SelectionDAGNodes.h revision b36904be918b72cc4c714552d42d6a713f27bbf5
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/Support/DataTypes.h"
29#include <cassert>
30
31namespace llvm {
32
33class SelectionDAG;
34class GlobalValue;
35class MachineBasicBlock;
36class MachineConstantPoolValue;
37class SDNode;
38template <typename T> struct DenseMapInfo;
39template <typename T> struct simplify_type;
40template <typename T> struct ilist_traits;
41template<typename NodeTy, typename Traits> class iplist;
42template<typename NodeTy> class ilist_iterator;
43
44/// SDVTList - This represents a list of ValueType's that has been intern'd by
45/// a SelectionDAG.  Instances of this simple value class are returned by
46/// SelectionDAG::getVTList(...).
47///
48struct SDVTList {
49  const MVT::ValueType *VTs;
50  unsigned short NumVTs;
51};
52
53/// ISD namespace - This namespace contains an enum which represents all of the
54/// SelectionDAG node types and value types.
55///
56namespace ISD {
57  namespace ParamFlags {
58  enum Flags {
59    NoFlagSet         = 0,
60    ZExt              = 1<<0,  ///< Parameter should be zero extended
61    ZExtOffs          = 0,
62    SExt              = 1<<1,  ///< Parameter should be sign extended
63    SExtOffs          = 1,
64    InReg             = 1<<2,  ///< Parameter should be passed in register
65    InRegOffs         = 2,
66    StructReturn      = 1<<3,  ///< Hidden struct-return pointer
67    StructReturnOffs  = 3,
68    ByVal             = 1<<4,  ///< Struct passed by value
69    ByValOffs         = 4,
70    Nest              = 1<<5,  ///< Parameter is nested function static chain
71    NestOffs          = 5,
72    ByValAlign        = 0xF << 6, //< The alignment of the struct
73    ByValAlignOffs    = 6,
74    ByValSize         = 0x1ffff << 10, //< The size of the struct
75    ByValSizeOffs     = 10,
76    OrigAlignment     = 0x1F<<27,
77    OrigAlignmentOffs = 27
78  };
79  }
80
81  //===--------------------------------------------------------------------===//
82  /// ISD::NodeType enum - This enum defines all of the operators valid in a
83  /// SelectionDAG.
84  ///
85  enum NodeType {
86    // DELETED_NODE - This is an illegal flag value that is used to catch
87    // errors.  This opcode is not a legal opcode for any node.
88    DELETED_NODE,
89
90    // EntryToken - This is the marker used to indicate the start of the region.
91    EntryToken,
92
93    // Token factor - This node takes multiple tokens as input and produces a
94    // single token result.  This is used to represent the fact that the operand
95    // operators are independent of each other.
96    TokenFactor,
97
98    // AssertSext, AssertZext - These nodes record if a register contains a
99    // value that has already been zero or sign extended from a narrower type.
100    // These nodes take two operands.  The first is the node that has already
101    // been extended, and the second is a value type node indicating the width
102    // of the extension
103    AssertSext, AssertZext,
104
105    // Various leaf nodes.
106    STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
107    Constant, ConstantFP,
108    GlobalAddress, GlobalTLSAddress, FrameIndex,
109    JumpTable, ConstantPool, ExternalSymbol,
110
111    // The address of the GOT
112    GLOBAL_OFFSET_TABLE,
113
114    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
115    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
116    // of the frame or return address to return.  An index of zero corresponds
117    // to the current function's frame or return address, an index of one to the
118    // parent's frame or return address, and so on.
119    FRAMEADDR, RETURNADDR,
120
121    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
122    // first (possible) on-stack argument. This is needed for correct stack
123    // adjustment during unwind.
124    FRAME_TO_ARGS_OFFSET,
125
126    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
127    // address of the exception block on entry to an landing pad block.
128    EXCEPTIONADDR,
129
130    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
131    // the selection index of the exception thrown.
132    EHSELECTION,
133
134    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
135    // 'eh_return' gcc dwarf builtin, which is used to return from
136    // exception. The general meaning is: adjust stack by OFFSET and pass
137    // execution to HANDLER. Many platform-related details also :)
138    EH_RETURN,
139
140    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
141    // simplification of the constant.
142    TargetConstant,
143    TargetConstantFP,
144
145    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
146    // anything else with this node, and this is valid in the target-specific
147    // dag, turning into a GlobalAddress operand.
148    TargetGlobalAddress,
149    TargetGlobalTLSAddress,
150    TargetFrameIndex,
151    TargetJumpTable,
152    TargetConstantPool,
153    TargetExternalSymbol,
154
155    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
156    /// This node represents a target intrinsic function with no side effects.
157    /// The first operand is the ID number of the intrinsic from the
158    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
159    /// node has returns the result of the intrinsic.
160    INTRINSIC_WO_CHAIN,
161
162    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
163    /// This node represents a target intrinsic function with side effects that
164    /// returns a result.  The first operand is a chain pointer.  The second is
165    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
166    /// operands to the intrinsic follow.  The node has two results, the result
167    /// of the intrinsic and an output chain.
168    INTRINSIC_W_CHAIN,
169
170    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
171    /// This node represents a target intrinsic function with side effects that
172    /// does not return a result.  The first operand is a chain pointer.  The
173    /// second is the ID number of the intrinsic from the llvm::Intrinsic
174    /// namespace.  The operands to the intrinsic follow.
175    INTRINSIC_VOID,
176
177    // CopyToReg - This node has three operands: a chain, a register number to
178    // set to this value, and a value.
179    CopyToReg,
180
181    // CopyFromReg - This node indicates that the input value is a virtual or
182    // physical register that is defined outside of the scope of this
183    // SelectionDAG.  The register is available from the RegSDNode object.
184    CopyFromReg,
185
186    // UNDEF - An undefined node
187    UNDEF,
188
189    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
190    /// represents the formal arguments for a function.  CC# is a Constant value
191    /// indicating the calling convention of the function, and ISVARARG is a
192    /// flag that indicates whether the function is varargs or not. This node
193    /// has one result value for each incoming argument, plus one for the output
194    /// chain. It must be custom legalized. See description of CALL node for
195    /// FLAG argument contents explanation.
196    ///
197    FORMAL_ARGUMENTS,
198
199    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
200    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
201    /// This node represents a fully general function call, before the legalizer
202    /// runs.  This has one result value for each argument / flag pair, plus
203    /// a chain result. It must be custom legalized. Flag argument indicates
204    /// misc. argument attributes. Currently:
205    /// Bit 0 - signness
206    /// Bit 1 - 'inreg' attribute
207    /// Bit 2 - 'sret' attribute
208    /// Bit 4 - 'byval' attribute
209    /// Bit 5 - 'nest' attribute
210    /// Bit 6-9 - alignment of byval structures
211    /// Bit 10-26 - size of byval structures
212    /// Bits 31:27 - argument ABI alignment in the first argument piece and
213    /// alignment '1' in other argument pieces.
214    CALL,
215
216    // EXTRACT_ELEMENT - This is used to get the first or second (determined by
217    // a Constant, which is required to be operand #1), element of the aggregate
218    // value specified as operand #0.  This is only for use before legalization,
219    // for values that will be broken into multiple registers.
220    EXTRACT_ELEMENT,
221
222    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
223    // two values of the same integer value type, this produces a value twice as
224    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
225    BUILD_PAIR,
226
227    // MERGE_VALUES - This node takes multiple discrete operands and returns
228    // them all as its individual results.  This nodes has exactly the same
229    // number of inputs and outputs, and is only valid before legalization.
230    // This node is useful for some pieces of the code generator that want to
231    // think about a single node with multiple results, not multiple nodes.
232    MERGE_VALUES,
233
234    // Simple integer binary arithmetic operators.
235    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
236
237    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
238    // a signed/unsigned value of type i[2*N], and return the full value as
239    // two results, each of type iN.
240    SMUL_LOHI, UMUL_LOHI,
241
242    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
243    // remainder result.
244    SDIVREM, UDIVREM,
245
246    // CARRY_FALSE - This node is used when folding other nodes,
247    // like ADDC/SUBC, which indicate the carry result is always false.
248    CARRY_FALSE,
249
250    // Carry-setting nodes for multiple precision addition and subtraction.
251    // These nodes take two operands of the same value type, and produce two
252    // results.  The first result is the normal add or sub result, the second
253    // result is the carry flag result.
254    ADDC, SUBC,
255
256    // Carry-using nodes for multiple precision addition and subtraction.  These
257    // nodes take three operands: The first two are the normal lhs and rhs to
258    // the add or sub, and the third is the input carry flag.  These nodes
259    // produce two results; the normal result of the add or sub, and the output
260    // carry flag.  These nodes both read and write a carry flag to allow them
261    // to them to be chained together for add and sub of arbitrarily large
262    // values.
263    ADDE, SUBE,
264
265    // Simple binary floating point operators.
266    FADD, FSUB, FMUL, FDIV, FREM,
267
268    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
269    // DAG node does not require that X and Y have the same type, just that they
270    // are both floating point.  X and the result must have the same type.
271    // FCOPYSIGN(f32, f64) is allowed.
272    FCOPYSIGN,
273
274    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
275    /// with the specified, possibly variable, elements.  The number of elements
276    /// is required to be a power of two.
277    BUILD_VECTOR,
278
279    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
280    /// at IDX replaced with VAL.
281    INSERT_VECTOR_ELT,
282
283    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
284    /// identified by the (potentially variable) element number IDX.
285    EXTRACT_VECTOR_ELT,
286
287    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
288    /// vector type with the same length and element type, this produces a
289    /// concatenated vector result value, with length equal to the sum of the
290    /// lengths of the input vectors.
291    CONCAT_VECTORS,
292
293    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
294    /// vector value) starting with the (potentially variable) element number
295    /// IDX, which must be a multiple of the result vector length.
296    EXTRACT_SUBVECTOR,
297
298    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
299    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
300    /// (regardless of whether its datatype is legal or not) that indicate
301    /// which value each result element will get.  The elements of VEC1/VEC2 are
302    /// enumerated in order.  This is quite similar to the Altivec 'vperm'
303    /// instruction, except that the indices must be constants and are in terms
304    /// of the element size of VEC1/VEC2, not in terms of bytes.
305    VECTOR_SHUFFLE,
306
307    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
308    /// scalar value into the low element of the resultant vector type.  The top
309    /// elements of the vector are undefined.
310    SCALAR_TO_VECTOR,
311
312    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
313    // This node takes a superreg and a constant sub-register index as operands.
314    EXTRACT_SUBREG,
315
316    // INSERT_SUBREG - This node is used to insert a sub-register value.
317    // This node takes a superreg, a subreg value, and a constant sub-register
318    // index as operands.
319    INSERT_SUBREG,
320
321    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
322    // an unsigned/signed value of type i[2*N], then return the top part.
323    MULHU, MULHS,
324
325    // Bitwise operators - logical and, logical or, logical xor, shift left,
326    // shift right algebraic (shift in sign bits), shift right logical (shift in
327    // zeroes), rotate left, rotate right, and byteswap.
328    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
329
330    // Counting operators
331    CTTZ, CTLZ, CTPOP,
332
333    // Select(COND, TRUEVAL, FALSEVAL)
334    SELECT,
335
336    // Select with condition operator - This selects between a true value and
337    // a false value (ops #2 and #3) based on the boolean result of comparing
338    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
339    // condition code in op #4, a CondCodeSDNode.
340    SELECT_CC,
341
342    // SetCC operator - This evaluates to a boolean (i1) true value if the
343    // condition is true.  The operands to this are the left and right operands
344    // to compare (ops #0, and #1) and the condition code to compare them with
345    // (op #2) as a CondCodeSDNode.
346    SETCC,
347
348    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
349    // integer shift operations, just like ADD/SUB_PARTS.  The operation
350    // ordering is:
351    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
352    SHL_PARTS, SRA_PARTS, SRL_PARTS,
353
354    // Conversion operators.  These are all single input single output
355    // operations.  For all of these, the result type must be strictly
356    // wider or narrower (depending on the operation) than the source
357    // type.
358
359    // SIGN_EXTEND - Used for integer types, replicating the sign bit
360    // into new bits.
361    SIGN_EXTEND,
362
363    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
364    ZERO_EXTEND,
365
366    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
367    ANY_EXTEND,
368
369    // TRUNCATE - Completely drop the high bits.
370    TRUNCATE,
371
372    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
373    // depends on the first letter) to floating point.
374    SINT_TO_FP,
375    UINT_TO_FP,
376
377    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
378    // sign extend a small value in a large integer register (e.g. sign
379    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
380    // with the 7th bit).  The size of the smaller type is indicated by the 1th
381    // operand, a ValueType node.
382    SIGN_EXTEND_INREG,
383
384    // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
385    // integer.
386    FP_TO_SINT,
387    FP_TO_UINT,
388
389    // FP_ROUND - Perform a rounding operation from the current
390    // precision down to the specified precision (currently always 64->32).
391    FP_ROUND,
392
393    // FP_ROUND_INREG - This operator takes a floating point register, and
394    // rounds it to a floating point value.  It then promotes it and returns it
395    // in a register of the same size.  This operation effectively just discards
396    // excess precision.  The type to round down to is specified by the 1th
397    // operation, a VTSDNode (currently always 64->32->64).
398    FP_ROUND_INREG,
399
400    // FP_EXTEND - Extend a smaller FP type into a larger FP type.
401    FP_EXTEND,
402
403    // BIT_CONVERT - Theis operator converts between integer and FP values, as
404    // if one was stored to memory as integer and the other was loaded from the
405    // same address (or equivalently for vector format conversions, etc).  The
406    // source and result are required to have the same bit size (e.g.
407    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
408    // conversions, but that is a noop, deleted by getNode().
409    BIT_CONVERT,
410
411    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
412    // negation, absolute value, square root, sine and cosine, powi, and pow
413    // operations.
414    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
415
416    // LOAD and STORE have token chains as their first operand, then the same
417    // operands as an LLVM load/store instruction, then an offset node that
418    // is added / subtracted from the base pointer to form the address (for
419    // indexed memory ops).
420    LOAD, STORE,
421
422    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
423    // to a specified boundary.  This node always has two return values: a new
424    // stack pointer value and a chain. The first operand is the token chain,
425    // the second is the number of bytes to allocate, and the third is the
426    // alignment boundary.  The size is guaranteed to be a multiple of the stack
427    // alignment, and the alignment is guaranteed to be bigger than the stack
428    // alignment (if required) or 0 to get standard stack alignment.
429    DYNAMIC_STACKALLOC,
430
431    // Control flow instructions.  These all have token chains.
432
433    // BR - Unconditional branch.  The first operand is the chain
434    // operand, the second is the MBB to branch to.
435    BR,
436
437    // BRIND - Indirect branch.  The first operand is the chain, the second
438    // is the value to branch to, which must be of the same type as the target's
439    // pointer type.
440    BRIND,
441
442    // BR_JT - Jumptable branch. The first operand is the chain, the second
443    // is the jumptable index, the last one is the jumptable entry index.
444    BR_JT,
445
446    // BRCOND - Conditional branch.  The first operand is the chain,
447    // the second is the condition, the third is the block to branch
448    // to if the condition is true.
449    BRCOND,
450
451    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
452    // that the condition is represented as condition code, and two nodes to
453    // compare, rather than as a combined SetCC node.  The operands in order are
454    // chain, cc, lhs, rhs, block to branch to if condition is true.
455    BR_CC,
456
457    // RET - Return from function.  The first operand is the chain,
458    // and any subsequent operands are pairs of return value and return value
459    // signness for the function.  This operation can have variable number of
460    // operands.
461    RET,
462
463    // INLINEASM - Represents an inline asm block.  This node always has two
464    // return values: a chain and a flag result.  The inputs are as follows:
465    //   Operand #0   : Input chain.
466    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
467    //   Operand #2n+2: A RegisterNode.
468    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
469    //   Operand #last: Optional, an incoming flag.
470    INLINEASM,
471
472    // LABEL - Represents a label in mid basic block used to track
473    // locations needed for debug and exception handling tables.  This node
474    // returns a chain.
475    //   Operand #0 : input chain.
476    //   Operand #1 : module unique number use to identify the label.
477    LABEL,
478
479    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
480    // value, the same type as the pointer type for the system, and an output
481    // chain.
482    STACKSAVE,
483
484    // STACKRESTORE has two operands, an input chain and a pointer to restore to
485    // it returns an output chain.
486    STACKRESTORE,
487
488    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain. The following
489    // correspond to the operands of the LLVM intrinsic functions and the last
490    // one is AlwaysInline.  The only result is a token chain.  The alignment
491    // argument is guaranteed to be a Constant node.
492    MEMSET,
493    MEMMOVE,
494    MEMCPY,
495
496    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
497    // a call sequence, and carry arbitrary information that target might want
498    // to know.  The first operand is a chain, the rest are specified by the
499    // target and not touched by the DAG optimizers.
500    CALLSEQ_START,  // Beginning of a call sequence
501    CALLSEQ_END,    // End of a call sequence
502
503    // VAARG - VAARG has three operands: an input chain, a pointer, and a
504    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
505    VAARG,
506
507    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
508    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
509    // source.
510    VACOPY,
511
512    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
513    // pointer, and a SRCVALUE.
514    VAEND, VASTART,
515
516    // SRCVALUE - This corresponds to a Value*, and is used to associate memory
517    // locations with their value.  This allows one use alias analysis
518    // information in the backend.
519    SRCVALUE,
520
521    // PCMARKER - This corresponds to the pcmarker intrinsic.
522    PCMARKER,
523
524    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
525    // The only operand is a chain and a value and a chain are produced.  The
526    // value is the contents of the architecture specific cycle counter like
527    // register (or other high accuracy low latency clock source)
528    READCYCLECOUNTER,
529
530    // HANDLENODE node - Used as a handle for various purposes.
531    HANDLENODE,
532
533    // LOCATION - This node is used to represent a source location for debug
534    // info.  It takes token chain as input, then a line number, then a column
535    // number, then a filename, then a working dir.  It produces a token chain
536    // as output.
537    LOCATION,
538
539    // DEBUG_LOC - This node is used to represent source line information
540    // embedded in the code.  It takes a token chain as input, then a line
541    // number, then a column then a file id (provided by MachineModuleInfo.) It
542    // produces a token chain as output.
543    DEBUG_LOC,
544
545    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
546    // It takes as input a token chain, the pointer to the trampoline,
547    // the pointer to the nested function, the pointer to pass for the
548    // 'nest' parameter, a SRCVALUE for the trampoline and another for
549    // the nested function (allowing targets to access the original
550    // Function*).  It produces the result of the intrinsic and a token
551    // chain as output.
552    TRAMPOLINE,
553
554    // BUILTIN_OP_END - This must be the last enum value in this list.
555    BUILTIN_OP_END
556  };
557
558  /// Node predicates
559
560  /// isBuildVectorAllOnes - Return true if the specified node is a
561  /// BUILD_VECTOR where all of the elements are ~0 or undef.
562  bool isBuildVectorAllOnes(const SDNode *N);
563
564  /// isBuildVectorAllZeros - Return true if the specified node is a
565  /// BUILD_VECTOR where all of the elements are 0 or undef.
566  bool isBuildVectorAllZeros(const SDNode *N);
567
568  //===--------------------------------------------------------------------===//
569  /// MemIndexedMode enum - This enum defines the load / store indexed
570  /// addressing modes.
571  ///
572  /// UNINDEXED    "Normal" load / store. The effective address is already
573  ///              computed and is available in the base pointer. The offset
574  ///              operand is always undefined. In addition to producing a
575  ///              chain, an unindexed load produces one value (result of the
576  ///              load); an unindexed store does not produces a value.
577  ///
578  /// PRE_INC      Similar to the unindexed mode where the effective address is
579  /// PRE_DEC      the value of the base pointer add / subtract the offset.
580  ///              It considers the computation as being folded into the load /
581  ///              store operation (i.e. the load / store does the address
582  ///              computation as well as performing the memory transaction).
583  ///              The base operand is always undefined. In addition to
584  ///              producing a chain, pre-indexed load produces two values
585  ///              (result of the load and the result of the address
586  ///              computation); a pre-indexed store produces one value (result
587  ///              of the address computation).
588  ///
589  /// POST_INC     The effective address is the value of the base pointer. The
590  /// POST_DEC     value of the offset operand is then added to / subtracted
591  ///              from the base after memory transaction. In addition to
592  ///              producing a chain, post-indexed load produces two values
593  ///              (the result of the load and the result of the base +/- offset
594  ///              computation); a post-indexed store produces one value (the
595  ///              the result of the base +/- offset computation).
596  ///
597  enum MemIndexedMode {
598    UNINDEXED = 0,
599    PRE_INC,
600    PRE_DEC,
601    POST_INC,
602    POST_DEC,
603    LAST_INDEXED_MODE
604  };
605
606  //===--------------------------------------------------------------------===//
607  /// LoadExtType enum - This enum defines the three variants of LOADEXT
608  /// (load with extension).
609  ///
610  /// SEXTLOAD loads the integer operand and sign extends it to a larger
611  ///          integer result type.
612  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
613  ///          integer result type.
614  /// EXTLOAD  is used for three things: floating point extending loads,
615  ///          integer extending loads [the top bits are undefined], and vector
616  ///          extending loads [load into low elt].
617  ///
618  enum LoadExtType {
619    NON_EXTLOAD = 0,
620    EXTLOAD,
621    SEXTLOAD,
622    ZEXTLOAD,
623    LAST_LOADX_TYPE
624  };
625
626  //===--------------------------------------------------------------------===//
627  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
628  /// below work out, when considering SETFALSE (something that never exists
629  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
630  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
631  /// to.  If the "N" column is 1, the result of the comparison is undefined if
632  /// the input is a NAN.
633  ///
634  /// All of these (except for the 'always folded ops') should be handled for
635  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
636  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
637  ///
638  /// Note that these are laid out in a specific order to allow bit-twiddling
639  /// to transform conditions.
640  enum CondCode {
641    // Opcode          N U L G E       Intuitive operation
642    SETFALSE,      //    0 0 0 0       Always false (always folded)
643    SETOEQ,        //    0 0 0 1       True if ordered and equal
644    SETOGT,        //    0 0 1 0       True if ordered and greater than
645    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
646    SETOLT,        //    0 1 0 0       True if ordered and less than
647    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
648    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
649    SETO,          //    0 1 1 1       True if ordered (no nans)
650    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
651    SETUEQ,        //    1 0 0 1       True if unordered or equal
652    SETUGT,        //    1 0 1 0       True if unordered or greater than
653    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
654    SETULT,        //    1 1 0 0       True if unordered or less than
655    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
656    SETUNE,        //    1 1 1 0       True if unordered or not equal
657    SETTRUE,       //    1 1 1 1       Always true (always folded)
658    // Don't care operations: undefined if the input is a nan.
659    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
660    SETEQ,         //  1 X 0 0 1       True if equal
661    SETGT,         //  1 X 0 1 0       True if greater than
662    SETGE,         //  1 X 0 1 1       True if greater than or equal
663    SETLT,         //  1 X 1 0 0       True if less than
664    SETLE,         //  1 X 1 0 1       True if less than or equal
665    SETNE,         //  1 X 1 1 0       True if not equal
666    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
667
668    SETCC_INVALID       // Marker value.
669  };
670
671  /// isSignedIntSetCC - Return true if this is a setcc instruction that
672  /// performs a signed comparison when used with integer operands.
673  inline bool isSignedIntSetCC(CondCode Code) {
674    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
675  }
676
677  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
678  /// performs an unsigned comparison when used with integer operands.
679  inline bool isUnsignedIntSetCC(CondCode Code) {
680    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
681  }
682
683  /// isTrueWhenEqual - Return true if the specified condition returns true if
684  /// the two operands to the condition are equal.  Note that if one of the two
685  /// operands is a NaN, this value is meaningless.
686  inline bool isTrueWhenEqual(CondCode Cond) {
687    return ((int)Cond & 1) != 0;
688  }
689
690  /// getUnorderedFlavor - This function returns 0 if the condition is always
691  /// false if an operand is a NaN, 1 if the condition is always true if the
692  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
693  /// NaN.
694  inline unsigned getUnorderedFlavor(CondCode Cond) {
695    return ((int)Cond >> 3) & 3;
696  }
697
698  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
699  /// 'op' is a valid SetCC operation.
700  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
701
702  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
703  /// when given the operation for (X op Y).
704  CondCode getSetCCSwappedOperands(CondCode Operation);
705
706  /// getSetCCOrOperation - Return the result of a logical OR between different
707  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
708  /// function returns SETCC_INVALID if it is not possible to represent the
709  /// resultant comparison.
710  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
711
712  /// getSetCCAndOperation - Return the result of a logical AND between
713  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
714  /// function returns SETCC_INVALID if it is not possible to represent the
715  /// resultant comparison.
716  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
717}  // end llvm::ISD namespace
718
719
720//===----------------------------------------------------------------------===//
721/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
722/// values as the result of a computation.  Many nodes return multiple values,
723/// from loads (which define a token and a return value) to ADDC (which returns
724/// a result and a carry value), to calls (which may return an arbitrary number
725/// of values).
726///
727/// As such, each use of a SelectionDAG computation must indicate the node that
728/// computes it as well as which return value to use from that node.  This pair
729/// of information is represented with the SDOperand value type.
730///
731class SDOperand {
732public:
733  SDNode *Val;        // The node defining the value we are using.
734  unsigned ResNo;     // Which return value of the node we are using.
735
736  SDOperand() : Val(0), ResNo(0) {}
737  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
738
739  bool operator==(const SDOperand &O) const {
740    return Val == O.Val && ResNo == O.ResNo;
741  }
742  bool operator!=(const SDOperand &O) const {
743    return !operator==(O);
744  }
745  bool operator<(const SDOperand &O) const {
746    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
747  }
748
749  SDOperand getValue(unsigned R) const {
750    return SDOperand(Val, R);
751  }
752
753  // isOperand - Return true if this node is an operand of N.
754  bool isOperand(SDNode *N) const;
755
756  /// getValueType - Return the ValueType of the referenced return value.
757  ///
758  inline MVT::ValueType getValueType() const;
759
760  // Forwarding methods - These forward to the corresponding methods in SDNode.
761  inline unsigned getOpcode() const;
762  inline unsigned getNumOperands() const;
763  inline const SDOperand &getOperand(unsigned i) const;
764  inline uint64_t getConstantOperandVal(unsigned i) const;
765  inline bool isTargetOpcode() const;
766  inline unsigned getTargetOpcode() const;
767
768  /// hasOneUse - Return true if there is exactly one operation using this
769  /// result value of the defining operator.
770  inline bool hasOneUse() const;
771
772  /// use_empty - Return true if there are no operations using this
773  /// result value of the defining operator.
774  inline bool use_empty() const;
775};
776
777
778template<> struct DenseMapInfo<SDOperand> {
779  static inline SDOperand getEmptyKey() { return SDOperand((SDNode*)-1, -1U); }
780  static inline SDOperand getTombstoneKey() { return SDOperand((SDNode*)-1, 0);}
781  static unsigned getHashValue(const SDOperand &Val) {
782    return (unsigned)((uintptr_t)Val.Val >> 4) ^
783           (unsigned)((uintptr_t)Val.Val >> 9) + Val.ResNo;
784  }
785  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
786    return LHS == RHS;
787  }
788  static bool isPod() { return true; }
789};
790
791/// simplify_type specializations - Allow casting operators to work directly on
792/// SDOperands as if they were SDNode*'s.
793template<> struct simplify_type<SDOperand> {
794  typedef SDNode* SimpleType;
795  static SimpleType getSimplifiedValue(const SDOperand &Val) {
796    return static_cast<SimpleType>(Val.Val);
797  }
798};
799template<> struct simplify_type<const SDOperand> {
800  typedef SDNode* SimpleType;
801  static SimpleType getSimplifiedValue(const SDOperand &Val) {
802    return static_cast<SimpleType>(Val.Val);
803  }
804};
805
806
807/// SDNode - Represents one node in the SelectionDAG.
808///
809class SDNode : public FoldingSetNode {
810  /// NodeType - The operation that this node performs.
811  ///
812  unsigned short NodeType;
813
814  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
815  /// then they will be delete[]'d when the node is destroyed.
816  bool OperandsNeedDelete : 1;
817
818  /// NodeId - Unique id per SDNode in the DAG.
819  int NodeId;
820
821  /// OperandList - The values that are used by this operation.
822  ///
823  SDOperand *OperandList;
824
825  /// ValueList - The types of the values this node defines.  SDNode's may
826  /// define multiple values simultaneously.
827  const MVT::ValueType *ValueList;
828
829  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
830  unsigned short NumOperands, NumValues;
831
832  /// Prev/Next pointers - These pointers form the linked list of of the
833  /// AllNodes list in the current DAG.
834  SDNode *Prev, *Next;
835  friend struct ilist_traits<SDNode>;
836
837  /// Uses - These are all of the SDNode's that use a value produced by this
838  /// node.
839  SmallVector<SDNode*,3> Uses;
840
841  // Out-of-line virtual method to give class a home.
842  virtual void ANCHOR();
843public:
844  virtual ~SDNode() {
845    assert(NumOperands == 0 && "Operand list not cleared before deletion");
846    NodeType = ISD::DELETED_NODE;
847  }
848
849  //===--------------------------------------------------------------------===//
850  //  Accessors
851  //
852  unsigned getOpcode()  const { return NodeType; }
853  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
854  unsigned getTargetOpcode() const {
855    assert(isTargetOpcode() && "Not a target opcode!");
856    return NodeType - ISD::BUILTIN_OP_END;
857  }
858
859  size_t use_size() const { return Uses.size(); }
860  bool use_empty() const { return Uses.empty(); }
861  bool hasOneUse() const { return Uses.size() == 1; }
862
863  /// getNodeId - Return the unique node id.
864  ///
865  int getNodeId() const { return NodeId; }
866
867  typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
868  use_iterator use_begin() const { return Uses.begin(); }
869  use_iterator use_end() const { return Uses.end(); }
870
871  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
872  /// indicated value.  This method ignores uses of other values defined by this
873  /// operation.
874  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
875
876  /// hasAnyUseOfValue - Return true if there are any use of the indicated
877  /// value. This method ignores uses of other values defined by this operation.
878  bool hasAnyUseOfValue(unsigned Value) const;
879
880  /// isOnlyUse - Return true if this node is the only use of N.
881  ///
882  bool isOnlyUse(SDNode *N) const;
883
884  /// isOperand - Return true if this node is an operand of N.
885  ///
886  bool isOperand(SDNode *N) const;
887
888  /// isPredecessor - Return true if this node is a predecessor of N. This node
889  /// is either an operand of N or it can be reached by recursively traversing
890  /// up the operands.
891  /// NOTE: this is an expensive method. Use it carefully.
892  bool isPredecessor(SDNode *N) const;
893
894  /// getNumOperands - Return the number of values used by this operation.
895  ///
896  unsigned getNumOperands() const { return NumOperands; }
897
898  /// getConstantOperandVal - Helper method returns the integer value of a
899  /// ConstantSDNode operand.
900  uint64_t getConstantOperandVal(unsigned Num) const;
901
902  const SDOperand &getOperand(unsigned Num) const {
903    assert(Num < NumOperands && "Invalid child # of SDNode!");
904    return OperandList[Num];
905  }
906
907  typedef const SDOperand* op_iterator;
908  op_iterator op_begin() const { return OperandList; }
909  op_iterator op_end() const { return OperandList+NumOperands; }
910
911
912  SDVTList getVTList() const {
913    SDVTList X = { ValueList, NumValues };
914    return X;
915  };
916
917  /// getNumValues - Return the number of values defined/returned by this
918  /// operator.
919  ///
920  unsigned getNumValues() const { return NumValues; }
921
922  /// getValueType - Return the type of a specified result.
923  ///
924  MVT::ValueType getValueType(unsigned ResNo) const {
925    assert(ResNo < NumValues && "Illegal result number!");
926    return ValueList[ResNo];
927  }
928
929  typedef const MVT::ValueType* value_iterator;
930  value_iterator value_begin() const { return ValueList; }
931  value_iterator value_end() const { return ValueList+NumValues; }
932
933  /// getOperationName - Return the opcode of this operation for printing.
934  ///
935  std::string getOperationName(const SelectionDAG *G = 0) const;
936  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
937  void dump() const;
938  void dump(const SelectionDAG *G) const;
939
940  static bool classof(const SDNode *) { return true; }
941
942  /// Profile - Gather unique data for the node.
943  ///
944  void Profile(FoldingSetNodeID &ID);
945
946  void setNodeId(int Id) {
947    NodeId = Id;
948  }
949
950protected:
951  friend class SelectionDAG;
952
953  /// getValueTypeList - Return a pointer to the specified value type.
954  ///
955  static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
956  static SDVTList getSDVTList(MVT::ValueType VT) {
957    SDVTList Ret = { getValueTypeList(VT), 1 };
958    return Ret;
959  }
960
961  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
962    : NodeType(Opc), NodeId(-1) {
963    OperandsNeedDelete = true;
964    NumOperands = NumOps;
965    OperandList = NumOps ? new SDOperand[NumOperands] : 0;
966
967    for (unsigned i = 0; i != NumOps; ++i) {
968      OperandList[i] = Ops[i];
969      Ops[i].Val->Uses.push_back(this);
970    }
971
972    ValueList = VTs.VTs;
973    NumValues = VTs.NumVTs;
974    Prev = 0; Next = 0;
975  }
976  SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) {
977    OperandsNeedDelete = false;  // Operands set with InitOperands.
978    NumOperands = 0;
979    OperandList = 0;
980
981    ValueList = VTs.VTs;
982    NumValues = VTs.NumVTs;
983    Prev = 0; Next = 0;
984  }
985
986  /// InitOperands - Initialize the operands list of this node with the
987  /// specified values, which are part of the node (thus they don't need to be
988  /// copied in or allocated).
989  void InitOperands(SDOperand *Ops, unsigned NumOps) {
990    assert(OperandList == 0 && "Operands already set!");
991    NumOperands = NumOps;
992    OperandList = Ops;
993
994    for (unsigned i = 0; i != NumOps; ++i)
995      Ops[i].Val->Uses.push_back(this);
996  }
997
998  /// MorphNodeTo - This frees the operands of the current node, resets the
999  /// opcode, types, and operands to the specified value.  This should only be
1000  /// used by the SelectionDAG class.
1001  void MorphNodeTo(unsigned Opc, SDVTList L,
1002                   const SDOperand *Ops, unsigned NumOps);
1003
1004  void addUser(SDNode *User) {
1005    Uses.push_back(User);
1006  }
1007  void removeUser(SDNode *User) {
1008    // Remove this user from the operand's use list.
1009    for (unsigned i = Uses.size(); ; --i) {
1010      assert(i != 0 && "Didn't find user!");
1011      if (Uses[i-1] == User) {
1012        Uses[i-1] = Uses.back();
1013        Uses.pop_back();
1014        return;
1015      }
1016    }
1017  }
1018};
1019
1020
1021// Define inline functions from the SDOperand class.
1022
1023inline unsigned SDOperand::getOpcode() const {
1024  return Val->getOpcode();
1025}
1026inline MVT::ValueType SDOperand::getValueType() const {
1027  return Val->getValueType(ResNo);
1028}
1029inline unsigned SDOperand::getNumOperands() const {
1030  return Val->getNumOperands();
1031}
1032inline const SDOperand &SDOperand::getOperand(unsigned i) const {
1033  return Val->getOperand(i);
1034}
1035inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
1036  return Val->getConstantOperandVal(i);
1037}
1038inline bool SDOperand::isTargetOpcode() const {
1039  return Val->isTargetOpcode();
1040}
1041inline unsigned SDOperand::getTargetOpcode() const {
1042  return Val->getTargetOpcode();
1043}
1044inline bool SDOperand::hasOneUse() const {
1045  return Val->hasNUsesOfValue(1, ResNo);
1046}
1047inline bool SDOperand::use_empty() const {
1048  return !Val->hasAnyUseOfValue(ResNo);
1049}
1050
1051/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1052/// to allow co-allocation of node operands with the node itself.
1053class UnarySDNode : public SDNode {
1054  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1055  SDOperand Op;
1056public:
1057  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1058    : SDNode(Opc, VTs), Op(X) {
1059    InitOperands(&Op, 1);
1060  }
1061};
1062
1063/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1064/// to allow co-allocation of node operands with the node itself.
1065class BinarySDNode : public SDNode {
1066  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1067  SDOperand Ops[2];
1068public:
1069  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1070    : SDNode(Opc, VTs) {
1071    Ops[0] = X;
1072    Ops[1] = Y;
1073    InitOperands(Ops, 2);
1074  }
1075};
1076
1077/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1078/// to allow co-allocation of node operands with the node itself.
1079class TernarySDNode : public SDNode {
1080  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1081  SDOperand Ops[3];
1082public:
1083  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1084                SDOperand Z)
1085    : SDNode(Opc, VTs) {
1086    Ops[0] = X;
1087    Ops[1] = Y;
1088    Ops[2] = Z;
1089    InitOperands(Ops, 3);
1090  }
1091};
1092
1093
1094/// HandleSDNode - This class is used to form a handle around another node that
1095/// is persistant and is updated across invocations of replaceAllUsesWith on its
1096/// operand.  This node should be directly created by end-users and not added to
1097/// the AllNodes list.
1098class HandleSDNode : public SDNode {
1099  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1100  SDOperand Op;
1101public:
1102  explicit HandleSDNode(SDOperand X)
1103    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
1104    InitOperands(&Op, 1);
1105  }
1106  ~HandleSDNode();
1107  SDOperand getValue() const { return Op; }
1108};
1109
1110class StringSDNode : public SDNode {
1111  std::string Value;
1112  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1113protected:
1114  friend class SelectionDAG;
1115  explicit StringSDNode(const std::string &val)
1116    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1117  }
1118public:
1119  const std::string &getValue() const { return Value; }
1120  static bool classof(const StringSDNode *) { return true; }
1121  static bool classof(const SDNode *N) {
1122    return N->getOpcode() == ISD::STRING;
1123  }
1124};
1125
1126class ConstantSDNode : public SDNode {
1127  uint64_t Value;
1128  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1129protected:
1130  friend class SelectionDAG;
1131  ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
1132    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1133      Value(val) {
1134  }
1135public:
1136
1137  uint64_t getValue() const { return Value; }
1138
1139  int64_t getSignExtended() const {
1140    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1141    return ((int64_t)Value << (64-Bits)) >> (64-Bits);
1142  }
1143
1144  bool isNullValue() const { return Value == 0; }
1145  bool isAllOnesValue() const {
1146    return Value == MVT::getIntVTBitMask(getValueType(0));
1147  }
1148
1149  static bool classof(const ConstantSDNode *) { return true; }
1150  static bool classof(const SDNode *N) {
1151    return N->getOpcode() == ISD::Constant ||
1152           N->getOpcode() == ISD::TargetConstant;
1153  }
1154};
1155
1156class ConstantFPSDNode : public SDNode {
1157  APFloat Value;
1158  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1159  // Longterm plan: replace all uses of getValue with getValueAPF, remove
1160  // getValue, rename getValueAPF to getValue.
1161protected:
1162  friend class SelectionDAG;
1163  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT::ValueType VT)
1164    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1165             getSDVTList(VT)), Value(val) {
1166  }
1167public:
1168
1169  const APFloat& getValueAPF() const { return Value; }
1170
1171  /// isExactlyValue - We don't rely on operator== working on double values, as
1172  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1173  /// As such, this method can be used to do an exact bit-for-bit comparison of
1174  /// two floating point values.
1175
1176  /// We leave the version with the double argument here because it's just so
1177  /// convenient to write "2.0" and the like.  Without this function we'd
1178  /// have to duplicate its logic everywhere it's called.
1179  bool isExactlyValue(double V) const {
1180    if (getValueType(0)==MVT::f64)
1181      return isExactlyValue(APFloat(V));
1182    else
1183      return isExactlyValue(APFloat((float)V));
1184  }
1185  bool isExactlyValue(const APFloat& V) const;
1186
1187  bool isValueValidForType(MVT::ValueType VT, const APFloat& Val);
1188
1189  static bool classof(const ConstantFPSDNode *) { return true; }
1190  static bool classof(const SDNode *N) {
1191    return N->getOpcode() == ISD::ConstantFP ||
1192           N->getOpcode() == ISD::TargetConstantFP;
1193  }
1194};
1195
1196class GlobalAddressSDNode : public SDNode {
1197  GlobalValue *TheGlobal;
1198  int Offset;
1199  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1200protected:
1201  friend class SelectionDAG;
1202  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1203                      int o = 0);
1204public:
1205
1206  GlobalValue *getGlobal() const { return TheGlobal; }
1207  int getOffset() const { return Offset; }
1208
1209  static bool classof(const GlobalAddressSDNode *) { return true; }
1210  static bool classof(const SDNode *N) {
1211    return N->getOpcode() == ISD::GlobalAddress ||
1212           N->getOpcode() == ISD::TargetGlobalAddress ||
1213           N->getOpcode() == ISD::GlobalTLSAddress ||
1214           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1215  }
1216};
1217
1218class FrameIndexSDNode : public SDNode {
1219  int FI;
1220  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1221protected:
1222  friend class SelectionDAG;
1223  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1224    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1225      FI(fi) {
1226  }
1227public:
1228
1229  int getIndex() const { return FI; }
1230
1231  static bool classof(const FrameIndexSDNode *) { return true; }
1232  static bool classof(const SDNode *N) {
1233    return N->getOpcode() == ISD::FrameIndex ||
1234           N->getOpcode() == ISD::TargetFrameIndex;
1235  }
1236};
1237
1238class JumpTableSDNode : public SDNode {
1239  int JTI;
1240  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1241protected:
1242  friend class SelectionDAG;
1243  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1244    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1245      JTI(jti) {
1246  }
1247public:
1248
1249    int getIndex() const { return JTI; }
1250
1251  static bool classof(const JumpTableSDNode *) { return true; }
1252  static bool classof(const SDNode *N) {
1253    return N->getOpcode() == ISD::JumpTable ||
1254           N->getOpcode() == ISD::TargetJumpTable;
1255  }
1256};
1257
1258class ConstantPoolSDNode : public SDNode {
1259  union {
1260    Constant *ConstVal;
1261    MachineConstantPoolValue *MachineCPVal;
1262  } Val;
1263  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1264  unsigned Alignment;
1265  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1266protected:
1267  friend class SelectionDAG;
1268  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1269                     int o=0)
1270    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1271             getSDVTList(VT)), Offset(o), Alignment(0) {
1272    assert((int)Offset >= 0 && "Offset is too large");
1273    Val.ConstVal = c;
1274  }
1275  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1276                     unsigned Align)
1277    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1278             getSDVTList(VT)), Offset(o), Alignment(Align) {
1279    assert((int)Offset >= 0 && "Offset is too large");
1280    Val.ConstVal = c;
1281  }
1282  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1283                     MVT::ValueType VT, int o=0)
1284    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1285             getSDVTList(VT)), Offset(o), Alignment(0) {
1286    assert((int)Offset >= 0 && "Offset is too large");
1287    Val.MachineCPVal = v;
1288    Offset |= 1 << (sizeof(unsigned)*8-1);
1289  }
1290  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1291                     MVT::ValueType VT, int o, unsigned Align)
1292    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1293             getSDVTList(VT)), Offset(o), Alignment(Align) {
1294    assert((int)Offset >= 0 && "Offset is too large");
1295    Val.MachineCPVal = v;
1296    Offset |= 1 << (sizeof(unsigned)*8-1);
1297  }
1298public:
1299
1300  bool isMachineConstantPoolEntry() const {
1301    return (int)Offset < 0;
1302  }
1303
1304  Constant *getConstVal() const {
1305    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1306    return Val.ConstVal;
1307  }
1308
1309  MachineConstantPoolValue *getMachineCPVal() const {
1310    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1311    return Val.MachineCPVal;
1312  }
1313
1314  int getOffset() const {
1315    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1316  }
1317
1318  // Return the alignment of this constant pool object, which is either 0 (for
1319  // default alignment) or log2 of the desired value.
1320  unsigned getAlignment() const { return Alignment; }
1321
1322  const Type *getType() const;
1323
1324  static bool classof(const ConstantPoolSDNode *) { return true; }
1325  static bool classof(const SDNode *N) {
1326    return N->getOpcode() == ISD::ConstantPool ||
1327           N->getOpcode() == ISD::TargetConstantPool;
1328  }
1329};
1330
1331class BasicBlockSDNode : public SDNode {
1332  MachineBasicBlock *MBB;
1333  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1334protected:
1335  friend class SelectionDAG;
1336  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1337    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1338  }
1339public:
1340
1341  MachineBasicBlock *getBasicBlock() const { return MBB; }
1342
1343  static bool classof(const BasicBlockSDNode *) { return true; }
1344  static bool classof(const SDNode *N) {
1345    return N->getOpcode() == ISD::BasicBlock;
1346  }
1347};
1348
1349class SrcValueSDNode : public SDNode {
1350  const Value *V;
1351  int offset;
1352  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1353protected:
1354  friend class SelectionDAG;
1355  SrcValueSDNode(const Value* v, int o)
1356    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v), offset(o) {
1357  }
1358
1359public:
1360  const Value *getValue() const { return V; }
1361  int getOffset() const { return offset; }
1362
1363  static bool classof(const SrcValueSDNode *) { return true; }
1364  static bool classof(const SDNode *N) {
1365    return N->getOpcode() == ISD::SRCVALUE;
1366  }
1367};
1368
1369
1370class RegisterSDNode : public SDNode {
1371  unsigned Reg;
1372  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1373protected:
1374  friend class SelectionDAG;
1375  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1376    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1377  }
1378public:
1379
1380  unsigned getReg() const { return Reg; }
1381
1382  static bool classof(const RegisterSDNode *) { return true; }
1383  static bool classof(const SDNode *N) {
1384    return N->getOpcode() == ISD::Register;
1385  }
1386};
1387
1388class ExternalSymbolSDNode : public SDNode {
1389  const char *Symbol;
1390  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1391protected:
1392  friend class SelectionDAG;
1393  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1394    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1395             getSDVTList(VT)), Symbol(Sym) {
1396  }
1397public:
1398
1399  const char *getSymbol() const { return Symbol; }
1400
1401  static bool classof(const ExternalSymbolSDNode *) { return true; }
1402  static bool classof(const SDNode *N) {
1403    return N->getOpcode() == ISD::ExternalSymbol ||
1404           N->getOpcode() == ISD::TargetExternalSymbol;
1405  }
1406};
1407
1408class CondCodeSDNode : public SDNode {
1409  ISD::CondCode Condition;
1410  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1411protected:
1412  friend class SelectionDAG;
1413  explicit CondCodeSDNode(ISD::CondCode Cond)
1414    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1415  }
1416public:
1417
1418  ISD::CondCode get() const { return Condition; }
1419
1420  static bool classof(const CondCodeSDNode *) { return true; }
1421  static bool classof(const SDNode *N) {
1422    return N->getOpcode() == ISD::CONDCODE;
1423  }
1424};
1425
1426/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1427/// to parameterize some operations.
1428class VTSDNode : public SDNode {
1429  MVT::ValueType ValueType;
1430  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1431protected:
1432  friend class SelectionDAG;
1433  explicit VTSDNode(MVT::ValueType VT)
1434    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1435  }
1436public:
1437
1438  MVT::ValueType getVT() const { return ValueType; }
1439
1440  static bool classof(const VTSDNode *) { return true; }
1441  static bool classof(const SDNode *N) {
1442    return N->getOpcode() == ISD::VALUETYPE;
1443  }
1444};
1445
1446/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1447///
1448class LoadSDNode : public SDNode {
1449  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1450  SDOperand Ops[3];
1451
1452  // AddrMode - unindexed, pre-indexed, post-indexed.
1453  ISD::MemIndexedMode AddrMode;
1454
1455  // ExtType - non-ext, anyext, sext, zext.
1456  ISD::LoadExtType ExtType;
1457
1458  // LoadedVT - VT of loaded value before extension.
1459  MVT::ValueType LoadedVT;
1460
1461  // SrcValue - Memory location for alias analysis.
1462  const Value *SrcValue;
1463
1464  // SVOffset - Memory location offset.
1465  int SVOffset;
1466
1467  // Alignment - Alignment of memory location in bytes.
1468  unsigned Alignment;
1469
1470  // IsVolatile - True if the load is volatile.
1471  bool IsVolatile;
1472protected:
1473  friend class SelectionDAG;
1474  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
1475             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1476             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1477    : SDNode(ISD::LOAD, VTs),
1478      AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
1479      Alignment(Align), IsVolatile(Vol) {
1480    Ops[0] = ChainPtrOff[0]; // Chain
1481    Ops[1] = ChainPtrOff[1]; // Ptr
1482    Ops[2] = ChainPtrOff[2]; // Off
1483    InitOperands(Ops, 3);
1484    assert(Align != 0 && "Loads should have non-zero aligment");
1485    assert((getOffset().getOpcode() == ISD::UNDEF ||
1486            AddrMode != ISD::UNINDEXED) &&
1487           "Only indexed load has a non-undef offset operand");
1488  }
1489public:
1490
1491  const SDOperand getChain() const { return getOperand(0); }
1492  const SDOperand getBasePtr() const { return getOperand(1); }
1493  const SDOperand getOffset() const { return getOperand(2); }
1494  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1495  ISD::LoadExtType getExtensionType() const { return ExtType; }
1496  MVT::ValueType getLoadedVT() const { return LoadedVT; }
1497  const Value *getSrcValue() const { return SrcValue; }
1498  int getSrcValueOffset() const { return SVOffset; }
1499  unsigned getAlignment() const { return Alignment; }
1500  bool isVolatile() const { return IsVolatile; }
1501
1502  static bool classof(const LoadSDNode *) { return true; }
1503  static bool classof(const SDNode *N) {
1504    return N->getOpcode() == ISD::LOAD;
1505  }
1506};
1507
1508/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1509///
1510class StoreSDNode : public SDNode {
1511  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1512  SDOperand Ops[4];
1513
1514  // AddrMode - unindexed, pre-indexed, post-indexed.
1515  ISD::MemIndexedMode AddrMode;
1516
1517  // IsTruncStore - True if the op does a truncation before store.
1518  bool IsTruncStore;
1519
1520  // StoredVT - VT of the value after truncation.
1521  MVT::ValueType StoredVT;
1522
1523  // SrcValue - Memory location for alias analysis.
1524  const Value *SrcValue;
1525
1526  // SVOffset - Memory location offset.
1527  int SVOffset;
1528
1529  // Alignment - Alignment of memory location in bytes.
1530  unsigned Alignment;
1531
1532  // IsVolatile - True if the store is volatile.
1533  bool IsVolatile;
1534protected:
1535  friend class SelectionDAG;
1536  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
1537              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1538              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1539    : SDNode(ISD::STORE, VTs),
1540      AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
1541      SVOffset(O), Alignment(Align), IsVolatile(Vol) {
1542    Ops[0] = ChainValuePtrOff[0]; // Chain
1543    Ops[1] = ChainValuePtrOff[1]; // Value
1544    Ops[2] = ChainValuePtrOff[2]; // Ptr
1545    Ops[3] = ChainValuePtrOff[3]; // Off
1546    InitOperands(Ops, 4);
1547    assert(Align != 0 && "Stores should have non-zero aligment");
1548    assert((getOffset().getOpcode() == ISD::UNDEF ||
1549            AddrMode != ISD::UNINDEXED) &&
1550           "Only indexed store has a non-undef offset operand");
1551  }
1552public:
1553
1554  const SDOperand getChain() const { return getOperand(0); }
1555  const SDOperand getValue() const { return getOperand(1); }
1556  const SDOperand getBasePtr() const { return getOperand(2); }
1557  const SDOperand getOffset() const { return getOperand(3); }
1558  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1559  bool isTruncatingStore() const { return IsTruncStore; }
1560  MVT::ValueType getStoredVT() const { return StoredVT; }
1561  const Value *getSrcValue() const { return SrcValue; }
1562  int getSrcValueOffset() const { return SVOffset; }
1563  unsigned getAlignment() const { return Alignment; }
1564  bool isVolatile() const { return IsVolatile; }
1565
1566  static bool classof(const StoreSDNode *) { return true; }
1567  static bool classof(const SDNode *N) {
1568    return N->getOpcode() == ISD::STORE;
1569  }
1570};
1571
1572
1573class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1574  SDNode *Node;
1575  unsigned Operand;
1576
1577  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1578public:
1579  bool operator==(const SDNodeIterator& x) const {
1580    return Operand == x.Operand;
1581  }
1582  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1583
1584  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1585    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1586    Operand = I.Operand;
1587    return *this;
1588  }
1589
1590  pointer operator*() const {
1591    return Node->getOperand(Operand).Val;
1592  }
1593  pointer operator->() const { return operator*(); }
1594
1595  SDNodeIterator& operator++() {                // Preincrement
1596    ++Operand;
1597    return *this;
1598  }
1599  SDNodeIterator operator++(int) { // Postincrement
1600    SDNodeIterator tmp = *this; ++*this; return tmp;
1601  }
1602
1603  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
1604  static SDNodeIterator end  (SDNode *N) {
1605    return SDNodeIterator(N, N->getNumOperands());
1606  }
1607
1608  unsigned getOperand() const { return Operand; }
1609  const SDNode *getNode() const { return Node; }
1610};
1611
1612template <> struct GraphTraits<SDNode*> {
1613  typedef SDNode NodeType;
1614  typedef SDNodeIterator ChildIteratorType;
1615  static inline NodeType *getEntryNode(SDNode *N) { return N; }
1616  static inline ChildIteratorType child_begin(NodeType *N) {
1617    return SDNodeIterator::begin(N);
1618  }
1619  static inline ChildIteratorType child_end(NodeType *N) {
1620    return SDNodeIterator::end(N);
1621  }
1622};
1623
1624template<>
1625struct ilist_traits<SDNode> {
1626  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
1627  static SDNode *getNext(const SDNode *N) { return N->Next; }
1628
1629  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
1630  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
1631
1632  static SDNode *createSentinel() {
1633    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
1634  }
1635  static void destroySentinel(SDNode *N) { delete N; }
1636  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
1637
1638
1639  void addNodeToList(SDNode *NTy) {}
1640  void removeNodeFromList(SDNode *NTy) {}
1641  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
1642                             const ilist_iterator<SDNode> &X,
1643                             const ilist_iterator<SDNode> &Y) {}
1644};
1645
1646namespace ISD {
1647  /// isNormalLoad - Returns true if the specified node is a non-extending
1648  /// and unindexed load.
1649  inline bool isNormalLoad(const SDNode *N) {
1650    if (N->getOpcode() != ISD::LOAD)
1651      return false;
1652    const LoadSDNode *Ld = cast<LoadSDNode>(N);
1653    return Ld->getExtensionType() == ISD::NON_EXTLOAD &&
1654      Ld->getAddressingMode() == ISD::UNINDEXED;
1655  }
1656
1657  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
1658  /// load.
1659  inline bool isNON_EXTLoad(const SDNode *N) {
1660    return N->getOpcode() == ISD::LOAD &&
1661      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
1662  }
1663
1664  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
1665  ///
1666  inline bool isEXTLoad(const SDNode *N) {
1667    return N->getOpcode() == ISD::LOAD &&
1668      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
1669  }
1670
1671  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
1672  ///
1673  inline bool isSEXTLoad(const SDNode *N) {
1674    return N->getOpcode() == ISD::LOAD &&
1675      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
1676  }
1677
1678  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
1679  ///
1680  inline bool isZEXTLoad(const SDNode *N) {
1681    return N->getOpcode() == ISD::LOAD &&
1682      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
1683  }
1684
1685  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
1686  ///
1687  inline bool isUNINDEXEDLoad(const SDNode *N) {
1688    return N->getOpcode() == ISD::LOAD &&
1689      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
1690  }
1691
1692  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
1693  /// store.
1694  inline bool isNON_TRUNCStore(const SDNode *N) {
1695    return N->getOpcode() == ISD::STORE &&
1696      !cast<StoreSDNode>(N)->isTruncatingStore();
1697  }
1698
1699  /// isTRUNCStore - Returns true if the specified node is a truncating
1700  /// store.
1701  inline bool isTRUNCStore(const SDNode *N) {
1702    return N->getOpcode() == ISD::STORE &&
1703      cast<StoreSDNode>(N)->isTruncatingStore();
1704  }
1705}
1706
1707
1708} // end llvm namespace
1709
1710#endif
1711