DAGCombiner.cpp revision 83060c544bde0e2e9798829516040c76c5dd5013
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// FIXME: Missing folds
14// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15//  a sequence of multiplies, shifts, and adds.  This should be controlled by
16//  some kind of hint from the target that int div is expensive.
17// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
18//
19// FIXME: select C, pow2, pow2 -> something smart
20// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21// FIXME: Dead stores -> nuke
22// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
23// FIXME: mul (x, const) -> shifts + adds
24// FIXME: undef values
25// FIXME: divide by zero is currently left unfolded.  do we want to turn this
26//        into an undef?
27// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "dagcombine"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/Support/CommandLine.h"
41#include <algorithm>
42using namespace llvm;
43
44STATISTIC(NodesCombined   , "Number of dag nodes combined");
45STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
46STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
47
48namespace {
49#ifndef NDEBUG
50  static cl::opt<bool>
51    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
52                    cl::desc("Pop up a window to show dags before the first "
53                             "dag combine pass"));
54  static cl::opt<bool>
55    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
56                    cl::desc("Pop up a window to show dags before the second "
57                             "dag combine pass"));
58#else
59  static const bool ViewDAGCombine1 = false;
60  static const bool ViewDAGCombine2 = false;
61#endif
62
63  static cl::opt<bool>
64    CombinerAA("combiner-alias-analysis", cl::Hidden,
65               cl::desc("Turn on alias analysis during testing"));
66
67  static cl::opt<bool>
68    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
69               cl::desc("Include global information in alias analysis"));
70
71//------------------------------ DAGCombiner ---------------------------------//
72
73  class VISIBILITY_HIDDEN DAGCombiner {
74    SelectionDAG &DAG;
75    TargetLowering &TLI;
76    bool AfterLegalize;
77
78    // Worklist of all of the nodes that need to be simplified.
79    std::vector<SDNode*> WorkList;
80
81    // AA - Used for DAG load/store alias analysis.
82    AliasAnalysis &AA;
83
84    /// AddUsersToWorkList - When an instruction is simplified, add all users of
85    /// the instruction to the work lists because they might get more simplified
86    /// now.
87    ///
88    void AddUsersToWorkList(SDNode *N) {
89      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
90           UI != UE; ++UI)
91        AddToWorkList(*UI);
92    }
93
94    /// removeFromWorkList - remove all instances of N from the worklist.
95    ///
96    void removeFromWorkList(SDNode *N) {
97      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
98                     WorkList.end());
99    }
100
101  public:
102    /// AddToWorkList - Add to the work list making sure it's instance is at the
103    /// the back (next to be processed.)
104    void AddToWorkList(SDNode *N) {
105      removeFromWorkList(N);
106      WorkList.push_back(N);
107    }
108
109    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
110                        bool AddTo = true) {
111      assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
112      ++NodesCombined;
113      DOUT << "\nReplacing.1 "; DEBUG(N->dump());
114      DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
115      DOUT << " and " << NumTo-1 << " other values\n";
116      std::vector<SDNode*> NowDead;
117      DAG.ReplaceAllUsesWith(N, To, &NowDead);
118
119      if (AddTo) {
120        // Push the new nodes and any users onto the worklist
121        for (unsigned i = 0, e = NumTo; i != e; ++i) {
122          AddToWorkList(To[i].Val);
123          AddUsersToWorkList(To[i].Val);
124        }
125      }
126
127      // Nodes can be reintroduced into the worklist.  Make sure we do not
128      // process a node that has been replaced.
129      removeFromWorkList(N);
130      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
131        removeFromWorkList(NowDead[i]);
132
133      // Finally, since the node is now dead, remove it from the graph.
134      DAG.DeleteNode(N);
135      return SDOperand(N, 0);
136    }
137
138    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
139      return CombineTo(N, &Res, 1, AddTo);
140    }
141
142    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
143                        bool AddTo = true) {
144      SDOperand To[] = { Res0, Res1 };
145      return CombineTo(N, To, 2, AddTo);
146    }
147  private:
148
149    /// SimplifyDemandedBits - Check the specified integer node value to see if
150    /// it can be simplified or if things it uses can be simplified by bit
151    /// propagation.  If so, return true.
152    bool SimplifyDemandedBits(SDOperand Op) {
153      TargetLowering::TargetLoweringOpt TLO(DAG);
154      uint64_t KnownZero, KnownOne;
155      uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
156      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
157        return false;
158
159      // Revisit the node.
160      AddToWorkList(Op.Val);
161
162      // Replace the old value with the new one.
163      ++NodesCombined;
164      DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump());
165      DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
166      DOUT << '\n';
167
168      std::vector<SDNode*> NowDead;
169      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
170
171      // Push the new node and any (possibly new) users onto the worklist.
172      AddToWorkList(TLO.New.Val);
173      AddUsersToWorkList(TLO.New.Val);
174
175      // Nodes can end up on the worklist more than once.  Make sure we do
176      // not process a node that has been replaced.
177      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
178        removeFromWorkList(NowDead[i]);
179
180      // Finally, if the node is now dead, remove it from the graph.  The node
181      // may not be dead if the replacement process recursively simplified to
182      // something else needing this node.
183      if (TLO.Old.Val->use_empty()) {
184        removeFromWorkList(TLO.Old.Val);
185        DAG.DeleteNode(TLO.Old.Val);
186      }
187      return true;
188    }
189
190    bool CombineToPreIndexedLoadStore(SDNode *N);
191    bool CombineToPostIndexedLoadStore(SDNode *N);
192
193
194    /// visit - call the node-specific routine that knows how to fold each
195    /// particular type of node.
196    SDOperand visit(SDNode *N);
197
198    // Visitation implementation - Implement dag node combining for different
199    // node types.  The semantics are as follows:
200    // Return Value:
201    //   SDOperand.Val == 0   - No change was made
202    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
203    //   otherwise            - N should be replaced by the returned Operand.
204    //
205    SDOperand visitTokenFactor(SDNode *N);
206    SDOperand visitADD(SDNode *N);
207    SDOperand visitSUB(SDNode *N);
208    SDOperand visitADDC(SDNode *N);
209    SDOperand visitADDE(SDNode *N);
210    SDOperand visitMUL(SDNode *N);
211    SDOperand visitSDIV(SDNode *N);
212    SDOperand visitUDIV(SDNode *N);
213    SDOperand visitSREM(SDNode *N);
214    SDOperand visitUREM(SDNode *N);
215    SDOperand visitMULHU(SDNode *N);
216    SDOperand visitMULHS(SDNode *N);
217    SDOperand visitAND(SDNode *N);
218    SDOperand visitOR(SDNode *N);
219    SDOperand visitXOR(SDNode *N);
220    SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp);
221    SDOperand visitSHL(SDNode *N);
222    SDOperand visitSRA(SDNode *N);
223    SDOperand visitSRL(SDNode *N);
224    SDOperand visitCTLZ(SDNode *N);
225    SDOperand visitCTTZ(SDNode *N);
226    SDOperand visitCTPOP(SDNode *N);
227    SDOperand visitSELECT(SDNode *N);
228    SDOperand visitSELECT_CC(SDNode *N);
229    SDOperand visitSETCC(SDNode *N);
230    SDOperand visitSIGN_EXTEND(SDNode *N);
231    SDOperand visitZERO_EXTEND(SDNode *N);
232    SDOperand visitANY_EXTEND(SDNode *N);
233    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
234    SDOperand visitTRUNCATE(SDNode *N);
235    SDOperand visitBIT_CONVERT(SDNode *N);
236    SDOperand visitVBIT_CONVERT(SDNode *N);
237    SDOperand visitFADD(SDNode *N);
238    SDOperand visitFSUB(SDNode *N);
239    SDOperand visitFMUL(SDNode *N);
240    SDOperand visitFDIV(SDNode *N);
241    SDOperand visitFREM(SDNode *N);
242    SDOperand visitFCOPYSIGN(SDNode *N);
243    SDOperand visitSINT_TO_FP(SDNode *N);
244    SDOperand visitUINT_TO_FP(SDNode *N);
245    SDOperand visitFP_TO_SINT(SDNode *N);
246    SDOperand visitFP_TO_UINT(SDNode *N);
247    SDOperand visitFP_ROUND(SDNode *N);
248    SDOperand visitFP_ROUND_INREG(SDNode *N);
249    SDOperand visitFP_EXTEND(SDNode *N);
250    SDOperand visitFNEG(SDNode *N);
251    SDOperand visitFABS(SDNode *N);
252    SDOperand visitBRCOND(SDNode *N);
253    SDOperand visitBR_CC(SDNode *N);
254    SDOperand visitLOAD(SDNode *N);
255    SDOperand visitSTORE(SDNode *N);
256    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
257    SDOperand visitVINSERT_VECTOR_ELT(SDNode *N);
258    SDOperand visitVBUILD_VECTOR(SDNode *N);
259    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
260    SDOperand visitVVECTOR_SHUFFLE(SDNode *N);
261
262    SDOperand XformToShuffleWithZero(SDNode *N);
263    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
264
265    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
266    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
267    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
268    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
269                               SDOperand N3, ISD::CondCode CC);
270    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
271                            ISD::CondCode Cond, bool foldBooleans = true);
272    SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType);
273    SDOperand BuildSDIV(SDNode *N);
274    SDOperand BuildUDIV(SDNode *N);
275    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
276
277    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
278    /// looking for aliasing nodes and adding them to the Aliases vector.
279    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
280                          SmallVector<SDOperand, 8> &Aliases);
281
282    /// isAlias - Return true if there is any possibility that the two addresses
283    /// overlap.
284    bool isAlias(SDOperand Ptr1, int64_t Size1,
285                 const Value *SrcValue1, int SrcValueOffset1,
286                 SDOperand Ptr2, int64_t Size2,
287                 const Value *SrcValue2, int SrcValueOffset2);
288
289    /// FindAliasInfo - Extracts the relevant alias information from the memory
290    /// node.  Returns true if the operand was a load.
291    bool FindAliasInfo(SDNode *N,
292                       SDOperand &Ptr, int64_t &Size,
293                       const Value *&SrcValue, int &SrcValueOffset);
294
295    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
296    /// looking for a better chain (aliasing node.)
297    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
298
299public:
300    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
301      : DAG(D),
302        TLI(D.getTargetLoweringInfo()),
303        AfterLegalize(false),
304        AA(A) {}
305
306    /// Run - runs the dag combiner on all nodes in the work list
307    void Run(bool RunningAfterLegalize);
308  };
309}
310
311//===----------------------------------------------------------------------===//
312//  TargetLowering::DAGCombinerInfo implementation
313//===----------------------------------------------------------------------===//
314
315void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
316  ((DAGCombiner*)DC)->AddToWorkList(N);
317}
318
319SDOperand TargetLowering::DAGCombinerInfo::
320CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
321  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
322}
323
324SDOperand TargetLowering::DAGCombinerInfo::
325CombineTo(SDNode *N, SDOperand Res) {
326  return ((DAGCombiner*)DC)->CombineTo(N, Res);
327}
328
329
330SDOperand TargetLowering::DAGCombinerInfo::
331CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
332  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
333}
334
335
336
337
338//===----------------------------------------------------------------------===//
339
340
341// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
342// that selects between the values 1 and 0, making it equivalent to a setcc.
343// Also, set the incoming LHS, RHS, and CC references to the appropriate
344// nodes based on the type of node we are checking.  This simplifies life a
345// bit for the callers.
346static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
347                              SDOperand &CC) {
348  if (N.getOpcode() == ISD::SETCC) {
349    LHS = N.getOperand(0);
350    RHS = N.getOperand(1);
351    CC  = N.getOperand(2);
352    return true;
353  }
354  if (N.getOpcode() == ISD::SELECT_CC &&
355      N.getOperand(2).getOpcode() == ISD::Constant &&
356      N.getOperand(3).getOpcode() == ISD::Constant &&
357      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
358      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
359    LHS = N.getOperand(0);
360    RHS = N.getOperand(1);
361    CC  = N.getOperand(4);
362    return true;
363  }
364  return false;
365}
366
367// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
368// one use.  If this is true, it allows the users to invert the operation for
369// free when it is profitable to do so.
370static bool isOneUseSetCC(SDOperand N) {
371  SDOperand N0, N1, N2;
372  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
373    return true;
374  return false;
375}
376
377SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
378  MVT::ValueType VT = N0.getValueType();
379  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
380  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
381  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
382    if (isa<ConstantSDNode>(N1)) {
383      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
384      AddToWorkList(OpNode.Val);
385      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
386    } else if (N0.hasOneUse()) {
387      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
388      AddToWorkList(OpNode.Val);
389      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
390    }
391  }
392  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
393  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
394  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
395    if (isa<ConstantSDNode>(N0)) {
396      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
397      AddToWorkList(OpNode.Val);
398      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
399    } else if (N1.hasOneUse()) {
400      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
401      AddToWorkList(OpNode.Val);
402      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
403    }
404  }
405  return SDOperand();
406}
407
408void DAGCombiner::Run(bool RunningAfterLegalize) {
409  // set the instance variable, so that the various visit routines may use it.
410  AfterLegalize = RunningAfterLegalize;
411
412  // Add all the dag nodes to the worklist.
413  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
414       E = DAG.allnodes_end(); I != E; ++I)
415    WorkList.push_back(I);
416
417  // Create a dummy node (which is not added to allnodes), that adds a reference
418  // to the root node, preventing it from being deleted, and tracking any
419  // changes of the root.
420  HandleSDNode Dummy(DAG.getRoot());
421
422  // The root of the dag may dangle to deleted nodes until the dag combiner is
423  // done.  Set it to null to avoid confusion.
424  DAG.setRoot(SDOperand());
425
426  /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
427  TargetLowering::DAGCombinerInfo
428    DagCombineInfo(DAG, !RunningAfterLegalize, false, this);
429
430  // while the worklist isn't empty, inspect the node on the end of it and
431  // try and combine it.
432  while (!WorkList.empty()) {
433    SDNode *N = WorkList.back();
434    WorkList.pop_back();
435
436    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
437    // N is deleted from the DAG, since they too may now be dead or may have a
438    // reduced number of uses, allowing other xforms.
439    if (N->use_empty() && N != &Dummy) {
440      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
441        AddToWorkList(N->getOperand(i).Val);
442
443      DAG.DeleteNode(N);
444      continue;
445    }
446
447    SDOperand RV = visit(N);
448
449    // If nothing happened, try a target-specific DAG combine.
450    if (RV.Val == 0) {
451      assert(N->getOpcode() != ISD::DELETED_NODE &&
452             "Node was deleted but visit returned NULL!");
453      if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
454          TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
455        RV = TLI.PerformDAGCombine(N, DagCombineInfo);
456    }
457
458    if (RV.Val) {
459      ++NodesCombined;
460      // If we get back the same node we passed in, rather than a new node or
461      // zero, we know that the node must have defined multiple values and
462      // CombineTo was used.  Since CombineTo takes care of the worklist
463      // mechanics for us, we have no work to do in this case.
464      if (RV.Val != N) {
465        assert(N->getOpcode() != ISD::DELETED_NODE &&
466               RV.Val->getOpcode() != ISD::DELETED_NODE &&
467               "Node was deleted but visit returned new node!");
468
469        DOUT << "\nReplacing.3 "; DEBUG(N->dump());
470        DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
471        DOUT << '\n';
472        std::vector<SDNode*> NowDead;
473        if (N->getNumValues() == RV.Val->getNumValues())
474          DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
475        else {
476          assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
477          SDOperand OpV = RV;
478          DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
479        }
480
481        // Push the new node and any users onto the worklist
482        AddToWorkList(RV.Val);
483        AddUsersToWorkList(RV.Val);
484
485        // Nodes can be reintroduced into the worklist.  Make sure we do not
486        // process a node that has been replaced.
487        removeFromWorkList(N);
488        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
489          removeFromWorkList(NowDead[i]);
490
491        // Finally, since the node is now dead, remove it from the graph.
492        DAG.DeleteNode(N);
493      }
494    }
495  }
496
497  // If the root changed (e.g. it was a dead load, update the root).
498  DAG.setRoot(Dummy.getValue());
499}
500
501SDOperand DAGCombiner::visit(SDNode *N) {
502  switch(N->getOpcode()) {
503  default: break;
504  case ISD::TokenFactor:        return visitTokenFactor(N);
505  case ISD::ADD:                return visitADD(N);
506  case ISD::SUB:                return visitSUB(N);
507  case ISD::ADDC:               return visitADDC(N);
508  case ISD::ADDE:               return visitADDE(N);
509  case ISD::MUL:                return visitMUL(N);
510  case ISD::SDIV:               return visitSDIV(N);
511  case ISD::UDIV:               return visitUDIV(N);
512  case ISD::SREM:               return visitSREM(N);
513  case ISD::UREM:               return visitUREM(N);
514  case ISD::MULHU:              return visitMULHU(N);
515  case ISD::MULHS:              return visitMULHS(N);
516  case ISD::AND:                return visitAND(N);
517  case ISD::OR:                 return visitOR(N);
518  case ISD::XOR:                return visitXOR(N);
519  case ISD::SHL:                return visitSHL(N);
520  case ISD::SRA:                return visitSRA(N);
521  case ISD::SRL:                return visitSRL(N);
522  case ISD::CTLZ:               return visitCTLZ(N);
523  case ISD::CTTZ:               return visitCTTZ(N);
524  case ISD::CTPOP:              return visitCTPOP(N);
525  case ISD::SELECT:             return visitSELECT(N);
526  case ISD::SELECT_CC:          return visitSELECT_CC(N);
527  case ISD::SETCC:              return visitSETCC(N);
528  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
529  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
530  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
531  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
532  case ISD::TRUNCATE:           return visitTRUNCATE(N);
533  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
534  case ISD::VBIT_CONVERT:       return visitVBIT_CONVERT(N);
535  case ISD::FADD:               return visitFADD(N);
536  case ISD::FSUB:               return visitFSUB(N);
537  case ISD::FMUL:               return visitFMUL(N);
538  case ISD::FDIV:               return visitFDIV(N);
539  case ISD::FREM:               return visitFREM(N);
540  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
541  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
542  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
543  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
544  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
545  case ISD::FP_ROUND:           return visitFP_ROUND(N);
546  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
547  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
548  case ISD::FNEG:               return visitFNEG(N);
549  case ISD::FABS:               return visitFABS(N);
550  case ISD::BRCOND:             return visitBRCOND(N);
551  case ISD::BR_CC:              return visitBR_CC(N);
552  case ISD::LOAD:               return visitLOAD(N);
553  case ISD::STORE:              return visitSTORE(N);
554  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
555  case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N);
556  case ISD::VBUILD_VECTOR:      return visitVBUILD_VECTOR(N);
557  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
558  case ISD::VVECTOR_SHUFFLE:    return visitVVECTOR_SHUFFLE(N);
559  case ISD::VADD:               return visitVBinOp(N, ISD::ADD , ISD::FADD);
560  case ISD::VSUB:               return visitVBinOp(N, ISD::SUB , ISD::FSUB);
561  case ISD::VMUL:               return visitVBinOp(N, ISD::MUL , ISD::FMUL);
562  case ISD::VSDIV:              return visitVBinOp(N, ISD::SDIV, ISD::FDIV);
563  case ISD::VUDIV:              return visitVBinOp(N, ISD::UDIV, ISD::UDIV);
564  case ISD::VAND:               return visitVBinOp(N, ISD::AND , ISD::AND);
565  case ISD::VOR:                return visitVBinOp(N, ISD::OR  , ISD::OR);
566  case ISD::VXOR:               return visitVBinOp(N, ISD::XOR , ISD::XOR);
567  }
568  return SDOperand();
569}
570
571/// getInputChainForNode - Given a node, return its input chain if it has one,
572/// otherwise return a null sd operand.
573static SDOperand getInputChainForNode(SDNode *N) {
574  if (unsigned NumOps = N->getNumOperands()) {
575    if (N->getOperand(0).getValueType() == MVT::Other)
576      return N->getOperand(0);
577    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
578      return N->getOperand(NumOps-1);
579    for (unsigned i = 1; i < NumOps-1; ++i)
580      if (N->getOperand(i).getValueType() == MVT::Other)
581        return N->getOperand(i);
582  }
583  return SDOperand(0, 0);
584}
585
586SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
587  // If N has two operands, where one has an input chain equal to the other,
588  // the 'other' chain is redundant.
589  if (N->getNumOperands() == 2) {
590    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
591      return N->getOperand(0);
592    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
593      return N->getOperand(1);
594  }
595
596
597  SmallVector<SDNode *, 8> TFs;   // List of token factors to visit.
598  SmallVector<SDOperand, 8> Ops;  // Ops for replacing token factor.
599  bool Changed = false;           // If we should replace this token factor.
600
601  // Start out with this token factor.
602  TFs.push_back(N);
603
604  // Iterate through token factors.  The TFs grows when new token factors are
605  // encountered.
606  for (unsigned i = 0; i < TFs.size(); ++i) {
607    SDNode *TF = TFs[i];
608
609    // Check each of the operands.
610    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
611      SDOperand Op = TF->getOperand(i);
612
613      switch (Op.getOpcode()) {
614      case ISD::EntryToken:
615        // Entry tokens don't need to be added to the list. They are
616        // rededundant.
617        Changed = true;
618        break;
619
620      case ISD::TokenFactor:
621        if ((CombinerAA || Op.hasOneUse()) &&
622            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
623          // Queue up for processing.
624          TFs.push_back(Op.Val);
625          // Clean up in case the token factor is removed.
626          AddToWorkList(Op.Val);
627          Changed = true;
628          break;
629        }
630        // Fall thru
631
632      default:
633        // Only add if not there prior.
634        if (std::find(Ops.begin(), Ops.end(), Op) == Ops.end())
635          Ops.push_back(Op);
636        break;
637      }
638    }
639  }
640
641  SDOperand Result;
642
643  // If we've change things around then replace token factor.
644  if (Changed) {
645    if (Ops.size() == 0) {
646      // The entry token is the only possible outcome.
647      Result = DAG.getEntryNode();
648    } else {
649      // New and improved token factor.
650      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
651    }
652
653    // Don't add users to work list.
654    return CombineTo(N, Result, false);
655  }
656
657  return Result;
658}
659
660static
661SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
662  MVT::ValueType VT = N0.getValueType();
663  SDOperand N00 = N0.getOperand(0);
664  SDOperand N01 = N0.getOperand(1);
665  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
666  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
667      isa<ConstantSDNode>(N00.getOperand(1))) {
668    N0 = DAG.getNode(ISD::ADD, VT,
669                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
670                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
671    return DAG.getNode(ISD::ADD, VT, N0, N1);
672  }
673  return SDOperand();
674}
675
676SDOperand DAGCombiner::visitADD(SDNode *N) {
677  SDOperand N0 = N->getOperand(0);
678  SDOperand N1 = N->getOperand(1);
679  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
680  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
681  MVT::ValueType VT = N0.getValueType();
682
683  // fold (add c1, c2) -> c1+c2
684  if (N0C && N1C)
685    return DAG.getNode(ISD::ADD, VT, N0, N1);
686  // canonicalize constant to RHS
687  if (N0C && !N1C)
688    return DAG.getNode(ISD::ADD, VT, N1, N0);
689  // fold (add x, 0) -> x
690  if (N1C && N1C->isNullValue())
691    return N0;
692  // fold ((c1-A)+c2) -> (c1+c2)-A
693  if (N1C && N0.getOpcode() == ISD::SUB)
694    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
695      return DAG.getNode(ISD::SUB, VT,
696                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
697                         N0.getOperand(1));
698  // reassociate add
699  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
700  if (RADD.Val != 0)
701    return RADD;
702  // fold ((0-A) + B) -> B-A
703  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
704      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
705    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
706  // fold (A + (0-B)) -> A-B
707  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
708      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
709    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
710  // fold (A+(B-A)) -> B
711  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
712    return N1.getOperand(0);
713
714  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
715    return SDOperand(N, 0);
716
717  // fold (a+b) -> (a|b) iff a and b share no bits.
718  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
719    uint64_t LHSZero, LHSOne;
720    uint64_t RHSZero, RHSOne;
721    uint64_t Mask = MVT::getIntVTBitMask(VT);
722    TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
723    if (LHSZero) {
724      TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
725
726      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
727      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
728      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
729          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
730        return DAG.getNode(ISD::OR, VT, N0, N1);
731    }
732  }
733
734  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
735  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
736    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
737    if (Result.Val) return Result;
738  }
739  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
740    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
741    if (Result.Val) return Result;
742  }
743
744  return SDOperand();
745}
746
747SDOperand DAGCombiner::visitADDC(SDNode *N) {
748  SDOperand N0 = N->getOperand(0);
749  SDOperand N1 = N->getOperand(1);
750  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
751  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
752  MVT::ValueType VT = N0.getValueType();
753
754  // If the flag result is dead, turn this into an ADD.
755  if (N->hasNUsesOfValue(0, 1))
756    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
757                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
758
759  // canonicalize constant to RHS.
760  if (N0C && !N1C) {
761    SDOperand Ops[] = { N1, N0 };
762    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
763  }
764
765  // fold (addc x, 0) -> x + no carry out
766  if (N1C && N1C->isNullValue())
767    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
768
769  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
770  uint64_t LHSZero, LHSOne;
771  uint64_t RHSZero, RHSOne;
772  uint64_t Mask = MVT::getIntVTBitMask(VT);
773  TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
774  if (LHSZero) {
775    TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
776
777    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
778    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
779    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
780        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
781      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
782                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
783  }
784
785  return SDOperand();
786}
787
788SDOperand DAGCombiner::visitADDE(SDNode *N) {
789  SDOperand N0 = N->getOperand(0);
790  SDOperand N1 = N->getOperand(1);
791  SDOperand CarryIn = N->getOperand(2);
792  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
793  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
794  //MVT::ValueType VT = N0.getValueType();
795
796  // canonicalize constant to RHS
797  if (N0C && !N1C) {
798    SDOperand Ops[] = { N1, N0, CarryIn };
799    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
800  }
801
802  // fold (adde x, y, false) -> (addc x, y)
803  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
804    SDOperand Ops[] = { N1, N0 };
805    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
806  }
807
808  return SDOperand();
809}
810
811
812
813SDOperand DAGCombiner::visitSUB(SDNode *N) {
814  SDOperand N0 = N->getOperand(0);
815  SDOperand N1 = N->getOperand(1);
816  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
817  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
818  MVT::ValueType VT = N0.getValueType();
819
820  // fold (sub x, x) -> 0
821  if (N0 == N1)
822    return DAG.getConstant(0, N->getValueType(0));
823  // fold (sub c1, c2) -> c1-c2
824  if (N0C && N1C)
825    return DAG.getNode(ISD::SUB, VT, N0, N1);
826  // fold (sub x, c) -> (add x, -c)
827  if (N1C)
828    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
829  // fold (A+B)-A -> B
830  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
831    return N0.getOperand(1);
832  // fold (A+B)-B -> A
833  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
834    return N0.getOperand(0);
835  return SDOperand();
836}
837
838SDOperand DAGCombiner::visitMUL(SDNode *N) {
839  SDOperand N0 = N->getOperand(0);
840  SDOperand N1 = N->getOperand(1);
841  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
842  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
843  MVT::ValueType VT = N0.getValueType();
844
845  // fold (mul c1, c2) -> c1*c2
846  if (N0C && N1C)
847    return DAG.getNode(ISD::MUL, VT, N0, N1);
848  // canonicalize constant to RHS
849  if (N0C && !N1C)
850    return DAG.getNode(ISD::MUL, VT, N1, N0);
851  // fold (mul x, 0) -> 0
852  if (N1C && N1C->isNullValue())
853    return N1;
854  // fold (mul x, -1) -> 0-x
855  if (N1C && N1C->isAllOnesValue())
856    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
857  // fold (mul x, (1 << c)) -> x << c
858  if (N1C && isPowerOf2_64(N1C->getValue()))
859    return DAG.getNode(ISD::SHL, VT, N0,
860                       DAG.getConstant(Log2_64(N1C->getValue()),
861                                       TLI.getShiftAmountTy()));
862  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
863  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
864    // FIXME: If the input is something that is easily negated (e.g. a
865    // single-use add), we should put the negate there.
866    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
867                       DAG.getNode(ISD::SHL, VT, N0,
868                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
869                                            TLI.getShiftAmountTy())));
870  }
871
872  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
873  if (N1C && N0.getOpcode() == ISD::SHL &&
874      isa<ConstantSDNode>(N0.getOperand(1))) {
875    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
876    AddToWorkList(C3.Val);
877    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
878  }
879
880  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
881  // use.
882  {
883    SDOperand Sh(0,0), Y(0,0);
884    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
885    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
886        N0.Val->hasOneUse()) {
887      Sh = N0; Y = N1;
888    } else if (N1.getOpcode() == ISD::SHL &&
889               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
890      Sh = N1; Y = N0;
891    }
892    if (Sh.Val) {
893      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
894      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
895    }
896  }
897  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
898  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
899      isa<ConstantSDNode>(N0.getOperand(1))) {
900    return DAG.getNode(ISD::ADD, VT,
901                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
902                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
903  }
904
905  // reassociate mul
906  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
907  if (RMUL.Val != 0)
908    return RMUL;
909  return SDOperand();
910}
911
912SDOperand DAGCombiner::visitSDIV(SDNode *N) {
913  SDOperand N0 = N->getOperand(0);
914  SDOperand N1 = N->getOperand(1);
915  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
916  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
917  MVT::ValueType VT = N->getValueType(0);
918
919  // fold (sdiv c1, c2) -> c1/c2
920  if (N0C && N1C && !N1C->isNullValue())
921    return DAG.getNode(ISD::SDIV, VT, N0, N1);
922  // fold (sdiv X, 1) -> X
923  if (N1C && N1C->getSignExtended() == 1LL)
924    return N0;
925  // fold (sdiv X, -1) -> 0-X
926  if (N1C && N1C->isAllOnesValue())
927    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
928  // If we know the sign bits of both operands are zero, strength reduce to a
929  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
930  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
931  if (TLI.MaskedValueIsZero(N1, SignBit) &&
932      TLI.MaskedValueIsZero(N0, SignBit))
933    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
934  // fold (sdiv X, pow2) -> simple ops after legalize
935  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
936      (isPowerOf2_64(N1C->getSignExtended()) ||
937       isPowerOf2_64(-N1C->getSignExtended()))) {
938    // If dividing by powers of two is cheap, then don't perform the following
939    // fold.
940    if (TLI.isPow2DivCheap())
941      return SDOperand();
942    int64_t pow2 = N1C->getSignExtended();
943    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
944    unsigned lg2 = Log2_64(abs2);
945    // Splat the sign bit into the register
946    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
947                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
948                                                TLI.getShiftAmountTy()));
949    AddToWorkList(SGN.Val);
950    // Add (N0 < 0) ? abs2 - 1 : 0;
951    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
952                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
953                                                TLI.getShiftAmountTy()));
954    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
955    AddToWorkList(SRL.Val);
956    AddToWorkList(ADD.Val);    // Divide by pow2
957    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
958                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
959    // If we're dividing by a positive value, we're done.  Otherwise, we must
960    // negate the result.
961    if (pow2 > 0)
962      return SRA;
963    AddToWorkList(SRA.Val);
964    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
965  }
966  // if integer divide is expensive and we satisfy the requirements, emit an
967  // alternate sequence.
968  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
969      !TLI.isIntDivCheap()) {
970    SDOperand Op = BuildSDIV(N);
971    if (Op.Val) return Op;
972  }
973  return SDOperand();
974}
975
976SDOperand DAGCombiner::visitUDIV(SDNode *N) {
977  SDOperand N0 = N->getOperand(0);
978  SDOperand N1 = N->getOperand(1);
979  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
980  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
981  MVT::ValueType VT = N->getValueType(0);
982
983  // fold (udiv c1, c2) -> c1/c2
984  if (N0C && N1C && !N1C->isNullValue())
985    return DAG.getNode(ISD::UDIV, VT, N0, N1);
986  // fold (udiv x, (1 << c)) -> x >>u c
987  if (N1C && isPowerOf2_64(N1C->getValue()))
988    return DAG.getNode(ISD::SRL, VT, N0,
989                       DAG.getConstant(Log2_64(N1C->getValue()),
990                                       TLI.getShiftAmountTy()));
991  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
992  if (N1.getOpcode() == ISD::SHL) {
993    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
994      if (isPowerOf2_64(SHC->getValue())) {
995        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
996        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
997                                    DAG.getConstant(Log2_64(SHC->getValue()),
998                                                    ADDVT));
999        AddToWorkList(Add.Val);
1000        return DAG.getNode(ISD::SRL, VT, N0, Add);
1001      }
1002    }
1003  }
1004  // fold (udiv x, c) -> alternate
1005  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1006    SDOperand Op = BuildUDIV(N);
1007    if (Op.Val) return Op;
1008  }
1009  return SDOperand();
1010}
1011
1012SDOperand DAGCombiner::visitSREM(SDNode *N) {
1013  SDOperand N0 = N->getOperand(0);
1014  SDOperand N1 = N->getOperand(1);
1015  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1016  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1017  MVT::ValueType VT = N->getValueType(0);
1018
1019  // fold (srem c1, c2) -> c1%c2
1020  if (N0C && N1C && !N1C->isNullValue())
1021    return DAG.getNode(ISD::SREM, VT, N0, N1);
1022  // If we know the sign bits of both operands are zero, strength reduce to a
1023  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1024  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1025  if (TLI.MaskedValueIsZero(N1, SignBit) &&
1026      TLI.MaskedValueIsZero(N0, SignBit))
1027    return DAG.getNode(ISD::UREM, VT, N0, N1);
1028
1029  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
1030  // the remainder operation.
1031  if (N1C && !N1C->isNullValue()) {
1032    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1033    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1034    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1035    AddToWorkList(Div.Val);
1036    AddToWorkList(Mul.Val);
1037    return Sub;
1038  }
1039
1040  return SDOperand();
1041}
1042
1043SDOperand DAGCombiner::visitUREM(SDNode *N) {
1044  SDOperand N0 = N->getOperand(0);
1045  SDOperand N1 = N->getOperand(1);
1046  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1047  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1048  MVT::ValueType VT = N->getValueType(0);
1049
1050  // fold (urem c1, c2) -> c1%c2
1051  if (N0C && N1C && !N1C->isNullValue())
1052    return DAG.getNode(ISD::UREM, VT, N0, N1);
1053  // fold (urem x, pow2) -> (and x, pow2-1)
1054  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1055    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1056  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1057  if (N1.getOpcode() == ISD::SHL) {
1058    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1059      if (isPowerOf2_64(SHC->getValue())) {
1060        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1061        AddToWorkList(Add.Val);
1062        return DAG.getNode(ISD::AND, VT, N0, Add);
1063      }
1064    }
1065  }
1066
1067  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
1068  // the remainder operation.
1069  if (N1C && !N1C->isNullValue()) {
1070    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1071    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1072    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1073    AddToWorkList(Div.Val);
1074    AddToWorkList(Mul.Val);
1075    return Sub;
1076  }
1077
1078  return SDOperand();
1079}
1080
1081SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1082  SDOperand N0 = N->getOperand(0);
1083  SDOperand N1 = N->getOperand(1);
1084  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1085
1086  // fold (mulhs x, 0) -> 0
1087  if (N1C && N1C->isNullValue())
1088    return N1;
1089  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1090  if (N1C && N1C->getValue() == 1)
1091    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1092                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1093                                       TLI.getShiftAmountTy()));
1094  return SDOperand();
1095}
1096
1097SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1098  SDOperand N0 = N->getOperand(0);
1099  SDOperand N1 = N->getOperand(1);
1100  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1101
1102  // fold (mulhu x, 0) -> 0
1103  if (N1C && N1C->isNullValue())
1104    return N1;
1105  // fold (mulhu x, 1) -> 0
1106  if (N1C && N1C->getValue() == 1)
1107    return DAG.getConstant(0, N0.getValueType());
1108  return SDOperand();
1109}
1110
1111/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1112/// two operands of the same opcode, try to simplify it.
1113SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1114  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1115  MVT::ValueType VT = N0.getValueType();
1116  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1117
1118  // For each of OP in AND/OR/XOR:
1119  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1120  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1121  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1122  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1123  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1124       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1125      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1126    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1127                                   N0.getOperand(0).getValueType(),
1128                                   N0.getOperand(0), N1.getOperand(0));
1129    AddToWorkList(ORNode.Val);
1130    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1131  }
1132
1133  // For each of OP in SHL/SRL/SRA/AND...
1134  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1135  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1136  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1137  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1138       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1139      N0.getOperand(1) == N1.getOperand(1)) {
1140    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1141                                   N0.getOperand(0).getValueType(),
1142                                   N0.getOperand(0), N1.getOperand(0));
1143    AddToWorkList(ORNode.Val);
1144    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1145  }
1146
1147  return SDOperand();
1148}
1149
1150SDOperand DAGCombiner::visitAND(SDNode *N) {
1151  SDOperand N0 = N->getOperand(0);
1152  SDOperand N1 = N->getOperand(1);
1153  SDOperand LL, LR, RL, RR, CC0, CC1;
1154  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1155  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1156  MVT::ValueType VT = N1.getValueType();
1157
1158  // fold (and c1, c2) -> c1&c2
1159  if (N0C && N1C)
1160    return DAG.getNode(ISD::AND, VT, N0, N1);
1161  // canonicalize constant to RHS
1162  if (N0C && !N1C)
1163    return DAG.getNode(ISD::AND, VT, N1, N0);
1164  // fold (and x, -1) -> x
1165  if (N1C && N1C->isAllOnesValue())
1166    return N0;
1167  // if (and x, c) is known to be zero, return 0
1168  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1169    return DAG.getConstant(0, VT);
1170  // reassociate and
1171  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1172  if (RAND.Val != 0)
1173    return RAND;
1174  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1175  if (N1C && N0.getOpcode() == ISD::OR)
1176    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1177      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1178        return N1;
1179  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1180  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1181    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1182    if (TLI.MaskedValueIsZero(N0.getOperand(0),
1183                              ~N1C->getValue() & InMask)) {
1184      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1185                                   N0.getOperand(0));
1186
1187      // Replace uses of the AND with uses of the Zero extend node.
1188      CombineTo(N, Zext);
1189
1190      // We actually want to replace all uses of the any_extend with the
1191      // zero_extend, to avoid duplicating things.  This will later cause this
1192      // AND to be folded.
1193      CombineTo(N0.Val, Zext);
1194      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1195    }
1196  }
1197  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1198  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1199    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1200    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1201
1202    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1203        MVT::isInteger(LL.getValueType())) {
1204      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1205      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1206        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1207        AddToWorkList(ORNode.Val);
1208        return DAG.getSetCC(VT, ORNode, LR, Op1);
1209      }
1210      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1211      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1212        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1213        AddToWorkList(ANDNode.Val);
1214        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1215      }
1216      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1217      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1218        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1219        AddToWorkList(ORNode.Val);
1220        return DAG.getSetCC(VT, ORNode, LR, Op1);
1221      }
1222    }
1223    // canonicalize equivalent to ll == rl
1224    if (LL == RR && LR == RL) {
1225      Op1 = ISD::getSetCCSwappedOperands(Op1);
1226      std::swap(RL, RR);
1227    }
1228    if (LL == RL && LR == RR) {
1229      bool isInteger = MVT::isInteger(LL.getValueType());
1230      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1231      if (Result != ISD::SETCC_INVALID)
1232        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1233    }
1234  }
1235
1236  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1237  if (N0.getOpcode() == N1.getOpcode()) {
1238    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1239    if (Tmp.Val) return Tmp;
1240  }
1241
1242  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1243  // fold (and (sra)) -> (and (srl)) when possible.
1244  if (!MVT::isVector(VT) &&
1245      SimplifyDemandedBits(SDOperand(N, 0)))
1246    return SDOperand(N, 0);
1247  // fold (zext_inreg (extload x)) -> (zextload x)
1248  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1249    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1250    MVT::ValueType EVT = LN0->getLoadedVT();
1251    // If we zero all the possible extended bits, then we can turn this into
1252    // a zextload if we are running before legalize or the operation is legal.
1253    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1254        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1255      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1256                                         LN0->getBasePtr(), LN0->getSrcValue(),
1257                                         LN0->getSrcValueOffset(), EVT);
1258      AddToWorkList(N);
1259      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1260      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1261    }
1262  }
1263  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1264  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1265      N0.hasOneUse()) {
1266    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1267    MVT::ValueType EVT = LN0->getLoadedVT();
1268    // If we zero all the possible extended bits, then we can turn this into
1269    // a zextload if we are running before legalize or the operation is legal.
1270    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1271        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1272      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1273                                         LN0->getBasePtr(), LN0->getSrcValue(),
1274                                         LN0->getSrcValueOffset(), EVT);
1275      AddToWorkList(N);
1276      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1277      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1278    }
1279  }
1280
1281  // fold (and (load x), 255) -> (zextload x, i8)
1282  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1283  if (N1C && N0.getOpcode() == ISD::LOAD) {
1284    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1285    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1286        LN0->getAddressingMode() == ISD::UNINDEXED &&
1287        N0.hasOneUse()) {
1288      MVT::ValueType EVT, LoadedVT;
1289      if (N1C->getValue() == 255)
1290        EVT = MVT::i8;
1291      else if (N1C->getValue() == 65535)
1292        EVT = MVT::i16;
1293      else if (N1C->getValue() == ~0U)
1294        EVT = MVT::i32;
1295      else
1296        EVT = MVT::Other;
1297
1298      LoadedVT = LN0->getLoadedVT();
1299      if (EVT != MVT::Other && LoadedVT > EVT &&
1300          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1301        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1302        // For big endian targets, we need to add an offset to the pointer to
1303        // load the correct bytes.  For little endian systems, we merely need to
1304        // read fewer bytes from the same pointer.
1305        unsigned PtrOff =
1306          (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
1307        SDOperand NewPtr = LN0->getBasePtr();
1308        if (!TLI.isLittleEndian())
1309          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1310                               DAG.getConstant(PtrOff, PtrType));
1311        AddToWorkList(NewPtr.Val);
1312        SDOperand Load =
1313          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1314                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT);
1315        AddToWorkList(N);
1316        CombineTo(N0.Val, Load, Load.getValue(1));
1317        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1318      }
1319    }
1320  }
1321
1322  return SDOperand();
1323}
1324
1325SDOperand DAGCombiner::visitOR(SDNode *N) {
1326  SDOperand N0 = N->getOperand(0);
1327  SDOperand N1 = N->getOperand(1);
1328  SDOperand LL, LR, RL, RR, CC0, CC1;
1329  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1330  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1331  MVT::ValueType VT = N1.getValueType();
1332  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1333
1334  // fold (or c1, c2) -> c1|c2
1335  if (N0C && N1C)
1336    return DAG.getNode(ISD::OR, VT, N0, N1);
1337  // canonicalize constant to RHS
1338  if (N0C && !N1C)
1339    return DAG.getNode(ISD::OR, VT, N1, N0);
1340  // fold (or x, 0) -> x
1341  if (N1C && N1C->isNullValue())
1342    return N0;
1343  // fold (or x, -1) -> -1
1344  if (N1C && N1C->isAllOnesValue())
1345    return N1;
1346  // fold (or x, c) -> c iff (x & ~c) == 0
1347  if (N1C &&
1348      TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1349    return N1;
1350  // reassociate or
1351  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1352  if (ROR.Val != 0)
1353    return ROR;
1354  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1355  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1356             isa<ConstantSDNode>(N0.getOperand(1))) {
1357    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1358    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1359                                                 N1),
1360                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1361  }
1362  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1363  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1364    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1365    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1366
1367    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1368        MVT::isInteger(LL.getValueType())) {
1369      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1370      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1371      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1372          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1373        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1374        AddToWorkList(ORNode.Val);
1375        return DAG.getSetCC(VT, ORNode, LR, Op1);
1376      }
1377      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1378      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1379      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1380          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1381        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1382        AddToWorkList(ANDNode.Val);
1383        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1384      }
1385    }
1386    // canonicalize equivalent to ll == rl
1387    if (LL == RR && LR == RL) {
1388      Op1 = ISD::getSetCCSwappedOperands(Op1);
1389      std::swap(RL, RR);
1390    }
1391    if (LL == RL && LR == RR) {
1392      bool isInteger = MVT::isInteger(LL.getValueType());
1393      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1394      if (Result != ISD::SETCC_INVALID)
1395        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1396    }
1397  }
1398
1399  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1400  if (N0.getOpcode() == N1.getOpcode()) {
1401    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1402    if (Tmp.Val) return Tmp;
1403  }
1404
1405  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1406  if (N0.getOpcode() == ISD::AND &&
1407      N1.getOpcode() == ISD::AND &&
1408      N0.getOperand(1).getOpcode() == ISD::Constant &&
1409      N1.getOperand(1).getOpcode() == ISD::Constant &&
1410      // Don't increase # computations.
1411      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1412    // We can only do this xform if we know that bits from X that are set in C2
1413    // but not in C1 are already zero.  Likewise for Y.
1414    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1415    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1416
1417    if (TLI.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1418        TLI.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1419      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1420      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1421    }
1422  }
1423
1424
1425  // See if this is some rotate idiom.
1426  if (SDNode *Rot = MatchRotate(N0, N1))
1427    return SDOperand(Rot, 0);
1428
1429  return SDOperand();
1430}
1431
1432
1433/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1434static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1435  if (Op.getOpcode() == ISD::AND) {
1436    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1437      Mask = Op.getOperand(1);
1438      Op = Op.getOperand(0);
1439    } else {
1440      return false;
1441    }
1442  }
1443
1444  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1445    Shift = Op;
1446    return true;
1447  }
1448  return false;
1449}
1450
1451
1452// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1453// idioms for rotate, and if the target supports rotation instructions, generate
1454// a rot[lr].
1455SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1456  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1457  MVT::ValueType VT = LHS.getValueType();
1458  if (!TLI.isTypeLegal(VT)) return 0;
1459
1460  // The target must have at least one rotate flavor.
1461  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1462  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1463  if (!HasROTL && !HasROTR) return 0;
1464
1465  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1466  SDOperand LHSShift;   // The shift.
1467  SDOperand LHSMask;    // AND value if any.
1468  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1469    return 0; // Not part of a rotate.
1470
1471  SDOperand RHSShift;   // The shift.
1472  SDOperand RHSMask;    // AND value if any.
1473  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1474    return 0; // Not part of a rotate.
1475
1476  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1477    return 0;   // Not shifting the same value.
1478
1479  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1480    return 0;   // Shifts must disagree.
1481
1482  // Canonicalize shl to left side in a shl/srl pair.
1483  if (RHSShift.getOpcode() == ISD::SHL) {
1484    std::swap(LHS, RHS);
1485    std::swap(LHSShift, RHSShift);
1486    std::swap(LHSMask , RHSMask );
1487  }
1488
1489  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1490
1491  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1492  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1493  if (LHSShift.getOperand(1).getOpcode() == ISD::Constant &&
1494      RHSShift.getOperand(1).getOpcode() == ISD::Constant) {
1495    uint64_t LShVal = cast<ConstantSDNode>(LHSShift.getOperand(1))->getValue();
1496    uint64_t RShVal = cast<ConstantSDNode>(RHSShift.getOperand(1))->getValue();
1497    if ((LShVal + RShVal) != OpSizeInBits)
1498      return 0;
1499
1500    SDOperand Rot;
1501    if (HasROTL)
1502      Rot = DAG.getNode(ISD::ROTL, VT, LHSShift.getOperand(0),
1503                        LHSShift.getOperand(1));
1504    else
1505      Rot = DAG.getNode(ISD::ROTR, VT, LHSShift.getOperand(0),
1506                        RHSShift.getOperand(1));
1507
1508    // If there is an AND of either shifted operand, apply it to the result.
1509    if (LHSMask.Val || RHSMask.Val) {
1510      uint64_t Mask = MVT::getIntVTBitMask(VT);
1511
1512      if (LHSMask.Val) {
1513        uint64_t RHSBits = (1ULL << LShVal)-1;
1514        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1515      }
1516      if (RHSMask.Val) {
1517        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1518        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1519      }
1520
1521      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1522    }
1523
1524    return Rot.Val;
1525  }
1526
1527  // If there is a mask here, and we have a variable shift, we can't be sure
1528  // that we're masking out the right stuff.
1529  if (LHSMask.Val || RHSMask.Val)
1530    return 0;
1531
1532  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1533  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1534  if (RHSShift.getOperand(1).getOpcode() == ISD::SUB &&
1535      LHSShift.getOperand(1) == RHSShift.getOperand(1).getOperand(1)) {
1536    if (ConstantSDNode *SUBC =
1537          dyn_cast<ConstantSDNode>(RHSShift.getOperand(1).getOperand(0))) {
1538      if (SUBC->getValue() == OpSizeInBits)
1539        if (HasROTL)
1540          return DAG.getNode(ISD::ROTL, VT, LHSShift.getOperand(0),
1541                             LHSShift.getOperand(1)).Val;
1542        else
1543          return DAG.getNode(ISD::ROTR, VT, LHSShift.getOperand(0),
1544                             LHSShift.getOperand(1)).Val;
1545    }
1546  }
1547
1548  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1549  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1550  if (LHSShift.getOperand(1).getOpcode() == ISD::SUB &&
1551      RHSShift.getOperand(1) == LHSShift.getOperand(1).getOperand(1)) {
1552    if (ConstantSDNode *SUBC =
1553          dyn_cast<ConstantSDNode>(LHSShift.getOperand(1).getOperand(0))) {
1554      if (SUBC->getValue() == OpSizeInBits)
1555        if (HasROTL)
1556          return DAG.getNode(ISD::ROTL, VT, LHSShift.getOperand(0),
1557                             LHSShift.getOperand(1)).Val;
1558        else
1559          return DAG.getNode(ISD::ROTR, VT, LHSShift.getOperand(0),
1560                             RHSShift.getOperand(1)).Val;
1561    }
1562  }
1563
1564  return 0;
1565}
1566
1567
1568SDOperand DAGCombiner::visitXOR(SDNode *N) {
1569  SDOperand N0 = N->getOperand(0);
1570  SDOperand N1 = N->getOperand(1);
1571  SDOperand LHS, RHS, CC;
1572  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1573  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1574  MVT::ValueType VT = N0.getValueType();
1575
1576  // fold (xor c1, c2) -> c1^c2
1577  if (N0C && N1C)
1578    return DAG.getNode(ISD::XOR, VT, N0, N1);
1579  // canonicalize constant to RHS
1580  if (N0C && !N1C)
1581    return DAG.getNode(ISD::XOR, VT, N1, N0);
1582  // fold (xor x, 0) -> x
1583  if (N1C && N1C->isNullValue())
1584    return N0;
1585  // reassociate xor
1586  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
1587  if (RXOR.Val != 0)
1588    return RXOR;
1589  // fold !(x cc y) -> (x !cc y)
1590  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
1591    bool isInt = MVT::isInteger(LHS.getValueType());
1592    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
1593                                               isInt);
1594    if (N0.getOpcode() == ISD::SETCC)
1595      return DAG.getSetCC(VT, LHS, RHS, NotCC);
1596    if (N0.getOpcode() == ISD::SELECT_CC)
1597      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
1598    assert(0 && "Unhandled SetCC Equivalent!");
1599    abort();
1600  }
1601  // fold !(x or y) -> (!x and !y) iff x or y are setcc
1602  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
1603      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1604    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1605    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
1606      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1607      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1608      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1609      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1610      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1611    }
1612  }
1613  // fold !(x or y) -> (!x and !y) iff x or y are constants
1614  if (N1C && N1C->isAllOnesValue() &&
1615      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1616    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1617    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
1618      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1619      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1620      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1621      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1622      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1623    }
1624  }
1625  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
1626  if (N1C && N0.getOpcode() == ISD::XOR) {
1627    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
1628    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1629    if (N00C)
1630      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
1631                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
1632    if (N01C)
1633      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
1634                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
1635  }
1636  // fold (xor x, x) -> 0
1637  if (N0 == N1) {
1638    if (!MVT::isVector(VT)) {
1639      return DAG.getConstant(0, VT);
1640    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1641      // Produce a vector of zeros.
1642      SDOperand El = DAG.getConstant(0, MVT::getVectorBaseType(VT));
1643      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
1644      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1645    }
1646  }
1647
1648  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
1649  if (N0.getOpcode() == N1.getOpcode()) {
1650    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1651    if (Tmp.Val) return Tmp;
1652  }
1653
1654  // Simplify the expression using non-local knowledge.
1655  if (!MVT::isVector(VT) &&
1656      SimplifyDemandedBits(SDOperand(N, 0)))
1657    return SDOperand(N, 0);
1658
1659  return SDOperand();
1660}
1661
1662SDOperand DAGCombiner::visitSHL(SDNode *N) {
1663  SDOperand N0 = N->getOperand(0);
1664  SDOperand N1 = N->getOperand(1);
1665  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1666  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1667  MVT::ValueType VT = N0.getValueType();
1668  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1669
1670  // fold (shl c1, c2) -> c1<<c2
1671  if (N0C && N1C)
1672    return DAG.getNode(ISD::SHL, VT, N0, N1);
1673  // fold (shl 0, x) -> 0
1674  if (N0C && N0C->isNullValue())
1675    return N0;
1676  // fold (shl x, c >= size(x)) -> undef
1677  if (N1C && N1C->getValue() >= OpSizeInBits)
1678    return DAG.getNode(ISD::UNDEF, VT);
1679  // fold (shl x, 0) -> x
1680  if (N1C && N1C->isNullValue())
1681    return N0;
1682  // if (shl x, c) is known to be zero, return 0
1683  if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1684    return DAG.getConstant(0, VT);
1685  if (SimplifyDemandedBits(SDOperand(N, 0)))
1686    return SDOperand(N, 0);
1687  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
1688  if (N1C && N0.getOpcode() == ISD::SHL &&
1689      N0.getOperand(1).getOpcode() == ISD::Constant) {
1690    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1691    uint64_t c2 = N1C->getValue();
1692    if (c1 + c2 > OpSizeInBits)
1693      return DAG.getConstant(0, VT);
1694    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
1695                       DAG.getConstant(c1 + c2, N1.getValueType()));
1696  }
1697  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
1698  //                               (srl (and x, -1 << c1), c1-c2)
1699  if (N1C && N0.getOpcode() == ISD::SRL &&
1700      N0.getOperand(1).getOpcode() == ISD::Constant) {
1701    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1702    uint64_t c2 = N1C->getValue();
1703    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1704                                 DAG.getConstant(~0ULL << c1, VT));
1705    if (c2 > c1)
1706      return DAG.getNode(ISD::SHL, VT, Mask,
1707                         DAG.getConstant(c2-c1, N1.getValueType()));
1708    else
1709      return DAG.getNode(ISD::SRL, VT, Mask,
1710                         DAG.getConstant(c1-c2, N1.getValueType()));
1711  }
1712  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
1713  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
1714    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1715                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
1716  return SDOperand();
1717}
1718
1719SDOperand DAGCombiner::visitSRA(SDNode *N) {
1720  SDOperand N0 = N->getOperand(0);
1721  SDOperand N1 = N->getOperand(1);
1722  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1723  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1724  MVT::ValueType VT = N0.getValueType();
1725
1726  // fold (sra c1, c2) -> c1>>c2
1727  if (N0C && N1C)
1728    return DAG.getNode(ISD::SRA, VT, N0, N1);
1729  // fold (sra 0, x) -> 0
1730  if (N0C && N0C->isNullValue())
1731    return N0;
1732  // fold (sra -1, x) -> -1
1733  if (N0C && N0C->isAllOnesValue())
1734    return N0;
1735  // fold (sra x, c >= size(x)) -> undef
1736  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
1737    return DAG.getNode(ISD::UNDEF, VT);
1738  // fold (sra x, 0) -> x
1739  if (N1C && N1C->isNullValue())
1740    return N0;
1741  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
1742  // sext_inreg.
1743  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
1744    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
1745    MVT::ValueType EVT;
1746    switch (LowBits) {
1747    default: EVT = MVT::Other; break;
1748    case  1: EVT = MVT::i1;    break;
1749    case  8: EVT = MVT::i8;    break;
1750    case 16: EVT = MVT::i16;   break;
1751    case 32: EVT = MVT::i32;   break;
1752    }
1753    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
1754      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1755                         DAG.getValueType(EVT));
1756  }
1757
1758  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
1759  if (N1C && N0.getOpcode() == ISD::SRA) {
1760    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1761      unsigned Sum = N1C->getValue() + C1->getValue();
1762      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
1763      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
1764                         DAG.getConstant(Sum, N1C->getValueType(0)));
1765    }
1766  }
1767
1768  // Simplify, based on bits shifted out of the LHS.
1769  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
1770    return SDOperand(N, 0);
1771
1772
1773  // If the sign bit is known to be zero, switch this to a SRL.
1774  if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
1775    return DAG.getNode(ISD::SRL, VT, N0, N1);
1776  return SDOperand();
1777}
1778
1779SDOperand DAGCombiner::visitSRL(SDNode *N) {
1780  SDOperand N0 = N->getOperand(0);
1781  SDOperand N1 = N->getOperand(1);
1782  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1783  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1784  MVT::ValueType VT = N0.getValueType();
1785  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1786
1787  // fold (srl c1, c2) -> c1 >>u c2
1788  if (N0C && N1C)
1789    return DAG.getNode(ISD::SRL, VT, N0, N1);
1790  // fold (srl 0, x) -> 0
1791  if (N0C && N0C->isNullValue())
1792    return N0;
1793  // fold (srl x, c >= size(x)) -> undef
1794  if (N1C && N1C->getValue() >= OpSizeInBits)
1795    return DAG.getNode(ISD::UNDEF, VT);
1796  // fold (srl x, 0) -> x
1797  if (N1C && N1C->isNullValue())
1798    return N0;
1799  // if (srl x, c) is known to be zero, return 0
1800  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
1801    return DAG.getConstant(0, VT);
1802  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
1803  if (N1C && N0.getOpcode() == ISD::SRL &&
1804      N0.getOperand(1).getOpcode() == ISD::Constant) {
1805    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1806    uint64_t c2 = N1C->getValue();
1807    if (c1 + c2 > OpSizeInBits)
1808      return DAG.getConstant(0, VT);
1809    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
1810                       DAG.getConstant(c1 + c2, N1.getValueType()));
1811  }
1812
1813  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
1814  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1815    // Shifting in all undef bits?
1816    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
1817    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
1818      return DAG.getNode(ISD::UNDEF, VT);
1819
1820    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
1821    AddToWorkList(SmallShift.Val);
1822    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
1823  }
1824
1825  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
1826  // bit, which is unmodified by sra.
1827  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
1828    if (N0.getOpcode() == ISD::SRA)
1829      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
1830  }
1831
1832  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
1833  if (N1C && N0.getOpcode() == ISD::CTLZ &&
1834      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
1835    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
1836    TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
1837
1838    // If any of the input bits are KnownOne, then the input couldn't be all
1839    // zeros, thus the result of the srl will always be zero.
1840    if (KnownOne) return DAG.getConstant(0, VT);
1841
1842    // If all of the bits input the to ctlz node are known to be zero, then
1843    // the result of the ctlz is "32" and the result of the shift is one.
1844    uint64_t UnknownBits = ~KnownZero & Mask;
1845    if (UnknownBits == 0) return DAG.getConstant(1, VT);
1846
1847    // Otherwise, check to see if there is exactly one bit input to the ctlz.
1848    if ((UnknownBits & (UnknownBits-1)) == 0) {
1849      // Okay, we know that only that the single bit specified by UnknownBits
1850      // could be set on input to the CTLZ node.  If this bit is set, the SRL
1851      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
1852      // to an SRL,XOR pair, which is likely to simplify more.
1853      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
1854      SDOperand Op = N0.getOperand(0);
1855      if (ShAmt) {
1856        Op = DAG.getNode(ISD::SRL, VT, Op,
1857                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
1858        AddToWorkList(Op.Val);
1859      }
1860      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
1861    }
1862  }
1863
1864  return SDOperand();
1865}
1866
1867SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
1868  SDOperand N0 = N->getOperand(0);
1869  MVT::ValueType VT = N->getValueType(0);
1870
1871  // fold (ctlz c1) -> c2
1872  if (isa<ConstantSDNode>(N0))
1873    return DAG.getNode(ISD::CTLZ, VT, N0);
1874  return SDOperand();
1875}
1876
1877SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
1878  SDOperand N0 = N->getOperand(0);
1879  MVT::ValueType VT = N->getValueType(0);
1880
1881  // fold (cttz c1) -> c2
1882  if (isa<ConstantSDNode>(N0))
1883    return DAG.getNode(ISD::CTTZ, VT, N0);
1884  return SDOperand();
1885}
1886
1887SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
1888  SDOperand N0 = N->getOperand(0);
1889  MVT::ValueType VT = N->getValueType(0);
1890
1891  // fold (ctpop c1) -> c2
1892  if (isa<ConstantSDNode>(N0))
1893    return DAG.getNode(ISD::CTPOP, VT, N0);
1894  return SDOperand();
1895}
1896
1897SDOperand DAGCombiner::visitSELECT(SDNode *N) {
1898  SDOperand N0 = N->getOperand(0);
1899  SDOperand N1 = N->getOperand(1);
1900  SDOperand N2 = N->getOperand(2);
1901  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1902  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1903  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1904  MVT::ValueType VT = N->getValueType(0);
1905
1906  // fold select C, X, X -> X
1907  if (N1 == N2)
1908    return N1;
1909  // fold select true, X, Y -> X
1910  if (N0C && !N0C->isNullValue())
1911    return N1;
1912  // fold select false, X, Y -> Y
1913  if (N0C && N0C->isNullValue())
1914    return N2;
1915  // fold select C, 1, X -> C | X
1916  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
1917    return DAG.getNode(ISD::OR, VT, N0, N2);
1918  // fold select C, 0, X -> ~C & X
1919  // FIXME: this should check for C type == X type, not i1?
1920  if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
1921    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1922    AddToWorkList(XORNode.Val);
1923    return DAG.getNode(ISD::AND, VT, XORNode, N2);
1924  }
1925  // fold select C, X, 1 -> ~C | X
1926  if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
1927    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1928    AddToWorkList(XORNode.Val);
1929    return DAG.getNode(ISD::OR, VT, XORNode, N1);
1930  }
1931  // fold select C, X, 0 -> C & X
1932  // FIXME: this should check for C type == X type, not i1?
1933  if (MVT::i1 == VT && N2C && N2C->isNullValue())
1934    return DAG.getNode(ISD::AND, VT, N0, N1);
1935  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
1936  if (MVT::i1 == VT && N0 == N1)
1937    return DAG.getNode(ISD::OR, VT, N0, N2);
1938  // fold X ? Y : X --> X ? Y : 0 --> X & Y
1939  if (MVT::i1 == VT && N0 == N2)
1940    return DAG.getNode(ISD::AND, VT, N0, N1);
1941
1942  // If we can fold this based on the true/false value, do so.
1943  if (SimplifySelectOps(N, N1, N2))
1944    return SDOperand(N, 0);  // Don't revisit N.
1945
1946  // fold selects based on a setcc into other things, such as min/max/abs
1947  if (N0.getOpcode() == ISD::SETCC)
1948    // FIXME:
1949    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
1950    // having to say they don't support SELECT_CC on every type the DAG knows
1951    // about, since there is no way to mark an opcode illegal at all value types
1952    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
1953      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
1954                         N1, N2, N0.getOperand(2));
1955    else
1956      return SimplifySelect(N0, N1, N2);
1957  return SDOperand();
1958}
1959
1960SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
1961  SDOperand N0 = N->getOperand(0);
1962  SDOperand N1 = N->getOperand(1);
1963  SDOperand N2 = N->getOperand(2);
1964  SDOperand N3 = N->getOperand(3);
1965  SDOperand N4 = N->getOperand(4);
1966  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
1967
1968  // fold select_cc lhs, rhs, x, x, cc -> x
1969  if (N2 == N3)
1970    return N2;
1971
1972  // Determine if the condition we're dealing with is constant
1973  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
1974  if (SCC.Val) AddToWorkList(SCC.Val);
1975
1976  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
1977    if (SCCC->getValue())
1978      return N2;    // cond always true -> true val
1979    else
1980      return N3;    // cond always false -> false val
1981  }
1982
1983  // Fold to a simpler select_cc
1984  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
1985    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
1986                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
1987                       SCC.getOperand(2));
1988
1989  // If we can fold this based on the true/false value, do so.
1990  if (SimplifySelectOps(N, N2, N3))
1991    return SDOperand(N, 0);  // Don't revisit N.
1992
1993  // fold select_cc into other things, such as min/max/abs
1994  return SimplifySelectCC(N0, N1, N2, N3, CC);
1995}
1996
1997SDOperand DAGCombiner::visitSETCC(SDNode *N) {
1998  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
1999                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2000}
2001
2002SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2003  SDOperand N0 = N->getOperand(0);
2004  MVT::ValueType VT = N->getValueType(0);
2005
2006  // fold (sext c1) -> c1
2007  if (isa<ConstantSDNode>(N0))
2008    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2009
2010  // fold (sext (sext x)) -> (sext x)
2011  // fold (sext (aext x)) -> (sext x)
2012  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2013    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2014
2015  if (N0.getOpcode() == ISD::TRUNCATE) {
2016    // See if the value being truncated is already sign extended.  If so, just
2017    // eliminate the trunc/sext pair.
2018    SDOperand Op = N0.getOperand(0);
2019    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2020    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2021    unsigned DestBits = MVT::getSizeInBits(VT);
2022    unsigned NumSignBits = TLI.ComputeNumSignBits(Op);
2023
2024    if (OpBits == DestBits) {
2025      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2026      // bits, it is already ready.
2027      if (NumSignBits > DestBits-MidBits)
2028        return Op;
2029    } else if (OpBits < DestBits) {
2030      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2031      // bits, just sext from i32.
2032      if (NumSignBits > OpBits-MidBits)
2033        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2034    } else {
2035      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2036      // bits, just truncate to i32.
2037      if (NumSignBits > OpBits-MidBits)
2038        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2039    }
2040
2041    // fold (sext (truncate x)) -> (sextinreg x).
2042    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2043                                               N0.getValueType())) {
2044      if (Op.getValueType() < VT)
2045        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2046      else if (Op.getValueType() > VT)
2047        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2048      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2049                         DAG.getValueType(N0.getValueType()));
2050    }
2051  }
2052
2053  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2054  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2055      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2056    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2057    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2058                                       LN0->getBasePtr(), LN0->getSrcValue(),
2059                                       LN0->getSrcValueOffset(),
2060                                       N0.getValueType());
2061    CombineTo(N, ExtLoad);
2062    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2063              ExtLoad.getValue(1));
2064    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2065  }
2066
2067  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2068  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2069  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2070      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2071    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2072    MVT::ValueType EVT = LN0->getLoadedVT();
2073    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2074      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2075                                         LN0->getBasePtr(), LN0->getSrcValue(),
2076                                         LN0->getSrcValueOffset(), EVT);
2077      CombineTo(N, ExtLoad);
2078      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2079                ExtLoad.getValue(1));
2080      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2081    }
2082  }
2083
2084  return SDOperand();
2085}
2086
2087SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2088  SDOperand N0 = N->getOperand(0);
2089  MVT::ValueType VT = N->getValueType(0);
2090
2091  // fold (zext c1) -> c1
2092  if (isa<ConstantSDNode>(N0))
2093    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2094  // fold (zext (zext x)) -> (zext x)
2095  // fold (zext (aext x)) -> (zext x)
2096  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2097    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2098
2099  // fold (zext (truncate x)) -> (and x, mask)
2100  if (N0.getOpcode() == ISD::TRUNCATE &&
2101      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2102    SDOperand Op = N0.getOperand(0);
2103    if (Op.getValueType() < VT) {
2104      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2105    } else if (Op.getValueType() > VT) {
2106      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2107    }
2108    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2109  }
2110
2111  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2112  if (N0.getOpcode() == ISD::AND &&
2113      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2114      N0.getOperand(1).getOpcode() == ISD::Constant) {
2115    SDOperand X = N0.getOperand(0).getOperand(0);
2116    if (X.getValueType() < VT) {
2117      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2118    } else if (X.getValueType() > VT) {
2119      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2120    }
2121    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2122    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2123  }
2124
2125  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2126  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2127      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2128    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2129    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2130                                       LN0->getBasePtr(), LN0->getSrcValue(),
2131                                       LN0->getSrcValueOffset(),
2132                                       N0.getValueType());
2133    CombineTo(N, ExtLoad);
2134    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2135              ExtLoad.getValue(1));
2136    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2137  }
2138
2139  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2140  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2141  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2142      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2143    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2144    MVT::ValueType EVT = LN0->getLoadedVT();
2145    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2146                                       LN0->getBasePtr(), LN0->getSrcValue(),
2147                                       LN0->getSrcValueOffset(), EVT);
2148    CombineTo(N, ExtLoad);
2149    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2150              ExtLoad.getValue(1));
2151    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2152  }
2153  return SDOperand();
2154}
2155
2156SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2157  SDOperand N0 = N->getOperand(0);
2158  MVT::ValueType VT = N->getValueType(0);
2159
2160  // fold (aext c1) -> c1
2161  if (isa<ConstantSDNode>(N0))
2162    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2163  // fold (aext (aext x)) -> (aext x)
2164  // fold (aext (zext x)) -> (zext x)
2165  // fold (aext (sext x)) -> (sext x)
2166  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2167      N0.getOpcode() == ISD::ZERO_EXTEND ||
2168      N0.getOpcode() == ISD::SIGN_EXTEND)
2169    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2170
2171  // fold (aext (truncate x))
2172  if (N0.getOpcode() == ISD::TRUNCATE) {
2173    SDOperand TruncOp = N0.getOperand(0);
2174    if (TruncOp.getValueType() == VT)
2175      return TruncOp; // x iff x size == zext size.
2176    if (TruncOp.getValueType() > VT)
2177      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2178    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2179  }
2180
2181  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2182  if (N0.getOpcode() == ISD::AND &&
2183      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2184      N0.getOperand(1).getOpcode() == ISD::Constant) {
2185    SDOperand X = N0.getOperand(0).getOperand(0);
2186    if (X.getValueType() < VT) {
2187      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2188    } else if (X.getValueType() > VT) {
2189      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2190    }
2191    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2192    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2193  }
2194
2195  // fold (aext (load x)) -> (aext (truncate (extload x)))
2196  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2197      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2198    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2199    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2200                                       LN0->getBasePtr(), LN0->getSrcValue(),
2201                                       LN0->getSrcValueOffset(),
2202                                       N0.getValueType());
2203    CombineTo(N, ExtLoad);
2204    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2205              ExtLoad.getValue(1));
2206    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2207  }
2208
2209  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2210  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2211  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
2212  if (N0.getOpcode() == ISD::LOAD &&
2213      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2214      N0.hasOneUse()) {
2215    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2216    MVT::ValueType EVT = LN0->getLoadedVT();
2217    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
2218                                       LN0->getChain(), LN0->getBasePtr(),
2219                                       LN0->getSrcValue(),
2220                                       LN0->getSrcValueOffset(), EVT);
2221    CombineTo(N, ExtLoad);
2222    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2223              ExtLoad.getValue(1));
2224    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2225  }
2226  return SDOperand();
2227}
2228
2229
2230SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
2231  SDOperand N0 = N->getOperand(0);
2232  SDOperand N1 = N->getOperand(1);
2233  MVT::ValueType VT = N->getValueType(0);
2234  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
2235  unsigned EVTBits = MVT::getSizeInBits(EVT);
2236
2237  // fold (sext_in_reg c1) -> c1
2238  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
2239    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
2240
2241  // If the input is already sign extended, just drop the extension.
2242  if (TLI.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
2243    return N0;
2244
2245  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
2246  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2247      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
2248    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
2249  }
2250
2251  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero
2252  if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
2253    return DAG.getZeroExtendInReg(N0, EVT);
2254
2255  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
2256  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
2257  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
2258  if (N0.getOpcode() == ISD::SRL) {
2259    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2260      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
2261        // We can turn this into an SRA iff the input to the SRL is already sign
2262        // extended enough.
2263        unsigned InSignBits = TLI.ComputeNumSignBits(N0.getOperand(0));
2264        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
2265          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
2266      }
2267  }
2268
2269  // fold (sext_inreg (extload x)) -> (sextload x)
2270  if (ISD::isEXTLoad(N0.Val) &&
2271      ISD::isUNINDEXEDLoad(N0.Val) &&
2272      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2273      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2274    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2275    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2276                                       LN0->getBasePtr(), LN0->getSrcValue(),
2277                                       LN0->getSrcValueOffset(), EVT);
2278    CombineTo(N, ExtLoad);
2279    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2280    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2281  }
2282  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
2283  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2284      N0.hasOneUse() &&
2285      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2286      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2287    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2288    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2289                                       LN0->getBasePtr(), LN0->getSrcValue(),
2290                                       LN0->getSrcValueOffset(), EVT);
2291    CombineTo(N, ExtLoad);
2292    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2293    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2294  }
2295  return SDOperand();
2296}
2297
2298SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
2299  SDOperand N0 = N->getOperand(0);
2300  MVT::ValueType VT = N->getValueType(0);
2301
2302  // noop truncate
2303  if (N0.getValueType() == N->getValueType(0))
2304    return N0;
2305  // fold (truncate c1) -> c1
2306  if (isa<ConstantSDNode>(N0))
2307    return DAG.getNode(ISD::TRUNCATE, VT, N0);
2308  // fold (truncate (truncate x)) -> (truncate x)
2309  if (N0.getOpcode() == ISD::TRUNCATE)
2310    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2311  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
2312  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
2313      N0.getOpcode() == ISD::ANY_EXTEND) {
2314    if (N0.getOperand(0).getValueType() < VT)
2315      // if the source is smaller than the dest, we still need an extend
2316      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2317    else if (N0.getOperand(0).getValueType() > VT)
2318      // if the source is larger than the dest, than we just need the truncate
2319      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2320    else
2321      // if the source and dest are the same type, we can drop both the extend
2322      // and the truncate
2323      return N0.getOperand(0);
2324  }
2325  // fold (truncate (load x)) -> (smaller load x)
2326  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2327      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
2328      // zero extended form: by shrinking the load, we lose track of the fact
2329      // that it is already zero extended.
2330      // FIXME: This should be reevaluated.
2331      VT != MVT::i1) {
2332    assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) &&
2333           "Cannot truncate to larger type!");
2334    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2335    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
2336    // For big endian targets, we need to add an offset to the pointer to load
2337    // the correct bytes.  For little endian systems, we merely need to read
2338    // fewer bytes from the same pointer.
2339    uint64_t PtrOff =
2340      (MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8;
2341    SDOperand NewPtr = TLI.isLittleEndian() ? LN0->getBasePtr() :
2342      DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
2343                  DAG.getConstant(PtrOff, PtrType));
2344    AddToWorkList(NewPtr.Val);
2345    SDOperand Load = DAG.getLoad(VT, LN0->getChain(), NewPtr,
2346                                 LN0->getSrcValue(), LN0->getSrcValueOffset());
2347    AddToWorkList(N);
2348    CombineTo(N0.Val, Load, Load.getValue(1));
2349    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2350  }
2351  return SDOperand();
2352}
2353
2354SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
2355  SDOperand N0 = N->getOperand(0);
2356  MVT::ValueType VT = N->getValueType(0);
2357
2358  // If the input is a constant, let getNode() fold it.
2359  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
2360    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2361    if (Res.Val != N) return Res;
2362  }
2363
2364  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
2365    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
2366
2367  // fold (conv (load x)) -> (load (conv*)x)
2368  // FIXME: These xforms need to know that the resultant load doesn't need a
2369  // higher alignment than the original!
2370  if (0 && ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse()) {
2371    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2372    SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
2373                                 LN0->getSrcValue(), LN0->getSrcValueOffset());
2374    AddToWorkList(N);
2375    CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
2376              Load.getValue(1));
2377    return Load;
2378  }
2379
2380  return SDOperand();
2381}
2382
2383SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) {
2384  SDOperand N0 = N->getOperand(0);
2385  MVT::ValueType VT = N->getValueType(0);
2386
2387  // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
2388  // First check to see if this is all constant.
2389  if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() &&
2390      VT == MVT::Vector) {
2391    bool isSimple = true;
2392    for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i)
2393      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
2394          N0.getOperand(i).getOpcode() != ISD::Constant &&
2395          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
2396        isSimple = false;
2397        break;
2398      }
2399
2400    MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT();
2401    if (isSimple && !MVT::isVector(DestEltVT)) {
2402      return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT);
2403    }
2404  }
2405
2406  return SDOperand();
2407}
2408
2409/// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
2410/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
2411/// destination element value type.
2412SDOperand DAGCombiner::
2413ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
2414  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
2415
2416  // If this is already the right type, we're done.
2417  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
2418
2419  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
2420  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
2421
2422  // If this is a conversion of N elements of one type to N elements of another
2423  // type, convert each element.  This handles FP<->INT cases.
2424  if (SrcBitSize == DstBitSize) {
2425    SmallVector<SDOperand, 8> Ops;
2426    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2427      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
2428      AddToWorkList(Ops.back().Val);
2429    }
2430    Ops.push_back(*(BV->op_end()-2)); // Add num elements.
2431    Ops.push_back(DAG.getValueType(DstEltVT));
2432    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2433  }
2434
2435  // Otherwise, we're growing or shrinking the elements.  To avoid having to
2436  // handle annoying details of growing/shrinking FP values, we convert them to
2437  // int first.
2438  if (MVT::isFloatingPoint(SrcEltVT)) {
2439    // Convert the input float vector to a int vector where the elements are the
2440    // same sizes.
2441    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
2442    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2443    BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val;
2444    SrcEltVT = IntVT;
2445  }
2446
2447  // Now we know the input is an integer vector.  If the output is a FP type,
2448  // convert to integer first, then to FP of the right size.
2449  if (MVT::isFloatingPoint(DstEltVT)) {
2450    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
2451    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2452    SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val;
2453
2454    // Next, convert to FP elements of the same size.
2455    return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT);
2456  }
2457
2458  // Okay, we know the src/dst types are both integers of differing types.
2459  // Handling growing first.
2460  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
2461  if (SrcBitSize < DstBitSize) {
2462    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
2463
2464    SmallVector<SDOperand, 8> Ops;
2465    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e;
2466         i += NumInputsPerOutput) {
2467      bool isLE = TLI.isLittleEndian();
2468      uint64_t NewBits = 0;
2469      bool EltIsUndef = true;
2470      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
2471        // Shift the previously computed bits over.
2472        NewBits <<= SrcBitSize;
2473        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
2474        if (Op.getOpcode() == ISD::UNDEF) continue;
2475        EltIsUndef = false;
2476
2477        NewBits |= cast<ConstantSDNode>(Op)->getValue();
2478      }
2479
2480      if (EltIsUndef)
2481        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2482      else
2483        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
2484    }
2485
2486    Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2487    Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2488    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2489  }
2490
2491  // Finally, this must be the case where we are shrinking elements: each input
2492  // turns into multiple outputs.
2493  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
2494  SmallVector<SDOperand, 8> Ops;
2495  for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2496    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
2497      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
2498        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2499      continue;
2500    }
2501    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
2502
2503    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
2504      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
2505      OpVal >>= DstBitSize;
2506      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
2507    }
2508
2509    // For big endian targets, swap the order of the pieces of each element.
2510    if (!TLI.isLittleEndian())
2511      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
2512  }
2513  Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2514  Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2515  return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2516}
2517
2518
2519
2520SDOperand DAGCombiner::visitFADD(SDNode *N) {
2521  SDOperand N0 = N->getOperand(0);
2522  SDOperand N1 = N->getOperand(1);
2523  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2524  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2525  MVT::ValueType VT = N->getValueType(0);
2526
2527  // fold (fadd c1, c2) -> c1+c2
2528  if (N0CFP && N1CFP)
2529    return DAG.getNode(ISD::FADD, VT, N0, N1);
2530  // canonicalize constant to RHS
2531  if (N0CFP && !N1CFP)
2532    return DAG.getNode(ISD::FADD, VT, N1, N0);
2533  // fold (A + (-B)) -> A-B
2534  if (N1.getOpcode() == ISD::FNEG)
2535    return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0));
2536  // fold ((-A) + B) -> B-A
2537  if (N0.getOpcode() == ISD::FNEG)
2538    return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0));
2539
2540  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
2541  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
2542      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
2543    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
2544                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
2545
2546  return SDOperand();
2547}
2548
2549SDOperand DAGCombiner::visitFSUB(SDNode *N) {
2550  SDOperand N0 = N->getOperand(0);
2551  SDOperand N1 = N->getOperand(1);
2552  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2553  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2554  MVT::ValueType VT = N->getValueType(0);
2555
2556  // fold (fsub c1, c2) -> c1-c2
2557  if (N0CFP && N1CFP)
2558    return DAG.getNode(ISD::FSUB, VT, N0, N1);
2559  // fold (A-(-B)) -> A+B
2560  if (N1.getOpcode() == ISD::FNEG)
2561    return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0));
2562  return SDOperand();
2563}
2564
2565SDOperand DAGCombiner::visitFMUL(SDNode *N) {
2566  SDOperand N0 = N->getOperand(0);
2567  SDOperand N1 = N->getOperand(1);
2568  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2569  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2570  MVT::ValueType VT = N->getValueType(0);
2571
2572  // fold (fmul c1, c2) -> c1*c2
2573  if (N0CFP && N1CFP)
2574    return DAG.getNode(ISD::FMUL, VT, N0, N1);
2575  // canonicalize constant to RHS
2576  if (N0CFP && !N1CFP)
2577    return DAG.getNode(ISD::FMUL, VT, N1, N0);
2578  // fold (fmul X, 2.0) -> (fadd X, X)
2579  if (N1CFP && N1CFP->isExactlyValue(+2.0))
2580    return DAG.getNode(ISD::FADD, VT, N0, N0);
2581
2582  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
2583  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
2584      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
2585    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
2586                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
2587
2588  return SDOperand();
2589}
2590
2591SDOperand DAGCombiner::visitFDIV(SDNode *N) {
2592  SDOperand N0 = N->getOperand(0);
2593  SDOperand N1 = N->getOperand(1);
2594  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2595  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2596  MVT::ValueType VT = N->getValueType(0);
2597
2598  // fold (fdiv c1, c2) -> c1/c2
2599  if (N0CFP && N1CFP)
2600    return DAG.getNode(ISD::FDIV, VT, N0, N1);
2601  return SDOperand();
2602}
2603
2604SDOperand DAGCombiner::visitFREM(SDNode *N) {
2605  SDOperand N0 = N->getOperand(0);
2606  SDOperand N1 = N->getOperand(1);
2607  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2608  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2609  MVT::ValueType VT = N->getValueType(0);
2610
2611  // fold (frem c1, c2) -> fmod(c1,c2)
2612  if (N0CFP && N1CFP)
2613    return DAG.getNode(ISD::FREM, VT, N0, N1);
2614  return SDOperand();
2615}
2616
2617SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
2618  SDOperand N0 = N->getOperand(0);
2619  SDOperand N1 = N->getOperand(1);
2620  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2621  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2622  MVT::ValueType VT = N->getValueType(0);
2623
2624  if (N0CFP && N1CFP)  // Constant fold
2625    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
2626
2627  if (N1CFP) {
2628    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
2629    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
2630    union {
2631      double d;
2632      int64_t i;
2633    } u;
2634    u.d = N1CFP->getValue();
2635    if (u.i >= 0)
2636      return DAG.getNode(ISD::FABS, VT, N0);
2637    else
2638      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
2639  }
2640
2641  // copysign(fabs(x), y) -> copysign(x, y)
2642  // copysign(fneg(x), y) -> copysign(x, y)
2643  // copysign(copysign(x,z), y) -> copysign(x, y)
2644  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
2645      N0.getOpcode() == ISD::FCOPYSIGN)
2646    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
2647
2648  // copysign(x, abs(y)) -> abs(x)
2649  if (N1.getOpcode() == ISD::FABS)
2650    return DAG.getNode(ISD::FABS, VT, N0);
2651
2652  // copysign(x, copysign(y,z)) -> copysign(x, z)
2653  if (N1.getOpcode() == ISD::FCOPYSIGN)
2654    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
2655
2656  // copysign(x, fp_extend(y)) -> copysign(x, y)
2657  // copysign(x, fp_round(y)) -> copysign(x, y)
2658  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
2659    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
2660
2661  return SDOperand();
2662}
2663
2664
2665
2666SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
2667  SDOperand N0 = N->getOperand(0);
2668  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2669  MVT::ValueType VT = N->getValueType(0);
2670
2671  // fold (sint_to_fp c1) -> c1fp
2672  if (N0C)
2673    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
2674  return SDOperand();
2675}
2676
2677SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
2678  SDOperand N0 = N->getOperand(0);
2679  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2680  MVT::ValueType VT = N->getValueType(0);
2681
2682  // fold (uint_to_fp c1) -> c1fp
2683  if (N0C)
2684    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
2685  return SDOperand();
2686}
2687
2688SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
2689  SDOperand N0 = N->getOperand(0);
2690  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2691  MVT::ValueType VT = N->getValueType(0);
2692
2693  // fold (fp_to_sint c1fp) -> c1
2694  if (N0CFP)
2695    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
2696  return SDOperand();
2697}
2698
2699SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
2700  SDOperand N0 = N->getOperand(0);
2701  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2702  MVT::ValueType VT = N->getValueType(0);
2703
2704  // fold (fp_to_uint c1fp) -> c1
2705  if (N0CFP)
2706    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
2707  return SDOperand();
2708}
2709
2710SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
2711  SDOperand N0 = N->getOperand(0);
2712  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2713  MVT::ValueType VT = N->getValueType(0);
2714
2715  // fold (fp_round c1fp) -> c1fp
2716  if (N0CFP)
2717    return DAG.getNode(ISD::FP_ROUND, VT, N0);
2718
2719  // fold (fp_round (fp_extend x)) -> x
2720  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
2721    return N0.getOperand(0);
2722
2723  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
2724  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
2725    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
2726    AddToWorkList(Tmp.Val);
2727    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
2728  }
2729
2730  return SDOperand();
2731}
2732
2733SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
2734  SDOperand N0 = N->getOperand(0);
2735  MVT::ValueType VT = N->getValueType(0);
2736  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2737  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2738
2739  // fold (fp_round_inreg c1fp) -> c1fp
2740  if (N0CFP) {
2741    SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
2742    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
2743  }
2744  return SDOperand();
2745}
2746
2747SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
2748  SDOperand N0 = N->getOperand(0);
2749  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2750  MVT::ValueType VT = N->getValueType(0);
2751
2752  // fold (fp_extend c1fp) -> c1fp
2753  if (N0CFP)
2754    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
2755
2756  // fold (fpext (load x)) -> (fpext (fpround (extload x)))
2757  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2758      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2759    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2760    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2761                                       LN0->getBasePtr(), LN0->getSrcValue(),
2762                                       LN0->getSrcValueOffset(),
2763                                       N0.getValueType());
2764    CombineTo(N, ExtLoad);
2765    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
2766              ExtLoad.getValue(1));
2767    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2768  }
2769
2770
2771  return SDOperand();
2772}
2773
2774SDOperand DAGCombiner::visitFNEG(SDNode *N) {
2775  SDOperand N0 = N->getOperand(0);
2776  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2777  MVT::ValueType VT = N->getValueType(0);
2778
2779  // fold (fneg c1) -> -c1
2780  if (N0CFP)
2781    return DAG.getNode(ISD::FNEG, VT, N0);
2782  // fold (fneg (sub x, y)) -> (sub y, x)
2783  if (N0.getOpcode() == ISD::SUB)
2784    return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0));
2785  // fold (fneg (fneg x)) -> x
2786  if (N0.getOpcode() == ISD::FNEG)
2787    return N0.getOperand(0);
2788  return SDOperand();
2789}
2790
2791SDOperand DAGCombiner::visitFABS(SDNode *N) {
2792  SDOperand N0 = N->getOperand(0);
2793  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2794  MVT::ValueType VT = N->getValueType(0);
2795
2796  // fold (fabs c1) -> fabs(c1)
2797  if (N0CFP)
2798    return DAG.getNode(ISD::FABS, VT, N0);
2799  // fold (fabs (fabs x)) -> (fabs x)
2800  if (N0.getOpcode() == ISD::FABS)
2801    return N->getOperand(0);
2802  // fold (fabs (fneg x)) -> (fabs x)
2803  // fold (fabs (fcopysign x, y)) -> (fabs x)
2804  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
2805    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
2806
2807  return SDOperand();
2808}
2809
2810SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
2811  SDOperand Chain = N->getOperand(0);
2812  SDOperand N1 = N->getOperand(1);
2813  SDOperand N2 = N->getOperand(2);
2814  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2815
2816  // never taken branch, fold to chain
2817  if (N1C && N1C->isNullValue())
2818    return Chain;
2819  // unconditional branch
2820  if (N1C && N1C->getValue() == 1)
2821    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
2822  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
2823  // on the target.
2824  if (N1.getOpcode() == ISD::SETCC &&
2825      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
2826    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
2827                       N1.getOperand(0), N1.getOperand(1), N2);
2828  }
2829  return SDOperand();
2830}
2831
2832// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
2833//
2834SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
2835  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
2836  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
2837
2838  // Use SimplifySetCC  to simplify SETCC's.
2839  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
2840  if (Simp.Val) AddToWorkList(Simp.Val);
2841
2842  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
2843
2844  // fold br_cc true, dest -> br dest (unconditional branch)
2845  if (SCCC && SCCC->getValue())
2846    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
2847                       N->getOperand(4));
2848  // fold br_cc false, dest -> unconditional fall through
2849  if (SCCC && SCCC->isNullValue())
2850    return N->getOperand(0);
2851
2852  // fold to a simpler setcc
2853  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
2854    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
2855                       Simp.getOperand(2), Simp.getOperand(0),
2856                       Simp.getOperand(1), N->getOperand(4));
2857  return SDOperand();
2858}
2859
2860
2861/// CombineToPreIndexedLoadStore - Try turning a load / store and a
2862/// pre-indexed load / store when the base pointer is a add or subtract
2863/// and it has other uses besides the load / store. After the
2864/// transformation, the new indexed load / store has effectively folded
2865/// the add / subtract in and all of its other uses are redirected to the
2866/// new load / store.
2867bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
2868  if (!AfterLegalize)
2869    return false;
2870
2871  bool isLoad = true;
2872  SDOperand Ptr;
2873  MVT::ValueType VT;
2874  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
2875    if (LD->getAddressingMode() != ISD::UNINDEXED)
2876      return false;
2877    VT = LD->getLoadedVT();
2878    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
2879        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
2880      return false;
2881    Ptr = LD->getBasePtr();
2882  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
2883    if (ST->getAddressingMode() != ISD::UNINDEXED)
2884      return false;
2885    VT = ST->getStoredVT();
2886    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
2887        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
2888      return false;
2889    Ptr = ST->getBasePtr();
2890    isLoad = false;
2891  } else
2892    return false;
2893
2894  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
2895  // out.  There is no reason to make this a preinc/predec.
2896  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
2897      Ptr.Val->hasOneUse())
2898    return false;
2899
2900  // Ask the target to do addressing mode selection.
2901  SDOperand BasePtr;
2902  SDOperand Offset;
2903  ISD::MemIndexedMode AM = ISD::UNINDEXED;
2904  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
2905    return false;
2906
2907  // Try turning it into a pre-indexed load / store except when:
2908  // 1) The base is a frame index.
2909  // 2) If N is a store and the ptr is either the same as or is a
2910  //    predecessor of the value being stored.
2911  // 3) Another use of base ptr is a predecessor of N. If ptr is folded
2912  //    that would create a cycle.
2913  // 4) All uses are load / store ops that use it as base ptr.
2914
2915  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
2916  // (plus the implicit offset) to a register to preinc anyway.
2917  if (isa<FrameIndexSDNode>(BasePtr))
2918    return false;
2919
2920  // Check #2.
2921  if (!isLoad) {
2922    SDOperand Val = cast<StoreSDNode>(N)->getValue();
2923    if (Val == Ptr || Ptr.Val->isPredecessor(Val.Val))
2924      return false;
2925  }
2926
2927  // Now check for #2 and #3.
2928  bool RealUse = false;
2929  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
2930         E = Ptr.Val->use_end(); I != E; ++I) {
2931    SDNode *Use = *I;
2932    if (Use == N)
2933      continue;
2934    if (Use->isPredecessor(N))
2935      return false;
2936
2937    if (!((Use->getOpcode() == ISD::LOAD &&
2938           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
2939          (Use->getOpcode() == ISD::STORE) &&
2940          cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
2941      RealUse = true;
2942  }
2943  if (!RealUse)
2944    return false;
2945
2946  SDOperand Result;
2947  if (isLoad)
2948    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
2949  else
2950    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
2951  ++PreIndexedNodes;
2952  ++NodesCombined;
2953  DOUT << "\nReplacing.4 "; DEBUG(N->dump());
2954  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
2955  DOUT << '\n';
2956  std::vector<SDNode*> NowDead;
2957  if (isLoad) {
2958    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
2959                                  NowDead);
2960    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
2961                                  NowDead);
2962  } else {
2963    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
2964                                  NowDead);
2965  }
2966
2967  // Nodes can end up on the worklist more than once.  Make sure we do
2968  // not process a node that has been replaced.
2969  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
2970    removeFromWorkList(NowDead[i]);
2971  // Finally, since the node is now dead, remove it from the graph.
2972  DAG.DeleteNode(N);
2973
2974  // Replace the uses of Ptr with uses of the updated base value.
2975  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
2976                                NowDead);
2977  removeFromWorkList(Ptr.Val);
2978  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
2979    removeFromWorkList(NowDead[i]);
2980  DAG.DeleteNode(Ptr.Val);
2981
2982  return true;
2983}
2984
2985/// CombineToPostIndexedLoadStore - Try combine a load / store with a
2986/// add / sub of the base pointer node into a post-indexed load / store.
2987/// The transformation folded the add / subtract into the new indexed
2988/// load / store effectively and all of its uses are redirected to the
2989/// new load / store.
2990bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
2991  if (!AfterLegalize)
2992    return false;
2993
2994  bool isLoad = true;
2995  SDOperand Ptr;
2996  MVT::ValueType VT;
2997  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
2998    if (LD->getAddressingMode() != ISD::UNINDEXED)
2999      return false;
3000    VT = LD->getLoadedVT();
3001    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
3002        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
3003      return false;
3004    Ptr = LD->getBasePtr();
3005  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3006    if (ST->getAddressingMode() != ISD::UNINDEXED)
3007      return false;
3008    VT = ST->getStoredVT();
3009    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
3010        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
3011      return false;
3012    Ptr = ST->getBasePtr();
3013    isLoad = false;
3014  } else
3015    return false;
3016
3017  if (Ptr.Val->hasOneUse())
3018    return false;
3019
3020  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3021         E = Ptr.Val->use_end(); I != E; ++I) {
3022    SDNode *Op = *I;
3023    if (Op == N ||
3024        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
3025      continue;
3026
3027    SDOperand BasePtr;
3028    SDOperand Offset;
3029    ISD::MemIndexedMode AM = ISD::UNINDEXED;
3030    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
3031      if (Ptr == Offset)
3032        std::swap(BasePtr, Offset);
3033      if (Ptr != BasePtr)
3034        continue;
3035
3036      // Try turning it into a post-indexed load / store except when
3037      // 1) All uses are load / store ops that use it as base ptr.
3038      // 2) Op must be independent of N, i.e. Op is neither a predecessor
3039      //    nor a successor of N. Otherwise, if Op is folded that would
3040      //    create a cycle.
3041
3042      // Check for #1.
3043      bool TryNext = false;
3044      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
3045             EE = BasePtr.Val->use_end(); II != EE; ++II) {
3046        SDNode *Use = *II;
3047        if (Use == Ptr.Val)
3048          continue;
3049
3050        // If all the uses are load / store addresses, then don't do the
3051        // transformation.
3052        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
3053          bool RealUse = false;
3054          for (SDNode::use_iterator III = Use->use_begin(),
3055                 EEE = Use->use_end(); III != EEE; ++III) {
3056            SDNode *UseUse = *III;
3057            if (!((UseUse->getOpcode() == ISD::LOAD &&
3058                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
3059                  (UseUse->getOpcode() == ISD::STORE) &&
3060                  cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
3061              RealUse = true;
3062          }
3063
3064          if (!RealUse) {
3065            TryNext = true;
3066            break;
3067          }
3068        }
3069      }
3070      if (TryNext)
3071        continue;
3072
3073      // Check for #2
3074      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
3075        SDOperand Result = isLoad
3076          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
3077          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3078        ++PostIndexedNodes;
3079        ++NodesCombined;
3080        DOUT << "\nReplacing.5 "; DEBUG(N->dump());
3081        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3082        DOUT << '\n';
3083        std::vector<SDNode*> NowDead;
3084        if (isLoad) {
3085          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3086                                        NowDead);
3087          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3088                                        NowDead);
3089        } else {
3090          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3091                                        NowDead);
3092        }
3093
3094        // Nodes can end up on the worklist more than once.  Make sure we do
3095        // not process a node that has been replaced.
3096        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3097          removeFromWorkList(NowDead[i]);
3098        // Finally, since the node is now dead, remove it from the graph.
3099        DAG.DeleteNode(N);
3100
3101        // Replace the uses of Use with uses of the updated base value.
3102        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
3103                                      Result.getValue(isLoad ? 1 : 0),
3104                                      NowDead);
3105        removeFromWorkList(Op);
3106        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3107          removeFromWorkList(NowDead[i]);
3108        DAG.DeleteNode(Op);
3109
3110        return true;
3111      }
3112    }
3113  }
3114  return false;
3115}
3116
3117
3118SDOperand DAGCombiner::visitLOAD(SDNode *N) {
3119  LoadSDNode *LD  = cast<LoadSDNode>(N);
3120  SDOperand Chain = LD->getChain();
3121  SDOperand Ptr   = LD->getBasePtr();
3122
3123  // If there are no uses of the loaded value, change uses of the chain value
3124  // into uses of the chain input (i.e. delete the dead load).
3125  if (N->hasNUsesOfValue(0, 0))
3126    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
3127
3128  // If this load is directly stored, replace the load value with the stored
3129  // value.
3130  // TODO: Handle store large -> read small portion.
3131  // TODO: Handle TRUNCSTORE/LOADEXT
3132  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3133    if (ISD::isNON_TRUNCStore(Chain.Val)) {
3134      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
3135      if (PrevST->getBasePtr() == Ptr &&
3136          PrevST->getValue().getValueType() == N->getValueType(0))
3137      return CombineTo(N, Chain.getOperand(1), Chain);
3138    }
3139  }
3140
3141  if (CombinerAA) {
3142    // Walk up chain skipping non-aliasing memory nodes.
3143    SDOperand BetterChain = FindBetterChain(N, Chain);
3144
3145    // If there is a better chain.
3146    if (Chain != BetterChain) {
3147      SDOperand ReplLoad;
3148
3149      // Replace the chain to void dependency.
3150      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3151        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
3152                              LD->getSrcValue(), LD->getSrcValueOffset());
3153      } else {
3154        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
3155                                  LD->getValueType(0),
3156                                  BetterChain, Ptr, LD->getSrcValue(),
3157                                  LD->getSrcValueOffset(),
3158                                  LD->getLoadedVT());
3159      }
3160
3161      // Create token factor to keep old chain connected.
3162      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
3163                                    Chain, ReplLoad.getValue(1));
3164
3165      // Replace uses with load result and token factor. Don't add users
3166      // to work list.
3167      return CombineTo(N, ReplLoad.getValue(0), Token, false);
3168    }
3169  }
3170
3171  // Try transforming N to an indexed load.
3172  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
3173    return SDOperand(N, 0);
3174
3175  return SDOperand();
3176}
3177
3178SDOperand DAGCombiner::visitSTORE(SDNode *N) {
3179  StoreSDNode *ST  = cast<StoreSDNode>(N);
3180  SDOperand Chain = ST->getChain();
3181  SDOperand Value = ST->getValue();
3182  SDOperand Ptr   = ST->getBasePtr();
3183
3184  // If this is a store of a bit convert, store the input value.
3185  // FIXME: This needs to know that the resultant store does not need a
3186  // higher alignment than the original.
3187  if (0 && Value.getOpcode() == ISD::BIT_CONVERT) {
3188    return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
3189                        ST->getSrcValueOffset());
3190  }
3191
3192  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
3193  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
3194    if (Value.getOpcode() != ISD::TargetConstantFP) {
3195      SDOperand Tmp;
3196      switch (CFP->getValueType(0)) {
3197      default: assert(0 && "Unknown FP type");
3198      case MVT::f32:
3199        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
3200          Tmp = DAG.getConstant(FloatToBits(CFP->getValue()), MVT::i32);
3201          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3202                              ST->getSrcValueOffset());
3203        }
3204        break;
3205      case MVT::f64:
3206        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
3207          Tmp = DAG.getConstant(DoubleToBits(CFP->getValue()), MVT::i64);
3208          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3209                              ST->getSrcValueOffset());
3210        } else if (TLI.isTypeLegal(MVT::i32)) {
3211          // Many FP stores are not make apparent until after legalize, e.g. for
3212          // argument passing.  Since this is so common, custom legalize the
3213          // 64-bit integer store into two 32-bit stores.
3214          uint64_t Val = DoubleToBits(CFP->getValue());
3215          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
3216          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
3217          if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
3218
3219          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
3220                                       ST->getSrcValueOffset());
3221          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
3222                            DAG.getConstant(4, Ptr.getValueType()));
3223          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
3224                                       ST->getSrcValueOffset()+4);
3225          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
3226        }
3227        break;
3228      }
3229    }
3230  }
3231
3232  if (CombinerAA) {
3233    // Walk up chain skipping non-aliasing memory nodes.
3234    SDOperand BetterChain = FindBetterChain(N, Chain);
3235
3236    // If there is a better chain.
3237    if (Chain != BetterChain) {
3238      // Replace the chain to avoid dependency.
3239      SDOperand ReplStore;
3240      if (ST->isTruncatingStore()) {
3241        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
3242          ST->getSrcValue(),ST->getSrcValueOffset(), ST->getStoredVT());
3243      } else {
3244        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
3245          ST->getSrcValue(), ST->getSrcValueOffset());
3246      }
3247
3248      // Create token to keep both nodes around.
3249      SDOperand Token =
3250        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
3251
3252      // Don't add users to work list.
3253      return CombineTo(N, Token, false);
3254    }
3255  }
3256
3257  // Try transforming N to an indexed store.
3258  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
3259    return SDOperand(N, 0);
3260
3261  return SDOperand();
3262}
3263
3264SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
3265  SDOperand InVec = N->getOperand(0);
3266  SDOperand InVal = N->getOperand(1);
3267  SDOperand EltNo = N->getOperand(2);
3268
3269  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
3270  // vector with the inserted element.
3271  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
3272    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
3273    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
3274    if (Elt < Ops.size())
3275      Ops[Elt] = InVal;
3276    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
3277                       &Ops[0], Ops.size());
3278  }
3279
3280  return SDOperand();
3281}
3282
3283SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) {
3284  SDOperand InVec = N->getOperand(0);
3285  SDOperand InVal = N->getOperand(1);
3286  SDOperand EltNo = N->getOperand(2);
3287  SDOperand NumElts = N->getOperand(3);
3288  SDOperand EltType = N->getOperand(4);
3289
3290  // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
3291  // vector with the inserted element.
3292  if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
3293    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
3294    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
3295    if (Elt < Ops.size()-2)
3296      Ops[Elt] = InVal;
3297    return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(),
3298                       &Ops[0], Ops.size());
3299  }
3300
3301  return SDOperand();
3302}
3303
3304SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) {
3305  unsigned NumInScalars = N->getNumOperands()-2;
3306  SDOperand NumElts = N->getOperand(NumInScalars);
3307  SDOperand EltType = N->getOperand(NumInScalars+1);
3308
3309  // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
3310  // operations.  If so, and if the EXTRACT_ELT vector inputs come from at most
3311  // two distinct vectors, turn this into a shuffle node.
3312  SDOperand VecIn1, VecIn2;
3313  for (unsigned i = 0; i != NumInScalars; ++i) {
3314    // Ignore undef inputs.
3315    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
3316
3317    // If this input is something other than a VEXTRACT_VECTOR_ELT with a
3318    // constant index, bail out.
3319    if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT ||
3320        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
3321      VecIn1 = VecIn2 = SDOperand(0, 0);
3322      break;
3323    }
3324
3325    // If the input vector type disagrees with the result of the vbuild_vector,
3326    // we can't make a shuffle.
3327    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
3328    if (*(ExtractedFromVec.Val->op_end()-2) != NumElts ||
3329        *(ExtractedFromVec.Val->op_end()-1) != EltType) {
3330      VecIn1 = VecIn2 = SDOperand(0, 0);
3331      break;
3332    }
3333
3334    // Otherwise, remember this.  We allow up to two distinct input vectors.
3335    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
3336      continue;
3337
3338    if (VecIn1.Val == 0) {
3339      VecIn1 = ExtractedFromVec;
3340    } else if (VecIn2.Val == 0) {
3341      VecIn2 = ExtractedFromVec;
3342    } else {
3343      // Too many inputs.
3344      VecIn1 = VecIn2 = SDOperand(0, 0);
3345      break;
3346    }
3347  }
3348
3349  // If everything is good, we can make a shuffle operation.
3350  if (VecIn1.Val) {
3351    SmallVector<SDOperand, 8> BuildVecIndices;
3352    for (unsigned i = 0; i != NumInScalars; ++i) {
3353      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
3354        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
3355        continue;
3356      }
3357
3358      SDOperand Extract = N->getOperand(i);
3359
3360      // If extracting from the first vector, just use the index directly.
3361      if (Extract.getOperand(0) == VecIn1) {
3362        BuildVecIndices.push_back(Extract.getOperand(1));
3363        continue;
3364      }
3365
3366      // Otherwise, use InIdx + VecSize
3367      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
3368      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars,
3369                                                TLI.getPointerTy()));
3370    }
3371
3372    // Add count and size info.
3373    BuildVecIndices.push_back(NumElts);
3374    BuildVecIndices.push_back(DAG.getValueType(TLI.getPointerTy()));
3375
3376    // Return the new VVECTOR_SHUFFLE node.
3377    SDOperand Ops[5];
3378    Ops[0] = VecIn1;
3379    if (VecIn2.Val) {
3380      Ops[1] = VecIn2;
3381    } else {
3382       // Use an undef vbuild_vector as input for the second operand.
3383      std::vector<SDOperand> UnOps(NumInScalars,
3384                                   DAG.getNode(ISD::UNDEF,
3385                                           cast<VTSDNode>(EltType)->getVT()));
3386      UnOps.push_back(NumElts);
3387      UnOps.push_back(EltType);
3388      Ops[1] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3389                           &UnOps[0], UnOps.size());
3390      AddToWorkList(Ops[1].Val);
3391    }
3392    Ops[2] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3393                         &BuildVecIndices[0], BuildVecIndices.size());
3394    Ops[3] = NumElts;
3395    Ops[4] = EltType;
3396    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops, 5);
3397  }
3398
3399  return SDOperand();
3400}
3401
3402SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
3403  SDOperand ShufMask = N->getOperand(2);
3404  unsigned NumElts = ShufMask.getNumOperands();
3405
3406  // If the shuffle mask is an identity operation on the LHS, return the LHS.
3407  bool isIdentity = true;
3408  for (unsigned i = 0; i != NumElts; ++i) {
3409    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3410        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
3411      isIdentity = false;
3412      break;
3413    }
3414  }
3415  if (isIdentity) return N->getOperand(0);
3416
3417  // If the shuffle mask is an identity operation on the RHS, return the RHS.
3418  isIdentity = true;
3419  for (unsigned i = 0; i != NumElts; ++i) {
3420    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3421        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
3422      isIdentity = false;
3423      break;
3424    }
3425  }
3426  if (isIdentity) return N->getOperand(1);
3427
3428  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
3429  // needed at all.
3430  bool isUnary = true;
3431  bool isSplat = true;
3432  int VecNum = -1;
3433  unsigned BaseIdx = 0;
3434  for (unsigned i = 0; i != NumElts; ++i)
3435    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
3436      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
3437      int V = (Idx < NumElts) ? 0 : 1;
3438      if (VecNum == -1) {
3439        VecNum = V;
3440        BaseIdx = Idx;
3441      } else {
3442        if (BaseIdx != Idx)
3443          isSplat = false;
3444        if (VecNum != V) {
3445          isUnary = false;
3446          break;
3447        }
3448      }
3449    }
3450
3451  SDOperand N0 = N->getOperand(0);
3452  SDOperand N1 = N->getOperand(1);
3453  // Normalize unary shuffle so the RHS is undef.
3454  if (isUnary && VecNum == 1)
3455    std::swap(N0, N1);
3456
3457  // If it is a splat, check if the argument vector is a build_vector with
3458  // all scalar elements the same.
3459  if (isSplat) {
3460    SDNode *V = N0.Val;
3461    if (V->getOpcode() == ISD::BIT_CONVERT)
3462      V = V->getOperand(0).Val;
3463    if (V->getOpcode() == ISD::BUILD_VECTOR) {
3464      unsigned NumElems = V->getNumOperands()-2;
3465      if (NumElems > BaseIdx) {
3466        SDOperand Base;
3467        bool AllSame = true;
3468        for (unsigned i = 0; i != NumElems; ++i) {
3469          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
3470            Base = V->getOperand(i);
3471            break;
3472          }
3473        }
3474        // Splat of <u, u, u, u>, return <u, u, u, u>
3475        if (!Base.Val)
3476          return N0;
3477        for (unsigned i = 0; i != NumElems; ++i) {
3478          if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
3479              V->getOperand(i) != Base) {
3480            AllSame = false;
3481            break;
3482          }
3483        }
3484        // Splat of <x, x, x, x>, return <x, x, x, x>
3485        if (AllSame)
3486          return N0;
3487      }
3488    }
3489  }
3490
3491  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
3492  // into an undef.
3493  if (isUnary || N0 == N1) {
3494    if (N0.getOpcode() == ISD::UNDEF)
3495      return DAG.getNode(ISD::UNDEF, N->getValueType(0));
3496    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
3497    // first operand.
3498    SmallVector<SDOperand, 8> MappedOps;
3499    for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) {
3500      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
3501          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
3502        MappedOps.push_back(ShufMask.getOperand(i));
3503      } else {
3504        unsigned NewIdx =
3505           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
3506        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
3507      }
3508    }
3509    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
3510                           &MappedOps[0], MappedOps.size());
3511    AddToWorkList(ShufMask.Val);
3512    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
3513                       N0,
3514                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
3515                       ShufMask);
3516  }
3517
3518  return SDOperand();
3519}
3520
3521SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) {
3522  SDOperand ShufMask = N->getOperand(2);
3523  unsigned NumElts = ShufMask.getNumOperands()-2;
3524
3525  // If the shuffle mask is an identity operation on the LHS, return the LHS.
3526  bool isIdentity = true;
3527  for (unsigned i = 0; i != NumElts; ++i) {
3528    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3529        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
3530      isIdentity = false;
3531      break;
3532    }
3533  }
3534  if (isIdentity) return N->getOperand(0);
3535
3536  // If the shuffle mask is an identity operation on the RHS, return the RHS.
3537  isIdentity = true;
3538  for (unsigned i = 0; i != NumElts; ++i) {
3539    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3540        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
3541      isIdentity = false;
3542      break;
3543    }
3544  }
3545  if (isIdentity) return N->getOperand(1);
3546
3547  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
3548  // needed at all.
3549  bool isUnary = true;
3550  bool isSplat = true;
3551  int VecNum = -1;
3552  unsigned BaseIdx = 0;
3553  for (unsigned i = 0; i != NumElts; ++i)
3554    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
3555      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
3556      int V = (Idx < NumElts) ? 0 : 1;
3557      if (VecNum == -1) {
3558        VecNum = V;
3559        BaseIdx = Idx;
3560      } else {
3561        if (BaseIdx != Idx)
3562          isSplat = false;
3563        if (VecNum != V) {
3564          isUnary = false;
3565          break;
3566        }
3567      }
3568    }
3569
3570  SDOperand N0 = N->getOperand(0);
3571  SDOperand N1 = N->getOperand(1);
3572  // Normalize unary shuffle so the RHS is undef.
3573  if (isUnary && VecNum == 1)
3574    std::swap(N0, N1);
3575
3576  // If it is a splat, check if the argument vector is a build_vector with
3577  // all scalar elements the same.
3578  if (isSplat) {
3579    SDNode *V = N0.Val;
3580
3581    // If this is a vbit convert that changes the element type of the vector but
3582    // not the number of vector elements, look through it.  Be careful not to
3583    // look though conversions that change things like v4f32 to v2f64.
3584    if (V->getOpcode() == ISD::VBIT_CONVERT) {
3585      SDOperand ConvInput = V->getOperand(0);
3586      if (ConvInput.getValueType() == MVT::Vector &&
3587          NumElts ==
3588          ConvInput.getConstantOperandVal(ConvInput.getNumOperands()-2))
3589        V = ConvInput.Val;
3590    }
3591
3592    if (V->getOpcode() == ISD::VBUILD_VECTOR) {
3593      unsigned NumElems = V->getNumOperands()-2;
3594      if (NumElems > BaseIdx) {
3595        SDOperand Base;
3596        bool AllSame = true;
3597        for (unsigned i = 0; i != NumElems; ++i) {
3598          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
3599            Base = V->getOperand(i);
3600            break;
3601          }
3602        }
3603        // Splat of <u, u, u, u>, return <u, u, u, u>
3604        if (!Base.Val)
3605          return N0;
3606        for (unsigned i = 0; i != NumElems; ++i) {
3607          if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
3608              V->getOperand(i) != Base) {
3609            AllSame = false;
3610            break;
3611          }
3612        }
3613        // Splat of <x, x, x, x>, return <x, x, x, x>
3614        if (AllSame)
3615          return N0;
3616      }
3617    }
3618  }
3619
3620  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
3621  // into an undef.
3622  if (isUnary || N0 == N1) {
3623    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
3624    // first operand.
3625    SmallVector<SDOperand, 8> MappedOps;
3626    for (unsigned i = 0; i != NumElts; ++i) {
3627      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
3628          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
3629        MappedOps.push_back(ShufMask.getOperand(i));
3630      } else {
3631        unsigned NewIdx =
3632          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
3633        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
3634      }
3635    }
3636    // Add the type/#elts values.
3637    MappedOps.push_back(ShufMask.getOperand(NumElts));
3638    MappedOps.push_back(ShufMask.getOperand(NumElts+1));
3639
3640    ShufMask = DAG.getNode(ISD::VBUILD_VECTOR, ShufMask.getValueType(),
3641                           &MappedOps[0], MappedOps.size());
3642    AddToWorkList(ShufMask.Val);
3643
3644    // Build the undef vector.
3645    SDOperand UDVal = DAG.getNode(ISD::UNDEF, MappedOps[0].getValueType());
3646    for (unsigned i = 0; i != NumElts; ++i)
3647      MappedOps[i] = UDVal;
3648    MappedOps[NumElts  ] = *(N0.Val->op_end()-2);
3649    MappedOps[NumElts+1] = *(N0.Val->op_end()-1);
3650    UDVal = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3651                        &MappedOps[0], MappedOps.size());
3652
3653    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
3654                       N0, UDVal, ShufMask,
3655                       MappedOps[NumElts], MappedOps[NumElts+1]);
3656  }
3657
3658  return SDOperand();
3659}
3660
3661/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
3662/// a VAND to a vector_shuffle with the destination vector and a zero vector.
3663/// e.g. VAND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
3664///      vector_shuffle V, Zero, <0, 4, 2, 4>
3665SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
3666  SDOperand LHS = N->getOperand(0);
3667  SDOperand RHS = N->getOperand(1);
3668  if (N->getOpcode() == ISD::VAND) {
3669    SDOperand DstVecSize = *(LHS.Val->op_end()-2);
3670    SDOperand DstVecEVT  = *(LHS.Val->op_end()-1);
3671    if (RHS.getOpcode() == ISD::VBIT_CONVERT)
3672      RHS = RHS.getOperand(0);
3673    if (RHS.getOpcode() == ISD::VBUILD_VECTOR) {
3674      std::vector<SDOperand> IdxOps;
3675      unsigned NumOps = RHS.getNumOperands();
3676      unsigned NumElts = NumOps-2;
3677      MVT::ValueType EVT = cast<VTSDNode>(RHS.getOperand(NumOps-1))->getVT();
3678      for (unsigned i = 0; i != NumElts; ++i) {
3679        SDOperand Elt = RHS.getOperand(i);
3680        if (!isa<ConstantSDNode>(Elt))
3681          return SDOperand();
3682        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
3683          IdxOps.push_back(DAG.getConstant(i, EVT));
3684        else if (cast<ConstantSDNode>(Elt)->isNullValue())
3685          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
3686        else
3687          return SDOperand();
3688      }
3689
3690      // Let's see if the target supports this vector_shuffle.
3691      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
3692        return SDOperand();
3693
3694      // Return the new VVECTOR_SHUFFLE node.
3695      SDOperand NumEltsNode = DAG.getConstant(NumElts, MVT::i32);
3696      SDOperand EVTNode = DAG.getValueType(EVT);
3697      std::vector<SDOperand> Ops;
3698      LHS = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, LHS, NumEltsNode,
3699                        EVTNode);
3700      Ops.push_back(LHS);
3701      AddToWorkList(LHS.Val);
3702      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
3703      ZeroOps.push_back(NumEltsNode);
3704      ZeroOps.push_back(EVTNode);
3705      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3706                                &ZeroOps[0], ZeroOps.size()));
3707      IdxOps.push_back(NumEltsNode);
3708      IdxOps.push_back(EVTNode);
3709      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3710                                &IdxOps[0], IdxOps.size()));
3711      Ops.push_back(NumEltsNode);
3712      Ops.push_back(EVTNode);
3713      SDOperand Result = DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
3714                                     &Ops[0], Ops.size());
3715      if (NumEltsNode != DstVecSize || EVTNode != DstVecEVT) {
3716        Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
3717                             DstVecSize, DstVecEVT);
3718      }
3719      return Result;
3720    }
3721  }
3722  return SDOperand();
3723}
3724
3725/// visitVBinOp - Visit a binary vector operation, like VADD.  IntOp indicates
3726/// the scalar operation of the vop if it is operating on an integer vector
3727/// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
3728SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp,
3729                                   ISD::NodeType FPOp) {
3730  MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT();
3731  ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp;
3732  SDOperand LHS = N->getOperand(0);
3733  SDOperand RHS = N->getOperand(1);
3734  SDOperand Shuffle = XformToShuffleWithZero(N);
3735  if (Shuffle.Val) return Shuffle;
3736
3737  // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
3738  // this operation.
3739  if (LHS.getOpcode() == ISD::VBUILD_VECTOR &&
3740      RHS.getOpcode() == ISD::VBUILD_VECTOR) {
3741    SmallVector<SDOperand, 8> Ops;
3742    for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) {
3743      SDOperand LHSOp = LHS.getOperand(i);
3744      SDOperand RHSOp = RHS.getOperand(i);
3745      // If these two elements can't be folded, bail out.
3746      if ((LHSOp.getOpcode() != ISD::UNDEF &&
3747           LHSOp.getOpcode() != ISD::Constant &&
3748           LHSOp.getOpcode() != ISD::ConstantFP) ||
3749          (RHSOp.getOpcode() != ISD::UNDEF &&
3750           RHSOp.getOpcode() != ISD::Constant &&
3751           RHSOp.getOpcode() != ISD::ConstantFP))
3752        break;
3753      // Can't fold divide by zero.
3754      if (N->getOpcode() == ISD::VSDIV || N->getOpcode() == ISD::VUDIV) {
3755        if ((RHSOp.getOpcode() == ISD::Constant &&
3756             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
3757            (RHSOp.getOpcode() == ISD::ConstantFP &&
3758             !cast<ConstantFPSDNode>(RHSOp.Val)->getValue()))
3759          break;
3760      }
3761      Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp));
3762      AddToWorkList(Ops.back().Val);
3763      assert((Ops.back().getOpcode() == ISD::UNDEF ||
3764              Ops.back().getOpcode() == ISD::Constant ||
3765              Ops.back().getOpcode() == ISD::ConstantFP) &&
3766             "Scalar binop didn't fold!");
3767    }
3768
3769    if (Ops.size() == LHS.getNumOperands()-2) {
3770      Ops.push_back(*(LHS.Val->op_end()-2));
3771      Ops.push_back(*(LHS.Val->op_end()-1));
3772      return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
3773    }
3774  }
3775
3776  return SDOperand();
3777}
3778
3779SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
3780  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
3781
3782  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
3783                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
3784  // If we got a simplified select_cc node back from SimplifySelectCC, then
3785  // break it down into a new SETCC node, and a new SELECT node, and then return
3786  // the SELECT node, since we were called with a SELECT node.
3787  if (SCC.Val) {
3788    // Check to see if we got a select_cc back (to turn into setcc/select).
3789    // Otherwise, just return whatever node we got back, like fabs.
3790    if (SCC.getOpcode() == ISD::SELECT_CC) {
3791      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
3792                                    SCC.getOperand(0), SCC.getOperand(1),
3793                                    SCC.getOperand(4));
3794      AddToWorkList(SETCC.Val);
3795      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
3796                         SCC.getOperand(3), SETCC);
3797    }
3798    return SCC;
3799  }
3800  return SDOperand();
3801}
3802
3803/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
3804/// are the two values being selected between, see if we can simplify the
3805/// select.  Callers of this should assume that TheSelect is deleted if this
3806/// returns true.  As such, they should return the appropriate thing (e.g. the
3807/// node) back to the top-level of the DAG combiner loop to avoid it being
3808/// looked at.
3809///
3810bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
3811                                    SDOperand RHS) {
3812
3813  // If this is a select from two identical things, try to pull the operation
3814  // through the select.
3815  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
3816    // If this is a load and the token chain is identical, replace the select
3817    // of two loads with a load through a select of the address to load from.
3818    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
3819    // constants have been dropped into the constant pool.
3820    if (LHS.getOpcode() == ISD::LOAD &&
3821        // Token chains must be identical.
3822        LHS.getOperand(0) == RHS.getOperand(0)) {
3823      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
3824      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
3825
3826      // If this is an EXTLOAD, the VT's must match.
3827      if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
3828        // FIXME: this conflates two src values, discarding one.  This is not
3829        // the right thing to do, but nothing uses srcvalues now.  When they do,
3830        // turn SrcValue into a list of locations.
3831        SDOperand Addr;
3832        if (TheSelect->getOpcode() == ISD::SELECT) {
3833          // Check that the condition doesn't reach either load.  If so, folding
3834          // this will induce a cycle into the DAG.
3835          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
3836              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
3837            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
3838                               TheSelect->getOperand(0), LLD->getBasePtr(),
3839                               RLD->getBasePtr());
3840          }
3841        } else {
3842          // Check that the condition doesn't reach either load.  If so, folding
3843          // this will induce a cycle into the DAG.
3844          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
3845              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
3846              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
3847              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
3848            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
3849                             TheSelect->getOperand(0),
3850                             TheSelect->getOperand(1),
3851                             LLD->getBasePtr(), RLD->getBasePtr(),
3852                             TheSelect->getOperand(4));
3853          }
3854        }
3855
3856        if (Addr.Val) {
3857          SDOperand Load;
3858          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
3859            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
3860                               Addr,LLD->getSrcValue(),
3861                               LLD->getSrcValueOffset());
3862          else {
3863            Load = DAG.getExtLoad(LLD->getExtensionType(),
3864                                  TheSelect->getValueType(0),
3865                                  LLD->getChain(), Addr, LLD->getSrcValue(),
3866                                  LLD->getSrcValueOffset(),
3867                                  LLD->getLoadedVT());
3868          }
3869          // Users of the select now use the result of the load.
3870          CombineTo(TheSelect, Load);
3871
3872          // Users of the old loads now use the new load's chain.  We know the
3873          // old-load value is dead now.
3874          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
3875          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
3876          return true;
3877        }
3878      }
3879    }
3880  }
3881
3882  return false;
3883}
3884
3885SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
3886                                        SDOperand N2, SDOperand N3,
3887                                        ISD::CondCode CC) {
3888
3889  MVT::ValueType VT = N2.getValueType();
3890  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
3891  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
3892  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
3893
3894  // Determine if the condition we're dealing with is constant
3895  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
3896  if (SCC.Val) AddToWorkList(SCC.Val);
3897  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
3898
3899  // fold select_cc true, x, y -> x
3900  if (SCCC && SCCC->getValue())
3901    return N2;
3902  // fold select_cc false, x, y -> y
3903  if (SCCC && SCCC->getValue() == 0)
3904    return N3;
3905
3906  // Check to see if we can simplify the select into an fabs node
3907  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
3908    // Allow either -0.0 or 0.0
3909    if (CFP->getValue() == 0.0) {
3910      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
3911      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
3912          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
3913          N2 == N3.getOperand(0))
3914        return DAG.getNode(ISD::FABS, VT, N0);
3915
3916      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
3917      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
3918          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
3919          N2.getOperand(0) == N3)
3920        return DAG.getNode(ISD::FABS, VT, N3);
3921    }
3922  }
3923
3924  // Check to see if we can perform the "gzip trick", transforming
3925  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
3926  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
3927      MVT::isInteger(N0.getValueType()) &&
3928      MVT::isInteger(N2.getValueType()) &&
3929      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
3930       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
3931    MVT::ValueType XType = N0.getValueType();
3932    MVT::ValueType AType = N2.getValueType();
3933    if (XType >= AType) {
3934      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
3935      // single-bit constant.
3936      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
3937        unsigned ShCtV = Log2_64(N2C->getValue());
3938        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
3939        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
3940        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
3941        AddToWorkList(Shift.Val);
3942        if (XType > AType) {
3943          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
3944          AddToWorkList(Shift.Val);
3945        }
3946        return DAG.getNode(ISD::AND, AType, Shift, N2);
3947      }
3948      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
3949                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
3950                                                    TLI.getShiftAmountTy()));
3951      AddToWorkList(Shift.Val);
3952      if (XType > AType) {
3953        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
3954        AddToWorkList(Shift.Val);
3955      }
3956      return DAG.getNode(ISD::AND, AType, Shift, N2);
3957    }
3958  }
3959
3960  // fold select C, 16, 0 -> shl C, 4
3961  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
3962      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
3963    // Get a SetCC of the condition
3964    // FIXME: Should probably make sure that setcc is legal if we ever have a
3965    // target where it isn't.
3966    SDOperand Temp, SCC;
3967    // cast from setcc result type to select result type
3968    if (AfterLegalize) {
3969      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
3970      if (N2.getValueType() < SCC.getValueType())
3971        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
3972      else
3973        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
3974    } else {
3975      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
3976      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
3977    }
3978    AddToWorkList(SCC.Val);
3979    AddToWorkList(Temp.Val);
3980    // shl setcc result by log2 n2c
3981    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
3982                       DAG.getConstant(Log2_64(N2C->getValue()),
3983                                       TLI.getShiftAmountTy()));
3984  }
3985
3986  // Check to see if this is the equivalent of setcc
3987  // FIXME: Turn all of these into setcc if setcc if setcc is legal
3988  // otherwise, go ahead with the folds.
3989  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
3990    MVT::ValueType XType = N0.getValueType();
3991    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
3992      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
3993      if (Res.getValueType() != VT)
3994        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
3995      return Res;
3996    }
3997
3998    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
3999    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
4000        TLI.isOperationLegal(ISD::CTLZ, XType)) {
4001      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
4002      return DAG.getNode(ISD::SRL, XType, Ctlz,
4003                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
4004                                         TLI.getShiftAmountTy()));
4005    }
4006    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
4007    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
4008      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
4009                                    N0);
4010      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
4011                                    DAG.getConstant(~0ULL, XType));
4012      return DAG.getNode(ISD::SRL, XType,
4013                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
4014                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
4015                                         TLI.getShiftAmountTy()));
4016    }
4017    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
4018    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
4019      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
4020                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
4021                                                   TLI.getShiftAmountTy()));
4022      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
4023    }
4024  }
4025
4026  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
4027  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4028  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
4029      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) {
4030    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0))) {
4031      MVT::ValueType XType = N0.getValueType();
4032      if (SubC->isNullValue() && MVT::isInteger(XType)) {
4033        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4034                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4035                                                    TLI.getShiftAmountTy()));
4036        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4037        AddToWorkList(Shift.Val);
4038        AddToWorkList(Add.Val);
4039        return DAG.getNode(ISD::XOR, XType, Add, Shift);
4040      }
4041    }
4042  }
4043
4044  return SDOperand();
4045}
4046
4047/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
4048SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
4049                                     SDOperand N1, ISD::CondCode Cond,
4050                                     bool foldBooleans) {
4051  TargetLowering::DAGCombinerInfo
4052    DagCombineInfo(DAG, !AfterLegalize, false, this);
4053  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
4054}
4055
4056/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
4057/// return a DAG expression to select that will generate the same value by
4058/// multiplying by a magic number.  See:
4059/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4060SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
4061  std::vector<SDNode*> Built;
4062  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
4063
4064  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4065       ii != ee; ++ii)
4066    AddToWorkList(*ii);
4067  return S;
4068}
4069
4070/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
4071/// return a DAG expression to select that will generate the same value by
4072/// multiplying by a magic number.  See:
4073/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4074SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
4075  std::vector<SDNode*> Built;
4076  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
4077
4078  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4079       ii != ee; ++ii)
4080    AddToWorkList(*ii);
4081  return S;
4082}
4083
4084/// FindBaseOffset - Return true if base is known not to alias with anything
4085/// but itself.  Provides base object and offset as results.
4086static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
4087  // Assume it is a primitive operation.
4088  Base = Ptr; Offset = 0;
4089
4090  // If it's an adding a simple constant then integrate the offset.
4091  if (Base.getOpcode() == ISD::ADD) {
4092    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
4093      Base = Base.getOperand(0);
4094      Offset += C->getValue();
4095    }
4096  }
4097
4098  // If it's any of the following then it can't alias with anything but itself.
4099  return isa<FrameIndexSDNode>(Base) ||
4100         isa<ConstantPoolSDNode>(Base) ||
4101         isa<GlobalAddressSDNode>(Base);
4102}
4103
4104/// isAlias - Return true if there is any possibility that the two addresses
4105/// overlap.
4106bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
4107                          const Value *SrcValue1, int SrcValueOffset1,
4108                          SDOperand Ptr2, int64_t Size2,
4109                          const Value *SrcValue2, int SrcValueOffset2)
4110{
4111  // If they are the same then they must be aliases.
4112  if (Ptr1 == Ptr2) return true;
4113
4114  // Gather base node and offset information.
4115  SDOperand Base1, Base2;
4116  int64_t Offset1, Offset2;
4117  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
4118  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
4119
4120  // If they have a same base address then...
4121  if (Base1 == Base2) {
4122    // Check to see if the addresses overlap.
4123    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
4124  }
4125
4126  // If we know both bases then they can't alias.
4127  if (KnownBase1 && KnownBase2) return false;
4128
4129  if (CombinerGlobalAA) {
4130    // Use alias analysis information.
4131    int Overlap1 = Size1 + SrcValueOffset1 + Offset1;
4132    int Overlap2 = Size2 + SrcValueOffset2 + Offset2;
4133    AliasAnalysis::AliasResult AAResult =
4134                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
4135    if (AAResult == AliasAnalysis::NoAlias)
4136      return false;
4137  }
4138
4139  // Otherwise we have to assume they alias.
4140  return true;
4141}
4142
4143/// FindAliasInfo - Extracts the relevant alias information from the memory
4144/// node.  Returns true if the operand was a load.
4145bool DAGCombiner::FindAliasInfo(SDNode *N,
4146                        SDOperand &Ptr, int64_t &Size,
4147                        const Value *&SrcValue, int &SrcValueOffset) {
4148  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4149    Ptr = LD->getBasePtr();
4150    Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
4151    SrcValue = LD->getSrcValue();
4152    SrcValueOffset = LD->getSrcValueOffset();
4153    return true;
4154  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4155    Ptr = ST->getBasePtr();
4156    Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
4157    SrcValue = ST->getSrcValue();
4158    SrcValueOffset = ST->getSrcValueOffset();
4159  } else {
4160    assert(0 && "FindAliasInfo expected a memory operand");
4161  }
4162
4163  return false;
4164}
4165
4166/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
4167/// looking for aliasing nodes and adding them to the Aliases vector.
4168void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
4169                                   SmallVector<SDOperand, 8> &Aliases) {
4170  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
4171  std::set<SDNode *> Visited;           // Visited node set.
4172
4173  // Get alias information for node.
4174  SDOperand Ptr;
4175  int64_t Size;
4176  const Value *SrcValue;
4177  int SrcValueOffset;
4178  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
4179
4180  // Starting off.
4181  Chains.push_back(OriginalChain);
4182
4183  // Look at each chain and determine if it is an alias.  If so, add it to the
4184  // aliases list.  If not, then continue up the chain looking for the next
4185  // candidate.
4186  while (!Chains.empty()) {
4187    SDOperand Chain = Chains.back();
4188    Chains.pop_back();
4189
4190     // Don't bother if we've been before.
4191    if (Visited.find(Chain.Val) != Visited.end()) continue;
4192    Visited.insert(Chain.Val);
4193
4194    switch (Chain.getOpcode()) {
4195    case ISD::EntryToken:
4196      // Entry token is ideal chain operand, but handled in FindBetterChain.
4197      break;
4198
4199    case ISD::LOAD:
4200    case ISD::STORE: {
4201      // Get alias information for Chain.
4202      SDOperand OpPtr;
4203      int64_t OpSize;
4204      const Value *OpSrcValue;
4205      int OpSrcValueOffset;
4206      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
4207                                    OpSrcValue, OpSrcValueOffset);
4208
4209      // If chain is alias then stop here.
4210      if (!(IsLoad && IsOpLoad) &&
4211          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
4212                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
4213        Aliases.push_back(Chain);
4214      } else {
4215        // Look further up the chain.
4216        Chains.push_back(Chain.getOperand(0));
4217        // Clean up old chain.
4218        AddToWorkList(Chain.Val);
4219      }
4220      break;
4221    }
4222
4223    case ISD::TokenFactor:
4224      // We have to check each of the operands of the token factor, so we queue
4225      // then up.  Adding the  operands to the queue (stack) in reverse order
4226      // maintains the original order and increases the likelihood that getNode
4227      // will find a matching token factor (CSE.)
4228      for (unsigned n = Chain.getNumOperands(); n;)
4229        Chains.push_back(Chain.getOperand(--n));
4230      // Eliminate the token factor if we can.
4231      AddToWorkList(Chain.Val);
4232      break;
4233
4234    default:
4235      // For all other instructions we will just have to take what we can get.
4236      Aliases.push_back(Chain);
4237      break;
4238    }
4239  }
4240}
4241
4242/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
4243/// for a better chain (aliasing node.)
4244SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
4245  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
4246
4247  // Accumulate all the aliases to this node.
4248  GatherAllAliases(N, OldChain, Aliases);
4249
4250  if (Aliases.size() == 0) {
4251    // If no operands then chain to entry token.
4252    return DAG.getEntryNode();
4253  } else if (Aliases.size() == 1) {
4254    // If a single operand then chain to it.  We don't need to revisit it.
4255    return Aliases[0];
4256  }
4257
4258  // Construct a custom tailored token factor.
4259  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4260                                   &Aliases[0], Aliases.size());
4261
4262  // Make sure the old chain gets cleaned up.
4263  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
4264
4265  return NewChain;
4266}
4267
4268// SelectionDAG::Combine - This is the entry point for the file.
4269//
4270void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
4271  if (!RunningAfterLegalize && ViewDAGCombine1)
4272    viewGraph();
4273  if (RunningAfterLegalize && ViewDAGCombine2)
4274    viewGraph();
4275  /// run - This is the main entry point to this class.
4276  ///
4277  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
4278}
4279