value_iterator value_begin() const { return ValueList; }
1230  value_iterator value_end() const { return ValueList+NumValues; }
1231
1232  /// getOperationName - Return the opcode of this operation for printing.
1233  ///
1234  std::string getOperationName(const SelectionDAG *G = 0) const;
1235  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1236  void dump() const;
1237  void dump(const SelectionDAG *G) const;
1238
1239  static bool classof(const SDNode *) { return true; }
1240
1241  /// Profile - Gather unique data for the node.
1242  ///
1243  void Profile(FoldingSetNodeID &ID);
1244
1245protected:
1246  friend class SelectionDAG;
1247
1248  /// getValueTypeList - Return a pointer to the specified value type.
1249  ///
1250  static const MVT *getValueTypeList(MVT VT);
1251  static SDVTList getSDVTList(MVT VT) {
1252    SDVTList Ret = { getValueTypeList(VT), 1 };
1253    return Ret;
1254  }
1255
1256  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
1257    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1258    OperandsNeedDelete = true;
1259    NumOperands = NumOps;
1260    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1261
1262    for (unsigned i = 0; i != NumOps; ++i) {
1263      OperandList[i] = Ops[i];
1264      OperandList[i].setUser(this);
1265      Ops[i].Val->addUse(OperandList[i]);
1266      ++Ops[i].Val->UsesSize;
1267    }
1268
1269    ValueList = VTs.VTs;
1270    NumValues = VTs.NumVTs;
1271    Prev = 0; Next = 0;
1272  }
1273
1274  SDNode(unsigned Opc, SDVTList VTs, SDOperandPtr Ops, unsigned NumOps)
1275    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1276    OperandsNeedDelete = true;
1277    NumOperands = NumOps;
1278    OperandList = NumOps ? new SDUse[NumOperands] : 0;
1279
1280    for (unsigned i = 0; i != NumOps; ++i) {
1281      OperandList[i] = Ops[i];
1282      OperandList[i].setUser(this);
1283      Ops[i].Val->addUse(OperandList[i]);
1284      ++Ops[i].Val->UsesSize;
1285    }
1286
1287    ValueList = VTs.VTs;
1288    NumValues = VTs.NumVTs;
1289    Prev = 0; Next = 0;
1290  }
1291
1292  SDNode(unsigned Opc, SDVTList VTs)
1293    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1294    OperandsNeedDelete = false;  // Operands set with InitOperands.
1295    NumOperands = 0;
1296    OperandList = 0;
1297    ValueList = VTs.VTs;
1298    NumValues = VTs.NumVTs;
1299    Prev = 0; Next = 0;
1300  }
1301
1302  /// InitOperands - Initialize the operands list of this node with the
1303  /// specified values, which are part of the node (thus they don't need to be
1304  /// copied in or allocated).
1305  void InitOperands(SDUse *Ops, unsigned NumOps) {
1306    assert(OperandList == 0 && "Operands already set!");
1307    NumOperands = NumOps;
1308    OperandList = Ops;
1309    UsesSize = 0;
1310    Uses = NULL;
1311
1312    for (unsigned i = 0; i != NumOps; ++i) {
1313      OperandList[i].setUser(this);
1314      Ops[i].getVal()->addUse(OperandList[i]);
1315      ++Ops[i].getVal()->UsesSize;
1316    }
1317  }
1318
1319  /// MorphNodeTo - This frees the operands of the current node, resets the
1320  /// opcode, types, and operands to the specified value.  This should only be
1321  /// used by the SelectionDAG class.
1322  void MorphNodeTo(unsigned Opc, SDVTList L,
1323                   SDOperandPtr Ops, unsigned NumOps);
1324
1325  void addUser(unsigned i, SDNode *User) {
1326    assert(User->OperandList[i].getUser() && "Node without parent");
1327    addUse(User->OperandList[i]);
1328    ++UsesSize;
1329  }
1330
1331  void removeUser(unsigned i, SDNode *User) {
1332    assert(User->OperandList[i].getUser() && "Node without parent");
1333    SDUse &Op = User->OperandList[i];
1334    Op.removeFromList();
1335    --UsesSize;
1336  }
1337};
1338
1339
1340// Define inline functions from the SDOperand class.
1341
1342inline unsigned SDOperand::getOpcode() const {
1343  return Val->getOpcode();
1344}
1345inline MVT SDOperand::getValueType() const {
1346  return Val->getValueType(ResNo);
1347}
1348inline unsigned SDOperand::getNumOperands() const {
1349  return Val->getNumOperands();
1350}
1351inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1352  return Val->getOperand(i);
1353}
1354inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1355  return Val->getConstantOperandVal(i);
1356}
1357inline bool SDOperand::isTargetOpcode() const {
1358  return Val->isTargetOpcode();
1359}
1360inline unsigned SDOperand::getTargetOpcode() const {
1361  return Val->getTargetOpcode();
1362}
1363inline bool SDOperand::hasOneUse() const {
1364  return Val->hasNUsesOfValue(1, ResNo);
1365}
1366inline bool SDOperand::use_empty() const {
1367  return !Val->hasAnyUseOfValue(ResNo);
1368}
1369
1370/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1371/// to allow co-allocation of node operands with the node itself.
1372class UnarySDNode : public SDNode {
1373  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1374  SDUse Op;
1375public:
1376  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1377    : SDNode(Opc, VTs) {
1378    Op = X;
1379    InitOperands(&Op, 1);
1380  }
1381};
1382
1383/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1384/// to allow co-allocation of node operands with the node itself.
1385class BinarySDNode : public SDNode {
1386  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1387  SDUse Ops[2];
1388public:
1389  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1390    : SDNode(Opc, VTs) {
1391    Ops[0] = X;
1392    Ops[1] = Y;
1393    InitOperands(Ops, 2);
1394  }
1395};
1396
1397/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1398/// to allow co-allocation of node operands with the node itself.
1399class TernarySDNode : public SDNode {
1400  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1401  SDUse Ops[3];
1402public:
1403  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1404                SDOperand Z)
1405    : SDNode(Opc, VTs) {
1406    Ops[0] = X;
1407    Ops[1] = Y;
1408    Ops[2] = Z;
1409    InitOperands(Ops, 3);
1410  }
1411};
1412
1413
1414/// HandleSDNode - This class is used to form a handle around another node that
1415/// is persistant and is updated across invocations of replaceAllUsesWith on its
1416/// operand.  This node should be directly created by end-users and not added to
1417/// the AllNodes list.
1418class HandleSDNode : public SDNode {
1419  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1420  SDUse Op;
1421public:
1422  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1423  // fixed.
1424#ifdef __GNUC__
1425  explicit __attribute__((__noinline__)) HandleSDNode(SDOperand X)
1426#else
1427  explicit HandleSDNode(SDOperand X)
1428#endif
1429    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1430    Op = X;
1431    InitOperands(&Op, 1);
1432  }
1433  ~HandleSDNode();
1434  SDUse getValue() const { return Op; }
1435};
1436
1437/// Abstact virtual class for operations for memory operations
1438class MemSDNode : public SDNode {
1439  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1440
1441private:
1442  //! SrcValue - Memory location for alias analysis.
1443  const Value *SrcValue;
1444
1445  //! Alignment - Alignment of memory location in bytes.
1446  unsigned Alignment;
1447
1448public:
1449  MemSDNode(unsigned Opc, SDVTList VTs, const Value *srcValue,
1450            unsigned alignment)
1451    : SDNode(Opc, VTs), SrcValue(srcValue), Alignment(alignment) {}
1452
1453  virtual ~MemSDNode() {}
1454
1455  /// Returns alignment and volatility of the memory access
1456  unsigned getAlignment() const { return Alignment; }
1457  virtual bool isVolatile() const = 0;
1458
1459  /// Returns the SrcValue and offset that describes the location of the access
1460  const Value *getSrcValue() const { return SrcValue; }
1461  virtual int getSrcValueOffset() const = 0;
1462
1463  /// getMemOperand - Return a MachineMemOperand object describing the memory
1464  /// reference performed by operation.
1465  virtual MachineMemOperand getMemOperand() const = 0;
1466
1467  // Methods to support isa and dyn_cast
1468  static bool classof(const MemSDNode *) { return true; }
1469  static bool classof(const SDNode *N) {
1470    return N->getOpcode() == ISD::LOAD  ||
1471           N->getOpcode() == ISD::STORE ||
1472           N->getOpcode() == ISD::ATOMIC_CMP_SWAP  ||
1473           N->getOpcode() == ISD::ATOMIC_LOAD_ADD  ||
1474           N->getOpcode() == ISD::ATOMIC_SWAP      ||
1475           N->getOpcode() == ISD::ATOMIC_LOAD_SUB  ||
1476           N->getOpcode() == ISD::ATOMIC_LOAD_AND  ||
1477           N->getOpcode() == ISD::ATOMIC_LOAD_OR   ||
1478           N->getOpcode() == ISD::ATOMIC_LOAD_XOR  ||
1479           N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1480           N->getOpcode() == ISD::ATOMIC_LOAD_MIN  ||
1481           N->getOpcode() == ISD::ATOMIC_LOAD_MAX  ||
1482           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1483           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1484  }
1485};
1486
1487/// Atomic operations node
1488class AtomicSDNode : public MemSDNode {
1489  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1490  SDUse Ops[4];
1491
1492 public:
1493  // Opc:   opcode for atomic
1494  // VTL:    value type list
1495  // Chain:  memory chain for operaand
1496  // Ptr:    address to update as a SDOperand
1497  // Cmp:    compare value
1498  // Swp:    swap value
1499  // SrcVal: address to update as a Value (used for MemOperand)
1500  // Align:  alignment of memory
1501  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1502               SDOperand Cmp, SDOperand Swp, const Value* SrcVal,
1503               unsigned Align=0)
1504    : MemSDNode(Opc, VTL, SrcVal, Align) {
1505    Ops[0] = Chain;
1506    Ops[1] = Ptr;
1507    Ops[2] = Swp;
1508    Ops[3] = Cmp;
1509    InitOperands(Ops, 4);
1510  }
1511  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1512               SDOperand Val, const Value* SrcVal, unsigned Align=0)
1513    : MemSDNode(Opc, VTL, SrcVal, Align) {
1514    Ops[0] = Chain;
1515    Ops[1] = Ptr;
1516    Ops[2] = Val;
1517    InitOperands(Ops, 3);
1518  }
1519
1520  const SDOperand &getChain() const { return getOperand(0); }
1521  const SDOperand &getBasePtr() const { return getOperand(1); }
1522  const SDOperand &getVal() const { return getOperand(2); }
1523
1524  bool isCompareAndSwap() const { return getOpcode() == ISD::ATOMIC_CMP_SWAP; }
1525
1526  // Implementation for MemSDNode
1527  virtual int getSrcValueOffset() const { return 0; }
1528  virtual bool isVolatile() const { return true; }
1529
1530  /// getMemOperand - Return a MachineMemOperand object describing the memory
1531  /// reference performed by this atomic load/store.
1532  virtual MachineMemOperand getMemOperand() const;
1533
1534  // Methods to support isa and dyn_cast
1535  static bool classof(const AtomicSDNode *) { return true; }
1536  static bool classof(const SDNode *N) {
1537    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP  ||
1538           N->getOpcode() == ISD::ATOMIC_LOAD_ADD  ||
1539           N->getOpcode() == ISD::ATOMIC_SWAP      ||
1540           N->getOpcode() == ISD::ATOMIC_LOAD_SUB  ||
1541           N->getOpcode() == ISD::ATOMIC_LOAD_AND  ||
1542           N->getOpcode() == ISD::ATOMIC_LOAD_OR   ||
1543           N->getOpcode() == ISD::ATOMIC_LOAD_XOR  ||
1544           N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1545           N->getOpcode() == ISD::ATOMIC_LOAD_MIN  ||
1546           N->getOpcode() == ISD::ATOMIC_LOAD_MAX  ||
1547           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1548           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1549  }
1550};
1551
1552class ConstantSDNode : public SDNode {
1553  APInt Value;
1554  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1555protected:
1556  friend class SelectionDAG;
1557  ConstantSDNode(bool isTarget, const APInt &val, MVT VT)
1558    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1559      Value(val) {
1560  }
1561public:
1562
1563  const APInt &getAPIntValue() const { return Value; }
1564  uint64_t getValue() const { return Value.getZExtValue(); }
1565
1566  int64_t getSignExtended() const {
1567    unsigned Bits = getValueType(0).getSizeInBits();
1568    return ((int64_t)Value.getZExtValue() << (64-Bits)) >> (64-Bits);
1569  }
1570
1571  bool isNullValue() const { return Value == 0; }
1572  bool isAllOnesValue() const {
1573    return Value == getValueType(0).getIntegerVTBitMask();
1574  }
1575
1576  static bool classof(const ConstantSDNode *) { return true; }
1577  static bool classof(const SDNode *N) {
1578    return N->getOpcode() == ISD::Constant ||
1579           N->getOpcode() == ISD::TargetConstant;
1580  }
1581};
1582
1583class ConstantFPSDNode : public SDNode {
1584  APFloat Value;
1585  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1586protected:
1587  friend class SelectionDAG;
1588  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT VT)
1589    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1590             getSDVTList(VT)), Value(val) {
1591  }
1592public:
1593
1594  const APFloat& getValueAPF() const { return Value; }
1595
1596  /// isExactlyValue - We don't rely on operator== working on double values, as
1597  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1598  /// As such, this method can be used to do an exact bit-for-bit comparison of
1599  /// two floating point values.
1600
1601  /// We leave the version with the double argument here because it's just so
1602  /// convenient to write "2.0" and the like.  Without this function we'd
1603  /// have to duplicate its logic everywhere it's called.
1604  bool isExactlyValue(double V) const {
1605    // convert is not supported on this type
1606    if (&Value.getSemantics() == &APFloat::PPCDoubleDouble)
1607      return false;
1608    APFloat Tmp(V);
1609    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
1610    return isExactlyValue(Tmp);
1611  }
1612  bool isExactlyValue(const APFloat& V) const;
1613
1614  bool isValueValidForType(MVT VT, const APFloat& Val);
1615
1616  static bool classof(const ConstantFPSDNode *) { return true; }
1617  static bool classof(const SDNode *N) {
1618    return N->getOpcode() == ISD::ConstantFP ||
1619           N->getOpcode() == ISD::TargetConstantFP;
1620  }
1621};
1622
1623class GlobalAddressSDNode : public SDNode {
1624  GlobalValue *TheGlobal;
1625  int Offset;
1626  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1627protected:
1628  friend class SelectionDAG;
1629  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT, int o = 0);
1630public:
1631
1632  GlobalValue *getGlobal() const { return TheGlobal; }
1633  int getOffset() const { return Offset; }
1634
1635  static bool classof(const GlobalAddressSDNode *) { return true; }
1636  static bool classof(const SDNode *N) {
1637    return N->getOpcode() == ISD::GlobalAddress ||
1638           N->getOpcode() == ISD::TargetGlobalAddress ||
1639           N->getOpcode() == ISD::GlobalTLSAddress ||
1640           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1641  }
1642};
1643
1644class FrameIndexSDNode : public SDNode {
1645  int FI;
1646  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1647protected:
1648  friend class SelectionDAG;
1649  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1650    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1651      FI(fi) {
1652  }
1653public:
1654
1655  int getIndex() const { return FI; }
1656
1657  static bool classof(const FrameIndexSDNode *) { return true; }
1658  static bool classof(const SDNode *N) {
1659    return N->getOpcode() == ISD::FrameIndex ||
1660           N->getOpcode() == ISD::TargetFrameIndex;
1661  }
1662};
1663
1664class JumpTableSDNode : public SDNode {
1665  int JTI;
1666  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1667protected:
1668  friend class SelectionDAG;
1669  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1670    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1671      JTI(jti) {
1672  }
1673public:
1674
1675  int getIndex() const { return JTI; }
1676
1677  static bool classof(const JumpTableSDNode *) { return true; }
1678  static bool classof(const SDNode *N) {
1679    return N->getOpcode() == ISD::JumpTable ||
1680           N->getOpcode() == ISD::TargetJumpTable;
1681  }
1682};
1683
1684class ConstantPoolSDNode : public SDNode {
1685  union {
1686    Constant *ConstVal;
1687    MachineConstantPoolValue *MachineCPVal;
1688  } Val;
1689  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1690  unsigned Alignment;
1691  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1692protected:
1693  friend class SelectionDAG;
1694  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1695    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1696             getSDVTList(VT)), Offset(o), Alignment(0) {
1697    assert((int)Offset >= 0 && "Offset is too large");
1698    Val.ConstVal = c;
1699  }
1700  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1701    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1702             getSDVTList(VT)), Offset(o), Alignment(Align) {
1703    assert((int)Offset >= 0 && "Offset is too large");
1704    Val.ConstVal = c;
1705  }
1706  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1707                     MVT VT, int o=0)
1708    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1709             getSDVTList(VT)), Offset(o), Alignment(0) {
1710    assert((int)Offset >= 0 && "Offset is too large");
1711    Val.MachineCPVal = v;
1712    Offset |= 1 << (sizeof(unsigned)*8-1);
1713  }
1714  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1715                     MVT VT, int o, unsigned Align)
1716    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1717             getSDVTList(VT)), Offset(o), Alignment(Align) {
1718    assert((int)Offset >= 0 && "Offset is too large");
1719    Val.MachineCPVal = v;
1720    Offset |= 1 << (sizeof(unsigned)*8-1);
1721  }
1722public:
1723
1724  bool isMachineConstantPoolEntry() const {
1725    return (int)Offset < 0;
1726  }
1727
1728  Constant *getConstVal() const {
1729    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1730    return Val.ConstVal;
1731  }
1732
1733  MachineConstantPoolValue *getMachineCPVal() const {
1734    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1735    return Val.MachineCPVal;
1736  }
1737
1738  int getOffset() const {
1739    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1740  }
1741
1742  // Return the alignment of this constant pool object, which is either 0 (for
1743  // default alignment) or log2 of the desired value.
1744  unsigned getAlignment() const { return Alignment; }
1745
1746  const Type *getType() const;
1747
1748  static bool classof(const ConstantPoolSDNode *) { return true; }
1749  static bool classof(const SDNode *N) {
1750    return N->getOpcode() == ISD::ConstantPool ||
1751           N->getOpcode() == ISD::TargetConstantPool;
1752  }
1753};
1754
1755class BasicBlockSDNode : public SDNode {
1756  MachineBasicBlock *MBB;
1757  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1758protected:
1759  friend class SelectionDAG;
1760  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1761    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1762  }
1763public:
1764
1765  MachineBasicBlock *getBasicBlock() const { return MBB; }
1766
1767  static bool classof(const BasicBlockSDNode *) { return true; }
1768  static bool classof(const SDNode *N) {
1769    return N->getOpcode() == ISD::BasicBlock;
1770  }
1771};
1772
1773/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1774/// used when the SelectionDAG needs to make a simple reference to something
1775/// in the LLVM IR representation.
1776///
1777/// Note that this is not used for carrying alias information; that is done
1778/// with MemOperandSDNode, which includes a Value which is required to be a
1779/// pointer, and several other fields specific to memory references.
1780///
1781class SrcValueSDNode : public SDNode {
1782  const Value *V;
1783  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1784protected:
1785  friend class SelectionDAG;
1786  /// Create a SrcValue for a general value.
1787  explicit SrcValueSDNode(const Value *v)
1788    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1789
1790public:
1791  /// getValue - return the contained Value.
1792  const Value *getValue() const { return V; }
1793
1794  static bool classof(const SrcValueSDNode *) { return true; }
1795  static bool classof(const SDNode *N) {
1796    return N->getOpcode() == ISD::SRCVALUE;
1797  }
1798};
1799
1800
1801/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
1802/// used to represent a reference to memory after ISD::LOAD
1803/// and ISD::STORE have been lowered.
1804///
1805class MemOperandSDNode : public SDNode {
1806  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1807protected:
1808  friend class SelectionDAG;
1809  /// Create a MachineMemOperand node
1810  explicit MemOperandSDNode(const MachineMemOperand &mo)
1811    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
1812
1813public:
1814  /// MO - The contained MachineMemOperand.
1815  const MachineMemOperand MO;
1816
1817  static bool classof(const MemOperandSDNode *) { return true; }
1818  static bool classof(const SDNode *N) {
1819    return N->getOpcode() == ISD::MEMOPERAND;
1820  }
1821};
1822
1823
1824class RegisterSDNode : public SDNode {
1825  unsigned Reg;
1826  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1827protected:
1828  friend class SelectionDAG;
1829  RegisterSDNode(unsigned reg, MVT VT)
1830    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1831  }
1832public:
1833
1834  unsigned getReg() const { return Reg; }
1835
1836  static bool classof(const RegisterSDNode *) { return true; }
1837  static bool classof(const SDNode *N) {
1838    return N->getOpcode() == ISD::Register;
1839  }
1840};
1841
1842class DbgStopPointSDNode : public SDNode {
1843  SDUse Chain;
1844  unsigned Line;
1845  unsigned Column;
1846  const CompileUnitDesc *CU;
1847  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1848protected:
1849  friend class SelectionDAG;
1850  DbgStopPointSDNode(SDOperand ch, unsigned l, unsigned c,
1851                     const CompileUnitDesc *cu)
1852    : SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
1853      Line(l), Column(c), CU(cu) {
1854    Chain = ch;
1855    InitOperands(&Chain, 1);
1856  }
1857public:
1858  unsigned getLine() const { return Line; }
1859  unsigned getColumn() const { return Column; }
1860  const CompileUnitDesc *getCompileUnit() const { return CU; }
1861
1862  static bool classof(const DbgStopPointSDNode *) { return true; }
1863  static bool classof(const SDNode *N) {
1864    return N->getOpcode() == ISD::DBG_STOPPOINT;
1865  }
1866};
1867
1868class LabelSDNode : public SDNode {
1869  SDUse Chain;
1870  unsigned LabelID;
1871  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1872protected:
1873  friend class SelectionDAG;
1874  LabelSDNode(unsigned NodeTy, SDOperand ch, unsigned id)
1875    : SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
1876    Chain = ch;
1877    InitOperands(&Chain, 1);
1878  }
1879public:
1880  unsigned getLabelID() const { return LabelID; }
1881
1882  static bool classof(const LabelSDNode *) { return true; }
1883  static bool classof(const SDNode *N) {
1884    return N->getOpcode() == ISD::DBG_LABEL ||
1885           N->getOpcode() == ISD::EH_LABEL;
1886  }
1887};
1888
1889class ExternalSymbolSDNode : public SDNode {
1890  const char *Symbol;
1891  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1892protected:
1893  friend class SelectionDAG;
1894  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
1895    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1896             getSDVTList(VT)), Symbol(Sym) {
1897  }
1898public:
1899
1900  const char *getSymbol() const { return Symbol; }
1901
1902  static bool classof(const ExternalSymbolSDNode *) { return true; }
1903  static bool classof(const SDNode *N) {
1904    return N->getOpcode() == ISD::ExternalSymbol ||
1905           N->getOpcode() == ISD::TargetExternalSymbol;
1906  }
1907};
1908
1909class CondCodeSDNode : public SDNode {
1910  ISD::CondCode Condition;
1911  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1912protected:
1913  friend class SelectionDAG;
1914  explicit CondCodeSDNode(ISD::CondCode Cond)
1915    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1916  }
1917public:
1918
1919  ISD::CondCode get() const { return Condition; }
1920
1921  static bool classof(const CondCodeSDNode *) { return true; }
1922  static bool classof(const SDNode *N) {
1923    return N->getOpcode() == ISD::CONDCODE;
1924  }
1925};
1926
1927namespace ISD {
1928  struct ArgFlagsTy {
1929  private:
1930    static const uint64_t NoFlagSet      = 0ULL;
1931    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
1932    static const uint64_t ZExtOffs       = 0;
1933    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
1934    static const uint64_t SExtOffs       = 1;
1935    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
1936    static const uint64_t InRegOffs      = 2;
1937    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
1938    static const uint64_t SRetOffs       = 3;
1939    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
1940    static const uint64_t ByValOffs      = 4;
1941    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
1942    static const uint64_t NestOffs       = 5;
1943    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
1944    static const uint64_t ByValAlignOffs = 6;
1945    static const uint64_t Split          = 1ULL << 10;
1946    static const uint64_t SplitOffs      = 10;
1947    static const uint64_t OrigAlign      = 0x1FULL<<27;
1948    static const uint64_t OrigAlignOffs  = 27;
1949    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
1950    static const uint64_t ByValSizeOffs  = 32;
1951
1952    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
1953
1954    uint64_t Flags;
1955  public:
1956    ArgFlagsTy() : Flags(0) { }
1957
1958    bool isZExt()   const { return Flags & ZExt; }
1959    void setZExt()  { Flags |= One << ZExtOffs; }
1960
1961    bool isSExt()   const { return Flags & SExt; }
1962    void setSExt()  { Flags |= One << SExtOffs; }
1963
1964    bool isInReg()  const { return Flags & InReg; }
1965    void setInReg() { Flags |= One << InRegOffs; }
1966
1967    bool isSRet()   const { return Flags & SRet; }
1968    void setSRet()  { Flags |= One << SRetOffs; }
1969
1970    bool isByVal()  const { return Flags & ByVal; }
1971    void setByVal() { Flags |= One << ByValOffs; }
1972
1973    bool isNest()   const { return Flags & Nest; }
1974    void setNest()  { Flags |= One << NestOffs; }
1975
1976    unsigned getByValAlign() const {
1977      return (unsigned)
1978        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
1979    }
1980    void setByValAlign(unsigned A) {
1981      Flags = (Flags & ~ByValAlign) |
1982        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
1983    }
1984
1985    bool isSplit()   const { return Flags & Split; }
1986    void setSplit()  { Flags |= One << SplitOffs; }
1987
1988    unsigned getOrigAlign() const {
1989      return (unsigned)
1990        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
1991    }
1992    void setOrigAlign(unsigned A) {
1993      Flags = (Flags & ~OrigAlign) |
1994        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
1995    }
1996
1997    unsigned getByValSize() const {
1998      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
1999    }
2000    void setByValSize(unsigned S) {
2001      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2002    }
2003
2004    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2005    std::string getArgFlagsString();
2006
2007    /// getRawBits - Represent the flags as a bunch of bits.
2008    uint64_t getRawBits() const { return Flags; }
2009  };
2010}
2011
2012/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2013class ARG_FLAGSSDNode : public SDNode {
2014  ISD::ArgFlagsTy TheFlags;
2015  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2016protected:
2017  friend class SelectionDAG;
2018  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2019    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
2020  }
2021public:
2022  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2023
2024  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2025  static bool classof(const SDNode *N) {
2026    return N->getOpcode() == ISD::ARG_FLAGS;
2027  }
2028};
2029
2030/// VTSDNode - This class is used to represent MVT's, which are used
2031/// to parameterize some operations.
2032class VTSDNode : public SDNode {
2033  MVT ValueType;
2034  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2035protected:
2036  friend class SelectionDAG;
2037  explicit VTSDNode(MVT VT)
2038    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
2039  }
2040public:
2041
2042  MVT getVT() const { return ValueType; }
2043
2044  static bool classof(const VTSDNode *) { return true; }
2045  static bool classof(const SDNode *N) {
2046    return N->getOpcode() == ISD::VALUETYPE;
2047  }
2048};
2049
2050/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2051///
2052class LSBaseSDNode : public MemSDNode {
2053private:
2054  // AddrMode - unindexed, pre-indexed, post-indexed.
2055  ISD::MemIndexedMode AddrMode;
2056
2057  // MemoryVT - VT of in-memory value.
2058  MVT MemoryVT;
2059
2060  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
2061  int SVOffset;
2062
2063  //! IsVolatile - True if the load/store is volatile.
2064  bool IsVolatile;
2065
2066protected:
2067  //! Operand array for load and store
2068  /*!
2069    \note Moving this array to the base class captures more
2070    common functionality shared between LoadSDNode and
2071    StoreSDNode
2072   */
2073  SDUse Ops[4];
2074public:
2075  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned numOperands,
2076               SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
2077               const Value *SV, int SVO, unsigned Align, bool Vol)
2078    : MemSDNode(NodeTy, VTs, SV, Align), AddrMode(AM), MemoryVT(VT),
2079      SVOffset(SVO), IsVolatile(Vol) {
2080    for (unsigned i = 0; i != numOperands; ++i)
2081      Ops[i] = Operands[i];
2082    InitOperands(Ops, numOperands);
2083    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2084    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2085           "Only indexed loads and stores have a non-undef offset operand");
2086  }
2087
2088  const SDOperand &getChain() const { return getOperand(0); }
2089  const SDOperand &getBasePtr() const {
2090    return getOperand(getOpcode() == ISD::LOAD ? 1 : 2);
2091  }
2092  const SDOperand &getOffset() const {
2093    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2094  }
2095
2096  MVT getMemoryVT() const { return MemoryVT; }
2097
2098  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
2099
2100  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2101  bool isIndexed() const { return AddrMode != ISD::UNINDEXED; }
2102
2103  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2104  bool isUnindexed() const { return AddrMode == ISD::UNINDEXED; }
2105
2106  // Implementation for MemSDNode
2107  virtual int getSrcValueOffset() const { return SVOffset; }
2108  virtual bool isVolatile() const { return IsVolatile; }
2109
2110  /// getMemOperand - Return a MachineMemOperand object describing the memory
2111  /// reference performed by this load or store.
2112  virtual MachineMemOperand getMemOperand() const;
2113
2114  static bool classof(const LSBaseSDNode *) { return true; }
2115  static bool classof(const SDNode *N) {
2116    return N->getOpcode() == ISD::LOAD ||
2117           N->getOpcode() == ISD::STORE;
2118  }
2119};
2120
2121/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2122///
2123class LoadSDNode : public LSBaseSDNode {
2124  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2125
2126  // ExtType - non-ext, anyext, sext, zext.
2127  ISD::LoadExtType ExtType;
2128
2129protected:
2130  friend class SelectionDAG;
2131  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
2132             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2133             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2134    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2135                   VTs, AM, LVT, SV, O, Align, Vol),
2136      ExtType(ETy) {}
2137public:
2138
2139  ISD::LoadExtType getExtensionType() const { return ExtType; }
2140  const SDOperand &getBasePtr() const { return getOperand(1); }
2141  const SDOperand &getOffset() const { return getOperand(2); }
2142
2143  static bool classof(const LoadSDNode *) { return true; }
2144  static bool classof(const SDNode *N) {
2145    return N->getOpcode() == ISD::LOAD;
2146  }
2147};
2148
2149/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2150///
2151class StoreSDNode : public LSBaseSDNode {
2152  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
2153
2154  // IsTruncStore - True if the op does a truncation before store.  For
2155  // integers this is the same as doing a TRUNCATE and storing the result.
2156  // For floats, it is the same as doing an FP_ROUND and storing the result.
2157  bool IsTruncStore;
2158protected:
2159  friend class SelectionDAG;
2160  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
2161              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2162              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2163    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2164                   VTs, AM, SVT, SV, O, Align, Vol),
2165      IsTruncStore(isTrunc) {}
2166public:
2167
2168  bool isTruncatingStore() const { return IsTruncStore; }
2169  const SDOperand &getValue() const { return getOperand(1); }
2170  const SDOperand &getBasePtr() const { return getOperand(2); }
2171  const SDOperand &getOffset() const { return getOperand(3); }
2172
2173  static bool classof(const StoreSDNode *) { return true; }
2174  static bool classof(const SDNode *N) {
2175    return N->getOpcode() == ISD::STORE;
2176  }
2177};
2178
2179
2180class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2181  SDNode *Node;
2182  unsigned Operand;
2183
2184  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2185public:
2186  bool operator==(const SDNodeIterator& x) const {
2187    return Operand == x.Operand;
2188  }
2189  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2190
2191  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2192    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2193    Operand = I.Operand;
2194    return *this;
2195  }
2196
2197  pointer operator*() const {
2198    return Node->getOperand(Operand).Val;
2199  }
2200  pointer operator->() const { return operator*(); }
2201
2202  SDNodeIterator& operator++() {                // Preincrement
2203    ++Operand;
2204    return *this;
2205  }
2206  SDNodeIterator operator++(int) { // Postincrement
2207    SDNodeIterator tmp = *this; ++*this; return tmp;
2208  }
2209
2210  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2211  static SDNodeIterator end  (SDNode *N) {
2212    return SDNodeIterator(N, N->getNumOperands());
2213  }
2214
2215  unsigned getOperand() const { return Operand; }
2216  const SDNode *getNode() const { return Node; }
2217};
2218
2219template <> struct GraphTraits<SDNode*> {
2220  typedef SDNode NodeType;
2221  typedef SDNodeIterator ChildIteratorType;
2222  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2223  static inline ChildIteratorType child_begin(NodeType *N) {
2224    return SDNodeIterator::begin(N);
2225  }
2226  static inline ChildIteratorType child_end(NodeType *N) {
2227    return SDNodeIterator::end(N);
2228  }
2229};
2230
2231template<>
2232struct ilist_traits<SDNode> {
2233  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
2234  static SDNode *getNext(const SDNode *N) { return N->Next; }
2235
2236  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
2237  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
2238
2239  static SDNode *createSentinel() {
2240    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
2241  }
2242  static void destroySentinel(SDNode *N) { delete N; }
2243  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
2244
2245
2246  void addNodeToList(SDNode *) {}
2247  void removeNodeFromList(SDNode *) {}
2248  void transferNodesFromList(iplist<SDNode, ilist_traits> &,
2249                             const ilist_iterator<SDNode> &,
2250                             const ilist_iterator<SDNode> &) {}
2251};
2252
2253namespace ISD {
2254  /// isNormalLoad - Returns true if the specified node is a non-extending
2255  /// and unindexed load.
2256  inline bool isNormalLoad(const SDNode *N) {
2257    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2258    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2259      Ld->getAddressingMode() == ISD::UNINDEXED;
2260  }
2261
2262  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2263  /// load.
2264  inline bool isNON_EXTLoad(const SDNode *N) {
2265    return isa<LoadSDNode>(N) &&
2266      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2267  }
2268
2269  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2270  ///
2271  inline bool isEXTLoad(const SDNode *N) {
2272    return isa<LoadSDNode>(N) &&
2273      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2274  }
2275
2276  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2277  ///
2278  inline bool isSEXTLoad(const SDNode *N) {
2279    return isa<LoadSDNode>(N) &&
2280      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2281  }
2282
2283  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2284  ///
2285  inline bool isZEXTLoad(const SDNode *N) {
2286    return isa<LoadSDNode>(N) &&
2287      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2288  }
2289
2290  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2291  ///
2292  inline bool isUNINDEXEDLoad(const SDNode *N) {
2293    return isa<LoadSDNode>(N) &&
2294      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2295  }
2296
2297  /// isNormalStore - Returns true if the specified node is a non-truncating
2298  /// and unindexed store.
2299  inline bool isNormalStore(const SDNode *N) {
2300    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2301    return St && !St->isTruncatingStore() &&
2302      St->getAddressingMode() == ISD::UNINDEXED;
2303  }
2304
2305  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2306  /// store.
2307  inline bool isNON_TRUNCStore(const SDNode *N) {
2308    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2309  }
2310
2311  /// isTRUNCStore - Returns true if the specified node is a truncating
2312  /// store.
2313  inline bool isTRUNCStore(const SDNode *N) {
2314    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2315  }
2316
2317  /// isUNINDEXEDStore - Returns true if the specified node is an
2318  /// unindexed store.
2319  inline bool isUNINDEXEDStore(const SDNode *N) {
2320    return isa<StoreSDNode>(N) &&
2321      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2322  }
2323}
2324
2325
2326} // end llvm namespace
2327
2328#endif
2329