SelectionDAGNodes.h revision e326332acd5fefb9854118603b4d07d4e44b64c5
1//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the SDNode class and derived classes, which are used to
11// represent the nodes and operations present in a SelectionDAG.  These nodes
12// and operations are machine code level operations, with some similarities to
13// the GCC RTL representation.
14//
15// Clients should include the SelectionDAG.h file instead of this file directly.
16//
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20#define LLVM_CODEGEN_SELECTIONDAGNODES_H
21
22#include "llvm/Value.h"
23#include "llvm/ADT/FoldingSet.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/iterator"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/APInt.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/CodeGen/MemOperand.h"
30#include "llvm/Support/DataTypes.h"
31#include <cassert>
32
33namespace llvm {
34
35class SelectionDAG;
36class GlobalValue;
37class MachineBasicBlock;
38class MachineConstantPoolValue;
39class SDNode;
40template <typename T> struct DenseMapInfo;
41template <typename T> struct simplify_type;
42template <typename T> struct ilist_traits;
43template<typename NodeTy, typename Traits> class iplist;
44template<typename NodeTy> class ilist_iterator;
45
46/// SDVTList - This represents a list of ValueType's that has been intern'd by
47/// a SelectionDAG.  Instances of this simple value class are returned by
48/// SelectionDAG::getVTList(...).
49///
50struct SDVTList {
51  const MVT::ValueType *VTs;
52  unsigned short NumVTs;
53};
54
55/// ISD namespace - This namespace contains an enum which represents all of the
56/// SelectionDAG node types and value types.
57///
58namespace ISD {
59
60  //===--------------------------------------------------------------------===//
61  /// ISD::NodeType enum - This enum defines all of the operators valid in a
62  /// SelectionDAG.
63  ///
64  enum NodeType {
65    // DELETED_NODE - This is an illegal flag value that is used to catch
66    // errors.  This opcode is not a legal opcode for any node.
67    DELETED_NODE,
68
69    // EntryToken - This is the marker used to indicate the start of the region.
70    EntryToken,
71
72    // Token factor - This node takes multiple tokens as input and produces a
73    // single token result.  This is used to represent the fact that the operand
74    // operators are independent of each other.
75    TokenFactor,
76
77    // AssertSext, AssertZext - These nodes record if a register contains a
78    // value that has already been zero or sign extended from a narrower type.
79    // These nodes take two operands.  The first is the node that has already
80    // been extended, and the second is a value type node indicating the width
81    // of the extension
82    AssertSext, AssertZext,
83
84    // Various leaf nodes.
85    STRING, BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
86    Constant, ConstantFP,
87    GlobalAddress, GlobalTLSAddress, FrameIndex,
88    JumpTable, ConstantPool, ExternalSymbol,
89
90    // The address of the GOT
91    GLOBAL_OFFSET_TABLE,
92
93    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
94    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
95    // of the frame or return address to return.  An index of zero corresponds
96    // to the current function's frame or return address, an index of one to the
97    // parent's frame or return address, and so on.
98    FRAMEADDR, RETURNADDR,
99
100    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
101    // first (possible) on-stack argument. This is needed for correct stack
102    // adjustment during unwind.
103    FRAME_TO_ARGS_OFFSET,
104
105    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
106    // address of the exception block on entry to an landing pad block.
107    EXCEPTIONADDR,
108
109    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
110    // the selection index of the exception thrown.
111    EHSELECTION,
112
113    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
114    // 'eh_return' gcc dwarf builtin, which is used to return from
115    // exception. The general meaning is: adjust stack by OFFSET and pass
116    // execution to HANDLER. Many platform-related details also :)
117    EH_RETURN,
118
119    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
120    // simplification of the constant.
121    TargetConstant,
122    TargetConstantFP,
123
124    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
125    // anything else with this node, and this is valid in the target-specific
126    // dag, turning into a GlobalAddress operand.
127    TargetGlobalAddress,
128    TargetGlobalTLSAddress,
129    TargetFrameIndex,
130    TargetJumpTable,
131    TargetConstantPool,
132    TargetExternalSymbol,
133
134    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
135    /// This node represents a target intrinsic function with no side effects.
136    /// The first operand is the ID number of the intrinsic from the
137    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
138    /// node has returns the result of the intrinsic.
139    INTRINSIC_WO_CHAIN,
140
141    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
142    /// This node represents a target intrinsic function with side effects that
143    /// returns a result.  The first operand is a chain pointer.  The second is
144    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
145    /// operands to the intrinsic follow.  The node has two results, the result
146    /// of the intrinsic and an output chain.
147    INTRINSIC_W_CHAIN,
148
149    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
150    /// This node represents a target intrinsic function with side effects that
151    /// does not return a result.  The first operand is a chain pointer.  The
152    /// second is the ID number of the intrinsic from the llvm::Intrinsic
153    /// namespace.  The operands to the intrinsic follow.
154    INTRINSIC_VOID,
155
156    // CopyToReg - This node has three operands: a chain, a register number to
157    // set to this value, and a value.
158    CopyToReg,
159
160    // CopyFromReg - This node indicates that the input value is a virtual or
161    // physical register that is defined outside of the scope of this
162    // SelectionDAG.  The register is available from the RegisterSDNode object.
163    CopyFromReg,
164
165    // UNDEF - An undefined node
166    UNDEF,
167
168    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
169    /// represents the formal arguments for a function.  CC# is a Constant value
170    /// indicating the calling convention of the function, and ISVARARG is a
171    /// flag that indicates whether the function is varargs or not. This node
172    /// has one result value for each incoming argument, plus one for the output
173    /// chain. It must be custom legalized. See description of CALL node for
174    /// FLAG argument contents explanation.
175    ///
176    FORMAL_ARGUMENTS,
177
178    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
179    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
180    /// This node represents a fully general function call, before the legalizer
181    /// runs.  This has one result value for each argument / flag pair, plus
182    /// a chain result. It must be custom legalized. Flag argument indicates
183    /// misc. argument attributes. Currently:
184    /// Bit 0 - signness
185    /// Bit 1 - 'inreg' attribute
186    /// Bit 2 - 'sret' attribute
187    /// Bit 4 - 'byval' attribute
188    /// Bit 5 - 'nest' attribute
189    /// Bit 6-9 - alignment of byval structures
190    /// Bit 10-26 - size of byval structures
191    /// Bits 31:27 - argument ABI alignment in the first argument piece and
192    /// alignment '1' in other argument pieces.
193    CALL,
194
195    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
196    // a Constant, which is required to be operand #1) half of the integer value
197    // specified as operand #0.  This is only for use before legalization, for
198    // values that will be broken into multiple registers.
199    EXTRACT_ELEMENT,
200
201    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
202    // two values of the same integer value type, this produces a value twice as
203    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
204    BUILD_PAIR,
205
206    // MERGE_VALUES - This node takes multiple discrete operands and returns
207    // them all as its individual results.  This nodes has exactly the same
208    // number of inputs and outputs, and is only valid before legalization.
209    // This node is useful for some pieces of the code generator that want to
210    // think about a single node with multiple results, not multiple nodes.
211    MERGE_VALUES,
212
213    // Simple integer binary arithmetic operators.
214    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
215
216    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
217    // a signed/unsigned value of type i[2*N], and return the full value as
218    // two results, each of type iN.
219    SMUL_LOHI, UMUL_LOHI,
220
221    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
222    // remainder result.
223    SDIVREM, UDIVREM,
224
225    // CARRY_FALSE - This node is used when folding other nodes,
226    // like ADDC/SUBC, which indicate the carry result is always false.
227    CARRY_FALSE,
228
229    // Carry-setting nodes for multiple precision addition and subtraction.
230    // These nodes take two operands of the same value type, and produce two
231    // results.  The first result is the normal add or sub result, the second
232    // result is the carry flag result.
233    ADDC, SUBC,
234
235    // Carry-using nodes for multiple precision addition and subtraction.  These
236    // nodes take three operands: The first two are the normal lhs and rhs to
237    // the add or sub, and the third is the input carry flag.  These nodes
238    // produce two results; the normal result of the add or sub, and the output
239    // carry flag.  These nodes both read and write a carry flag to allow them
240    // to them to be chained together for add and sub of arbitrarily large
241    // values.
242    ADDE, SUBE,
243
244    // Simple binary floating point operators.
245    FADD, FSUB, FMUL, FDIV, FREM,
246
247    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
248    // DAG node does not require that X and Y have the same type, just that they
249    // are both floating point.  X and the result must have the same type.
250    // FCOPYSIGN(f32, f64) is allowed.
251    FCOPYSIGN,
252
253    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
254    // value as an integer 0/1 value.
255    FGETSIGN,
256
257    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
258    /// with the specified, possibly variable, elements.  The number of elements
259    /// is required to be a power of two.
260    BUILD_VECTOR,
261
262    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
263    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
264    /// element type then VAL is truncated before replacement.
265    INSERT_VECTOR_ELT,
266
267    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
268    /// identified by the (potentially variable) element number IDX.
269    EXTRACT_VECTOR_ELT,
270
271    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
272    /// vector type with the same length and element type, this produces a
273    /// concatenated vector result value, with length equal to the sum of the
274    /// lengths of the input vectors.
275    CONCAT_VECTORS,
276
277    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
278    /// vector value) starting with the (potentially variable) element number
279    /// IDX, which must be a multiple of the result vector length.
280    EXTRACT_SUBVECTOR,
281
282    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
283    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
284    /// (maybe of an illegal datatype) or undef that indicate which value each
285    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
286    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
287    /// that the indices must be constants and are in terms of the element size
288    /// of VEC1/VEC2, not in terms of bytes.
289    VECTOR_SHUFFLE,
290
291    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
292    /// scalar value into element 0 of the resultant vector type.  The top
293    /// elements 1 to N-1 of the N-element vector are undefined.
294    SCALAR_TO_VECTOR,
295
296    // EXTRACT_SUBREG - This node is used to extract a sub-register value.
297    // This node takes a superreg and a constant sub-register index as operands.
298    // Note sub-register indices must be increasing. That is, if the
299    // sub-register index of a 8-bit sub-register is N, then the index for a
300    // 16-bit sub-register must be at least N+1.
301    EXTRACT_SUBREG,
302
303    // INSERT_SUBREG - This node is used to insert a sub-register value.
304    // This node takes a superreg, a subreg value, and a constant sub-register
305    // index as operands.
306    INSERT_SUBREG,
307
308    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
309    // an unsigned/signed value of type i[2*N], then return the top part.
310    MULHU, MULHS,
311
312    // Bitwise operators - logical and, logical or, logical xor, shift left,
313    // shift right algebraic (shift in sign bits), shift right logical (shift in
314    // zeroes), rotate left, rotate right, and byteswap.
315    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
316
317    // Counting operators
318    CTTZ, CTLZ, CTPOP,
319
320    // Select(COND, TRUEVAL, FALSEVAL)
321    SELECT,
322
323    // Select with condition operator - This selects between a true value and
324    // a false value (ops #2 and #3) based on the boolean result of comparing
325    // the lhs and rhs (ops #0 and #1) of a conditional expression with the
326    // condition code in op #4, a CondCodeSDNode.
327    SELECT_CC,
328
329    // SetCC operator - This evaluates to a boolean (i1) true value if the
330    // condition is true.  The operands to this are the left and right operands
331    // to compare (ops #0, and #1) and the condition code to compare them with
332    // (op #2) as a CondCodeSDNode.
333    SETCC,
334
335    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
336    // integer shift operations, just like ADD/SUB_PARTS.  The operation
337    // ordering is:
338    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
339    SHL_PARTS, SRA_PARTS, SRL_PARTS,
340
341    // Conversion operators.  These are all single input single output
342    // operations.  For all of these, the result type must be strictly
343    // wider or narrower (depending on the operation) than the source
344    // type.
345
346    // SIGN_EXTEND - Used for integer types, replicating the sign bit
347    // into new bits.
348    SIGN_EXTEND,
349
350    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
351    ZERO_EXTEND,
352
353    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
354    ANY_EXTEND,
355
356    // TRUNCATE - Completely drop the high bits.
357    TRUNCATE,
358
359    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
360    // depends on the first letter) to floating point.
361    SINT_TO_FP,
362    UINT_TO_FP,
363
364    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
365    // sign extend a small value in a large integer register (e.g. sign
366    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
367    // with the 7th bit).  The size of the smaller type is indicated by the 1th
368    // operand, a ValueType node.
369    SIGN_EXTEND_INREG,
370
371    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
372    /// integer.
373    FP_TO_SINT,
374    FP_TO_UINT,
375
376    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
377    /// down to the precision of the destination VT.  TRUNC is a flag, which is
378    /// always an integer that is zero or one.  If TRUNC is 0, this is a
379    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
380    /// value of Y.
381    ///
382    /// The TRUNC = 1 case is used in cases where we know that the value will
383    /// not be modified by the node, because Y is not using any of the extra
384    /// precision of source type.  This allows certain transformations like
385    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
386    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
387    FP_ROUND,
388
389    // FLT_ROUNDS_ - Returns current rounding mode:
390    // -1 Undefined
391    //  0 Round to 0
392    //  1 Round to nearest
393    //  2 Round to +inf
394    //  3 Round to -inf
395    FLT_ROUNDS_,
396
397    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
398    /// rounds it to a floating point value.  It then promotes it and returns it
399    /// in a register of the same size.  This operation effectively just
400    /// discards excess precision.  The type to round down to is specified by
401    /// the VT operand, a VTSDNode.
402    FP_ROUND_INREG,
403
404    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
405    FP_EXTEND,
406
407    // BIT_CONVERT - Theis operator converts between integer and FP values, as
408    // if one was stored to memory as integer and the other was loaded from the
409    // same address (or equivalently for vector format conversions, etc).  The
410    // source and result are required to have the same bit size (e.g.
411    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp
412    // conversions, but that is a noop, deleted by getNode().
413    BIT_CONVERT,
414
415    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
416    // negation, absolute value, square root, sine and cosine, powi, and pow
417    // operations.
418    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
419
420    // LOAD and STORE have token chains as their first operand, then the same
421    // operands as an LLVM load/store instruction, then an offset node that
422    // is added / subtracted from the base pointer to form the address (for
423    // indexed memory ops).
424    LOAD, STORE,
425
426    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
427    // to a specified boundary.  This node always has two return values: a new
428    // stack pointer value and a chain. The first operand is the token chain,
429    // the second is the number of bytes to allocate, and the third is the
430    // alignment boundary.  The size is guaranteed to be a multiple of the stack
431    // alignment, and the alignment is guaranteed to be bigger than the stack
432    // alignment (if required) or 0 to get standard stack alignment.
433    DYNAMIC_STACKALLOC,
434
435    // Control flow instructions.  These all have token chains.
436
437    // BR - Unconditional branch.  The first operand is the chain
438    // operand, the second is the MBB to branch to.
439    BR,
440
441    // BRIND - Indirect branch.  The first operand is the chain, the second
442    // is the value to branch to, which must be of the same type as the target's
443    // pointer type.
444    BRIND,
445
446    // BR_JT - Jumptable branch. The first operand is the chain, the second
447    // is the jumptable index, the last one is the jumptable entry index.
448    BR_JT,
449
450    // BRCOND - Conditional branch.  The first operand is the chain,
451    // the second is the condition, the third is the block to branch
452    // to if the condition is true.
453    BRCOND,
454
455    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
456    // that the condition is represented as condition code, and two nodes to
457    // compare, rather than as a combined SetCC node.  The operands in order are
458    // chain, cc, lhs, rhs, block to branch to if condition is true.
459    BR_CC,
460
461    // RET - Return from function.  The first operand is the chain,
462    // and any subsequent operands are pairs of return value and return value
463    // signness for the function.  This operation can have variable number of
464    // operands.
465    RET,
466
467    // INLINEASM - Represents an inline asm block.  This node always has two
468    // return values: a chain and a flag result.  The inputs are as follows:
469    //   Operand #0   : Input chain.
470    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
471    //   Operand #2n+2: A RegisterNode.
472    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
473    //   Operand #last: Optional, an incoming flag.
474    INLINEASM,
475
476    // LABEL - Represents a label in mid basic block used to track
477    // locations needed for debug and exception handling tables.  This node
478    // returns a chain.
479    //   Operand #0 : input chain.
480    //   Operand #1 : module unique number use to identify the label.
481    //   Operand #2 : 0 indicates a debug label (e.g. stoppoint), 1 indicates
482    //                a EH label, 2 indicates unknown label type.
483    LABEL,
484
485    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
486    // local variable declarations for debugging information. First operand is
487    // a chain, while the next two operands are first two arguments (address
488    // and variable) of a llvm.dbg.declare instruction.
489    DECLARE,
490
491    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
492    // value, the same type as the pointer type for the system, and an output
493    // chain.
494    STACKSAVE,
495
496    // STACKRESTORE has two operands, an input chain and a pointer to restore to
497    // it returns an output chain.
498    STACKRESTORE,
499
500    // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain. The following
501    // correspond to the operands of the LLVM intrinsic functions and the last
502    // one is AlwaysInline.  The only result is a token chain.  The alignment
503    // argument is guaranteed to be a Constant node.
504    MEMSET,
505    MEMMOVE,
506    MEMCPY,
507
508    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
509    // a call sequence, and carry arbitrary information that target might want
510    // to know.  The first operand is a chain, the rest are specified by the
511    // target and not touched by the DAG optimizers.
512    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
513    CALLSEQ_START,  // Beginning of a call sequence
514    CALLSEQ_END,    // End of a call sequence
515
516    // VAARG - VAARG has three operands: an input chain, a pointer, and a
517    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
518    VAARG,
519
520    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
521    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
522    // source.
523    VACOPY,
524
525    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
526    // pointer, and a SRCVALUE.
527    VAEND, VASTART,
528
529    // SRCVALUE - This is a node type that holds a Value* that is used to
530    // make reference to a value in the LLVM IR.
531    SRCVALUE,
532
533    // MEMOPERAND - This is a node that contains a MemOperand which records
534    // information about a memory reference. This is used to make AliasAnalysis
535    // queries from the backend.
536    MEMOPERAND,
537
538    // PCMARKER - This corresponds to the pcmarker intrinsic.
539    PCMARKER,
540
541    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
542    // The only operand is a chain and a value and a chain are produced.  The
543    // value is the contents of the architecture specific cycle counter like
544    // register (or other high accuracy low latency clock source)
545    READCYCLECOUNTER,
546
547    // HANDLENODE node - Used as a handle for various purposes.
548    HANDLENODE,
549
550    // LOCATION - This node is used to represent a source location for debug
551    // info.  It takes token chain as input, then a line number, then a column
552    // number, then a filename, then a working dir.  It produces a token chain
553    // as output.
554    LOCATION,
555
556    // DEBUG_LOC - This node is used to represent source line information
557    // embedded in the code.  It takes a token chain as input, then a line
558    // number, then a column then a file id (provided by MachineModuleInfo.) It
559    // produces a token chain as output.
560    DEBUG_LOC,
561
562    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
563    // It takes as input a token chain, the pointer to the trampoline,
564    // the pointer to the nested function, the pointer to pass for the
565    // 'nest' parameter, a SRCVALUE for the trampoline and another for
566    // the nested function (allowing targets to access the original
567    // Function*).  It produces the result of the intrinsic and a token
568    // chain as output.
569    TRAMPOLINE,
570
571    // TRAP - Trapping instruction
572    TRAP,
573
574    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
575    // their first operand. The other operands are the address to prefetch,
576    // read / write specifier, and locality specifier.
577    PREFETCH,
578
579    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
580    //                       store-store, device)
581    // This corresponds to the memory.barrier intrinsic.
582    // it takes an input chain, 4 operands to specify the type of barrier, an
583    // operand specifying if the barrier applies to device and uncached memory
584    // and produces an output chain.
585    MEMBARRIER,
586
587    // Val, OUTCHAIN = ATOMIC_LCS(INCHAIN, ptr, cmp, swap)
588    // this corresponds to the atomic.lcs intrinsic.
589    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
590    // the return is always the original value in *ptr
591    ATOMIC_LCS,
592
593    // Val, OUTCHAIN = ATOMIC_LAS(INCHAIN, ptr, amt)
594    // this corresponds to the atomic.las intrinsic.
595    // *ptr + amt is stored to *ptr atomically.
596    // the return is always the original value in *ptr
597    ATOMIC_LAS,
598
599    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
600    // this corresponds to the atomic.swap intrinsic.
601    // amt is stored to *ptr atomically.
602    // the return is always the original value in *ptr
603    ATOMIC_SWAP,
604
605    // BUILTIN_OP_END - This must be the last enum value in this list.
606    BUILTIN_OP_END
607  };
608
609  /// Node predicates
610
611  /// isBuildVectorAllOnes - Return true if the specified node is a
612  /// BUILD_VECTOR where all of the elements are ~0 or undef.
613  bool isBuildVectorAllOnes(const SDNode *N);
614
615  /// isBuildVectorAllZeros - Return true if the specified node is a
616  /// BUILD_VECTOR where all of the elements are 0 or undef.
617  bool isBuildVectorAllZeros(const SDNode *N);
618
619  /// isScalarToVector - Return true if the specified node is a
620  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
621  /// element is not an undef.
622  bool isScalarToVector(const SDNode *N);
623
624  /// isDebugLabel - Return true if the specified node represents a debug
625  /// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
626  /// is 0).
627  bool isDebugLabel(const SDNode *N);
628
629  //===--------------------------------------------------------------------===//
630  /// MemIndexedMode enum - This enum defines the load / store indexed
631  /// addressing modes.
632  ///
633  /// UNINDEXED    "Normal" load / store. The effective address is already
634  ///              computed and is available in the base pointer. The offset
635  ///              operand is always undefined. In addition to producing a
636  ///              chain, an unindexed load produces one value (result of the
637  ///              load); an unindexed store does not produce a value.
638  ///
639  /// PRE_INC      Similar to the unindexed mode where the effective address is
640  /// PRE_DEC      the value of the base pointer add / subtract the offset.
641  ///              It considers the computation as being folded into the load /
642  ///              store operation (i.e. the load / store does the address
643  ///              computation as well as performing the memory transaction).
644  ///              The base operand is always undefined. In addition to
645  ///              producing a chain, pre-indexed load produces two values
646  ///              (result of the load and the result of the address
647  ///              computation); a pre-indexed store produces one value (result
648  ///              of the address computation).
649  ///
650  /// POST_INC     The effective address is the value of the base pointer. The
651  /// POST_DEC     value of the offset operand is then added to / subtracted
652  ///              from the base after memory transaction. In addition to
653  ///              producing a chain, post-indexed load produces two values
654  ///              (the result of the load and the result of the base +/- offset
655  ///              computation); a post-indexed store produces one value (the
656  ///              the result of the base +/- offset computation).
657  ///
658  enum MemIndexedMode {
659    UNINDEXED = 0,
660    PRE_INC,
661    PRE_DEC,
662    POST_INC,
663    POST_DEC,
664    LAST_INDEXED_MODE
665  };
666
667  //===--------------------------------------------------------------------===//
668  /// LoadExtType enum - This enum defines the three variants of LOADEXT
669  /// (load with extension).
670  ///
671  /// SEXTLOAD loads the integer operand and sign extends it to a larger
672  ///          integer result type.
673  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
674  ///          integer result type.
675  /// EXTLOAD  is used for three things: floating point extending loads,
676  ///          integer extending loads [the top bits are undefined], and vector
677  ///          extending loads [load into low elt].
678  ///
679  enum LoadExtType {
680    NON_EXTLOAD = 0,
681    EXTLOAD,
682    SEXTLOAD,
683    ZEXTLOAD,
684    LAST_LOADX_TYPE
685  };
686
687  //===--------------------------------------------------------------------===//
688  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
689  /// below work out, when considering SETFALSE (something that never exists
690  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
691  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
692  /// to.  If the "N" column is 1, the result of the comparison is undefined if
693  /// the input is a NAN.
694  ///
695  /// All of these (except for the 'always folded ops') should be handled for
696  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
697  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
698  ///
699  /// Note that these are laid out in a specific order to allow bit-twiddling
700  /// to transform conditions.
701  enum CondCode {
702    // Opcode          N U L G E       Intuitive operation
703    SETFALSE,      //    0 0 0 0       Always false (always folded)
704    SETOEQ,        //    0 0 0 1       True if ordered and equal
705    SETOGT,        //    0 0 1 0       True if ordered and greater than
706    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
707    SETOLT,        //    0 1 0 0       True if ordered and less than
708    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
709    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
710    SETO,          //    0 1 1 1       True if ordered (no nans)
711    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
712    SETUEQ,        //    1 0 0 1       True if unordered or equal
713    SETUGT,        //    1 0 1 0       True if unordered or greater than
714    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
715    SETULT,        //    1 1 0 0       True if unordered or less than
716    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
717    SETUNE,        //    1 1 1 0       True if unordered or not equal
718    SETTRUE,       //    1 1 1 1       Always true (always folded)
719    // Don't care operations: undefined if the input is a nan.
720    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
721    SETEQ,         //  1 X 0 0 1       True if equal
722    SETGT,         //  1 X 0 1 0       True if greater than
723    SETGE,         //  1 X 0 1 1       True if greater than or equal
724    SETLT,         //  1 X 1 0 0       True if less than
725    SETLE,         //  1 X 1 0 1       True if less than or equal
726    SETNE,         //  1 X 1 1 0       True if not equal
727    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
728
729    SETCC_INVALID       // Marker value.
730  };
731
732  /// isSignedIntSetCC - Return true if this is a setcc instruction that
733  /// performs a signed comparison when used with integer operands.
734  inline bool isSignedIntSetCC(CondCode Code) {
735    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
736  }
737
738  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
739  /// performs an unsigned comparison when used with integer operands.
740  inline bool isUnsignedIntSetCC(CondCode Code) {
741    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
742  }
743
744  /// isTrueWhenEqual - Return true if the specified condition returns true if
745  /// the two operands to the condition are equal.  Note that if one of the two
746  /// operands is a NaN, this value is meaningless.
747  inline bool isTrueWhenEqual(CondCode Cond) {
748    return ((int)Cond & 1) != 0;
749  }
750
751  /// getUnorderedFlavor - This function returns 0 if the condition is always
752  /// false if an operand is a NaN, 1 if the condition is always true if the
753  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
754  /// NaN.
755  inline unsigned getUnorderedFlavor(CondCode Cond) {
756    return ((int)Cond >> 3) & 3;
757  }
758
759  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
760  /// 'op' is a valid SetCC operation.
761  CondCode getSetCCInverse(CondCode Operation, bool isInteger);
762
763  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
764  /// when given the operation for (X op Y).
765  CondCode getSetCCSwappedOperands(CondCode Operation);
766
767  /// getSetCCOrOperation - Return the result of a logical OR between different
768  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
769  /// function returns SETCC_INVALID if it is not possible to represent the
770  /// resultant comparison.
771  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
772
773  /// getSetCCAndOperation - Return the result of a logical AND between
774  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
775  /// function returns SETCC_INVALID if it is not possible to represent the
776  /// resultant comparison.
777  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
778}  // end llvm::ISD namespace
779
780
781//===----------------------------------------------------------------------===//
782/// SDOperandImpl - Unlike LLVM values, Selection DAG nodes may return multiple
783/// values as the result of a computation.  Many nodes return multiple values,
784/// from loads (which define a token and a return value) to ADDC (which returns
785/// a result and a carry value), to calls (which may return an arbitrary number
786/// of values).
787///
788/// As such, each use of a SelectionDAG computation must indicate the node that
789/// computes it as well as which return value to use from that node.  This pair
790/// of information is represented with the SDOperandImpl value type.
791///
792class SDOperandImpl {
793public:
794  SDNode *Val;        // The node defining the value we are using.
795  unsigned ResNo;     // Which return value of the node we are using.
796
797  SDOperandImpl() : Val(0), ResNo(0) {}
798  SDOperandImpl(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
799
800  bool operator==(const SDOperandImpl &O) const {
801    return Val == O.Val && ResNo == O.ResNo;
802  }
803  bool operator!=(const SDOperandImpl &O) const {
804    return !operator==(O);
805  }
806  bool operator<(const SDOperandImpl &O) const {
807    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
808  }
809
810  SDOperandImpl getValue(unsigned R) const {
811    return SDOperandImpl(Val, R);
812  }
813
814  // isOperandOf - Return true if this node is an operand of N.
815  bool isOperandOf(SDNode *N) const;
816
817  /// getValueType - Return the ValueType of the referenced return value.
818  ///
819  inline MVT::ValueType getValueType() const;
820
821  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType()).
822  ///
823  unsigned getValueSizeInBits() const {
824    return MVT::getSizeInBits(getValueType());
825  }
826
827  // Forwarding methods - These forward to the corresponding methods in SDNode.
828  inline unsigned getOpcode() const;
829  inline unsigned getNumOperands() const;
830  inline const SDOperandImpl &getOperand(unsigned i) const;
831  inline uint64_t getConstantOperandVal(unsigned i) const;
832  inline bool isTargetOpcode() const;
833  inline unsigned getTargetOpcode() const;
834
835
836  /// reachesChainWithoutSideEffects - Return true if this operand (which must
837  /// be a chain) reaches the specified operand without crossing any
838  /// side-effecting instructions.  In practice, this looks through token
839  /// factors and non-volatile loads.  In order to remain efficient, this only
840  /// looks a couple of nodes in, it does not do an exhaustive search.
841  bool reachesChainWithoutSideEffects(SDOperandImpl Dest,
842                                      unsigned Depth = 2) const;
843
844  /// hasOneUse - Return true if there is exactly one operation using this
845  /// result value of the defining operator.
846  inline bool hasOneUse() const;
847
848  /// use_empty - Return true if there are no operations using this
849  /// result value of the defining operator.
850  inline bool use_empty() const;
851};
852
853
854template<> struct DenseMapInfo<SDOperandImpl> {
855  static inline SDOperandImpl getEmptyKey() {
856    return SDOperandImpl((SDNode*)-1, -1U);
857  }
858  static inline SDOperandImpl getTombstoneKey() {
859    return SDOperandImpl((SDNode*)-1, 0);
860  }
861  static unsigned getHashValue(const SDOperandImpl &Val) {
862    return ((unsigned)((uintptr_t)Val.Val >> 4) ^
863            (unsigned)((uintptr_t)Val.Val >> 9)) + Val.ResNo;
864  }
865  static bool isEqual(const SDOperandImpl &LHS, const SDOperandImpl &RHS) {
866    return LHS == RHS;
867  }
868  static bool isPod() { return true; }
869};
870
871/// simplify_type specializations - Allow casting operators to work directly on
872/// SDOperands as if they were SDNode*'s.
873template<> struct simplify_type<SDOperandImpl> {
874  typedef SDNode* SimpleType;
875  static SimpleType getSimplifiedValue(const SDOperandImpl &Val) {
876    return static_cast<SimpleType>(Val.Val);
877  }
878};
879template<> struct simplify_type<const SDOperandImpl> {
880  typedef SDNode* SimpleType;
881  static SimpleType getSimplifiedValue(const SDOperandImpl &Val) {
882    return static_cast<SimpleType>(Val.Val);
883  }
884};
885
886/// SDOperand - Represents a use of the SDNode referred by
887/// the SDOperandImpl.
888class SDOperand: public SDOperandImpl {
889  /// parent - Parent node of this operand.
890  SDNode    *parent;
891  /// Prev, next - Pointers to the uses list of the SDNode referred by
892  /// this operand.
893  SDOperand **Prev, *Next;
894public:
895  friend class SDNode;
896  SDOperand(): SDOperandImpl(), parent(NULL), Prev(NULL), Next(NULL) {}
897
898  SDOperand(SDNode *val, unsigned resno) :
899    SDOperandImpl(val,resno), parent(NULL), Prev(NULL), Next(NULL) {}
900
901  SDOperand(const SDOperandImpl& Op): SDOperandImpl(Op),parent(NULL),
902      Prev(NULL), Next(NULL)  {
903  }
904
905  SDOperand& operator= (SDOperandImpl& Op) {
906      *(SDOperandImpl*)this = Op;
907      Next = NULL;
908      Prev = NULL;
909      return *this;
910  }
911
912  SDOperand& operator= (const SDOperandImpl& Op) {
913      *(SDOperandImpl*)this = Op;
914      Next = NULL;
915      Prev = NULL;
916      return *this;
917  }
918
919  SDOperand& operator= (SDOperand& Op) {
920      *(SDOperandImpl*)this = Op;
921      Next = NULL;
922      Prev = NULL;
923      return *this;
924  }
925
926  SDOperand& operator= (const SDOperand& Op) {
927      *(SDOperandImpl*)this = Op;
928      Next = NULL;
929      Prev = NULL;
930      return *this;
931  }
932
933  SDOperand * getNext() { return Next; }
934
935  SDNode *getUser() { return parent; }
936  void setUser(SDNode *p) { parent = p; }
937
938protected:
939  void addToList(SDOperand **List) {
940    Next = *List;
941    if (Next) Next->Prev = &Next;
942    Prev = List;
943    *List = this;
944  }
945
946  void removeFromList() {
947    *Prev = Next;
948    if (Next) Next->Prev = Prev;
949  }
950};
951
952
953/// simplify_type specializations - Allow casting operators to work directly on
954/// SDOperands as if they were SDNode*'s.
955template<> struct simplify_type<SDOperand> {
956  typedef SDNode* SimpleType;
957  static SimpleType getSimplifiedValue(const SDOperand &Val) {
958    return static_cast<SimpleType>(Val.Val);
959  }
960};
961template<> struct simplify_type<const SDOperand> {
962  typedef SDNode* SimpleType;
963  static SimpleType getSimplifiedValue(const SDOperand &Val) {
964    return static_cast<SimpleType>(Val.Val);
965  }
966};
967
968
969/// SDNode - Represents one node in the SelectionDAG.
970///
971class SDNode : public FoldingSetNode {
972private:
973  /// NodeType - The operation that this node performs.
974  ///
975  unsigned short NodeType;
976
977  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
978  /// then they will be delete[]'d when the node is destroyed.
979  bool OperandsNeedDelete : 1;
980
981  /// NodeId - Unique id per SDNode in the DAG.
982  int NodeId;
983
984  /// OperandList - The values that are used by this operation.
985  ///
986  SDOperand *OperandList;
987
988  /// ValueList - The types of the values this node defines.  SDNode's may
989  /// define multiple values simultaneously.
990  const MVT::ValueType *ValueList;
991
992  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
993  unsigned short NumOperands, NumValues;
994
995  /// Prev/Next pointers - These pointers form the linked list of of the
996  /// AllNodes list in the current DAG.
997  SDNode *Prev, *Next;
998  friend struct ilist_traits<SDNode>;
999
1000  /// UsesSize - The size of the uses list.
1001  unsigned UsesSize;
1002
1003  /// Uses - List of uses for this SDNode.
1004  SDOperand *Uses;
1005
1006  /// addUse - add SDOperand to the list of uses.
1007  void addUse(SDOperand &U) { U.addToList(&Uses); }
1008
1009  // Out-of-line virtual method to give class a home.
1010  virtual void ANCHOR();
1011public:
1012  virtual ~SDNode() {
1013    assert(NumOperands == 0 && "Operand list not cleared before deletion");
1014    NodeType = ISD::DELETED_NODE;
1015  }
1016
1017  //===--------------------------------------------------------------------===//
1018  //  Accessors
1019  //
1020  unsigned getOpcode()  const { return NodeType; }
1021  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1022  unsigned getTargetOpcode() const {
1023    assert(isTargetOpcode() && "Not a target opcode!");
1024    return NodeType - ISD::BUILTIN_OP_END;
1025  }
1026
1027  size_t use_size() const { return UsesSize; }
1028  bool use_empty() const { return Uses == NULL; }
1029  bool hasOneUse() const { return use_size() == 1; }
1030
1031  /// getNodeId - Return the unique node id.
1032  ///
1033  int getNodeId() const { return NodeId; }
1034
1035  /// setNodeId - Set unique node id.
1036  void setNodeId(int Id) { NodeId = Id; }
1037
1038  /// use_iterator - This class provides iterator support for SDOperand
1039  /// operands that use a specific SDNode.
1040  class use_iterator
1041    : public forward_iterator<SDOperand, ptrdiff_t> {
1042    SDOperand *Op;
1043    explicit use_iterator(SDOperand *op) : Op(op) {
1044    }
1045    friend class SDNode;
1046  public:
1047    typedef forward_iterator<SDOperand, ptrdiff_t>::reference reference;
1048    typedef forward_iterator<SDOperand, ptrdiff_t>::pointer pointer;
1049
1050    use_iterator(const use_iterator &I) : Op(I.Op) {}
1051    use_iterator() : Op(0) {}
1052
1053    bool operator==(const use_iterator &x) const {
1054      return Op == x.Op;
1055    }
1056    bool operator!=(const use_iterator &x) const {
1057      return !operator==(x);
1058    }
1059
1060    /// atEnd - return true if this iterator is at the end of uses list.
1061    bool atEnd() const { return Op == 0; }
1062
1063    // Iterator traversal: forward iteration only.
1064    use_iterator &operator++() {          // Preincrement
1065      assert(Op && "Cannot increment end iterator!");
1066      Op = Op->getNext();
1067      return *this;
1068    }
1069
1070    use_iterator operator++(int) {        // Postincrement
1071      use_iterator tmp = *this; ++*this; return tmp;
1072    }
1073
1074
1075    /// getOperandNum - Retrive a number of a current operand.
1076    unsigned getOperandNum() const {
1077      assert(Op && "Cannot dereference end iterator!");
1078      return (Op - Op->getUser()->OperandList);
1079    }
1080
1081    /// Retrieve a reference to the current operand.
1082    SDOperand &operator*() const {
1083      assert(Op && "Cannot dereference end iterator!");
1084      return *Op;
1085    }
1086
1087    /// Retrieve a pointer to the current operand.
1088    SDOperand *operator->() const {
1089      assert(Op && "Cannot dereference end iterator!");
1090      return Op;
1091    }
1092  };
1093
1094  /// use_begin/use_end - Provide iteration support to walk over all uses
1095  /// of an SDNode.
1096
1097  use_iterator use_begin(SDNode *node) const {
1098    return use_iterator(node->Uses);
1099  }
1100
1101  use_iterator use_begin() const {
1102    return use_iterator(Uses);
1103  }
1104
1105  static use_iterator use_end() { return use_iterator(0); }
1106
1107
1108  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1109  /// indicated value.  This method ignores uses of other values defined by this
1110  /// operation.
1111  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1112
1113  /// hasAnyUseOfValue - Return true if there are any use of the indicated
1114  /// value. This method ignores uses of other values defined by this operation.
1115  bool hasAnyUseOfValue(unsigned Value) const;
1116
1117  /// isOnlyUseOf - Return true if this node is the only use of N.
1118  ///
1119  bool isOnlyUseOf(SDNode *N) const;
1120
1121  /// isOperandOf - Return true if this node is an operand of N.
1122  ///
1123  bool isOperandOf(SDNode *N) const;
1124
1125  /// isPredecessorOf - Return true if this node is a predecessor of N. This
1126  /// node is either an operand of N or it can be reached by recursively
1127  /// traversing up the operands.
1128  /// NOTE: this is an expensive method. Use it carefully.
1129  bool isPredecessorOf(SDNode *N) const;
1130
1131  /// getNumOperands - Return the number of values used by this operation.
1132  ///
1133  unsigned getNumOperands() const { return NumOperands; }
1134
1135  /// getConstantOperandVal - Helper method returns the integer value of a
1136  /// ConstantSDNode operand.
1137  uint64_t getConstantOperandVal(unsigned Num) const;
1138
1139  const SDOperand &getOperand(unsigned Num) const {
1140    assert(Num < NumOperands && "Invalid child # of SDNode!");
1141    return OperandList[Num];
1142  }
1143
1144  typedef SDOperand* op_iterator;
1145  op_iterator op_begin() const { return OperandList; }
1146  op_iterator op_end() const { return OperandList+NumOperands; }
1147
1148
1149  SDVTList getVTList() const {
1150    SDVTList X = { ValueList, NumValues };
1151    return X;
1152  };
1153
1154  /// getNumValues - Return the number of values defined/returned by this
1155  /// operator.
1156  ///
1157  unsigned getNumValues() const { return NumValues; }
1158
1159  /// getValueType - Return the type of a specified result.
1160  ///
1161  MVT::ValueType getValueType(unsigned ResNo) const {
1162    assert(ResNo < NumValues && "Illegal result number!");
1163    return ValueList[ResNo];
1164  }
1165
1166  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1167  ///
1168  unsigned getValueSizeInBits(unsigned ResNo) const {
1169    return MVT::getSizeInBits(getValueType(ResNo));
1170  }
1171
1172  typedef const MVT::ValueType* value_iterator;
1173  value_iterator value_begin() const { return ValueList; }
1174  value_iterator value_end() const { return ValueList+NumValues; }
1175
1176  /// getOperationName - Return the opcode of this operation for printing.
1177  ///
1178  std::string getOperationName(const SelectionDAG *G = 0) const;
1179  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1180  void dump() const;
1181  void dump(const SelectionDAG *G) const;
1182
1183  static bool classof(const SDNode *) { return true; }
1184
1185  /// Profile - Gather unique data for the node.
1186  ///
1187  void Profile(FoldingSetNodeID &ID);
1188
1189protected:
1190  friend class SelectionDAG;
1191
1192  /// getValueTypeList - Return a pointer to the specified value type.
1193  ///
1194  static const MVT::ValueType *getValueTypeList(MVT::ValueType VT);
1195  static SDVTList getSDVTList(MVT::ValueType VT) {
1196    SDVTList Ret = { getValueTypeList(VT), 1 };
1197    return Ret;
1198  }
1199
1200  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
1201    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1202    OperandsNeedDelete = true;
1203    NumOperands = NumOps;
1204    OperandList = NumOps ? new SDOperand[NumOperands] : 0;
1205
1206    for (unsigned i = 0; i != NumOps; ++i) {
1207      OperandList[i] = Ops[i];
1208      OperandList[i].setUser(this);
1209      Ops[i].Val->addUse(OperandList[i]);
1210      ++Ops[i].Val->UsesSize;
1211    }
1212
1213    ValueList = VTs.VTs;
1214    NumValues = VTs.NumVTs;
1215    Prev = 0; Next = 0;
1216  }
1217
1218  SDNode(unsigned Opc, SDVTList VTs)
1219    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
1220    OperandsNeedDelete = false;  // Operands set with InitOperands.
1221    NumOperands = 0;
1222    OperandList = 0;
1223    ValueList = VTs.VTs;
1224    NumValues = VTs.NumVTs;
1225    Prev = 0; Next = 0;
1226  }
1227
1228  /// InitOperands - Initialize the operands list of this node with the
1229  /// specified values, which are part of the node (thus they don't need to be
1230  /// copied in or allocated).
1231  void InitOperands(SDOperand *Ops, unsigned NumOps) {
1232    assert(OperandList == 0 && "Operands already set!");
1233    NumOperands = NumOps;
1234    OperandList = Ops;
1235    UsesSize = 0;
1236    Uses = NULL;
1237
1238    for (unsigned i = 0; i != NumOps; ++i) {
1239      OperandList[i].setUser(this);
1240      Ops[i].Val->addUse(OperandList[i]);
1241      ++Ops[i].Val->UsesSize;
1242    }
1243  }
1244
1245  /// MorphNodeTo - This frees the operands of the current node, resets the
1246  /// opcode, types, and operands to the specified value.  This should only be
1247  /// used by the SelectionDAG class.
1248  void MorphNodeTo(unsigned Opc, SDVTList L,
1249                   const SDOperand *Ops, unsigned NumOps);
1250
1251  void addUser(unsigned i, SDNode *User) {
1252    assert(User->OperandList[i].getUser() && "Node without parent");
1253    addUse(User->OperandList[i]);
1254    ++UsesSize;
1255  }
1256
1257  void removeUser(unsigned i, SDNode *User) {
1258    assert(User->OperandList[i].getUser() && "Node without parent");
1259    SDOperand &Op = User->OperandList[i];
1260    Op.removeFromList();
1261    --UsesSize;
1262  }
1263};
1264
1265
1266// Define inline functions from the SDOperandImpl class.
1267
1268inline unsigned SDOperandImpl::getOpcode() const {
1269  return Val->getOpcode();
1270}
1271inline MVT::ValueType SDOperandImpl::getValueType() const {
1272  return Val->getValueType(ResNo);
1273}
1274inline unsigned SDOperandImpl::getNumOperands() const {
1275  return Val->getNumOperands();
1276}
1277inline const SDOperandImpl &SDOperandImpl::getOperand(unsigned i) const {
1278  return Val->getOperand(i);
1279}
1280inline uint64_t SDOperandImpl::getConstantOperandVal(unsigned i) const {
1281  return Val->getConstantOperandVal(i);
1282}
1283inline bool SDOperandImpl::isTargetOpcode() const {
1284  return Val->isTargetOpcode();
1285}
1286inline unsigned SDOperandImpl::getTargetOpcode() const {
1287  return Val->getTargetOpcode();
1288}
1289inline bool SDOperandImpl::hasOneUse() const {
1290  return Val->hasNUsesOfValue(1, ResNo);
1291}
1292inline bool SDOperandImpl::use_empty() const {
1293  return !Val->hasAnyUseOfValue(ResNo);
1294}
1295
1296/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
1297/// to allow co-allocation of node operands with the node itself.
1298class UnarySDNode : public SDNode {
1299  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1300  SDOperand Op;
1301public:
1302  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
1303    : SDNode(Opc, VTs), Op(X) {
1304    InitOperands(&Op, 1);
1305  }
1306};
1307
1308/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
1309/// to allow co-allocation of node operands with the node itself.
1310class BinarySDNode : public SDNode {
1311  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1312  SDOperand Ops[2];
1313public:
1314  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
1315    : SDNode(Opc, VTs) {
1316    Ops[0] = X;
1317    Ops[1] = Y;
1318    InitOperands(Ops, 2);
1319  }
1320};
1321
1322/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1323/// to allow co-allocation of node operands with the node itself.
1324class TernarySDNode : public SDNode {
1325  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1326  SDOperand Ops[3];
1327public:
1328  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
1329                SDOperand Z)
1330    : SDNode(Opc, VTs) {
1331    Ops[0] = X;
1332    Ops[1] = Y;
1333    Ops[2] = Z;
1334    InitOperands(Ops, 3);
1335  }
1336};
1337
1338
1339/// HandleSDNode - This class is used to form a handle around another node that
1340/// is persistant and is updated across invocations of replaceAllUsesWith on its
1341/// operand.  This node should be directly created by end-users and not added to
1342/// the AllNodes list.
1343class HandleSDNode : public SDNode {
1344  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1345  SDOperand Op;
1346public:
1347  explicit HandleSDNode(SDOperand X)
1348    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) {
1349    InitOperands(&Op, 1);
1350  }
1351  ~HandleSDNode();
1352  SDOperand getValue() const { return Op; }
1353};
1354
1355class AtomicSDNode : public SDNode {
1356  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1357  SDOperand Ops[4];
1358  MVT::ValueType OrigVT;
1359public:
1360  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1361               SDOperand Cmp, SDOperand Swp, MVT::ValueType VT)
1362    : SDNode(Opc, VTL) {
1363    Ops[0] = Chain;
1364    Ops[1] = Ptr;
1365    Ops[2] = Swp;
1366    Ops[3] = Cmp;
1367    InitOperands(Ops, 4);
1368    OrigVT=VT;
1369  }
1370  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr,
1371               SDOperand Val, MVT::ValueType VT)
1372    : SDNode(Opc, VTL) {
1373    Ops[0] = Chain;
1374    Ops[1] = Ptr;
1375    Ops[2] = Val;
1376    InitOperands(Ops, 3);
1377    OrigVT=VT;
1378  }
1379  MVT::ValueType getVT() const { return OrigVT; }
1380  bool isCompareAndSwap() const { return getOpcode() == ISD::ATOMIC_LCS; }
1381};
1382
1383class StringSDNode : public SDNode {
1384  std::string Value;
1385  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1386protected:
1387  friend class SelectionDAG;
1388  explicit StringSDNode(const std::string &val)
1389    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
1390  }
1391public:
1392  const std::string &getValue() const { return Value; }
1393  static bool classof(const StringSDNode *) { return true; }
1394  static bool classof(const SDNode *N) {
1395    return N->getOpcode() == ISD::STRING;
1396  }
1397};
1398
1399class ConstantSDNode : public SDNode {
1400  APInt Value;
1401  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1402protected:
1403  friend class SelectionDAG;
1404  ConstantSDNode(bool isTarget, const APInt &val, MVT::ValueType VT)
1405    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
1406      Value(val) {
1407  }
1408public:
1409
1410  const APInt &getAPIntValue() const { return Value; }
1411  uint64_t getValue() const { return Value.getZExtValue(); }
1412
1413  int64_t getSignExtended() const {
1414    unsigned Bits = MVT::getSizeInBits(getValueType(0));
1415    return ((int64_t)Value.getZExtValue() << (64-Bits)) >> (64-Bits);
1416  }
1417
1418  bool isNullValue() const { return Value == 0; }
1419  bool isAllOnesValue() const {
1420    return Value == MVT::getIntVTBitMask(getValueType(0));
1421  }
1422
1423  static bool classof(const ConstantSDNode *) { return true; }
1424  static bool classof(const SDNode *N) {
1425    return N->getOpcode() == ISD::Constant ||
1426           N->getOpcode() == ISD::TargetConstant;
1427  }
1428};
1429
1430class ConstantFPSDNode : public SDNode {
1431  APFloat Value;
1432  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1433protected:
1434  friend class SelectionDAG;
1435  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT::ValueType VT)
1436    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1437             getSDVTList(VT)), Value(val) {
1438  }
1439public:
1440
1441  const APFloat& getValueAPF() const { return Value; }
1442
1443  /// isExactlyValue - We don't rely on operator== working on double values, as
1444  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1445  /// As such, this method can be used to do an exact bit-for-bit comparison of
1446  /// two floating point values.
1447
1448  /// We leave the version with the double argument here because it's just so
1449  /// convenient to write "2.0" and the like.  Without this function we'd
1450  /// have to duplicate its logic everywhere it's called.
1451  bool isExactlyValue(double V) const {
1452    APFloat Tmp(V);
1453    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
1454    return isExactlyValue(Tmp);
1455  }
1456  bool isExactlyValue(const APFloat& V) const;
1457
1458  bool isValueValidForType(MVT::ValueType VT, const APFloat& Val);
1459
1460  static bool classof(const ConstantFPSDNode *) { return true; }
1461  static bool classof(const SDNode *N) {
1462    return N->getOpcode() == ISD::ConstantFP ||
1463           N->getOpcode() == ISD::TargetConstantFP;
1464  }
1465};
1466
1467class GlobalAddressSDNode : public SDNode {
1468  GlobalValue *TheGlobal;
1469  int Offset;
1470  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1471protected:
1472  friend class SelectionDAG;
1473  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
1474                      int o = 0);
1475public:
1476
1477  GlobalValue *getGlobal() const { return TheGlobal; }
1478  int getOffset() const { return Offset; }
1479
1480  static bool classof(const GlobalAddressSDNode *) { return true; }
1481  static bool classof(const SDNode *N) {
1482    return N->getOpcode() == ISD::GlobalAddress ||
1483           N->getOpcode() == ISD::TargetGlobalAddress ||
1484           N->getOpcode() == ISD::GlobalTLSAddress ||
1485           N->getOpcode() == ISD::TargetGlobalTLSAddress;
1486  }
1487};
1488
1489class FrameIndexSDNode : public SDNode {
1490  int FI;
1491  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1492protected:
1493  friend class SelectionDAG;
1494  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
1495    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
1496      FI(fi) {
1497  }
1498public:
1499
1500  int getIndex() const { return FI; }
1501
1502  static bool classof(const FrameIndexSDNode *) { return true; }
1503  static bool classof(const SDNode *N) {
1504    return N->getOpcode() == ISD::FrameIndex ||
1505           N->getOpcode() == ISD::TargetFrameIndex;
1506  }
1507};
1508
1509class JumpTableSDNode : public SDNode {
1510  int JTI;
1511  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1512protected:
1513  friend class SelectionDAG;
1514  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
1515    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
1516      JTI(jti) {
1517  }
1518public:
1519
1520  int getIndex() const { return JTI; }
1521
1522  static bool classof(const JumpTableSDNode *) { return true; }
1523  static bool classof(const SDNode *N) {
1524    return N->getOpcode() == ISD::JumpTable ||
1525           N->getOpcode() == ISD::TargetJumpTable;
1526  }
1527};
1528
1529class ConstantPoolSDNode : public SDNode {
1530  union {
1531    Constant *ConstVal;
1532    MachineConstantPoolValue *MachineCPVal;
1533  } Val;
1534  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1535  unsigned Alignment;
1536  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1537protected:
1538  friend class SelectionDAG;
1539  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
1540                     int o=0)
1541    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1542             getSDVTList(VT)), Offset(o), Alignment(0) {
1543    assert((int)Offset >= 0 && "Offset is too large");
1544    Val.ConstVal = c;
1545  }
1546  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
1547                     unsigned Align)
1548    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1549             getSDVTList(VT)), Offset(o), Alignment(Align) {
1550    assert((int)Offset >= 0 && "Offset is too large");
1551    Val.ConstVal = c;
1552  }
1553  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1554                     MVT::ValueType VT, int o=0)
1555    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1556             getSDVTList(VT)), Offset(o), Alignment(0) {
1557    assert((int)Offset >= 0 && "Offset is too large");
1558    Val.MachineCPVal = v;
1559    Offset |= 1 << (sizeof(unsigned)*8-1);
1560  }
1561  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1562                     MVT::ValueType VT, int o, unsigned Align)
1563    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1564             getSDVTList(VT)), Offset(o), Alignment(Align) {
1565    assert((int)Offset >= 0 && "Offset is too large");
1566    Val.MachineCPVal = v;
1567    Offset |= 1 << (sizeof(unsigned)*8-1);
1568  }
1569public:
1570
1571  bool isMachineConstantPoolEntry() const {
1572    return (int)Offset < 0;
1573  }
1574
1575  Constant *getConstVal() const {
1576    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1577    return Val.ConstVal;
1578  }
1579
1580  MachineConstantPoolValue *getMachineCPVal() const {
1581    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1582    return Val.MachineCPVal;
1583  }
1584
1585  int getOffset() const {
1586    return Offset & ~(1 << (sizeof(unsigned)*8-1));
1587  }
1588
1589  // Return the alignment of this constant pool object, which is either 0 (for
1590  // default alignment) or log2 of the desired value.
1591  unsigned getAlignment() const { return Alignment; }
1592
1593  const Type *getType() const;
1594
1595  static bool classof(const ConstantPoolSDNode *) { return true; }
1596  static bool classof(const SDNode *N) {
1597    return N->getOpcode() == ISD::ConstantPool ||
1598           N->getOpcode() == ISD::TargetConstantPool;
1599  }
1600};
1601
1602class BasicBlockSDNode : public SDNode {
1603  MachineBasicBlock *MBB;
1604  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1605protected:
1606  friend class SelectionDAG;
1607  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1608    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
1609  }
1610public:
1611
1612  MachineBasicBlock *getBasicBlock() const { return MBB; }
1613
1614  static bool classof(const BasicBlockSDNode *) { return true; }
1615  static bool classof(const SDNode *N) {
1616    return N->getOpcode() == ISD::BasicBlock;
1617  }
1618};
1619
1620/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
1621/// used when the SelectionDAG needs to make a simple reference to something
1622/// in the LLVM IR representation.
1623///
1624/// Note that this is not used for carrying alias information; that is done
1625/// with MemOperandSDNode, which includes a Value which is required to be a
1626/// pointer, and several other fields specific to memory references.
1627///
1628class SrcValueSDNode : public SDNode {
1629  const Value *V;
1630  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1631protected:
1632  friend class SelectionDAG;
1633  /// Create a SrcValue for a general value.
1634  explicit SrcValueSDNode(const Value *v)
1635    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}
1636
1637public:
1638  /// getValue - return the contained Value.
1639  const Value *getValue() const { return V; }
1640
1641  static bool classof(const SrcValueSDNode *) { return true; }
1642  static bool classof(const SDNode *N) {
1643    return N->getOpcode() == ISD::SRCVALUE;
1644  }
1645};
1646
1647
1648/// MemOperandSDNode - An SDNode that holds a MemOperand. This is
1649/// used to represent a reference to memory after ISD::LOAD
1650/// and ISD::STORE have been lowered.
1651///
1652class MemOperandSDNode : public SDNode {
1653  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1654protected:
1655  friend class SelectionDAG;
1656  /// Create a MemOperand node
1657  explicit MemOperandSDNode(const MemOperand &mo)
1658    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}
1659
1660public:
1661  /// MO - The contained MemOperand.
1662  const MemOperand MO;
1663
1664  static bool classof(const MemOperandSDNode *) { return true; }
1665  static bool classof(const SDNode *N) {
1666    return N->getOpcode() == ISD::MEMOPERAND;
1667  }
1668};
1669
1670
1671class RegisterSDNode : public SDNode {
1672  unsigned Reg;
1673  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1674protected:
1675  friend class SelectionDAG;
1676  RegisterSDNode(unsigned reg, MVT::ValueType VT)
1677    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
1678  }
1679public:
1680
1681  unsigned getReg() const { return Reg; }
1682
1683  static bool classof(const RegisterSDNode *) { return true; }
1684  static bool classof(const SDNode *N) {
1685    return N->getOpcode() == ISD::Register;
1686  }
1687};
1688
1689class ExternalSymbolSDNode : public SDNode {
1690  const char *Symbol;
1691  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1692protected:
1693  friend class SelectionDAG;
1694  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
1695    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1696             getSDVTList(VT)), Symbol(Sym) {
1697  }
1698public:
1699
1700  const char *getSymbol() const { return Symbol; }
1701
1702  static bool classof(const ExternalSymbolSDNode *) { return true; }
1703  static bool classof(const SDNode *N) {
1704    return N->getOpcode() == ISD::ExternalSymbol ||
1705           N->getOpcode() == ISD::TargetExternalSymbol;
1706  }
1707};
1708
1709class CondCodeSDNode : public SDNode {
1710  ISD::CondCode Condition;
1711  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1712protected:
1713  friend class SelectionDAG;
1714  explicit CondCodeSDNode(ISD::CondCode Cond)
1715    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
1716  }
1717public:
1718
1719  ISD::CondCode get() const { return Condition; }
1720
1721  static bool classof(const CondCodeSDNode *) { return true; }
1722  static bool classof(const SDNode *N) {
1723    return N->getOpcode() == ISD::CONDCODE;
1724  }
1725};
1726
1727namespace ISD {
1728  struct ArgFlagsTy {
1729  private:
1730    static const uint64_t NoFlagSet      = 0ULL;
1731    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
1732    static const uint64_t ZExtOffs       = 0;
1733    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
1734    static const uint64_t SExtOffs       = 1;
1735    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
1736    static const uint64_t InRegOffs      = 2;
1737    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
1738    static const uint64_t SRetOffs       = 3;
1739    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
1740    static const uint64_t ByValOffs      = 4;
1741    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
1742    static const uint64_t NestOffs       = 5;
1743    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
1744    static const uint64_t ByValAlignOffs = 6;
1745    static const uint64_t OrigAlign      = 0x1FULL<<27;
1746    static const uint64_t OrigAlignOffs  = 27;
1747    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
1748    static const uint64_t ByValSizeOffs  = 32;
1749
1750    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts
1751
1752    uint64_t Flags;
1753  public:
1754    ArgFlagsTy() : Flags(0) { }
1755
1756    bool isZExt()   const { return Flags & ZExt; }
1757    void setZExt()  { Flags |= One << ZExtOffs; }
1758
1759    bool isSExt()   const { return Flags & SExt; }
1760    void setSExt()  { Flags |= One << SExtOffs; }
1761
1762    bool isInReg()  const { return Flags & InReg; }
1763    void setInReg() { Flags |= One << InRegOffs; }
1764
1765    bool isSRet()   const { return Flags & SRet; }
1766    void setSRet()  { Flags |= One << SRetOffs; }
1767
1768    bool isByVal()  const { return Flags & ByVal; }
1769    void setByVal() { Flags |= One << ByValOffs; }
1770
1771    bool isNest()   const { return Flags & Nest; }
1772    void setNest()  { Flags |= One << NestOffs; }
1773
1774    unsigned getByValAlign() const {
1775      return (One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2;
1776    }
1777    void setByValAlign(unsigned A) {
1778      Flags = (Flags & ~ByValAlign) |
1779        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
1780    }
1781
1782    unsigned getOrigAlign() const {
1783      return (One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2;
1784    }
1785    void setOrigAlign(unsigned A) {
1786      Flags = (Flags & ~OrigAlign) |
1787        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
1788    }
1789
1790    unsigned getByValSize() const {
1791      return (Flags & ByValSize) >> ByValSizeOffs;
1792    }
1793    void setByValSize(unsigned S) {
1794      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
1795    }
1796
1797    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
1798    std::string getArgFlagsString();
1799
1800    /// getRawBits - Represent the flags as a bunch of bits.
1801    uint64_t getRawBits() const { return Flags; }
1802  };
1803}
1804
1805/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
1806class ARG_FLAGSSDNode : public SDNode {
1807  ISD::ArgFlagsTy TheFlags;
1808  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1809protected:
1810  friend class SelectionDAG;
1811  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
1812    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
1813  }
1814public:
1815  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }
1816
1817  static bool classof(const ARG_FLAGSSDNode *) { return true; }
1818  static bool classof(const SDNode *N) {
1819    return N->getOpcode() == ISD::ARG_FLAGS;
1820  }
1821};
1822
1823/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
1824/// to parameterize some operations.
1825class VTSDNode : public SDNode {
1826  MVT::ValueType ValueType;
1827  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1828protected:
1829  friend class SelectionDAG;
1830  explicit VTSDNode(MVT::ValueType VT)
1831    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
1832  }
1833public:
1834
1835  MVT::ValueType getVT() const { return ValueType; }
1836
1837  static bool classof(const VTSDNode *) { return true; }
1838  static bool classof(const SDNode *N) {
1839    return N->getOpcode() == ISD::VALUETYPE;
1840  }
1841};
1842
1843/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
1844///
1845class LSBaseSDNode : public SDNode {
1846private:
1847  // AddrMode - unindexed, pre-indexed, post-indexed.
1848  ISD::MemIndexedMode AddrMode;
1849
1850  // MemoryVT - VT of in-memory value.
1851  MVT::ValueType MemoryVT;
1852
1853  //! SrcValue - Memory location for alias analysis.
1854  const Value *SrcValue;
1855
1856  //! SVOffset - Memory location offset.
1857  int SVOffset;
1858
1859  //! Alignment - Alignment of memory location in bytes.
1860  unsigned Alignment;
1861
1862  //! IsVolatile - True if the store is volatile.
1863  bool IsVolatile;
1864protected:
1865  //! Operand array for load and store
1866  /*!
1867    \note Moving this array to the base class captures more
1868    common functionality shared between LoadSDNode and
1869    StoreSDNode
1870   */
1871  SDOperand Ops[4];
1872public:
1873  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned NumOperands,
1874               SDVTList VTs, ISD::MemIndexedMode AM, MVT::ValueType VT,
1875               const Value *SV, int SVO, unsigned Align, bool Vol)
1876    : SDNode(NodeTy, VTs),
1877      AddrMode(AM), MemoryVT(VT),
1878      SrcValue(SV), SVOffset(SVO), Alignment(Align), IsVolatile(Vol) {
1879    for (unsigned i = 0; i != NumOperands; ++i)
1880      Ops[i] = Operands[i];
1881    InitOperands(Ops, NumOperands);
1882    assert(Align != 0 && "Loads and stores should have non-zero aligment");
1883    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
1884           "Only indexed loads and stores have a non-undef offset operand");
1885  }
1886
1887  const SDOperand &getChain() const { return getOperand(0); }
1888  const SDOperand &getBasePtr() const {
1889    return getOperand(getOpcode() == ISD::LOAD ? 1 : 2);
1890  }
1891  const SDOperand &getOffset() const {
1892    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
1893  }
1894
1895  const Value *getSrcValue() const { return SrcValue; }
1896  int getSrcValueOffset() const { return SVOffset; }
1897  unsigned getAlignment() const { return Alignment; }
1898  MVT::ValueType getMemoryVT() const { return MemoryVT; }
1899  bool isVolatile() const { return IsVolatile; }
1900
1901  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }
1902
1903  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
1904  bool isIndexed() const { return AddrMode != ISD::UNINDEXED; }
1905
1906  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
1907  bool isUnindexed() const { return AddrMode == ISD::UNINDEXED; }
1908
1909  /// getMemOperand - Return a MemOperand object describing the memory
1910  /// reference performed by this load or store.
1911  MemOperand getMemOperand() const;
1912
1913  static bool classof(const LSBaseSDNode *N) { return true; }
1914  static bool classof(const SDNode *N) {
1915    return N->getOpcode() == ISD::LOAD ||
1916           N->getOpcode() == ISD::STORE;
1917  }
1918};
1919
1920/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
1921///
1922class LoadSDNode : public LSBaseSDNode {
1923  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1924
1925  // ExtType - non-ext, anyext, sext, zext.
1926  ISD::LoadExtType ExtType;
1927
1928protected:
1929  friend class SelectionDAG;
1930  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
1931             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
1932             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1933    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
1934                   VTs, AM, LVT, SV, O, Align, Vol),
1935      ExtType(ETy) {}
1936public:
1937
1938  ISD::LoadExtType getExtensionType() const { return ExtType; }
1939  const SDOperand &getBasePtr() const { return getOperand(1); }
1940  const SDOperand &getOffset() const { return getOperand(2); }
1941
1942  static bool classof(const LoadSDNode *) { return true; }
1943  static bool classof(const SDNode *N) {
1944    return N->getOpcode() == ISD::LOAD;
1945  }
1946};
1947
1948/// StoreSDNode - This class is used to represent ISD::STORE nodes.
1949///
1950class StoreSDNode : public LSBaseSDNode {
1951  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
1952
1953  // IsTruncStore - True if the op does a truncation before store.
1954  bool IsTruncStore;
1955protected:
1956  friend class SelectionDAG;
1957  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
1958              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
1959              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
1960    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
1961                   VTs, AM, SVT, SV, O, Align, Vol),
1962      IsTruncStore(isTrunc) {}
1963public:
1964
1965  bool isTruncatingStore() const { return IsTruncStore; }
1966  const SDOperand &getValue() const { return getOperand(1); }
1967  const SDOperand &getBasePtr() const { return getOperand(2); }
1968  const SDOperand &getOffset() const { return getOperand(3); }
1969
1970  static bool classof(const StoreSDNode *) { return true; }
1971  static bool classof(const SDNode *N) {
1972    return N->getOpcode() == ISD::STORE;
1973  }
1974};
1975
1976
1977class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
1978  SDNode *Node;
1979  unsigned Operand;
1980
1981  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
1982public:
1983  bool operator==(const SDNodeIterator& x) const {
1984    return Operand == x.Operand;
1985  }
1986  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
1987
1988  const SDNodeIterator &operator=(const SDNodeIterator &I) {
1989    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
1990    Operand = I.Operand;
1991    return *this;
1992  }
1993
1994  pointer operator*() const {
1995    return Node->getOperand(Operand).Val;
1996  }
1997  pointer operator->() const { return operator*(); }
1998
1999  SDNodeIterator& operator++() {                // Preincrement
2000    ++Operand;
2001    return *this;
2002  }
2003  SDNodeIterator operator++(int) { // Postincrement
2004    SDNodeIterator tmp = *this; ++*this; return tmp;
2005  }
2006
2007  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2008  static SDNodeIterator end  (SDNode *N) {
2009    return SDNodeIterator(N, N->getNumOperands());
2010  }
2011
2012  unsigned getOperand() const { return Operand; }
2013  const SDNode *getNode() const { return Node; }
2014};
2015
2016template <> struct GraphTraits<SDNode*> {
2017  typedef SDNode NodeType;
2018  typedef SDNodeIterator ChildIteratorType;
2019  static inline NodeType *getEntryNode(SDNode *N) { return N; }
2020  static inline ChildIteratorType child_begin(NodeType *N) {
2021    return SDNodeIterator::begin(N);
2022  }
2023  static inline ChildIteratorType child_end(NodeType *N) {
2024    return SDNodeIterator::end(N);
2025  }
2026};
2027
2028template<>
2029struct ilist_traits<SDNode> {
2030  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
2031  static SDNode *getNext(const SDNode *N) { return N->Next; }
2032
2033  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
2034  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
2035
2036  static SDNode *createSentinel() {
2037    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
2038  }
2039  static void destroySentinel(SDNode *N) { delete N; }
2040  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
2041
2042
2043  void addNodeToList(SDNode *NTy) {}
2044  void removeNodeFromList(SDNode *NTy) {}
2045  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
2046                             const ilist_iterator<SDNode> &X,
2047                             const ilist_iterator<SDNode> &Y) {}
2048};
2049
2050namespace ISD {
2051  /// isNormalLoad - Returns true if the specified node is a non-extending
2052  /// and unindexed load.
2053  inline bool isNormalLoad(const SDNode *N) {
2054    if (N->getOpcode() != ISD::LOAD)
2055      return false;
2056    const LoadSDNode *Ld = cast<LoadSDNode>(N);
2057    return Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2058      Ld->getAddressingMode() == ISD::UNINDEXED;
2059  }
2060
2061  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2062  /// load.
2063  inline bool isNON_EXTLoad(const SDNode *N) {
2064    return N->getOpcode() == ISD::LOAD &&
2065      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2066  }
2067
2068  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2069  ///
2070  inline bool isEXTLoad(const SDNode *N) {
2071    return N->getOpcode() == ISD::LOAD &&
2072      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2073  }
2074
2075  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2076  ///
2077  inline bool isSEXTLoad(const SDNode *N) {
2078    return N->getOpcode() == ISD::LOAD &&
2079      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2080  }
2081
2082  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2083  ///
2084  inline bool isZEXTLoad(const SDNode *N) {
2085    return N->getOpcode() == ISD::LOAD &&
2086      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2087  }
2088
2089  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
2090  ///
2091  inline bool isUNINDEXEDLoad(const SDNode *N) {
2092    return N->getOpcode() == ISD::LOAD &&
2093      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2094  }
2095
2096  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2097  /// store.
2098  inline bool isNON_TRUNCStore(const SDNode *N) {
2099    return N->getOpcode() == ISD::STORE &&
2100      !cast<StoreSDNode>(N)->isTruncatingStore();
2101  }
2102
2103  /// isTRUNCStore - Returns true if the specified node is a truncating
2104  /// store.
2105  inline bool isTRUNCStore(const SDNode *N) {
2106    return N->getOpcode() == ISD::STORE &&
2107      cast<StoreSDNode>(N)->isTruncatingStore();
2108  }
2109}
2110
2111
2112} // end llvm namespace
2113
2114#endif
2115