SelectionDAGNodes.h revision d254a7fc0c354d165caee7e085ca0a95face4fa3
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Constants.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/ilist_node.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/RecyclingAllocator.h"
32#include "llvm/Support/DataTypes.h"
33#include "llvm/CodeGen/DebugLoc.h"
34#include <cassert>
35
36namespace llvm {
37
38class SelectionDAG;
39class GlobalValue;
40class MachineBasicBlock;
41class MachineConstantPoolValue;
42class SDNode;
43class Value;
44template <typename T> struct DenseMapInfo;
45template <typename T> struct simplify_type;
46template <typename T> struct ilist_traits;
47
48/// SDVTList - This represents a list of ValueType's that has been intern'd by
49/// a SelectionDAG.  Instances of this simple value class are returned by
50/// SelectionDAG::getVTList(...).
51///
52struct SDVTList {
53  const MVT *VTs;
54  unsigned short NumVTs;
55};
56
57/// ISD namespace - This namespace contains an enum which represents all of the
58/// SelectionDAG node types and value types.
59///
60namespace ISD {
61
62  //===--------------------------------------------------------------------===//
63  /// ISD::NodeType enum - This enum defines the target-independent operators
64  /// for a SelectionDAG.
65  ///
66  /// Targets may also define target-dependent operator codes for SDNodes. For
67  /// example, on x86, these are the enum values in the X86ISD namespace.
68  /// Targets should aim to use target-independent operators to model their
69  /// instruction sets as much as possible, and only use target-dependent
70  /// operators when they have special requirements.
71  ///
72  /// Finally, during and after selection proper, SNodes may use special
73  /// operator codes that correspond directly with MachineInstr opcodes. These
74  /// are used to represent selected instructions. See the isMachineOpcode()
75  /// and getMachineOpcode() member functions of SDNode.
76  ///
77  enum NodeType {
78    // DELETED_NODE - This is an illegal flag value that is used to catch
79    // errors.  This opcode is not a legal opcode for any node.
80    DELETED_NODE,
81
82    // EntryToken - This is the marker used to indicate the start of the region.
83    EntryToken,
84
85    // TokenFactor - This node takes multiple tokens as input and produces a
86    // single token result.  This is used to represent the fact that the operand
87    // operators are independent of each other.
88    TokenFactor,
89
90    // AssertSext, AssertZext - These nodes record if a register contains a
91    // value that has already been zero or sign extended from a narrower type.
92    // These nodes take two operands.  The first is the node that has already
93    // been extended, and the second is a value type node indicating the width
94    // of the extension
95    AssertSext, AssertZext,
96
97    // Various leaf nodes.
98    BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
99    Constant, ConstantFP,
100    GlobalAddress, GlobalTLSAddress, FrameIndex,
101    JumpTable, ConstantPool, ExternalSymbol,
102
103    // The address of the GOT
104    GLOBAL_OFFSET_TABLE,
105
106    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
107    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
108    // of the frame or return address to return.  An index of zero corresponds
109    // to the current function's frame or return address, an index of one to the
110    // parent's frame or return address, and so on.
111    FRAMEADDR, RETURNADDR,
112
113    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
114    // first (possible) on-stack argument. This is needed for correct stack
115    // adjustment during unwind.
116    FRAME_TO_ARGS_OFFSET,
117
118    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
119    // address of the exception block on entry to an landing pad block.
120    EXCEPTIONADDR,
121
122    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
123    // the selection index of the exception thrown.
124    EHSELECTION,
125
126    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
127    // 'eh_return' gcc dwarf builtin, which is used to return from
128    // exception. The general meaning is: adjust stack by OFFSET and pass
129    // execution to HANDLER. Many platform-related details also :)
130    EH_RETURN,
131
132    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
133    // simplification of the constant.
134    TargetConstant,
135    TargetConstantFP,
136
137    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
138    // anything else with this node, and this is valid in the target-specific
139    // dag, turning into a GlobalAddress operand.
140    TargetGlobalAddress,
141    TargetGlobalTLSAddress,
142    TargetFrameIndex,
143    TargetJumpTable,
144    TargetConstantPool,
145    TargetExternalSymbol,
146
147    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
148    /// This node represents a target intrinsic function with no side effects.
149    /// The first operand is the ID number of the intrinsic from the
150    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
151    /// node has returns the result of the intrinsic.
152    INTRINSIC_WO_CHAIN,
153
154    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
155    /// This node represents a target intrinsic function with side effects that
156    /// returns a result.  The first operand is a chain pointer.  The second is
157    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
158    /// operands to the intrinsic follow.  The node has two results, the result
159    /// of the intrinsic and an output chain.
160    INTRINSIC_W_CHAIN,
161
162    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
163    /// This node represents a target intrinsic function with side effects that
164    /// does not return a result.  The first operand is a chain pointer.  The
165    /// second is the ID number of the intrinsic from the llvm::Intrinsic
166    /// namespace.  The operands to the intrinsic follow.
167    INTRINSIC_VOID,
168
169    // CopyToReg - This node has three operands: a chain, a register number to
170    // set to this value, and a value.
171    CopyToReg,
172
173    // CopyFromReg - This node indicates that the input value is a virtual or
174    // physical register that is defined outside of the scope of this
175    // SelectionDAG.  The register is available from the RegisterSDNode object.
176    CopyFromReg,
177
178    // UNDEF - An undefined node
179    UNDEF,
180
181    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
182    /// represents the formal arguments for a function.  CC# is a Constant value
183    /// indicating the calling convention of the function, and ISVARARG is a
184    /// flag that indicates whether the function is varargs or not. This node
185    /// has one result value for each incoming argument, plus one for the output
186    /// chain. It must be custom legalized. See description of CALL node for
187    /// FLAG argument contents explanation.
188    ///
189    FORMAL_ARGUMENTS,
190
191    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CALLEE,
192    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
193    /// This node represents a fully general function call, before the legalizer
194    /// runs.  This has one result value for each argument / flag pair, plus
195    /// a chain result. It must be custom legalized. Flag argument indicates
196    /// misc. argument attributes. Currently:
197    /// Bit 0 - signness
198    /// Bit 1 - 'inreg' attribute
199    /// Bit 2 - 'sret' attribute
200    /// Bit 4 - 'byval' attribute
201    /// Bit 5 - 'nest' attribute
202    /// Bit 6-9 - alignment of byval structures
203    /// Bit 10-26 - size of byval structures
204    /// Bits 31:27 - argument ABI alignment in the first argument piece and
205    /// alignment '1' in other argument pieces.
206    ///
207    /// CALL nodes use the CallSDNode subclass of SDNode, which
208    /// additionally carries information about the calling convention,
209    /// whether the call is varargs, and if it's marked as a tail call.
210    ///
211    CALL,
212
213    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
214    // a Constant, which is required to be operand #1) half of the integer or
215    // float value specified as operand #0.  This is only for use before
216    // legalization, for values that will be broken into multiple registers.
217    EXTRACT_ELEMENT,
218
219    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
220    // two values of the same integer value type, this produces a value twice as
221    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
222    BUILD_PAIR,
223
224    // MERGE_VALUES - This node takes multiple discrete operands and returns
225    // them all as its individual results.  This nodes has exactly the same
226    // number of inputs and outputs, and is only valid before legalization.
227    // This node is useful for some pieces of the code generator that want to
228    // think about a single node with multiple results, not multiple nodes.
229    MERGE_VALUES,
230
231    // Simple integer binary arithmetic operators.
232    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
233
234    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
235    // a signed/unsigned value of type i[2*N], and return the full value as
236    // two results, each of type iN.
237    SMUL_LOHI, UMUL_LOHI,
238
239    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
240    // remainder result.
241    SDIVREM, UDIVREM,
242
243    // CARRY_FALSE - This node is used when folding other nodes,
244    // like ADDC/SUBC, which indicate the carry result is always false.
245    CARRY_FALSE,
246
247    // Carry-setting nodes for multiple precision addition and subtraction.
248    // These nodes take two operands of the same value type, and produce two
249    // results.  The first result is the normal add or sub result, the second
250    // result is the carry flag result.
251    ADDC, SUBC,
252
253    // Carry-using nodes for multiple precision addition and subtraction.  These
254    // nodes take three operands: The first two are the normal lhs and rhs to
255    // the add or sub, and the third is the input carry flag.  These nodes
256    // produce two results; the normal result of the add or sub, and the output
257    // carry flag.  These nodes both read and write a carry flag to allow them
258    // to them to be chained together for add and sub of arbitrarily large
259    // values.
260    ADDE, SUBE,
261
262    // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
263    // These nodes take two operands: the normal LHS and RHS to the add. They
264    // produce two results: the normal result of the add, and a boolean that
265    // indicates if an overflow occured (*not* a flag, because it may be stored
266    // to memory, etc.).  If the type of the boolean is not i1 then the high
267    // bits conform to getBooleanContents.
268    // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
269    SADDO, UADDO,
270
271    // Same for subtraction
272    SSUBO, USUBO,
273
274    // Same for multiplication
275    SMULO, UMULO,
276
277    // Simple binary floating point operators.
278    FADD, FSUB, FMUL, FDIV, FREM,
279
280    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
281    // DAG node does not require that X and Y have the same type, just that they
282    // are both floating point.  X and the result must have the same type.
283    // FCOPYSIGN(f32, f64) is allowed.
284    FCOPYSIGN,
285
286    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
287    // value as an integer 0/1 value.
288    FGETSIGN,
289
290    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
291    /// with the specified, possibly variable, elements.  The number of elements
292    /// is required to be a power of two.
293    BUILD_VECTOR,
294
295    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
296    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
297    /// element type then VAL is truncated before replacement.
298    INSERT_VECTOR_ELT,
299
300    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
301    /// identified by the (potentially variable) element number IDX.
302    EXTRACT_VECTOR_ELT,
303
304    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
305    /// vector type with the same length and element type, this produces a
306    /// concatenated vector result value, with length equal to the sum of the
307    /// lengths of the input vectors.
308    CONCAT_VECTORS,
309
310    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
311    /// vector value) starting with the (potentially variable) element number
312    /// IDX, which must be a multiple of the result vector length.
313    EXTRACT_SUBVECTOR,
314
315    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
316    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
317    /// (maybe of an illegal datatype) or undef that indicate which value each
318    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
319    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
320    /// that the indices must be constants and are in terms of the element size
321    /// of VEC1/VEC2, not in terms of bytes.
322    VECTOR_SHUFFLE,
323
324    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
325    /// scalar value into element 0 of the resultant vector type.  The top
326    /// elements 1 to N-1 of the N-element vector are undefined.
327    SCALAR_TO_VECTOR,
328
329    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
330    // This node takes a superreg and a constant sub-register index as operands.
331    // Note sub-register indices must be increasing. That is, if the
332    // sub-register index of a 8-bit sub-register is N, then the index for a
333    // 16-bit sub-register must be at least N+1.
334    EXTRACT_SUBREG,
335
336    // INSERT_SUBREG - This node is used to insert a sub-register value.
337    // This node takes a superreg, a subreg value, and a constant sub-register
338    // index as operands.
339    INSERT_SUBREG,
340
341    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
342    // an unsigned/signed value of type i[2*N], then return the top part.
343    MULHU, MULHS,
344
345    // Bitwise operators - logical and, logical or, logical xor, shift left,
346    // shift right algebraic (shift in sign bits), shift right logical (shift in
347    // zeroes), rotate left, rotate right, and byteswap.
348    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
349
350    // Counting operators
351    CTTZ, CTLZ, CTPOP,
352
353    // Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
354    // i1 then the high bits must conform to getBooleanContents.
355    SELECT,
356
357    // Select with condition operator - This selects between a true value and
358    // a false value (ops #2 and #3) based on the boolean result of comparing
359    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
360    // condition code in op #4, a CondCodeSDNode.
361    SELECT_CC,
362
363    // SetCC operator - This evaluates to a true value iff the condition is
364    // true.  If the result value type is not i1 then the high bits conform
365    // to getBooleanContents.  The operands to this are the left and right
366    // operands to compare (ops #0, and #1) and the condition code to compare
367    // them with (op #2) as a CondCodeSDNode.
368    SETCC,
369
370    // Vector SetCC operator - This evaluates to a vector of integer elements
371    // with the high bit in each element set to true if the comparison is true
372    // and false if the comparison is false.  All other bits in each element
373    // are undefined.  The operands to this are the left and right operands
374    // to compare (ops #0, and #1) and the condition code to compare them with
375    // (op #2) as a CondCodeSDNode.
376    VSETCC,
377
378    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
379    // integer shift operations, just like ADD/SUB_PARTS.  The operation
380    // ordering is:
381    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
382    SHL_PARTS, SRA_PARTS, SRL_PARTS,
383
384    // Conversion operators.  These are all single input single output
385    // operations.  For all of these, the result type must be strictly
386    // wider or narrower (depending on the operation) than the source
387    // type.
388
389    // SIGN_EXTEND - Used for integer types, replicating the sign bit
390    // into new bits.
391    SIGN_EXTEND,
392
393    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
394    ZERO_EXTEND,
395
396    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
397    ANY_EXTEND,
398
399    // TRUNCATE - Completely drop the high bits.
400    TRUNCATE,
401
402    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
403    // depends on the first letter) to floating point.
404    SINT_TO_FP,
405    UINT_TO_FP,
406
407    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
408    // sign extend a small value in a large integer register (e.g. sign
409    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
410    // with the 7th bit).  The size of the smaller type is indicated by the 1th
411    // operand, a ValueType node.
412    SIGN_EXTEND_INREG,
413
414    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
415    /// integer.
416    FP_TO_SINT,
417    FP_TO_UINT,
418
419    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
420    /// down to the precision of the destination VT.  TRUNC is a flag, which is
421    /// always an integer that is zero or one.  If TRUNC is 0, this is a
422    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
423    /// value of Y.
424    ///
425    /// The TRUNC = 1 case is used in cases where we know that the value will
426    /// not be modified by the node, because Y is not using any of the extra
427    /// precision of source type.  This allows certain transformations like
428    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
429    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
430    FP_ROUND,
431
432    // FLT_ROUNDS_ - Returns current rounding mode:
433    // -1 Undefined
434    //  0 Round to 0
435    //  1 Round to nearest
436    //  2 Round to +inf
437    //  3 Round to -inf
438    FLT_ROUNDS_,
439
440    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
441    /// rounds it to a floating point value.  It then promotes it and returns it
442    /// in a register of the same size.  This operation effectively just
443    /// discards excess precision.  The type to round down to is specified by
444    /// the VT operand, a VTSDNode.
445    FP_ROUND_INREG,
446
447    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
448    FP_EXTEND,
449
450    // BIT_CONVERT - Theis operator converts between integer and FP values, as
451    // if one was stored to memory as integer and the other was loaded from the
452    // same address (or equivalently for vector format conversions, etc).  The
453    // source and result are required to have the same bit size (e.g.
454    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
455    // conversions, but that is a noop, deleted by getNode().
456    BIT_CONVERT,
457
458    // CONVERT_RNDSAT - This operator is used to support various conversions
459    // between various types (float, signed, unsigned and vectors of those
460    // types) with rounding and saturation. NOTE: Avoid using this operator as
461    // most target don't support it and the operator might be removed in the
462    // future. It takes the following arguments:
463    //   0) value
464    //   1) dest type (type to convert to)
465    //   2) src type (type to convert from)
466    //   3) rounding imm
467    //   4) saturation imm
468    //   5) ISD::CvtCode indicating the type of conversion to do
469    CONVERT_RNDSAT,
470
471    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
472    // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
473    // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
474    // point operations. These are inspired by libm.
475    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
476    FLOG, FLOG2, FLOG10, FEXP, FEXP2,
477    FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
478
479    // LOAD and STORE have token chains as their first operand, then the same
480    // operands as an LLVM load/store instruction, then an offset node that
481    // is added / subtracted from the base pointer to form the address (for
482    // indexed memory ops).
483    LOAD, STORE,
484
485    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
486    // to a specified boundary.  This node always has two return values: a new
487    // stack pointer value and a chain. The first operand is the token chain,
488    // the second is the number of bytes to allocate, and the third is the
489    // alignment boundary.  The size is guaranteed to be a multiple of the stack
490    // alignment, and the alignment is guaranteed to be bigger than the stack
491    // alignment (if required) or 0 to get standard stack alignment.
492    DYNAMIC_STACKALLOC,
493
494    // Control flow instructions.  These all have token chains.
495
496    // BR - Unconditional branch.  The first operand is the chain
497    // operand, the second is the MBB to branch to.
498    BR,
499
500    // BRIND - Indirect branch.  The first operand is the chain, the second
501    // is the value to branch to, which must be of the same type as the target's
502    // pointer type.
503    BRIND,
504
505    // BR_JT - Jumptable branch. The first operand is the chain, the second
506    // is the jumptable index, the last one is the jumptable entry index.
507    BR_JT,
508
509    // BRCOND - Conditional branch.  The first operand is the chain, the
510    // second is the condition, the third is the block to branch to if the
511    // condition is true.  If the type of the condition is not i1, then the
512    // high bits must conform to getBooleanContents.
513    BRCOND,
514
515    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
516    // that the condition is represented as condition code, and two nodes to
517    // compare, rather than as a combined SetCC node.  The operands in order are
518    // chain, cc, lhs, rhs, block to branch to if condition is true.
519    BR_CC,
520
521    // RET - Return from function.  The first operand is the chain,
522    // and any subsequent operands are pairs of return value and return value
523    // attributes (see CALL for description of attributes) for the function.
524    // This operation can have variable number of operands.
525    RET,
526
527    // INLINEASM - Represents an inline asm block.  This node always has two
528    // return values: a chain and a flag result.  The inputs are as follows:
529    //   Operand #0   : Input chain.
530    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
531    //   Operand #2n+2: A RegisterNode.
532    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
533    //   Operand #last: Optional, an incoming flag.
534    INLINEASM,
535
536    // DBG_LABEL, EH_LABEL - Represents a label in mid basic block used to track
537    // locations needed for debug and exception handling tables.  These nodes
538    // take a chain as input and return a chain.
539    DBG_LABEL,
540    EH_LABEL,
541
542    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
543    // local variable declarations for debugging information. First operand is
544    // a chain, while the next two operands are first two arguments (address
545    // and variable) of a llvm.dbg.declare instruction.
546    DECLARE,
547
548    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
549    // value, the same type as the pointer type for the system, and an output
550    // chain.
551    STACKSAVE,
552
553    // STACKRESTORE has two operands, an input chain and a pointer to restore to
554    // it returns an output chain.
555    STACKRESTORE,
556
557    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
558    // a call sequence, and carry arbitrary information that target might want
559    // to know.  The first operand is a chain, the rest are specified by the
560    // target and not touched by the DAG optimizers.
561    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
562    CALLSEQ_START,  // Beginning of a call sequence
563    CALLSEQ_END,    // End of a call sequence
564
565    // VAARG - VAARG has three operands: an input chain, a pointer, and a
566    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
567    VAARG,
568
569    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
570    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
571    // source.
572    VACOPY,
573
574    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
575    // pointer, and a SRCVALUE.
576    VAEND, VASTART,
577
578    // SRCVALUE - This is a node type that holds a Value* that is used to
579    // make reference to a value in the LLVM IR.
580    SRCVALUE,
581
582    // MEMOPERAND - This is a node that contains a MachineMemOperand which
583    // records information about a memory reference. This is used to make
584    // AliasAnalysis queries from the backend.
585    MEMOPERAND,
586
587    // PCMARKER - This corresponds to the pcmarker intrinsic.
588    PCMARKER,
589
590    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
591    // The only operand is a chain and a value and a chain are produced.  The
592    // value is the contents of the architecture specific cycle counter like
593    // register (or other high accuracy low latency clock source)
594    READCYCLECOUNTER,
595
596    // HANDLENODE node - Used as a handle for various purposes.
597    HANDLENODE,
598
599    // DBG_STOPPOINT - This node is used to represent a source location for
600    // debug info.  It takes token chain as input, and carries a line number,
601    // column number, and a pointer to a CompileUnit object identifying
602    // the containing compilation unit.  It produces a token chain as output.
603    DBG_STOPPOINT,
604
605    // DEBUG_LOC - This node is used to represent source line information
606    // embedded in the code.  It takes a token chain as input, then a line
607    // number, then a column then a file id (provided by MachineModuleInfo.) It
608    // produces a token chain as output.
609    DEBUG_LOC,
610
611    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
612    // It takes as input a token chain, the pointer to the trampoline,
613    // the pointer to the nested function, the pointer to pass for the
614    // 'nest' parameter, a SRCVALUE for the trampoline and another for
615    // the nested function (allowing targets to access the original
616    // Function*).  It produces the result of the intrinsic and a token
617    // chain as output.
618    TRAMPOLINE,
619
620    // TRAP - Trapping instruction
621    TRAP,
622
623    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
624    // their first operand. The other operands are the address to prefetch,
625    // read / write specifier, and locality specifier.
626    PREFETCH,
627
628    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
629    //                       store-store, device)
630    // This corresponds to the memory.barrier intrinsic.
631    // it takes an input chain, 4 operands to specify the type of barrier, an
632    // operand specifying if the barrier applies to device and uncached memory
633    // and produces an output chain.
634    MEMBARRIER,
635
636    // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
637    // this corresponds to the atomic.lcs intrinsic.
638    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
639    // the return is always the original value in *ptr
640    ATOMIC_CMP_SWAP,
641
642    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
643    // this corresponds to the atomic.swap intrinsic.
644    // amt is stored to *ptr atomically.
645    // the return is always the original value in *ptr
646    ATOMIC_SWAP,
647
648    // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
649    // this corresponds to the atomic.load.[OpName] intrinsic.
650    // op(*ptr, amt) is stored to *ptr atomically.
651    // the return is always the original value in *ptr
652    ATOMIC_LOAD_ADD,
653    ATOMIC_LOAD_SUB,
654    ATOMIC_LOAD_AND,
655    ATOMIC_LOAD_OR,
656    ATOMIC_LOAD_XOR,
657    ATOMIC_LOAD_NAND,
658    ATOMIC_LOAD_MIN,
659    ATOMIC_LOAD_MAX,
660    ATOMIC_LOAD_UMIN,
661    ATOMIC_LOAD_UMAX,
662
663    // BUILTIN_OP_END - This must be the last enum value in this list.
664    BUILTIN_OP_END
665  };
666
667  /// Node predicates
668
669  /// isBuildVectorAllOnes - Return true if the specified node is a
670  /// BUILD_VECTOR where all of the elements are ~0 or undef.
671  bool isBuildVectorAllOnes(const SDNode *N);
672
673  /// isBuildVectorAllZeros - Return true if the specified node is a
674  /// BUILD_VECTOR where all of the elements are 0 or undef.
675  bool isBuildVectorAllZeros(const SDNode *N);
676
677  /// isScalarToVector - Return true if the specified node is a
678  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
679  /// element is not an undef.
680  bool isScalarToVector(const SDNode *N);
681
682  /// isDebugLabel - Return true if the specified node represents a debug
683  /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
684  bool isDebugLabel(const SDNode *N);
685
686  //===--------------------------------------------------------------------===//
687  /// MemIndexedMode enum - This enum defines the load / store indexed
688  /// addressing modes.
689  ///
690  /// UNINDEXED    "Normal" load / store. The effective address is already
691  ///              computed and is available in the base pointer. The offset
692  ///              operand is always undefined. In addition to producing a
693  ///              chain, an unindexed load produces one value (result of the
694  ///              load); an unindexed store does not produce a value.
695  ///
696  /// PRE_INC      Similar to the unindexed mode where the effective address is
697  /// PRE_DEC      the value of the base pointer add / subtract the offset.
698  ///              It considers the computation as being folded into the load /
699  ///              store operation (i.e. the load / store does the address
700  ///              computation as well as performing the memory transaction).
701  ///              The base operand is always undefined. In addition to
702  ///              producing a chain, pre-indexed load produces two values
703  ///              (result of the load and the result of the address
704  ///              computation); a pre-indexed store produces one value (result
705  ///              of the address computation).
706  ///
707  /// POST_INC     The effective address is the value of the base pointer. The
708  /// POST_DEC     value of the offset operand is then added to / subtracted
709  ///              from the base after memory transaction. In addition to
710  ///              producing a chain, post-indexed load produces two values
711  ///              (the result of the load and the result of the base +/- offset
712  ///              computation); a post-indexed store produces one value (the
713  ///              the result of the base +/- offset computation).
714  ///
715  enum MemIndexedMode {
716    UNINDEXED = 0,
717    PRE_INC,
718    PRE_DEC,
719    POST_INC,
720    POST_DEC,
721    LAST_INDEXED_MODE
722  };
723
724  //===--------------------------------------------------------------------===//
725  /// LoadExtType enum - This enum defines the three variants of LOADEXT
726  /// (load with extension).
727  ///
728  /// SEXTLOAD loads the integer operand and sign extends it to a larger
729  ///          integer result type.
730  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
731  ///          integer result type.
732  /// EXTLOAD  is used for three things: floating point extending loads,
733  ///          integer extending loads [the top bits are undefined], and vector
734  ///          extending loads [load into low elt].
735  ///
736  enum LoadExtType {
737    NON_EXTLOAD = 0,
738    EXTLOAD,
739    SEXTLOAD,
740    ZEXTLOAD,
741    LAST_LOADEXT_TYPE
742  };
743
744  //===--------------------------------------------------------------------===//
745  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
746  /// below work out, when considering SETFALSE (something that never exists
747  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
748  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
749  /// to.  If the "N" column is 1, the result of the comparison is undefined if
750  /// the input is a NAN.
751  ///
752  /// All of these (except for the 'always folded ops') should be handled for
753  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
754  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
755  ///
756  /// Note that these are laid out in a specific order to allow bit-twiddling
757  /// to transform conditions.
758  enum CondCode {
759    // Opcode          N U L G E       Intuitive operation
760    SETFALSE,      //    0 0 0 0       Always false (always folded)
761    SETOEQ,        //    0 0 0 1       True if ordered and equal
762    SETOGT,        //    0 0 1 0       True if ordered and greater than
763    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
764    SETOLT,        //    0 1 0 0       True if ordered and less than
765    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
766    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
767    SETO,          //    0 1 1 1       True if ordered (no nans)
768    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
769    SETUEQ,        //    1 0 0 1       True if unordered or equal
770    SETUGT,        //    1 0 1 0       True if unordered or greater than
771    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
772    SETULT,        //    1 1 0 0       True if unordered or less than
773    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
774    SETUNE,        //    1 1 1 0       True if unordered or not equal
775    SETTRUE,       //    1 1 1 1       Always true (always folded)
776    // Don't care operations: undefined if the input is a nan.
777    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
778    SETEQ,         //  1 X 0 0 1       True if equal
779    SETGT,         //  1 X 0 1 0       True if greater than
780    SETGE,         //  1 X 0 1 1       True if greater than or equal
781    SETLT,         //  1 X 1 0 0       True if less than
782    SETLE,         //  1 X 1 0 1       True if less than or equal
783    SETNE,         //  1 X 1 1 0       True if not equal
784    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
785
786    SETCC_INVALID       // Marker value.
787  };
788
789  /// isSignedIntSetCC - Return true if this is a setcc instruction that
790  /// performs a signed comparison when used with integer operands.
791  inline bool isSignedIntSetCC(CondCode Code) {
792    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
793  }
794
795  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
796  /// performs an unsigned comparison when used with integer operands.
797  inline bool isUnsignedIntSetCC(CondCode Code) {
798    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
799  }
800
801  /// isTrueWhenEqual - Return true if the specified condition returns true if
802  /// the two operands to the condition are equal.  Note that if one of the two
803  /// operands is a NaN, this value is meaningless.
804  inline bool isTrueWhenEqual(CondCode Cond) {
805    return ((int)Cond & 1) != 0;
806  }
807
808  /// getUnorderedFlavor - This function returns 0 if the condition is always
809  /// false if an operand is a NaN, 1 if the condition is always true if the
810  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
811  /// NaN.
812  inline unsigned getUnorderedFlavor(CondCode Cond) {
813    return ((int)Cond >> 3) & 3;
814  }
815
816  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
817  /// 'op' is a valid SetCC operation.
818  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
819
820  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
821  /// when given the operation for (X op Y).
822  CondCode getSetCCSwappedOperands(CondCode Operation);
823
824  /// getSetCCOrOperation - Return the result of a logical OR between different
825  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
826  /// function returns SETCC_INVALID if it is not possible to represent the
827  /// resultant comparison.
828  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
829
830  /// getSetCCAndOperation - Return the result of a logical AND between
831  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
832  /// function returns SETCC_INVALID if it is not possible to represent the
833  /// resultant comparison.
834  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
835
836  //===--------------------------------------------------------------------===//
837  /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
838  /// supports.
839  enum CvtCode {
840    CVT_FF,     // Float from Float
841    CVT_FS,     // Float from Signed
842    CVT_FU,     // Float from Unsigned
843    CVT_SF,     // Signed from Float
844    CVT_UF,     // Unsigned from Float
845    CVT_SS,     // Signed from Signed
846    CVT_SU,     // Signed from Unsigned
847    CVT_US,     // Unsigned from Signed
848    CVT_UU,     // Unsigned from Unsigned
849    CVT_INVALID // Marker - Invalid opcode
850  };
851}  // end llvm::ISD namespace
852
853
854//===----------------------------------------------------------------------===//
855/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
856/// values as the result of a computation.  Many nodes return multiple values,
857/// from loads (which define a token and a return value) to ADDC (which returns
858/// a result and a carry value), to calls (which may return an arbitrary number
859/// of values).
860///
861/// As such, each use of a SelectionDAG computation must indicate the node that
862/// computes it as well as which return value to use from that node.  This pair
863/// of information is represented with the SDValue value type.
864///
865class SDValue {
866  SDNode *Node;       // The node defining the value we are using.
867  unsigned ResNo;     // Which return value of the node we are using.
868public:
869  SDValue() : Node(0), ResNo(0) {}
870  SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
871
872  /// get the index which selects a specific result in the SDNode
873  unsigned getResNo() const { return ResNo; }
874
875  /// get the SDNode which holds the desired result
876  SDNode *getNode() const { return Node; }
877
878  /// set the SDNode
879  void setNode(SDNode *N) { Node = N; }
880
881  bool operator==(const SDValue &O) const {
882    return Node == O.Node && ResNo == O.ResNo;
883  }
884  bool operator!=(const SDValue &O) const {
885    return !operator==(O);
886  }
887  bool operator<(const SDValue &O) const {
888    return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
889  }
890
891  SDValue getValue(unsigned R) const {
892    return SDValue(Node, R);
893  }
894
895  // isOperandOf - Return true if this node is an operand of N.
896  bool isOperandOf(SDNode *N) const;
897
898  /// getValueType - Return the ValueType of the referenced return value.
899  ///
900  inline MVT getValueType() const;
901
902  /// getValueSizeInBits - Returns the size of the value in bits.
903  ///
904  unsigned getValueSizeInBits() const {
905    return getValueType().getSizeInBits();
906  }
907
908  // Forwarding methods - These forward to the corresponding methods in SDNode.
909  inline unsigned getOpcode() const;
910  inline unsigned getNumOperands() const;
911  inline const SDValue &getOperand(unsigned i) const;
912  inline uint64_t getConstantOperandVal(unsigned i) const;
913  inline bool isTargetOpcode() const;
914  inline bool isMachineOpcode() const;
915  inline unsigned getMachineOpcode() const;
916  inline const DebugLoc getDebugLoc() const;
917
918
919  /// reachesChainWithoutSideEffects - Return true if this operand (which must
920  /// be a chain) reaches the specified operand without crossing any
921  /// side-effecting instructions.  In practice, this looks through token
922  /// factors and non-volatile loads.  In order to remain efficient, this only
923  /// looks a couple of nodes in, it does not do an exhaustive search.
924  bool reachesChainWithoutSideEffects(SDValue Dest,
925                                      unsigned Depth = 2) const;
926
927  /// use_empty - Return true if there are no nodes using value ResNo
928  /// of Node.
929  ///
930  inline bool use_empty() const;
931
932  /// hasOneUse - Return true if there is exactly one node using value
933  /// ResNo of Node.
934  ///
935  inline bool hasOneUse() const;
936};
937
938
939template<> struct DenseMapInfo<SDValue> {
940  static inline SDValue getEmptyKey() {
941    return SDValue((SDNode*)-1, -1U);
942  }
943  static inline SDValue getTombstoneKey() {
944    return SDValue((SDNode*)-1, 0);
945  }
946  static unsigned getHashValue(const SDValue &Val) {
947    return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
948            (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
949  }
950  static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
951    return LHS == RHS;
952  }
953  static bool isPod() { return true; }
954};
955
956/// simplify_type specializations - Allow casting operators to work directly on
957/// SDValues as if they were SDNode*'s.
958template<> struct simplify_type<SDValue> {
959  typedef SDNode* SimpleType;
960  static SimpleType getSimplifiedValue(const SDValue &Val) {
961    return static_cast<SimpleType>(Val.getNode());
962  }
963};
964template<> struct simplify_type<const SDValue> {
965  typedef SDNode* SimpleType;
966  static SimpleType getSimplifiedValue(const SDValue &Val) {
967    return static_cast<SimpleType>(Val.getNode());
968  }
969};
970
971/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
972/// which records the SDNode being used and the result number, a
973/// pointer to the SDNode using the value, and Next and Prev pointers,
974/// which link together all the uses of an SDNode.
975///
976class SDUse {
977  /// Val - The value being used.
978  SDValue Val;
979  /// User - The user of this value.
980  SDNode *User;
981  /// Prev, Next - Pointers to the uses list of the SDNode referred by
982  /// this operand.
983  SDUse **Prev, *Next;
984
985  SDUse(const SDUse &U);          // Do not implement
986  void operator=(const SDUse &U); // Do not implement
987
988public:
989  SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
990
991  /// Normally SDUse will just implicitly convert to an SDValue that it holds.
992  operator const SDValue&() const { return Val; }
993
994  /// If implicit conversion to SDValue doesn't work, the get() method returns
995  /// the SDValue.
996  const SDValue &get() const { return Val; }
997
998  /// getUser - This returns the SDNode that contains this Use.
999  SDNode *getUser() { return User; }
1000
1001  /// getNext - Get the next SDUse in the use list.
1002  SDUse *getNext() const { return Next; }
1003
1004  /// getNode - Convenience function for get().getNode().
1005  SDNode *getNode() const { return Val.getNode(); }
1006  /// getResNo - Convenience function for get().getResNo().
1007  unsigned getResNo() const { return Val.getResNo(); }
1008  /// getValueType - Convenience function for get().getValueType().
1009  MVT getValueType() const { return Val.getValueType(); }
1010
1011  /// operator== - Convenience function for get().operator==
1012  bool operator==(const SDValue &V) const {
1013    return Val == V;
1014  }
1015
1016  /// operator!= - Convenience function for get().operator!=
1017  bool operator!=(const SDValue &V) const {
1018    return Val != V;
1019  }
1020
1021  /// operator< - Convenience function for get().operator<
1022  bool operator<(const SDValue &V) const {
1023    return Val < V;
1024  }
1025
1026private:
1027  friend class SelectionDAG;
1028  friend class SDNode;
1029
1030  void setUser(SDNode *p) { User = p; }
1031
1032  /// set - Remove this use from its existing use list, assign it the
1033  /// given value, and add it to the new value's node's use list.
1034  inline void set(const SDValue &V);
1035  /// setInitial - like set, but only supports initializing a newly-allocated
1036  /// SDUse with a non-null value.
1037  inline void setInitial(const SDValue &V);
1038  /// setNode - like set, but only sets the Node portion of the value,
1039  /// leaving the ResNo portion unmodified.
1040  inline void setNode(SDNode *N);
1041
1042  void addToList(SDUse **List) {
1043    Next = *List;
1044    if (Next) Next->Prev = &Next;
1045    Prev = List;
1046    *List = this;
1047  }
1048
1049  void removeFromList() {
1050    *Prev = Next;
1051    if (Next) Next->Prev = Prev;
1052  }
1053};
1054
1055/// simplify_type specializations - Allow casting operators to work directly on
1056/// SDValues as if they were SDNode*'s.
1057template<> struct simplify_type<SDUse> {
1058  typedef SDNode* SimpleType;
1059  static SimpleType getSimplifiedValue(const SDUse &Val) {
1060    return static_cast<SimpleType>(Val.getNode());
1061  }
1062};
1063template<> struct simplify_type<const SDUse> {
1064  typedef SDNode* SimpleType;
1065  static SimpleType getSimplifiedValue(const SDUse &Val) {
1066    return static_cast<SimpleType>(Val.getNode());
1067  }
1068};
1069
1070
1071/// SDNode - Represents one node in the SelectionDAG.
1072///
1073class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1074private:
1075  /// NodeType - The operation that this node performs.
1076  ///
1077  short NodeType;
1078
1079  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
1080  /// then they will be delete[]'d when the node is destroyed.
1081  unsigned short OperandsNeedDelete : 1;
1082
1083protected:
1084  /// SubclassData - This member is defined by this class, but is not used for
1085  /// anything.  Subclasses can use it to hold whatever state they find useful.
1086  /// This field is initialized to zero by the ctor.
1087  unsigned short SubclassData : 15;
1088
1089private:
1090  /// NodeId - Unique id per SDNode in the DAG.
1091  int NodeId;
1092
1093  /// OperandList - The values that are used by this operation.
1094  ///
1095  SDUse *OperandList;
1096
1097  /// ValueList - The types of the values this node defines.  SDNode's may
1098  /// define multiple values simultaneously.
1099  const MVT *ValueList;
1100
1101  /// UseList - List of uses for this SDNode.
1102  SDUse *UseList;
1103
1104  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1105  unsigned short NumOperands, NumValues;
1106
1107  /// debugLoc - source line information.
1108  DebugLoc debugLoc;
1109
1110  /// getValueTypeList - Return a pointer to the specified value type.
1111  static const MVT *getValueTypeList(MVT VT);
1112
1113  friend class SelectionDAG;
1114  friend struct ilist_traits<SDNode>;
1115
1116public:
1117  //===--------------------------------------------------------------------===//
1118  //  Accessors
1119  //
1120
1121  /// getOpcode - Return the SelectionDAG opcode value for this node. For
1122  /// pre-isel nodes (those for which isMachineOpcode returns false), these
1123  /// are the opcode values in the ISD and <target>ISD namespaces. For
1124  /// post-isel opcodes, see getMachineOpcode.
1125  unsigned getOpcode()  const { return (unsigned short)NodeType; }
1126
1127  /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1128  /// <target>ISD namespace).
1129  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1130
1131  /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1132  /// corresponding to a MachineInstr opcode.
1133  bool isMachineOpcode() const { return NodeType < 0; }
1134
1135  /// getMachineOpcode - This may only be called if isMachineOpcode returns
1136  /// true. It returns the MachineInstr opcode value that the node's opcode
1137  /// corresponds to.
1138  unsigned getMachineOpcode() const {
1139    assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1140    return ~NodeType;
1141  }
1142
1143  /// use_empty - Return true if there are no uses of this node.
1144  ///
1145  bool use_empty() const { return UseList == NULL; }
1146
1147  /// hasOneUse - Return true if there is exactly one use of this node.
1148  ///
1149  bool hasOneUse() const {
1150    return !use_empty() && next(use_begin()) == use_end();
1151  }
1152
1153  /// use_size - Return the number of uses of this node. This method takes
1154  /// time proportional to the number of uses.
1155  ///
1156  size_t use_size() const { return std::distance(use_begin(), use_end()); }
1157
1158  /// getNodeId - Return the unique node id.
1159  ///
1160  int getNodeId() const { return NodeId; }
1161
1162  /// setNodeId - Set unique node id.
1163  void setNodeId(int Id) { NodeId = Id; }
1164
1165  /// getDebugLoc - Return the source location info.
1166  const DebugLoc getDebugLoc() const { return debugLoc; }
1167
1168  /// setDebugLoc - Set source location info.  Try to avoid this, putting
1169  /// it in the constructor is preferable.
1170  void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1171
1172  /// use_iterator - This class provides iterator support for SDUse
1173  /// operands that use a specific SDNode.
1174  class use_iterator
1175    : public forward_iterator<SDUse, ptrdiff_t> {
1176    SDUse *Op;
1177    explicit use_iterator(SDUse *op) : Op(op) {
1178    }
1179    friend class SDNode;
1180  public:
1181    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
1182    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;
1183
1184    use_iterator(const use_iterator &I) : Op(I.Op) {}
1185    use_iterator() : Op(0) {}
1186
1187    bool operator==(const use_iterator &x) const {
1188      return Op == x.Op;
1189    }
1190    bool operator!=(const use_iterator &x) const {
1191      return !operator==(x);
1192    }
1193
1194    /// atEnd - return true if this iterator is at the end of uses list.
1195    bool atEnd() const { return Op == 0; }
1196
1197    // Iterator traversal: forward iteration only.
1198    use_iterator &operator++() {          // Preincrement
1199      assert(Op && "Cannot increment end iterator!");
1200      Op = Op->getNext();
1201      return *this;
1202    }
1203
1204    use_iterator operator++(int) {        // Postincrement
1205      use_iterator tmp = *this; ++*this; return tmp;
1206    }
1207
1208    /// Retrieve a pointer to the current user node.
1209    SDNode *operator*() const {
1210      assert(Op && "Cannot dereference end iterator!");
1211      return Op->getUser();
1212    }
1213
1214    SDNode *operator->() const { return operator*(); }
1215
1216    SDUse &getUse() const { return *Op; }
1217
1218    /// getOperandNo - Retrieve the operand # of this use in its user.
1219    ///
1220    unsigned getOperandNo() const {
1221      assert(Op && "Cannot dereference end iterator!");
1222      return (unsigned)(Op - Op->getUser()->OperandList);
1223    }
1224  };
1225
1226  /// use_begin/use_end - Provide iteration support to walk over all uses
1227  /// of an SDNode.
1228
1229  use_iterator use_begin() const {
1230    return use_iterator(UseList);
1231  }
1232
1233  static use_iterator use_end() { return use_iterator(0); }
1234
1235
1236  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1237  /// indicated value.  This method ignores uses of other values defined by this
1238  /// operation.
1239  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1240
1241  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1242  /// value. This method ignores uses of other values defined by this operation.
1243  bool hasAnyUseOfValue(unsigned Value) const;
1244
1245  /// isOnlyUserOf - Return true if this node is the only use of N.
1246  ///
1247  bool isOnlyUserOf(SDNode *N) const;
1248
1249  /// isOperandOf - Return true if this node is an operand of N.
1250  ///
1251  bool isOperandOf(SDNode *N) const;
1252
1253  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1254  /// node is either an operand of N or it can be reached by recursively
1255  /// traversing up the operands.
1256  /// NOTE: this is an expensive method. Use it carefully.
1257  bool isPredecessorOf(SDNode *N) const;
1258
1259  /// getNumOperands - Return the number of values used by this operation.
1260  ///
1261  unsigned getNumOperands() const { return NumOperands; }
1262
1263  /// getConstantOperandVal - Helper method returns the integer value of a
1264  /// ConstantSDNode operand.
1265  uint64_t getConstantOperandVal(unsigned Num) const;
1266
1267  const SDValue &getOperand(unsigned Num) const {
1268    assert(Num < NumOperands && "Invalid child # of SDNode!");
1269    return OperandList[Num];
1270  }
1271
1272  typedef SDUse* op_iterator;
1273  op_iterator op_begin() const { return OperandList; }
1274  op_iterator op_end() const { return OperandList+NumOperands; }
1275
1276  SDVTList getVTList() const {
1277    SDVTList X = { ValueList, NumValues };
1278    return X;
1279  };
1280
1281  /// getFlaggedNode - If this node has a flag operand, return the node
1282  /// to which the flag operand points. Otherwise return NULL.
1283  SDNode *getFlaggedNode() const {
1284    if (getNumOperands() != 0 &&
1285        getOperand(getNumOperands()-1).getValueType() == MVT::Flag)
1286      return getOperand(getNumOperands()-1).getNode();
1287    return 0;
1288  }
1289
1290  // If this is a pseudo op, like copyfromreg, look to see if there is a
1291  // real target node flagged to it.  If so, return the target node.
1292  const SDNode *getFlaggedMachineNode() const {
1293    const SDNode *FoundNode = this;
1294
1295    // Climb up flag edges until a machine-opcode node is found, or the
1296    // end of the chain is reached.
1297    while (!FoundNode->isMachineOpcode()) {
1298      const SDNode *N = FoundNode->getFlaggedNode();
1299      if (!N) break;
1300      FoundNode = N;
1301    }
1302
1303    return FoundNode;
1304  }
1305
1306  /// getNumValues - Return the number of values defined/returned by this
1307  /// operator.
1308  ///
1309  unsigned getNumValues() const { return NumValues; }
1310
1311  /// getValueType - Return the type of a specified result.
1312  ///
1313  MVT getValueType(unsigned ResNo) const {
1314    assert(ResNo < NumValues && "Illegal result number!");
1315    return ValueList[ResNo];
1316  }
1317
1318  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1319  ///
1320  unsigned getValueSizeInBits(unsigned ResNo) const {
1321    return getValueType(ResNo).getSizeInBits();
1322  }
1323
1324  typedef const MVT* value_iterator;
1325  value_iterator value_begin() const { return ValueList; }
1326  value_iterator value_end() const { return ValueList+NumValues; }
1327
1328  /// getOperationName - Return the opcode of this operation for printing.
1329  ///
1330  std::string getOperationName(const SelectionDAG *G = 0) const;
1331  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1332  void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1333  void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1334  void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1335  void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1336  void dump() const;
1337  void dumpr() const;
1338  void dump(const SelectionDAG *G) const;
1339
1340  static bool classof(const SDNode *) { return true; }
1341
1342  /// Profile - Gather unique data for the node.
1343  ///
1344  void Profile(FoldingSetNodeID &ID) const;
1345
1346  /// addUse - This method should only be used by the SDUse class.
1347  ///
1348  void addUse(SDUse &U) { U.addToList(&UseList); }
1349
1350protected:
1351  static SDVTList getSDVTList(MVT VT) {
1352    SDVTList Ret = { getValueTypeList(VT), 1 };
1353    return Ret;
1354  }
1355
1356  /// The constructors that supply DebugLoc explicitly should be preferred
1357  /// for new code.
1358  SDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps)
1359    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1360      NodeId(-1),
1361      OperandList(NumOps ? new SDUse[NumOps] : 0),
1362      ValueList(VTs.VTs),
1363      UseList(NULL),
1364      NumOperands(NumOps), NumValues(VTs.NumVTs),
1365      debugLoc(DebugLoc::getUnknownLoc()) {
1366    for (unsigned i = 0; i != NumOps; ++i) {
1367      OperandList[i].setUser(this);
1368      OperandList[i].setInitial(Ops[i]);
1369    }
1370  }
1371
1372  /// This constructor adds no operands itself; operands can be
1373  /// set later with InitOperands.
1374  SDNode(unsigned Opc, SDVTList VTs)
1375    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1376      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1377      NumOperands(0), NumValues(VTs.NumVTs),
1378      debugLoc(DebugLoc::getUnknownLoc()) {}
1379
1380  /// The next two constructors specify DebugLoc explicitly; the intent
1381  /// is that they will replace the above two over time, and eventually
1382  /// the ones above can be removed.
1383  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1384         unsigned NumOps)
1385    : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1386      NodeId(-1),
1387      OperandList(NumOps ? new SDUse[NumOps] : 0),
1388      ValueList(VTs.VTs), UseList(NULL),
1389      NumOperands(NumOps), NumValues(VTs.NumVTs),
1390      debugLoc(dl) {
1391    for (unsigned i = 0; i != NumOps; ++i) {
1392      OperandList[i].setUser(this);
1393      OperandList[i].setInitial(Ops[i]);
1394    }
1395  }
1396
1397  /// This constructor adds no operands itself; operands can be
1398  /// set later with InitOperands.
1399  SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1400    : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1401      NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1402      NumOperands(0), NumValues(VTs.NumVTs),
1403      debugLoc(dl) {}
1404
1405  /// InitOperands - Initialize the operands list of this with 1 operand.
1406  void InitOperands(SDUse *Ops, const SDValue &Op0) {
1407    Ops[0].setUser(this);
1408    Ops[0].setInitial(Op0);
1409    NumOperands = 1;
1410    OperandList = Ops;
1411  }
1412
1413  /// InitOperands - Initialize the operands list of this with 2 operands.
1414  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1415    Ops[0].setUser(this);
1416    Ops[0].setInitial(Op0);
1417    Ops[1].setUser(this);
1418    Ops[1].setInitial(Op1);
1419    NumOperands = 2;
1420    OperandList = Ops;
1421  }
1422
1423  /// InitOperands - Initialize the operands list of this with 3 operands.
1424  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1425                    const SDValue &Op2) {
1426    Ops[0].setUser(this);
1427    Ops[0].setInitial(Op0);
1428    Ops[1].setUser(this);
1429    Ops[1].setInitial(Op1);
1430    Ops[2].setUser(this);
1431    Ops[2].setInitial(Op2);
1432    NumOperands = 3;
1433    OperandList = Ops;
1434  }
1435
1436  /// InitOperands - Initialize the operands list of this with 4 operands.
1437  void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1438                    const SDValue &Op2, const SDValue &Op3) {
1439    Ops[0].setUser(this);
1440    Ops[0].setInitial(Op0);
1441    Ops[1].setUser(this);
1442    Ops[1].setInitial(Op1);
1443    Ops[2].setUser(this);
1444    Ops[2].setInitial(Op2);
1445    Ops[3].setUser(this);
1446    Ops[3].setInitial(Op3);
1447    NumOperands = 4;
1448    OperandList = Ops;
1449  }
1450
1451  /// InitOperands - Initialize the operands list of this with N operands.
1452  void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1453    for (unsigned i = 0; i != N; ++i) {
1454      Ops[i].setUser(this);
1455      Ops[i].setInitial(Vals[i]);
1456    }
1457    NumOperands = N;
1458    OperandList = Ops;
1459  }
1460
1461  /// DropOperands - Release the operands and set this node to have
1462  /// zero operands.
1463  void DropOperands();
1464};
1465
1466
1467// Define inline functions from the SDValue class.
1468
1469inline unsigned SDValue::getOpcode() const {
1470  return Node->getOpcode();
1471}
1472inline MVT SDValue::getValueType() const {
1473  return Node->getValueType(ResNo);
1474}
1475inline unsigned SDValue::getNumOperands() const {
1476  return Node->getNumOperands();
1477}
1478inline const SDValue &SDValue::getOperand(unsigned i) const {
1479  return Node->getOperand(i);
1480}
1481inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1482  return Node->getConstantOperandVal(i);
1483}
1484inline bool SDValue::isTargetOpcode() const {
1485  return Node->isTargetOpcode();
1486}
1487inline bool SDValue::isMachineOpcode() const {
1488  return Node->isMachineOpcode();
1489}
1490inline unsigned SDValue::getMachineOpcode() const {
1491  return Node->getMachineOpcode();
1492}
1493inline bool SDValue::use_empty() const {
1494  return !Node->hasAnyUseOfValue(ResNo);
1495}
1496inline bool SDValue::hasOneUse() const {
1497  return Node->hasNUsesOfValue(1, ResNo);
1498}
1499inline const DebugLoc SDValue::getDebugLoc() const {
1500  return Node->getDebugLoc();
1501}
1502
1503// Define inline functions from the SDUse class.
1504
1505inline void SDUse::set(const SDValue &V) {
1506  if (Val.getNode()) removeFromList();
1507  Val = V;
1508  if (V.getNode()) V.getNode()->addUse(*this);
1509}
1510
1511inline void SDUse::setInitial(const SDValue &V) {
1512  Val = V;
1513  V.getNode()->addUse(*this);
1514}
1515
1516inline void SDUse::setNode(SDNode *N) {
1517  if (Val.getNode()) removeFromList();
1518  Val.setNode(N);
1519  if (N) N->addUse(*this);
1520}
1521
1522/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1523/// to allow co-allocation of node operands with the node itself.
1524class UnarySDNode : public SDNode {
1525  SDUse Op;
1526public:
1527  UnarySDNode(unsigned Opc, SDVTList VTs, SDValue X)
1528    : SDNode(Opc, VTs) {
1529    InitOperands(&Op, X);
1530  }
1531  UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1532    : SDNode(Opc, dl, VTs) {
1533    InitOperands(&Op, X);
1534  }
1535};
1536
1537/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1538/// to allow co-allocation of node operands with the node itself.
1539class BinarySDNode : public SDNode {
1540  SDUse Ops[2];
1541public:
1542  BinarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y)
1543    : SDNode(Opc, VTs) {
1544    InitOperands(Ops, X, Y);
1545  }
1546  BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1547    : SDNode(Opc, dl, VTs) {
1548    InitOperands(Ops, X, Y);
1549  }
1550};
1551
1552/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1553/// to allow co-allocation of node operands with the node itself.
1554class TernarySDNode : public SDNode {
1555  SDUse Ops[3];
1556public:
1557  TernarySDNode(unsigned Opc, SDVTList VTs, SDValue X, SDValue Y,
1558                SDValue Z)
1559    : SDNode(Opc, VTs) {
1560    InitOperands(Ops, X, Y, Z);
1561  }
1562  TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1563                SDValue Z)
1564    : SDNode(Opc, dl, VTs) {
1565    InitOperands(Ops, X, Y, Z);
1566  }
1567};
1568
1569
1570/// HandleSDNode - This class is used to form a handle around another node that
1571/// is persistant and is updated across invocations of replaceAllUsesWith on its
1572/// operand.  This node should be directly created by end-users and not added to
1573/// the AllNodes list.
1574class HandleSDNode : public SDNode {
1575  SDUse Op;
1576public:
1577  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1578  // fixed.
1579#ifdef __GNUC__
1580  explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1581#else
1582  explicit HandleSDNode(SDValue X)
1583#endif
1584    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
1585    InitOperands(&Op, X);
1586  }
1587  ~HandleSDNode();
1588  const SDValue &getValue() const { return Op; }
1589};
1590
1591/// Abstact virtual class for operations for memory operations
1592class MemSDNode : public SDNode {
1593private:
1594  // MemoryVT - VT of in-memory value.
1595  MVT MemoryVT;
1596
1597  //! SrcValue - Memory location for alias analysis.
1598  const Value *SrcValue;
1599
1600  //! SVOffset - Memory location offset. Note that base is defined in MemSDNode
1601  int SVOffset;
1602
1603public:
1604  MemSDNode(unsigned Opc, SDVTList VTs, MVT MemoryVT,
1605            const Value *srcValue, int SVOff,
1606            unsigned alignment, bool isvolatile);
1607
1608  MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops, unsigned NumOps,
1609            MVT MemoryVT, const Value *srcValue, int SVOff,
1610            unsigned alignment, bool isvolatile);
1611
1612  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT MemoryVT,
1613            const Value *srcValue, int SVOff,
1614            unsigned alignment, bool isvolatile);
1615
1616  MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1617            unsigned NumOps, MVT MemoryVT, const Value *srcValue, int SVOff,
1618            unsigned alignment, bool isvolatile);
1619
1620  /// Returns alignment and volatility of the memory access
1621  unsigned getAlignment() const { return (1u << (SubclassData >> 6)) >> 1; }
1622  bool isVolatile() const { return (SubclassData >> 5) & 1; }
1623
1624  /// getRawSubclassData - Return the SubclassData value, which contains an
1625  /// encoding of the alignment and volatile information, as well as bits
1626  /// used by subclasses. This function should only be used to compute a
1627  /// FoldingSetNodeID value.
1628  unsigned getRawSubclassData() const {
1629    return SubclassData;
1630  }
1631
1632  /// Returns the SrcValue and offset that describes the location of the access
1633  const Value *getSrcValue() const { return SrcValue; }
1634  int getSrcValueOffset() const { return SVOffset; }
1635
1636  /// getMemoryVT - Return the type of the in-memory value.
1637  MVT getMemoryVT() const { return MemoryVT; }
1638
1639  /// getMemOperand - Return a MachineMemOperand object describing the memory
1640  /// reference performed by operation.
1641  MachineMemOperand getMemOperand() const;
1642
1643  const SDValue &getChain() const { return getOperand(0); }
1644  const SDValue &getBasePtr() const {
1645    return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1646  }
1647
1648  // Methods to support isa and dyn_cast
1649  static bool classof(const MemSDNode *) { return true; }
1650  static bool classof(const SDNode *N) {
1651    // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1652    // with either an intrinsic or a target opcode.
1653    return N->getOpcode() == ISD::LOAD                ||
1654           N->getOpcode() == ISD::STORE               ||
1655           N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1656           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1657           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1658           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1659           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1660           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1661           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1662           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1663           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1664           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1665           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1666           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1667           N->getOpcode() == ISD::INTRINSIC_W_CHAIN   ||
1668           N->getOpcode() == ISD::INTRINSIC_VOID      ||
1669           N->isTargetOpcode();
1670  }
1671};
1672
1673/// AtomicSDNode - A SDNode reprenting atomic operations.
1674///
1675class AtomicSDNode : public MemSDNode {
1676  SDUse Ops[4];
1677
1678public:
1679  // Opc:   opcode for atomic
1680  // VTL:    value type list
1681  // Chain:  memory chain for operaand
1682  // Ptr:    address to update as a SDValue
1683  // Cmp:    compare value
1684  // Swp:    swap value
1685  // SrcVal: address to update as a Value (used for MemOperand)
1686  // Align:  alignment of memory
1687  AtomicSDNode(unsigned Opc, SDVTList VTL, MVT MemVT,
1688               SDValue Chain, SDValue Ptr,
1689               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1690               unsigned Align=0)
1691    : MemSDNode(Opc, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1692                Align, /*isVolatile=*/true) {
1693    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1694  }
1695  AtomicSDNode(unsigned Opc, SDVTList VTL, MVT MemVT,
1696               SDValue Chain, SDValue Ptr,
1697               SDValue Val, const Value* SrcVal, unsigned Align=0)
1698    : MemSDNode(Opc, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1699                Align, /*isVolatile=*/true) {
1700    InitOperands(Ops, Chain, Ptr, Val);
1701  }
1702  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
1703               SDValue Chain, SDValue Ptr,
1704               SDValue Cmp, SDValue Swp, const Value* SrcVal,
1705               unsigned Align=0)
1706    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1707                Align, /*isVolatile=*/true) {
1708    InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1709  }
1710  AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, MVT MemVT,
1711               SDValue Chain, SDValue Ptr,
1712               SDValue Val, const Value* SrcVal, unsigned Align=0)
1713    : MemSDNode(Opc, dl, VTL, MemVT, SrcVal, /*SVOffset=*/0,
1714                Align, /*isVolatile=*/true) {
1715    InitOperands(Ops, Chain, Ptr, Val);
1716  }
1717
1718  const SDValue &getBasePtr() const { return getOperand(1); }
1719  const SDValue &getVal() const { return getOperand(2); }
1720
1721  bool isCompareAndSwap() const {
1722    unsigned Op = getOpcode();
1723    return Op == ISD::ATOMIC_CMP_SWAP;
1724  }
1725
1726  // Methods to support isa and dyn_cast
1727  static bool classof(const AtomicSDNode *) { return true; }
1728  static bool classof(const SDNode *N) {
1729    return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1730           N->getOpcode() == ISD::ATOMIC_SWAP         ||
1731           N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1732           N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1733           N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1734           N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1735           N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1736           N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1737           N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1738           N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1739           N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1740           N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1741  }
1742};
1743
1744/// MemIntrinsicSDNode - This SDNode is used for target intrinsic that touches
1745/// memory and need an associated memory operand.
1746///
1747class MemIntrinsicSDNode : public MemSDNode {
1748  bool ReadMem;  // Intrinsic reads memory
1749  bool WriteMem; // Intrinsic writes memory
1750public:
1751  MemIntrinsicSDNode(unsigned Opc, SDVTList VTs,
1752                     const SDValue *Ops, unsigned NumOps,
1753                     MVT MemoryVT, const Value *srcValue, int SVO,
1754                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1755    : MemSDNode(Opc, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1756      ReadMem(ReadMem), WriteMem(WriteMem) {
1757  }
1758  MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1759                     const SDValue *Ops, unsigned NumOps,
1760                     MVT MemoryVT, const Value *srcValue, int SVO,
1761                     unsigned Align, bool Vol, bool ReadMem, bool WriteMem)
1762    : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, srcValue, SVO, Align, Vol),
1763      ReadMem(ReadMem), WriteMem(WriteMem) {
1764  }
1765
1766  bool readMem() const { return ReadMem; }
1767  bool writeMem() const { return WriteMem; }
1768
1769  // Methods to support isa and dyn_cast
1770  static bool classof(const MemIntrinsicSDNode *) { return true; }
1771  static bool classof(const SDNode *N) {
1772    // We lower some target intrinsics to their target opcode
1773    // early a node with a target opcode can be of this class
1774    return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1775           N->getOpcode() == ISD::INTRINSIC_VOID ||
1776           N->isTargetOpcode();
1777  }
1778};
1779
1780class ConstantSDNode : public SDNode {
1781  const ConstantInt *Value;
1782protected:
1783  friend class SelectionDAG;
1784  ConstantSDNode(bool isTarget, const ConstantInt *val, MVT VT)
1785    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1786      Value(val) {
1787  }
1788public:
1789
1790  const ConstantInt *getConstantIntValue() const { return Value; }
1791  const APInt &getAPIntValue() const { return Value->getValue(); }
1792  uint64_t getZExtValue() const { return Value->getZExtValue(); }
1793  int64_t getSExtValue() const { return Value->getSExtValue(); }
1794
1795  bool isNullValue() const { return Value->isNullValue(); }
1796  bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1797
1798  static bool classof(const ConstantSDNode *) { return true; }
1799  static bool classof(const SDNode *N) {
1800    return N->getOpcode() == ISD::Constant ||
1801           N->getOpcode() == ISD::TargetConstant;
1802  }
1803};
1804
1805class ConstantFPSDNode : public SDNode {
1806  const ConstantFP *Value;
1807protected:
1808  friend class SelectionDAG;
1809  ConstantFPSDNode(bool isTarget, const ConstantFP *val, MVT VT)
1810    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1811             getSDVTList(VT)), Value(val) {
1812  }
1813public:
1814
1815  const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1816  const ConstantFP *getConstantFPValue() const { return Value; }
1817
1818  /// isExactlyValue - We don't rely on operator== working on double values, as
1819  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1820  /// As such, this method can be used to do an exact bit-for-bit comparison of
1821  /// two floating point values.
1822
1823  /// We leave the version with the double argument here because it's just so
1824  /// convenient to write "2.0" and the like.  Without this function we'd
1825  /// have to duplicate its logic everywhere it's called.
1826  bool isExactlyValue(double V) const {
1827    bool ignored;
1828    // convert is not supported on this type
1829    if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1830      return false;
1831    APFloat Tmp(V);
1832    Tmp.convert(Value->getValueAPF().getSemantics(),
1833                APFloat::rmNearestTiesToEven, &ignored);
1834    return isExactlyValue(Tmp);
1835  }
1836  bool isExactlyValue(const APFloat& V) const;
1837
1838  bool isValueValidForType(MVT VT, const APFloat& Val);
1839
1840  static bool classof(const ConstantFPSDNode *) { return true; }
1841  static bool classof(const SDNode *N) {
1842    return N->getOpcode() == ISD::ConstantFP ||
1843           N->getOpcode() == ISD::TargetConstantFP;
1844  }
1845};
1846
1847class GlobalAddressSDNode : public SDNode {
1848  GlobalValue *TheGlobal;
1849  int64_t Offset;
1850protected:
1851  friend class SelectionDAG;
1852  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT VT,
1853                      int64_t o = 0);
1854public:
1855
1856  GlobalValue *getGlobal() const { return TheGlobal; }
1857  int64_t getOffset() const { return Offset; }
1858
1859  static bool classof(const GlobalAddressSDNode *) { return true; }
1860  static bool classof(const SDNode *N) {
1861    return N->getOpcode() == ISD::GlobalAddress ||
1862           N->getOpcode() == ISD::TargetGlobalAddress ||
1863           N->getOpcode() == ISD::GlobalTLSAddress ||
1864           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1865  }
1866};
1867
1868class FrameIndexSDNode : public SDNode {
1869  int FI;
1870protected:
1871  friend class SelectionDAG;
1872  FrameIndexSDNode(int fi, MVT VT, bool isTarg)
1873    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1874      FI(fi) {
1875  }
1876public:
1877
1878  int getIndex() const { return FI; }
1879
1880  static bool classof(const FrameIndexSDNode *) { return true; }
1881  static bool classof(const SDNode *N) {
1882    return N->getOpcode() == ISD::FrameIndex ||
1883           N->getOpcode() == ISD::TargetFrameIndex;
1884  }
1885};
1886
1887class JumpTableSDNode : public SDNode {
1888  int JTI;
1889protected:
1890  friend class SelectionDAG;
1891  JumpTableSDNode(int jti, MVT VT, bool isTarg)
1892    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1893      JTI(jti) {
1894  }
1895public:
1896
1897  int getIndex() const { return JTI; }
1898
1899  static bool classof(const JumpTableSDNode *) { return true; }
1900  static bool classof(const SDNode *N) {
1901    return N->getOpcode() == ISD::JumpTable ||
1902           N->getOpcode() == ISD::TargetJumpTable;
1903  }
1904};
1905
1906class ConstantPoolSDNode : public SDNode {
1907  union {
1908    Constant *ConstVal;
1909    MachineConstantPoolValue *MachineCPVal;
1910  } Val;
1911  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1912  unsigned Alignment;
1913protected:
1914  friend class SelectionDAG;
1915  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o=0)
1916    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1917             getSDVTList(VT)), Offset(o), Alignment(0) {
1918    assert((int)Offset >= 0 && "Offset is too large");
1919    Val.ConstVal = c;
1920  }
1921  ConstantPoolSDNode(bool isTarget, Constant *c, MVT VT, int o, unsigned Align)
1922    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1923             getSDVTList(VT)), Offset(o), Alignment(Align) {
1924    assert((int)Offset >= 0 && "Offset is too large");
1925    Val.ConstVal = c;
1926  }
1927  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1928                     MVT VT, int o=0)
1929    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1930             getSDVTList(VT)), Offset(o), Alignment(0) {
1931    assert((int)Offset >= 0 && "Offset is too large");
1932    Val.MachineCPVal = v;
1933    Offset |= 1 << (sizeof(unsigned)*8-1);
1934  }
1935  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1936                     MVT VT, int o, unsigned Align)
1937    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1938             getSDVTList(VT)), Offset(o), Alignment(Align) {
1939    assert((int)Offset >= 0 && "Offset is too large");
1940    Val.MachineCPVal = v;
1941    Offset |= 1 << (sizeof(unsigned)*8-1);
1942  }
1943public:
1944
1945  bool isMachineConstantPoolEntry() const {
1946    return (int)Offset < 0;
1947  }
1948
1949  Constant *getConstVal() const {
1950    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1951    return Val.ConstVal;
1952  }
1953
1954  MachineConstantPoolValue *getMachineCPVal() const {
1955    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1956    return Val.MachineCPVal;
1957  }
1958
1959  int getOffset() const {
1960    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1961  }
1962
1963  // Return the alignment of this constant pool object, which is either 0 (for
1964  // default alignment) or log2 of the desired value.
1965  unsigned getAlignment() const { return Alignment; }
1966
1967  const Type *getType() const;
1968
1969  static bool classof(const ConstantPoolSDNode *) { return true; }
1970  static bool classof(const SDNode *N) {
1971    return N->getOpcode() == ISD::ConstantPool ||
1972           N->getOpcode() == ISD::TargetConstantPool;
1973  }
1974};
1975
1976class BasicBlockSDNode : public SDNode {
1977  MachineBasicBlock *MBB;
1978protected:
1979  friend class SelectionDAG;
1980  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1981    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1982  }
1983  explicit BasicBlockSDNode(MachineBasicBlock *mbb, DebugLoc dl)
1984    : SDNode(ISD::BasicBlock, dl, getSDVTList(MVT::Other)), MBB(mbb) {
1985  }
1986public:
1987
1988  MachineBasicBlock *getBasicBlock() const { return MBB; }
1989
1990  static bool classof(const BasicBlockSDNode *) { return true; }
1991  static bool classof(const SDNode *N) {
1992    return N->getOpcode() == ISD::BasicBlock;
1993  }
1994};
1995
1996/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1997/// used when the SelectionDAG needs to make a simple reference to something
1998/// in the LLVM IR representation.
1999///
2000/// Note that this is not used for carrying alias information; that is done
2001/// with MemOperandSDNode, which includes a Value which is required to be a
2002/// pointer, and several other fields specific to memory references.
2003///
2004class SrcValueSDNode : public SDNode {
2005  const Value *V;
2006protected:
2007  friend class SelectionDAG;
2008  /// Create a SrcValue for a general value.
2009  explicit SrcValueSDNode(const Value *v)
2010    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
2011
2012public:
2013  /// getValue - return the contained Value.
2014  const Value *getValue() const { return V; }
2015
2016  static bool classof(const SrcValueSDNode *) { return true; }
2017  static bool classof(const SDNode *N) {
2018    return N->getOpcode() == ISD::SRCVALUE;
2019  }
2020};
2021
2022
2023/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
2024/// used to represent a reference to memory after ISD::LOAD
2025/// and ISD::STORE have been lowered.
2026///
2027class MemOperandSDNode : public SDNode {
2028protected:
2029  friend class SelectionDAG;
2030  /// Create a MachineMemOperand node
2031  explicit MemOperandSDNode(const MachineMemOperand &mo)
2032    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
2033
2034public:
2035  /// MO - The contained MachineMemOperand.
2036  const MachineMemOperand MO;
2037
2038  static bool classof(const MemOperandSDNode *) { return true; }
2039  static bool classof(const SDNode *N) {
2040    return N->getOpcode() == ISD::MEMOPERAND;
2041  }
2042};
2043
2044
2045class RegisterSDNode : public SDNode {
2046  unsigned Reg;
2047protected:
2048  friend class SelectionDAG;
2049  RegisterSDNode(unsigned reg, MVT VT)
2050    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
2051  }
2052public:
2053
2054  unsigned getReg() const { return Reg; }
2055
2056  static bool classof(const RegisterSDNode *) { return true; }
2057  static bool classof(const SDNode *N) {
2058    return N->getOpcode() == ISD::Register;
2059  }
2060};
2061
2062class DbgStopPointSDNode : public SDNode {
2063  SDUse Chain;
2064  unsigned Line;
2065  unsigned Column;
2066  Value *CU;
2067protected:
2068  friend class SelectionDAG;
2069  DbgStopPointSDNode(SDValue ch, unsigned l, unsigned c,
2070                     Value *cu)
2071    : SDNode(ISD::DBG_STOPPOINT, getSDVTList(MVT::Other)),
2072      Line(l), Column(c), CU(cu) {
2073    InitOperands(&Chain, ch);
2074  }
2075public:
2076  unsigned getLine() const { return Line; }
2077  unsigned getColumn() const { return Column; }
2078  Value *getCompileUnit() const { return CU; }
2079
2080  static bool classof(const DbgStopPointSDNode *) { return true; }
2081  static bool classof(const SDNode *N) {
2082    return N->getOpcode() == ISD::DBG_STOPPOINT;
2083  }
2084};
2085
2086class LabelSDNode : public SDNode {
2087  SDUse Chain;
2088  unsigned LabelID;
2089protected:
2090  friend class SelectionDAG;
2091  LabelSDNode(unsigned NodeTy, SDValue ch, unsigned id)
2092    : SDNode(NodeTy, getSDVTList(MVT::Other)), LabelID(id) {
2093    InitOperands(&Chain, ch);
2094  }
2095  LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2096    : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2097    InitOperands(&Chain, ch);
2098  }
2099public:
2100  unsigned getLabelID() const { return LabelID; }
2101
2102  static bool classof(const LabelSDNode *) { return true; }
2103  static bool classof(const SDNode *N) {
2104    return N->getOpcode() == ISD::DBG_LABEL ||
2105           N->getOpcode() == ISD::EH_LABEL;
2106  }
2107};
2108
2109class ExternalSymbolSDNode : public SDNode {
2110  const char *Symbol;
2111protected:
2112  friend class SelectionDAG;
2113  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT VT)
2114    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2115             getSDVTList(VT)), Symbol(Sym) {
2116  }
2117  ExternalSymbolSDNode(bool isTarget, DebugLoc dl, const char *Sym, MVT VT)
2118    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, dl,
2119             getSDVTList(VT)), Symbol(Sym) {
2120  }
2121public:
2122
2123  const char *getSymbol() const { return Symbol; }
2124
2125  static bool classof(const ExternalSymbolSDNode *) { return true; }
2126  static bool classof(const SDNode *N) {
2127    return N->getOpcode() == ISD::ExternalSymbol ||
2128           N->getOpcode() == ISD::TargetExternalSymbol;
2129  }
2130};
2131
2132class CondCodeSDNode : public SDNode {
2133  ISD::CondCode Condition;
2134protected:
2135  friend class SelectionDAG;
2136  explicit CondCodeSDNode(ISD::CondCode Cond)
2137    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
2138  }
2139public:
2140
2141  ISD::CondCode get() const { return Condition; }
2142
2143  static bool classof(const CondCodeSDNode *) { return true; }
2144  static bool classof(const SDNode *N) {
2145    return N->getOpcode() == ISD::CONDCODE;
2146  }
2147};
2148
2149/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2150/// future and most targets don't support it.
2151class CvtRndSatSDNode : public SDNode {
2152  ISD::CvtCode CvtCode;
2153protected:
2154  friend class SelectionDAG;
2155  explicit CvtRndSatSDNode(MVT VT, const SDValue *Ops, unsigned NumOps,
2156                           ISD::CvtCode Code)
2157    : SDNode(ISD::CONVERT_RNDSAT, getSDVTList(VT), Ops, NumOps), CvtCode(Code) {
2158    assert(NumOps == 5 && "wrong number of operations");
2159  }
2160  explicit CvtRndSatSDNode(MVT VT, DebugLoc dl, const SDValue *Ops,
2161                           unsigned NumOps, ISD::CvtCode Code)
2162    : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2163      CvtCode(Code) {
2164    assert(NumOps == 5 && "wrong number of operations");
2165  }
2166public:
2167  ISD::CvtCode getCvtCode() const { return CvtCode; }
2168
2169  static bool classof(const CvtRndSatSDNode *) { return true; }
2170  static bool classof(const SDNode *N) {
2171    return N->getOpcode() == ISD::CONVERT_RNDSAT;
2172  }
2173};
2174
2175namespace ISD {
2176  struct ArgFlagsTy {
2177  private:
2178    static const uint64_t NoFlagSet      = 0ULL;
2179    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
2180    static const uint64_t ZExtOffs       = 0;
2181    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
2182    static const uint64_t SExtOffs       = 1;
2183    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
2184    static const uint64_t InRegOffs      = 2;
2185    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
2186    static const uint64_t SRetOffs       = 3;
2187    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
2188    static const uint64_t ByValOffs      = 4;
2189    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
2190    static const uint64_t NestOffs       = 5;
2191    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
2192    static const uint64_t ByValAlignOffs = 6;
2193    static const uint64_t Split          = 1ULL << 10;
2194    static const uint64_t SplitOffs      = 10;
2195    static const uint64_t OrigAlign      = 0x1FULL<<27;
2196    static const uint64_t OrigAlignOffs  = 27;
2197    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
2198    static const uint64_t ByValSizeOffs  = 32;
2199
2200    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
2201
2202    uint64_t Flags;
2203  public:
2204    ArgFlagsTy() : Flags(0) { }
2205
2206    bool isZExt()   const { return Flags & ZExt; }
2207    void setZExt()  { Flags |= One << ZExtOffs; }
2208
2209    bool isSExt()   const { return Flags & SExt; }
2210    void setSExt()  { Flags |= One << SExtOffs; }
2211
2212    bool isInReg()  const { return Flags & InReg; }
2213    void setInReg() { Flags |= One << InRegOffs; }
2214
2215    bool isSRet()   const { return Flags & SRet; }
2216    void setSRet()  { Flags |= One << SRetOffs; }
2217
2218    bool isByVal()  const { return Flags & ByVal; }
2219    void setByVal() { Flags |= One << ByValOffs; }
2220
2221    bool isNest()   const { return Flags & Nest; }
2222    void setNest()  { Flags |= One << NestOffs; }
2223
2224    unsigned getByValAlign() const {
2225      return (unsigned)
2226        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2227    }
2228    void setByValAlign(unsigned A) {
2229      Flags = (Flags & ~ByValAlign) |
2230        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2231    }
2232
2233    bool isSplit()   const { return Flags & Split; }
2234    void setSplit()  { Flags |= One << SplitOffs; }
2235
2236    unsigned getOrigAlign() const {
2237      return (unsigned)
2238        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2239    }
2240    void setOrigAlign(unsigned A) {
2241      Flags = (Flags & ~OrigAlign) |
2242        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2243    }
2244
2245    unsigned getByValSize() const {
2246      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2247    }
2248    void setByValSize(unsigned S) {
2249      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2250    }
2251
2252    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2253    std::string getArgFlagsString();
2254
2255    /// getRawBits - Represent the flags as a bunch of bits.
2256    uint64_t getRawBits() const { return Flags; }
2257  };
2258}
2259
2260/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
2261class ARG_FLAGSSDNode : public SDNode {
2262  ISD::ArgFlagsTy TheFlags;
2263protected:
2264  friend class SelectionDAG;
2265  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
2266    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
2267  }
2268public:
2269  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
2270
2271  static bool classof(const ARG_FLAGSSDNode *) { return true; }
2272  static bool classof(const SDNode *N) {
2273    return N->getOpcode() == ISD::ARG_FLAGS;
2274  }
2275};
2276
2277/// CallSDNode - Node for calls -- ISD::CALL.
2278class CallSDNode : public SDNode {
2279  unsigned CallingConv;
2280  bool IsVarArg;
2281  bool IsTailCall;
2282  // We might eventually want a full-blown Attributes for the result; that
2283  // will expand the size of the representation.  At the moment we only
2284  // need Inreg.
2285  bool Inreg;
2286protected:
2287  friend class SelectionDAG;
2288  CallSDNode(unsigned cc, bool isvararg, bool istailcall, bool isinreg,
2289             SDVTList VTs, const SDValue *Operands, unsigned numOperands)
2290    : SDNode(ISD::CALL, VTs, Operands, numOperands),
2291      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2292      Inreg(isinreg) {}
2293  CallSDNode(unsigned cc, DebugLoc dl, bool isvararg, bool istailcall,
2294             bool isinreg, SDVTList VTs, const SDValue *Operands,
2295             unsigned numOperands)
2296    : SDNode(ISD::CALL, dl, VTs, Operands, numOperands),
2297      CallingConv(cc), IsVarArg(isvararg), IsTailCall(istailcall),
2298      Inreg(isinreg) {}
2299public:
2300  unsigned getCallingConv() const { return CallingConv; }
2301  unsigned isVarArg() const { return IsVarArg; }
2302  unsigned isTailCall() const { return IsTailCall; }
2303  unsigned isInreg() const { return Inreg; }
2304
2305  /// Set this call to not be marked as a tail call. Normally setter
2306  /// methods in SDNodes are unsafe because it breaks the CSE map,
2307  /// but we don't include the tail call flag for calls so it's ok
2308  /// in this case.
2309  void setNotTailCall() { IsTailCall = false; }
2310
2311  SDValue getChain() const { return getOperand(0); }
2312  SDValue getCallee() const { return getOperand(1); }
2313
2314  unsigned getNumArgs() const { return (getNumOperands() - 2) / 2; }
2315  SDValue getArg(unsigned i) const { return getOperand(2+2*i); }
2316  SDValue getArgFlagsVal(unsigned i) const {
2317    return getOperand(3+2*i);
2318  }
2319  ISD::ArgFlagsTy getArgFlags(unsigned i) const {
2320    return cast<ARG_FLAGSSDNode>(getArgFlagsVal(i).getNode())->getArgFlags();
2321  }
2322
2323  unsigned getNumRetVals() const { return getNumValues() - 1; }
2324  MVT getRetValType(unsigned i) const { return getValueType(i); }
2325
2326  static bool classof(const CallSDNode *) { return true; }
2327  static bool classof(const SDNode *N) {
2328    return N->getOpcode() == ISD::CALL;
2329  }
2330};
2331
2332/// VTSDNode - This class is used to represent MVT's, which are used
2333/// to parameterize some operations.
2334class VTSDNode : public SDNode {
2335  MVT ValueType;
2336protected:
2337  friend class SelectionDAG;
2338  explicit VTSDNode(MVT VT)
2339    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
2340  }
2341public:
2342
2343  MVT getVT() const { return ValueType; }
2344
2345  static bool classof(const VTSDNode *) { return true; }
2346  static bool classof(const SDNode *N) {
2347    return N->getOpcode() == ISD::VALUETYPE;
2348  }
2349};
2350
2351/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2352///
2353class LSBaseSDNode : public MemSDNode {
2354protected:
2355  //! Operand array for load and store
2356  /*!
2357    \note Moving this array to the base class captures more
2358    common functionality shared between LoadSDNode and
2359    StoreSDNode
2360   */
2361  SDUse Ops[4];
2362public:
2363  LSBaseSDNode(ISD::NodeType NodeTy, SDValue *Operands, unsigned numOperands,
2364               SDVTList VTs, ISD::MemIndexedMode AM, MVT VT,
2365               const Value *SV, int SVO, unsigned Align, bool Vol)
2366    : MemSDNode(NodeTy, VTs, VT, SV, SVO, Align, Vol) {
2367    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2368    SubclassData |= AM << 2;
2369    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2370    InitOperands(Ops, Operands, numOperands);
2371    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2372           "Only indexed loads and stores have a non-undef offset operand");
2373  }
2374  LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2375               unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2376               MVT VT, const Value *SV, int SVO, unsigned Align, bool Vol)
2377    : MemSDNode(NodeTy, dl, VTs, VT, SV, SVO, Align, Vol) {
2378    assert(Align != 0 && "Loads and stores should have non-zero aligment");
2379    SubclassData |= AM << 2;
2380    assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2381    InitOperands(Ops, Operands, numOperands);
2382    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2383           "Only indexed loads and stores have a non-undef offset operand");
2384  }
2385
2386  const SDValue &getOffset() const {
2387    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2388  }
2389
2390  /// getAddressingMode - Return the addressing mode for this load or store:
2391  /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2392  ISD::MemIndexedMode getAddressingMode() const {
2393    return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2394  }
2395
2396  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2397  bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2398
2399  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2400  bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2401
2402  static bool classof(const LSBaseSDNode *) { return true; }
2403  static bool classof(const SDNode *N) {
2404    return N->getOpcode() == ISD::LOAD ||
2405           N->getOpcode() == ISD::STORE;
2406  }
2407};
2408
2409/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2410///
2411class LoadSDNode : public LSBaseSDNode {
2412protected:
2413  friend class SelectionDAG;
2414  LoadSDNode(SDValue *ChainPtrOff, SDVTList VTs,
2415             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2416             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2417    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
2418                   VTs, AM, LVT, SV, O, Align, Vol) {
2419    SubclassData |= (unsigned short)ETy;
2420    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2421  }
2422  LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2423             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT LVT,
2424             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2425    : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2426                   VTs, AM, LVT, SV, O, Align, Vol) {
2427    SubclassData |= (unsigned short)ETy;
2428    assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2429  }
2430public:
2431
2432  /// getExtensionType - Return whether this is a plain node,
2433  /// or one of the varieties of value-extending loads.
2434  ISD::LoadExtType getExtensionType() const {
2435    return ISD::LoadExtType(SubclassData & 3);
2436  }
2437
2438  const SDValue &getBasePtr() const { return getOperand(1); }
2439  const SDValue &getOffset() const { return getOperand(2); }
2440
2441  static bool classof(const LoadSDNode *) { return true; }
2442  static bool classof(const SDNode *N) {
2443    return N->getOpcode() == ISD::LOAD;
2444  }
2445};
2446
2447/// StoreSDNode - This class is used to represent ISD::STORE nodes.
2448///
2449class StoreSDNode : public LSBaseSDNode {
2450protected:
2451  friend class SelectionDAG;
2452  StoreSDNode(SDValue *ChainValuePtrOff, SDVTList VTs,
2453              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2454              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2455    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
2456                   VTs, AM, SVT, SV, O, Align, Vol) {
2457    SubclassData |= (unsigned short)isTrunc;
2458    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2459  }
2460  StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2461              ISD::MemIndexedMode AM, bool isTrunc, MVT SVT,
2462              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
2463    : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2464                   VTs, AM, SVT, SV, O, Align, Vol) {
2465    SubclassData |= (unsigned short)isTrunc;
2466    assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2467  }
2468public:
2469
2470  /// isTruncatingStore - Return true if the op does a truncation before store.
2471  /// For integers this is the same as doing a TRUNCATE and storing the result.
2472  /// For floats, it is the same as doing an FP_ROUND and storing the result.
2473  bool isTruncatingStore() const { return SubclassData & 1; }
2474
2475  const SDValue &getValue() const { return getOperand(1); }
2476  const SDValue &getBasePtr() const { return getOperand(2); }
2477  const SDValue &getOffset() const { return getOperand(3); }
2478
2479  static bool classof(const StoreSDNode *) { return true; }
2480  static bool classof(const SDNode *N) {
2481    return N->getOpcode() == ISD::STORE;
2482  }
2483};
2484
2485
2486class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
2487  SDNode *Node;
2488  unsigned Operand;
2489
2490  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2491public:
2492  bool operator==(const SDNodeIterator& x) const {
2493    return Operand == x.Operand;
2494  }
2495  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2496
2497  const SDNodeIterator &operator=(const SDNodeIterator &I) {
2498    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2499    Operand = I.Operand;
2500    return *this;
2501  }
2502
2503  pointer operator*() const {
2504    return Node->getOperand(Operand).getNode();
2505  }
2506  pointer operator->() const { return operator*(); }
2507
2508  SDNodeIterator& operator++() {                // Preincrement
2509    ++Operand;
2510    return *this;
2511  }
2512  SDNodeIterator operator++(int) { // Postincrement
2513    SDNodeIterator tmp = *this; ++*this; return tmp;
2514  }
2515
2516  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2517  static SDNodeIterator end  (SDNode *N) {
2518    return SDNodeIterator(N, N->getNumOperands());
2519  }
2520
2521  unsigned getOperand() const { return Operand; }
2522  const SDNode *getNode() const { return Node; }
2523};
2524
2525template <> struct GraphTraits<SDNode*> {
2526  typedef SDNode NodeType;
2527  typedef SDNodeIterator ChildIteratorType;
2528  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2529  static inline ChildIteratorType child_begin(NodeType *N) {
2530    return SDNodeIterator::begin(N);
2531  }
2532  static inline ChildIteratorType child_end(NodeType *N) {
2533    return SDNodeIterator::end(N);
2534  }
2535};
2536
2537/// LargestSDNode - The largest SDNode class.
2538///
2539typedef LoadSDNode LargestSDNode;
2540
2541/// MostAlignedSDNode - The SDNode class with the greatest alignment
2542/// requirement.
2543///
2544typedef ARG_FLAGSSDNode MostAlignedSDNode;
2545
2546namespace ISD {
2547  /// isNormalLoad - Returns true if the specified node is a non-extending
2548  /// and unindexed load.
2549  inline bool isNormalLoad(const SDNode *N) {
2550    const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2551    return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2552      Ld->getAddressingMode() == ISD::UNINDEXED;
2553  }
2554
2555  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2556  /// load.
2557  inline bool isNON_EXTLoad(const SDNode *N) {
2558    return isa<LoadSDNode>(N) &&
2559      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2560  }
2561
2562  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2563  ///
2564  inline bool isEXTLoad(const SDNode *N) {
2565    return isa<LoadSDNode>(N) &&
2566      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2567  }
2568
2569  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2570  ///
2571  inline bool isSEXTLoad(const SDNode *N) {
2572    return isa<LoadSDNode>(N) &&
2573      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2574  }
2575
2576  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2577  ///
2578  inline bool isZEXTLoad(const SDNode *N) {
2579    return isa<LoadSDNode>(N) &&
2580      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2581  }
2582
2583  /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2584  ///
2585  inline bool isUNINDEXEDLoad(const SDNode *N) {
2586    return isa<LoadSDNode>(N) &&
2587      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2588  }
2589
2590  /// isNormalStore - Returns true if the specified node is a non-truncating
2591  /// and unindexed store.
2592  inline bool isNormalStore(const SDNode *N) {
2593    const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2594    return St && !St->isTruncatingStore() &&
2595      St->getAddressingMode() == ISD::UNINDEXED;
2596  }
2597
2598  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2599  /// store.
2600  inline bool isNON_TRUNCStore(const SDNode *N) {
2601    return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2602  }
2603
2604  /// isTRUNCStore - Returns true if the specified node is a truncating
2605  /// store.
2606  inline bool isTRUNCStore(const SDNode *N) {
2607    return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2608  }
2609
2610  /// isUNINDEXEDStore - Returns true if the specified node is an
2611  /// unindexed store.
2612  inline bool isUNINDEXEDStore(const SDNode *N) {
2613    return isa<StoreSDNode>(N) &&
2614      cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2615  }
2616}
2617
2618
2619} // end llvm namespace
2620
2621#endif
2622