DAGCombiner.cpp revision ceb3b4649086c4aa6aa535440748c5860093f6e6
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NodesCombined   , "Number of dag nodes combined");
43STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
44STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
45STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
46STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
47
48namespace {
49  static cl::opt<bool>
50    CombinerAA("combiner-alias-analysis", cl::Hidden,
51               cl::desc("Turn on alias analysis during testing"));
52
53  static cl::opt<bool>
54    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
55               cl::desc("Include global information in alias analysis"));
56
57//------------------------------ DAGCombiner ---------------------------------//
58
59  class DAGCombiner {
60    SelectionDAG &DAG;
61    const TargetLowering &TLI;
62    CombineLevel Level;
63    CodeGenOpt::Level OptLevel;
64    bool LegalOperations;
65    bool LegalTypes;
66
67    // Worklist of all of the nodes that need to be simplified.
68    //
69    // This has the semantics that when adding to the worklist,
70    // the item added must be next to be processed. It should
71    // also only appear once. The naive approach to this takes
72    // linear time.
73    //
74    // To reduce the insert/remove time to logarithmic, we use
75    // a set and a vector to maintain our worklist.
76    //
77    // The set contains the items on the worklist, but does not
78    // maintain the order they should be visited.
79    //
80    // The vector maintains the order nodes should be visited, but may
81    // contain duplicate or removed nodes. When choosing a node to
82    // visit, we pop off the order stack until we find an item that is
83    // also in the contents set. All operations are O(log N).
84    SmallPtrSet<SDNode*, 64> WorkListContents;
85    SmallVector<SDNode*, 64> WorkListOrder;
86
87    // AA - Used for DAG load/store alias analysis.
88    AliasAnalysis &AA;
89
90    /// AddUsersToWorkList - When an instruction is simplified, add all users of
91    /// the instruction to the work lists because they might get more simplified
92    /// now.
93    ///
94    void AddUsersToWorkList(SDNode *N) {
95      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
96           UI != UE; ++UI)
97        AddToWorkList(*UI);
98    }
99
100    /// visit - call the node-specific routine that knows how to fold each
101    /// particular type of node.
102    SDValue visit(SDNode *N);
103
104  public:
105    /// AddToWorkList - Add to the work list making sure its instance is at the
106    /// back (next to be processed.)
107    void AddToWorkList(SDNode *N) {
108      WorkListContents.insert(N);
109      WorkListOrder.push_back(N);
110    }
111
112    /// removeFromWorkList - remove all instances of N from the worklist.
113    ///
114    void removeFromWorkList(SDNode *N) {
115      WorkListContents.erase(N);
116    }
117
118    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
119                      bool AddTo = true);
120
121    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
122      return CombineTo(N, &Res, 1, AddTo);
123    }
124
125    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
126                      bool AddTo = true) {
127      SDValue To[] = { Res0, Res1 };
128      return CombineTo(N, To, 2, AddTo);
129    }
130
131    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
132
133  private:
134
135    /// SimplifyDemandedBits - Check the specified integer node value to see if
136    /// it can be simplified or if things it uses can be simplified by bit
137    /// propagation.  If so, return true.
138    bool SimplifyDemandedBits(SDValue Op) {
139      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
140      APInt Demanded = APInt::getAllOnesValue(BitWidth);
141      return SimplifyDemandedBits(Op, Demanded);
142    }
143
144    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
145
146    bool CombineToPreIndexedLoadStore(SDNode *N);
147    bool CombineToPostIndexedLoadStore(SDNode *N);
148
149    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
150    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
151    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
152    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
153    SDValue PromoteIntBinOp(SDValue Op);
154    SDValue PromoteIntShiftOp(SDValue Op);
155    SDValue PromoteExtend(SDValue Op);
156    bool PromoteLoad(SDValue Op);
157
158    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
159                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
160                         ISD::NodeType ExtType);
161
162    /// combine - call the node-specific routine that knows how to fold each
163    /// particular type of node. If that doesn't do anything, try the
164    /// target-specific DAG combines.
165    SDValue combine(SDNode *N);
166
167    // Visitation implementation - Implement dag node combining for different
168    // node types.  The semantics are as follows:
169    // Return Value:
170    //   SDValue.getNode() == 0 - No change was made
171    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
172    //   otherwise              - N should be replaced by the returned Operand.
173    //
174    SDValue visitTokenFactor(SDNode *N);
175    SDValue visitMERGE_VALUES(SDNode *N);
176    SDValue visitADD(SDNode *N);
177    SDValue visitSUB(SDNode *N);
178    SDValue visitADDC(SDNode *N);
179    SDValue visitSUBC(SDNode *N);
180    SDValue visitADDE(SDNode *N);
181    SDValue visitSUBE(SDNode *N);
182    SDValue visitMUL(SDNode *N);
183    SDValue visitSDIV(SDNode *N);
184    SDValue visitUDIV(SDNode *N);
185    SDValue visitSREM(SDNode *N);
186    SDValue visitUREM(SDNode *N);
187    SDValue visitMULHU(SDNode *N);
188    SDValue visitMULHS(SDNode *N);
189    SDValue visitSMUL_LOHI(SDNode *N);
190    SDValue visitUMUL_LOHI(SDNode *N);
191    SDValue visitSMULO(SDNode *N);
192    SDValue visitUMULO(SDNode *N);
193    SDValue visitSDIVREM(SDNode *N);
194    SDValue visitUDIVREM(SDNode *N);
195    SDValue visitAND(SDNode *N);
196    SDValue visitOR(SDNode *N);
197    SDValue visitXOR(SDNode *N);
198    SDValue SimplifyVBinOp(SDNode *N);
199    SDValue SimplifyVUnaryOp(SDNode *N);
200    SDValue visitSHL(SDNode *N);
201    SDValue visitSRA(SDNode *N);
202    SDValue visitSRL(SDNode *N);
203    SDValue visitCTLZ(SDNode *N);
204    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
205    SDValue visitCTTZ(SDNode *N);
206    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
207    SDValue visitCTPOP(SDNode *N);
208    SDValue visitSELECT(SDNode *N);
209    SDValue visitVSELECT(SDNode *N);
210    SDValue visitSELECT_CC(SDNode *N);
211    SDValue visitSETCC(SDNode *N);
212    SDValue visitSIGN_EXTEND(SDNode *N);
213    SDValue visitZERO_EXTEND(SDNode *N);
214    SDValue visitANY_EXTEND(SDNode *N);
215    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
216    SDValue visitTRUNCATE(SDNode *N);
217    SDValue visitBITCAST(SDNode *N);
218    SDValue visitBUILD_PAIR(SDNode *N);
219    SDValue visitFADD(SDNode *N);
220    SDValue visitFSUB(SDNode *N);
221    SDValue visitFMUL(SDNode *N);
222    SDValue visitFMA(SDNode *N);
223    SDValue visitFDIV(SDNode *N);
224    SDValue visitFREM(SDNode *N);
225    SDValue visitFCOPYSIGN(SDNode *N);
226    SDValue visitSINT_TO_FP(SDNode *N);
227    SDValue visitUINT_TO_FP(SDNode *N);
228    SDValue visitFP_TO_SINT(SDNode *N);
229    SDValue visitFP_TO_UINT(SDNode *N);
230    SDValue visitFP_ROUND(SDNode *N);
231    SDValue visitFP_ROUND_INREG(SDNode *N);
232    SDValue visitFP_EXTEND(SDNode *N);
233    SDValue visitFNEG(SDNode *N);
234    SDValue visitFABS(SDNode *N);
235    SDValue visitFCEIL(SDNode *N);
236    SDValue visitFTRUNC(SDNode *N);
237    SDValue visitFFLOOR(SDNode *N);
238    SDValue visitBRCOND(SDNode *N);
239    SDValue visitBR_CC(SDNode *N);
240    SDValue visitLOAD(SDNode *N);
241    SDValue visitSTORE(SDNode *N);
242    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
243    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
244    SDValue visitBUILD_VECTOR(SDNode *N);
245    SDValue visitCONCAT_VECTORS(SDNode *N);
246    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
247    SDValue visitVECTOR_SHUFFLE(SDNode *N);
248
249    SDValue XformToShuffleWithZero(SDNode *N);
250    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
251
252    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
253
254    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
255    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
256    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
257    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
258                             SDValue N3, ISD::CondCode CC,
259                             bool NotExtCompare = false);
260    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
261                          SDLoc DL, bool foldBooleans = true);
262    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
263                                         unsigned HiOp);
264    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
265    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
266    SDValue BuildSDIV(SDNode *N);
267    SDValue BuildUDIV(SDNode *N);
268    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
269                               bool DemandHighBits = true);
270    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
271    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
272    SDValue ReduceLoadWidth(SDNode *N);
273    SDValue ReduceLoadOpStoreWidth(SDNode *N);
274    SDValue TransformFPLoadStorePair(SDNode *N);
275    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
276    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
277
278    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
279
280    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
281    /// looking for aliasing nodes and adding them to the Aliases vector.
282    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
283                          SmallVectorImpl<SDValue> &Aliases);
284
285    /// isAlias - Return true if there is any possibility that the two addresses
286    /// overlap.
287    bool isAlias(SDValue Ptr1, int64_t Size1,
288                 const Value *SrcValue1, int SrcValueOffset1,
289                 unsigned SrcValueAlign1,
290                 const MDNode *TBAAInfo1,
291                 SDValue Ptr2, int64_t Size2,
292                 const Value *SrcValue2, int SrcValueOffset2,
293                 unsigned SrcValueAlign2,
294                 const MDNode *TBAAInfo2) const;
295
296    /// isAlias - Return true if there is any possibility that the two addresses
297    /// overlap.
298    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
299
300    /// FindAliasInfo - Extracts the relevant alias information from the memory
301    /// node.  Returns true if the operand was a load.
302    bool FindAliasInfo(SDNode *N,
303                       SDValue &Ptr, int64_t &Size,
304                       const Value *&SrcValue, int &SrcValueOffset,
305                       unsigned &SrcValueAlignment,
306                       const MDNode *&TBAAInfo) const;
307
308    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
309    /// looking for a better chain (aliasing node.)
310    SDValue FindBetterChain(SDNode *N, SDValue Chain);
311
312    /// Merge consecutive store operations into a wide store.
313    /// This optimization uses wide integers or vectors when possible.
314    /// \return True if some memory operations were changed.
315    bool MergeConsecutiveStores(StoreSDNode *N);
316
317  public:
318    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
319      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
320        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
321
322    /// Run - runs the dag combiner on all nodes in the work list
323    void Run(CombineLevel AtLevel);
324
325    SelectionDAG &getDAG() const { return DAG; }
326
327    /// getShiftAmountTy - Returns a type large enough to hold any valid
328    /// shift amount - before type legalization these can be huge.
329    EVT getShiftAmountTy(EVT LHSTy) {
330      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
331      if (LHSTy.isVector())
332        return LHSTy;
333      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy) : TLI.getPointerTy();
334    }
335
336    /// isTypeLegal - This method returns true if we are running before type
337    /// legalization or if the specified VT is legal.
338    bool isTypeLegal(const EVT &VT) {
339      if (!LegalTypes) return true;
340      return TLI.isTypeLegal(VT);
341    }
342
343    /// getSetCCResultType - Convenience wrapper around
344    /// TargetLowering::getSetCCResultType
345    EVT getSetCCResultType(EVT VT) const {
346      return TLI.getSetCCResultType(*DAG.getContext(), VT);
347    }
348  };
349}
350
351
352namespace {
353/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
354/// nodes from the worklist.
355class WorkListRemover : public SelectionDAG::DAGUpdateListener {
356  DAGCombiner &DC;
357public:
358  explicit WorkListRemover(DAGCombiner &dc)
359    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
360
361  virtual void NodeDeleted(SDNode *N, SDNode *E) {
362    DC.removeFromWorkList(N);
363  }
364};
365}
366
367//===----------------------------------------------------------------------===//
368//  TargetLowering::DAGCombinerInfo implementation
369//===----------------------------------------------------------------------===//
370
371void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
372  ((DAGCombiner*)DC)->AddToWorkList(N);
373}
374
375void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
376  ((DAGCombiner*)DC)->removeFromWorkList(N);
377}
378
379SDValue TargetLowering::DAGCombinerInfo::
380CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
381  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
382}
383
384SDValue TargetLowering::DAGCombinerInfo::
385CombineTo(SDNode *N, SDValue Res, bool AddTo) {
386  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
387}
388
389
390SDValue TargetLowering::DAGCombinerInfo::
391CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
392  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
393}
394
395void TargetLowering::DAGCombinerInfo::
396CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
397  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
398}
399
400//===----------------------------------------------------------------------===//
401// Helper Functions
402//===----------------------------------------------------------------------===//
403
404/// isNegatibleForFree - Return 1 if we can compute the negated form of the
405/// specified expression for the same cost as the expression itself, or 2 if we
406/// can compute the negated form more cheaply than the expression itself.
407static char isNegatibleForFree(SDValue Op, bool LegalOperations,
408                               const TargetLowering &TLI,
409                               const TargetOptions *Options,
410                               unsigned Depth = 0) {
411  // fneg is removable even if it has multiple uses.
412  if (Op.getOpcode() == ISD::FNEG) return 2;
413
414  // Don't allow anything with multiple uses.
415  if (!Op.hasOneUse()) return 0;
416
417  // Don't recurse exponentially.
418  if (Depth > 6) return 0;
419
420  switch (Op.getOpcode()) {
421  default: return false;
422  case ISD::ConstantFP:
423    // Don't invert constant FP values after legalize.  The negated constant
424    // isn't necessarily legal.
425    return LegalOperations ? 0 : 1;
426  case ISD::FADD:
427    // FIXME: determine better conditions for this xform.
428    if (!Options->UnsafeFPMath) return 0;
429
430    // After operation legalization, it might not be legal to create new FSUBs.
431    if (LegalOperations &&
432        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
433      return 0;
434
435    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
436    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
437                                    Options, Depth + 1))
438      return V;
439    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
440    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
441                              Depth + 1);
442  case ISD::FSUB:
443    // We can't turn -(A-B) into B-A when we honor signed zeros.
444    if (!Options->UnsafeFPMath) return 0;
445
446    // fold (fneg (fsub A, B)) -> (fsub B, A)
447    return 1;
448
449  case ISD::FMUL:
450  case ISD::FDIV:
451    if (Options->HonorSignDependentRoundingFPMath()) return 0;
452
453    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
454    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
455                                    Options, Depth + 1))
456      return V;
457
458    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
459                              Depth + 1);
460
461  case ISD::FP_EXTEND:
462  case ISD::FP_ROUND:
463  case ISD::FSIN:
464    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
465                              Depth + 1);
466  }
467}
468
469/// GetNegatedExpression - If isNegatibleForFree returns true, this function
470/// returns the newly negated expression.
471static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
472                                    bool LegalOperations, unsigned Depth = 0) {
473  // fneg is removable even if it has multiple uses.
474  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
475
476  // Don't allow anything with multiple uses.
477  assert(Op.hasOneUse() && "Unknown reuse!");
478
479  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
480  switch (Op.getOpcode()) {
481  default: llvm_unreachable("Unknown code");
482  case ISD::ConstantFP: {
483    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
484    V.changeSign();
485    return DAG.getConstantFP(V, Op.getValueType());
486  }
487  case ISD::FADD:
488    // FIXME: determine better conditions for this xform.
489    assert(DAG.getTarget().Options.UnsafeFPMath);
490
491    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
492    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
493                           DAG.getTargetLoweringInfo(),
494                           &DAG.getTarget().Options, Depth+1))
495      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
496                         GetNegatedExpression(Op.getOperand(0), DAG,
497                                              LegalOperations, Depth+1),
498                         Op.getOperand(1));
499    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
500    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
501                       GetNegatedExpression(Op.getOperand(1), DAG,
502                                            LegalOperations, Depth+1),
503                       Op.getOperand(0));
504  case ISD::FSUB:
505    // We can't turn -(A-B) into B-A when we honor signed zeros.
506    assert(DAG.getTarget().Options.UnsafeFPMath);
507
508    // fold (fneg (fsub 0, B)) -> B
509    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
510      if (N0CFP->getValueAPF().isZero())
511        return Op.getOperand(1);
512
513    // fold (fneg (fsub A, B)) -> (fsub B, A)
514    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
515                       Op.getOperand(1), Op.getOperand(0));
516
517  case ISD::FMUL:
518  case ISD::FDIV:
519    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
520
521    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
522    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
523                           DAG.getTargetLoweringInfo(),
524                           &DAG.getTarget().Options, Depth+1))
525      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
526                         GetNegatedExpression(Op.getOperand(0), DAG,
527                                              LegalOperations, Depth+1),
528                         Op.getOperand(1));
529
530    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
531    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
532                       Op.getOperand(0),
533                       GetNegatedExpression(Op.getOperand(1), DAG,
534                                            LegalOperations, Depth+1));
535
536  case ISD::FP_EXTEND:
537  case ISD::FSIN:
538    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
539                       GetNegatedExpression(Op.getOperand(0), DAG,
540                                            LegalOperations, Depth+1));
541  case ISD::FP_ROUND:
542      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
543                         GetNegatedExpression(Op.getOperand(0), DAG,
544                                              LegalOperations, Depth+1),
545                         Op.getOperand(1));
546  }
547}
548
549
550// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
551// that selects between the values 1 and 0, making it equivalent to a setcc.
552// Also, set the incoming LHS, RHS, and CC references to the appropriate
553// nodes based on the type of node we are checking.  This simplifies life a
554// bit for the callers.
555static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
556                              SDValue &CC) {
557  if (N.getOpcode() == ISD::SETCC) {
558    LHS = N.getOperand(0);
559    RHS = N.getOperand(1);
560    CC  = N.getOperand(2);
561    return true;
562  }
563  if (N.getOpcode() == ISD::SELECT_CC &&
564      N.getOperand(2).getOpcode() == ISD::Constant &&
565      N.getOperand(3).getOpcode() == ISD::Constant &&
566      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
567      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
568    LHS = N.getOperand(0);
569    RHS = N.getOperand(1);
570    CC  = N.getOperand(4);
571    return true;
572  }
573  return false;
574}
575
576// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
577// one use.  If this is true, it allows the users to invert the operation for
578// free when it is profitable to do so.
579static bool isOneUseSetCC(SDValue N) {
580  SDValue N0, N1, N2;
581  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
582    return true;
583  return false;
584}
585
586SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
587                                    SDValue N0, SDValue N1) {
588  EVT VT = N0.getValueType();
589  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
590    if (isa<ConstantSDNode>(N1)) {
591      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
592      SDValue OpNode =
593        DAG.FoldConstantArithmetic(Opc, VT,
594                                   cast<ConstantSDNode>(N0.getOperand(1)),
595                                   cast<ConstantSDNode>(N1));
596      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
597    }
598    if (N0.hasOneUse()) {
599      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
600      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
601                                   N0.getOperand(0), N1);
602      AddToWorkList(OpNode.getNode());
603      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
604    }
605  }
606
607  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
608    if (isa<ConstantSDNode>(N0)) {
609      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
610      SDValue OpNode =
611        DAG.FoldConstantArithmetic(Opc, VT,
612                                   cast<ConstantSDNode>(N1.getOperand(1)),
613                                   cast<ConstantSDNode>(N0));
614      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
615    }
616    if (N1.hasOneUse()) {
617      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
618      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
619                                   N1.getOperand(0), N0);
620      AddToWorkList(OpNode.getNode());
621      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
622    }
623  }
624
625  return SDValue();
626}
627
628SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
629                               bool AddTo) {
630  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
631  ++NodesCombined;
632  DEBUG(dbgs() << "\nReplacing.1 ";
633        N->dump(&DAG);
634        dbgs() << "\nWith: ";
635        To[0].getNode()->dump(&DAG);
636        dbgs() << " and " << NumTo-1 << " other values\n";
637        for (unsigned i = 0, e = NumTo; i != e; ++i)
638          assert((!To[i].getNode() ||
639                  N->getValueType(i) == To[i].getValueType()) &&
640                 "Cannot combine value to value of different type!"));
641  WorkListRemover DeadNodes(*this);
642  DAG.ReplaceAllUsesWith(N, To);
643  if (AddTo) {
644    // Push the new nodes and any users onto the worklist
645    for (unsigned i = 0, e = NumTo; i != e; ++i) {
646      if (To[i].getNode()) {
647        AddToWorkList(To[i].getNode());
648        AddUsersToWorkList(To[i].getNode());
649      }
650    }
651  }
652
653  // Finally, if the node is now dead, remove it from the graph.  The node
654  // may not be dead if the replacement process recursively simplified to
655  // something else needing this node.
656  if (N->use_empty()) {
657    // Nodes can be reintroduced into the worklist.  Make sure we do not
658    // process a node that has been replaced.
659    removeFromWorkList(N);
660
661    // Finally, since the node is now dead, remove it from the graph.
662    DAG.DeleteNode(N);
663  }
664  return SDValue(N, 0);
665}
666
667void DAGCombiner::
668CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
669  // Replace all uses.  If any nodes become isomorphic to other nodes and
670  // are deleted, make sure to remove them from our worklist.
671  WorkListRemover DeadNodes(*this);
672  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
673
674  // Push the new node and any (possibly new) users onto the worklist.
675  AddToWorkList(TLO.New.getNode());
676  AddUsersToWorkList(TLO.New.getNode());
677
678  // Finally, if the node is now dead, remove it from the graph.  The node
679  // may not be dead if the replacement process recursively simplified to
680  // something else needing this node.
681  if (TLO.Old.getNode()->use_empty()) {
682    removeFromWorkList(TLO.Old.getNode());
683
684    // If the operands of this node are only used by the node, they will now
685    // be dead.  Make sure to visit them first to delete dead nodes early.
686    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
687      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
688        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
689
690    DAG.DeleteNode(TLO.Old.getNode());
691  }
692}
693
694/// SimplifyDemandedBits - Check the specified integer node value to see if
695/// it can be simplified or if things it uses can be simplified by bit
696/// propagation.  If so, return true.
697bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
698  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
699  APInt KnownZero, KnownOne;
700  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
701    return false;
702
703  // Revisit the node.
704  AddToWorkList(Op.getNode());
705
706  // Replace the old value with the new one.
707  ++NodesCombined;
708  DEBUG(dbgs() << "\nReplacing.2 ";
709        TLO.Old.getNode()->dump(&DAG);
710        dbgs() << "\nWith: ";
711        TLO.New.getNode()->dump(&DAG);
712        dbgs() << '\n');
713
714  CommitTargetLoweringOpt(TLO);
715  return true;
716}
717
718void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
719  SDLoc dl(Load);
720  EVT VT = Load->getValueType(0);
721  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
722
723  DEBUG(dbgs() << "\nReplacing.9 ";
724        Load->dump(&DAG);
725        dbgs() << "\nWith: ";
726        Trunc.getNode()->dump(&DAG);
727        dbgs() << '\n');
728  WorkListRemover DeadNodes(*this);
729  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
730  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
731  removeFromWorkList(Load);
732  DAG.DeleteNode(Load);
733  AddToWorkList(Trunc.getNode());
734}
735
736SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
737  Replace = false;
738  SDLoc dl(Op);
739  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
740    EVT MemVT = LD->getMemoryVT();
741    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
742      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
743                                                  : ISD::EXTLOAD)
744      : LD->getExtensionType();
745    Replace = true;
746    return DAG.getExtLoad(ExtType, dl, PVT,
747                          LD->getChain(), LD->getBasePtr(),
748                          LD->getPointerInfo(),
749                          MemVT, LD->isVolatile(),
750                          LD->isNonTemporal(), LD->getAlignment());
751  }
752
753  unsigned Opc = Op.getOpcode();
754  switch (Opc) {
755  default: break;
756  case ISD::AssertSext:
757    return DAG.getNode(ISD::AssertSext, dl, PVT,
758                       SExtPromoteOperand(Op.getOperand(0), PVT),
759                       Op.getOperand(1));
760  case ISD::AssertZext:
761    return DAG.getNode(ISD::AssertZext, dl, PVT,
762                       ZExtPromoteOperand(Op.getOperand(0), PVT),
763                       Op.getOperand(1));
764  case ISD::Constant: {
765    unsigned ExtOpc =
766      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
767    return DAG.getNode(ExtOpc, dl, PVT, Op);
768  }
769  }
770
771  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
772    return SDValue();
773  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
774}
775
776SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
777  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
778    return SDValue();
779  EVT OldVT = Op.getValueType();
780  SDLoc dl(Op);
781  bool Replace = false;
782  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
783  if (NewOp.getNode() == 0)
784    return SDValue();
785  AddToWorkList(NewOp.getNode());
786
787  if (Replace)
788    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
789  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
790                     DAG.getValueType(OldVT));
791}
792
793SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
794  EVT OldVT = Op.getValueType();
795  SDLoc dl(Op);
796  bool Replace = false;
797  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
798  if (NewOp.getNode() == 0)
799    return SDValue();
800  AddToWorkList(NewOp.getNode());
801
802  if (Replace)
803    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
804  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
805}
806
807/// PromoteIntBinOp - Promote the specified integer binary operation if the
808/// target indicates it is beneficial. e.g. On x86, it's usually better to
809/// promote i16 operations to i32 since i16 instructions are longer.
810SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
811  if (!LegalOperations)
812    return SDValue();
813
814  EVT VT = Op.getValueType();
815  if (VT.isVector() || !VT.isInteger())
816    return SDValue();
817
818  // If operation type is 'undesirable', e.g. i16 on x86, consider
819  // promoting it.
820  unsigned Opc = Op.getOpcode();
821  if (TLI.isTypeDesirableForOp(Opc, VT))
822    return SDValue();
823
824  EVT PVT = VT;
825  // Consult target whether it is a good idea to promote this operation and
826  // what's the right type to promote it to.
827  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
828    assert(PVT != VT && "Don't know what type to promote to!");
829
830    bool Replace0 = false;
831    SDValue N0 = Op.getOperand(0);
832    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
833    if (NN0.getNode() == 0)
834      return SDValue();
835
836    bool Replace1 = false;
837    SDValue N1 = Op.getOperand(1);
838    SDValue NN1;
839    if (N0 == N1)
840      NN1 = NN0;
841    else {
842      NN1 = PromoteOperand(N1, PVT, Replace1);
843      if (NN1.getNode() == 0)
844        return SDValue();
845    }
846
847    AddToWorkList(NN0.getNode());
848    if (NN1.getNode())
849      AddToWorkList(NN1.getNode());
850
851    if (Replace0)
852      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
853    if (Replace1)
854      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
855
856    DEBUG(dbgs() << "\nPromoting ";
857          Op.getNode()->dump(&DAG));
858    SDLoc dl(Op);
859    return DAG.getNode(ISD::TRUNCATE, dl, VT,
860                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
861  }
862  return SDValue();
863}
864
865/// PromoteIntShiftOp - Promote the specified integer shift operation if the
866/// target indicates it is beneficial. e.g. On x86, it's usually better to
867/// promote i16 operations to i32 since i16 instructions are longer.
868SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
869  if (!LegalOperations)
870    return SDValue();
871
872  EVT VT = Op.getValueType();
873  if (VT.isVector() || !VT.isInteger())
874    return SDValue();
875
876  // If operation type is 'undesirable', e.g. i16 on x86, consider
877  // promoting it.
878  unsigned Opc = Op.getOpcode();
879  if (TLI.isTypeDesirableForOp(Opc, VT))
880    return SDValue();
881
882  EVT PVT = VT;
883  // Consult target whether it is a good idea to promote this operation and
884  // what's the right type to promote it to.
885  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
886    assert(PVT != VT && "Don't know what type to promote to!");
887
888    bool Replace = false;
889    SDValue N0 = Op.getOperand(0);
890    if (Opc == ISD::SRA)
891      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
892    else if (Opc == ISD::SRL)
893      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
894    else
895      N0 = PromoteOperand(N0, PVT, Replace);
896    if (N0.getNode() == 0)
897      return SDValue();
898
899    AddToWorkList(N0.getNode());
900    if (Replace)
901      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
902
903    DEBUG(dbgs() << "\nPromoting ";
904          Op.getNode()->dump(&DAG));
905    SDLoc dl(Op);
906    return DAG.getNode(ISD::TRUNCATE, dl, VT,
907                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
908  }
909  return SDValue();
910}
911
912SDValue DAGCombiner::PromoteExtend(SDValue Op) {
913  if (!LegalOperations)
914    return SDValue();
915
916  EVT VT = Op.getValueType();
917  if (VT.isVector() || !VT.isInteger())
918    return SDValue();
919
920  // If operation type is 'undesirable', e.g. i16 on x86, consider
921  // promoting it.
922  unsigned Opc = Op.getOpcode();
923  if (TLI.isTypeDesirableForOp(Opc, VT))
924    return SDValue();
925
926  EVT PVT = VT;
927  // Consult target whether it is a good idea to promote this operation and
928  // what's the right type to promote it to.
929  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
930    assert(PVT != VT && "Don't know what type to promote to!");
931    // fold (aext (aext x)) -> (aext x)
932    // fold (aext (zext x)) -> (zext x)
933    // fold (aext (sext x)) -> (sext x)
934    DEBUG(dbgs() << "\nPromoting ";
935          Op.getNode()->dump(&DAG));
936    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
937  }
938  return SDValue();
939}
940
941bool DAGCombiner::PromoteLoad(SDValue Op) {
942  if (!LegalOperations)
943    return false;
944
945  EVT VT = Op.getValueType();
946  if (VT.isVector() || !VT.isInteger())
947    return false;
948
949  // If operation type is 'undesirable', e.g. i16 on x86, consider
950  // promoting it.
951  unsigned Opc = Op.getOpcode();
952  if (TLI.isTypeDesirableForOp(Opc, VT))
953    return false;
954
955  EVT PVT = VT;
956  // Consult target whether it is a good idea to promote this operation and
957  // what's the right type to promote it to.
958  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
959    assert(PVT != VT && "Don't know what type to promote to!");
960
961    SDLoc dl(Op);
962    SDNode *N = Op.getNode();
963    LoadSDNode *LD = cast<LoadSDNode>(N);
964    EVT MemVT = LD->getMemoryVT();
965    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
966      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
967                                                  : ISD::EXTLOAD)
968      : LD->getExtensionType();
969    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
970                                   LD->getChain(), LD->getBasePtr(),
971                                   LD->getPointerInfo(),
972                                   MemVT, LD->isVolatile(),
973                                   LD->isNonTemporal(), LD->getAlignment());
974    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
975
976    DEBUG(dbgs() << "\nPromoting ";
977          N->dump(&DAG);
978          dbgs() << "\nTo: ";
979          Result.getNode()->dump(&DAG);
980          dbgs() << '\n');
981    WorkListRemover DeadNodes(*this);
982    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
983    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
984    removeFromWorkList(N);
985    DAG.DeleteNode(N);
986    AddToWorkList(Result.getNode());
987    return true;
988  }
989  return false;
990}
991
992
993//===----------------------------------------------------------------------===//
994//  Main DAG Combiner implementation
995//===----------------------------------------------------------------------===//
996
997void DAGCombiner::Run(CombineLevel AtLevel) {
998  // set the instance variables, so that the various visit routines may use it.
999  Level = AtLevel;
1000  LegalOperations = Level >= AfterLegalizeVectorOps;
1001  LegalTypes = Level >= AfterLegalizeTypes;
1002
1003  // Add all the dag nodes to the worklist.
1004  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1005       E = DAG.allnodes_end(); I != E; ++I)
1006    AddToWorkList(I);
1007
1008  // Create a dummy node (which is not added to allnodes), that adds a reference
1009  // to the root node, preventing it from being deleted, and tracking any
1010  // changes of the root.
1011  HandleSDNode Dummy(DAG.getRoot());
1012
1013  // The root of the dag may dangle to deleted nodes until the dag combiner is
1014  // done.  Set it to null to avoid confusion.
1015  DAG.setRoot(SDValue());
1016
1017  // while the worklist isn't empty, find a node and
1018  // try and combine it.
1019  while (!WorkListContents.empty()) {
1020    SDNode *N;
1021    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1022    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1023    // worklist *should* contain, and check the node we want to visit is should
1024    // actually be visited.
1025    do {
1026      N = WorkListOrder.pop_back_val();
1027    } while (!WorkListContents.erase(N));
1028
1029    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1030    // N is deleted from the DAG, since they too may now be dead or may have a
1031    // reduced number of uses, allowing other xforms.
1032    if (N->use_empty() && N != &Dummy) {
1033      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1034        AddToWorkList(N->getOperand(i).getNode());
1035
1036      DAG.DeleteNode(N);
1037      continue;
1038    }
1039
1040    SDValue RV = combine(N);
1041
1042    if (RV.getNode() == 0)
1043      continue;
1044
1045    ++NodesCombined;
1046
1047    // If we get back the same node we passed in, rather than a new node or
1048    // zero, we know that the node must have defined multiple values and
1049    // CombineTo was used.  Since CombineTo takes care of the worklist
1050    // mechanics for us, we have no work to do in this case.
1051    if (RV.getNode() == N)
1052      continue;
1053
1054    assert(N->getOpcode() != ISD::DELETED_NODE &&
1055           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1056           "Node was deleted but visit returned new node!");
1057
1058    DEBUG(dbgs() << "\nReplacing.3 ";
1059          N->dump(&DAG);
1060          dbgs() << "\nWith: ";
1061          RV.getNode()->dump(&DAG);
1062          dbgs() << '\n');
1063
1064    // Transfer debug value.
1065    DAG.TransferDbgValues(SDValue(N, 0), RV);
1066    WorkListRemover DeadNodes(*this);
1067    if (N->getNumValues() == RV.getNode()->getNumValues())
1068      DAG.ReplaceAllUsesWith(N, RV.getNode());
1069    else {
1070      assert(N->getValueType(0) == RV.getValueType() &&
1071             N->getNumValues() == 1 && "Type mismatch");
1072      SDValue OpV = RV;
1073      DAG.ReplaceAllUsesWith(N, &OpV);
1074    }
1075
1076    // Push the new node and any users onto the worklist
1077    AddToWorkList(RV.getNode());
1078    AddUsersToWorkList(RV.getNode());
1079
1080    // Add any uses of the old node to the worklist in case this node is the
1081    // last one that uses them.  They may become dead after this node is
1082    // deleted.
1083    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1084      AddToWorkList(N->getOperand(i).getNode());
1085
1086    // Finally, if the node is now dead, remove it from the graph.  The node
1087    // may not be dead if the replacement process recursively simplified to
1088    // something else needing this node.
1089    if (N->use_empty()) {
1090      // Nodes can be reintroduced into the worklist.  Make sure we do not
1091      // process a node that has been replaced.
1092      removeFromWorkList(N);
1093
1094      // Finally, since the node is now dead, remove it from the graph.
1095      DAG.DeleteNode(N);
1096    }
1097  }
1098
1099  // If the root changed (e.g. it was a dead load, update the root).
1100  DAG.setRoot(Dummy.getValue());
1101  DAG.RemoveDeadNodes();
1102}
1103
1104SDValue DAGCombiner::visit(SDNode *N) {
1105  switch (N->getOpcode()) {
1106  default: break;
1107  case ISD::TokenFactor:        return visitTokenFactor(N);
1108  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1109  case ISD::ADD:                return visitADD(N);
1110  case ISD::SUB:                return visitSUB(N);
1111  case ISD::ADDC:               return visitADDC(N);
1112  case ISD::SUBC:               return visitSUBC(N);
1113  case ISD::ADDE:               return visitADDE(N);
1114  case ISD::SUBE:               return visitSUBE(N);
1115  case ISD::MUL:                return visitMUL(N);
1116  case ISD::SDIV:               return visitSDIV(N);
1117  case ISD::UDIV:               return visitUDIV(N);
1118  case ISD::SREM:               return visitSREM(N);
1119  case ISD::UREM:               return visitUREM(N);
1120  case ISD::MULHU:              return visitMULHU(N);
1121  case ISD::MULHS:              return visitMULHS(N);
1122  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1123  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1124  case ISD::SMULO:              return visitSMULO(N);
1125  case ISD::UMULO:              return visitUMULO(N);
1126  case ISD::SDIVREM:            return visitSDIVREM(N);
1127  case ISD::UDIVREM:            return visitUDIVREM(N);
1128  case ISD::AND:                return visitAND(N);
1129  case ISD::OR:                 return visitOR(N);
1130  case ISD::XOR:                return visitXOR(N);
1131  case ISD::SHL:                return visitSHL(N);
1132  case ISD::SRA:                return visitSRA(N);
1133  case ISD::SRL:                return visitSRL(N);
1134  case ISD::CTLZ:               return visitCTLZ(N);
1135  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1136  case ISD::CTTZ:               return visitCTTZ(N);
1137  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1138  case ISD::CTPOP:              return visitCTPOP(N);
1139  case ISD::SELECT:             return visitSELECT(N);
1140  case ISD::VSELECT:            return visitVSELECT(N);
1141  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1142  case ISD::SETCC:              return visitSETCC(N);
1143  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1144  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1145  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1146  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1147  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1148  case ISD::BITCAST:            return visitBITCAST(N);
1149  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1150  case ISD::FADD:               return visitFADD(N);
1151  case ISD::FSUB:               return visitFSUB(N);
1152  case ISD::FMUL:               return visitFMUL(N);
1153  case ISD::FMA:                return visitFMA(N);
1154  case ISD::FDIV:               return visitFDIV(N);
1155  case ISD::FREM:               return visitFREM(N);
1156  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1157  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1158  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1159  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1160  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1161  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1162  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1163  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1164  case ISD::FNEG:               return visitFNEG(N);
1165  case ISD::FABS:               return visitFABS(N);
1166  case ISD::FFLOOR:             return visitFFLOOR(N);
1167  case ISD::FCEIL:              return visitFCEIL(N);
1168  case ISD::FTRUNC:             return visitFTRUNC(N);
1169  case ISD::BRCOND:             return visitBRCOND(N);
1170  case ISD::BR_CC:              return visitBR_CC(N);
1171  case ISD::LOAD:               return visitLOAD(N);
1172  case ISD::STORE:              return visitSTORE(N);
1173  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1174  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1175  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1176  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1177  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1178  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1179  }
1180  return SDValue();
1181}
1182
1183SDValue DAGCombiner::combine(SDNode *N) {
1184  SDValue RV = visit(N);
1185
1186  // If nothing happened, try a target-specific DAG combine.
1187  if (RV.getNode() == 0) {
1188    assert(N->getOpcode() != ISD::DELETED_NODE &&
1189           "Node was deleted but visit returned NULL!");
1190
1191    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1192        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1193
1194      // Expose the DAG combiner to the target combiner impls.
1195      TargetLowering::DAGCombinerInfo
1196        DagCombineInfo(DAG, Level, false, this);
1197
1198      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1199    }
1200  }
1201
1202  // If nothing happened still, try promoting the operation.
1203  if (RV.getNode() == 0) {
1204    switch (N->getOpcode()) {
1205    default: break;
1206    case ISD::ADD:
1207    case ISD::SUB:
1208    case ISD::MUL:
1209    case ISD::AND:
1210    case ISD::OR:
1211    case ISD::XOR:
1212      RV = PromoteIntBinOp(SDValue(N, 0));
1213      break;
1214    case ISD::SHL:
1215    case ISD::SRA:
1216    case ISD::SRL:
1217      RV = PromoteIntShiftOp(SDValue(N, 0));
1218      break;
1219    case ISD::SIGN_EXTEND:
1220    case ISD::ZERO_EXTEND:
1221    case ISD::ANY_EXTEND:
1222      RV = PromoteExtend(SDValue(N, 0));
1223      break;
1224    case ISD::LOAD:
1225      if (PromoteLoad(SDValue(N, 0)))
1226        RV = SDValue(N, 0);
1227      break;
1228    }
1229  }
1230
1231  // If N is a commutative binary node, try commuting it to enable more
1232  // sdisel CSE.
1233  if (RV.getNode() == 0 &&
1234      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1235      N->getNumValues() == 1) {
1236    SDValue N0 = N->getOperand(0);
1237    SDValue N1 = N->getOperand(1);
1238
1239    // Constant operands are canonicalized to RHS.
1240    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1241      SDValue Ops[] = { N1, N0 };
1242      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1243                                            Ops, 2);
1244      if (CSENode)
1245        return SDValue(CSENode, 0);
1246    }
1247  }
1248
1249  return RV;
1250}
1251
1252/// getInputChainForNode - Given a node, return its input chain if it has one,
1253/// otherwise return a null sd operand.
1254static SDValue getInputChainForNode(SDNode *N) {
1255  if (unsigned NumOps = N->getNumOperands()) {
1256    if (N->getOperand(0).getValueType() == MVT::Other)
1257      return N->getOperand(0);
1258    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1259      return N->getOperand(NumOps-1);
1260    for (unsigned i = 1; i < NumOps-1; ++i)
1261      if (N->getOperand(i).getValueType() == MVT::Other)
1262        return N->getOperand(i);
1263  }
1264  return SDValue();
1265}
1266
1267SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1268  // If N has two operands, where one has an input chain equal to the other,
1269  // the 'other' chain is redundant.
1270  if (N->getNumOperands() == 2) {
1271    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1272      return N->getOperand(0);
1273    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1274      return N->getOperand(1);
1275  }
1276
1277  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1278  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1279  SmallPtrSet<SDNode*, 16> SeenOps;
1280  bool Changed = false;             // If we should replace this token factor.
1281
1282  // Start out with this token factor.
1283  TFs.push_back(N);
1284
1285  // Iterate through token factors.  The TFs grows when new token factors are
1286  // encountered.
1287  for (unsigned i = 0; i < TFs.size(); ++i) {
1288    SDNode *TF = TFs[i];
1289
1290    // Check each of the operands.
1291    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1292      SDValue Op = TF->getOperand(i);
1293
1294      switch (Op.getOpcode()) {
1295      case ISD::EntryToken:
1296        // Entry tokens don't need to be added to the list. They are
1297        // rededundant.
1298        Changed = true;
1299        break;
1300
1301      case ISD::TokenFactor:
1302        if (Op.hasOneUse() &&
1303            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1304          // Queue up for processing.
1305          TFs.push_back(Op.getNode());
1306          // Clean up in case the token factor is removed.
1307          AddToWorkList(Op.getNode());
1308          Changed = true;
1309          break;
1310        }
1311        // Fall thru
1312
1313      default:
1314        // Only add if it isn't already in the list.
1315        if (SeenOps.insert(Op.getNode()))
1316          Ops.push_back(Op);
1317        else
1318          Changed = true;
1319        break;
1320      }
1321    }
1322  }
1323
1324  SDValue Result;
1325
1326  // If we've change things around then replace token factor.
1327  if (Changed) {
1328    if (Ops.empty()) {
1329      // The entry token is the only possible outcome.
1330      Result = DAG.getEntryNode();
1331    } else {
1332      // New and improved token factor.
1333      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1334                           MVT::Other, &Ops[0], Ops.size());
1335    }
1336
1337    // Don't add users to work list.
1338    return CombineTo(N, Result, false);
1339  }
1340
1341  return Result;
1342}
1343
1344/// MERGE_VALUES can always be eliminated.
1345SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1346  WorkListRemover DeadNodes(*this);
1347  // Replacing results may cause a different MERGE_VALUES to suddenly
1348  // be CSE'd with N, and carry its uses with it. Iterate until no
1349  // uses remain, to ensure that the node can be safely deleted.
1350  // First add the users of this node to the work list so that they
1351  // can be tried again once they have new operands.
1352  AddUsersToWorkList(N);
1353  do {
1354    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1355      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1356  } while (!N->use_empty());
1357  removeFromWorkList(N);
1358  DAG.DeleteNode(N);
1359  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1360}
1361
1362static
1363SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1364                              SelectionDAG &DAG) {
1365  EVT VT = N0.getValueType();
1366  SDValue N00 = N0.getOperand(0);
1367  SDValue N01 = N0.getOperand(1);
1368  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1369
1370  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1371      isa<ConstantSDNode>(N00.getOperand(1))) {
1372    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1373    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1374                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1375                                 N00.getOperand(0), N01),
1376                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1377                                 N00.getOperand(1), N01));
1378    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1379  }
1380
1381  return SDValue();
1382}
1383
1384SDValue DAGCombiner::visitADD(SDNode *N) {
1385  SDValue N0 = N->getOperand(0);
1386  SDValue N1 = N->getOperand(1);
1387  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1388  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1389  EVT VT = N0.getValueType();
1390
1391  // fold vector ops
1392  if (VT.isVector()) {
1393    SDValue FoldedVOp = SimplifyVBinOp(N);
1394    if (FoldedVOp.getNode()) return FoldedVOp;
1395
1396    // fold (add x, 0) -> x, vector edition
1397    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1398      return N0;
1399    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1400      return N1;
1401  }
1402
1403  // fold (add x, undef) -> undef
1404  if (N0.getOpcode() == ISD::UNDEF)
1405    return N0;
1406  if (N1.getOpcode() == ISD::UNDEF)
1407    return N1;
1408  // fold (add c1, c2) -> c1+c2
1409  if (N0C && N1C)
1410    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1411  // canonicalize constant to RHS
1412  if (N0C && !N1C)
1413    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1414  // fold (add x, 0) -> x
1415  if (N1C && N1C->isNullValue())
1416    return N0;
1417  // fold (add Sym, c) -> Sym+c
1418  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1419    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1420        GA->getOpcode() == ISD::GlobalAddress)
1421      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1422                                  GA->getOffset() +
1423                                    (uint64_t)N1C->getSExtValue());
1424  // fold ((c1-A)+c2) -> (c1+c2)-A
1425  if (N1C && N0.getOpcode() == ISD::SUB)
1426    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1427      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1428                         DAG.getConstant(N1C->getAPIntValue()+
1429                                         N0C->getAPIntValue(), VT),
1430                         N0.getOperand(1));
1431  // reassociate add
1432  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1433  if (RADD.getNode() != 0)
1434    return RADD;
1435  // fold ((0-A) + B) -> B-A
1436  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1437      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1438    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1439  // fold (A + (0-B)) -> A-B
1440  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1441      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1442    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1443  // fold (A+(B-A)) -> B
1444  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1445    return N1.getOperand(0);
1446  // fold ((B-A)+A) -> B
1447  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1448    return N0.getOperand(0);
1449  // fold (A+(B-(A+C))) to (B-C)
1450  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1451      N0 == N1.getOperand(1).getOperand(0))
1452    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1453                       N1.getOperand(1).getOperand(1));
1454  // fold (A+(B-(C+A))) to (B-C)
1455  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1456      N0 == N1.getOperand(1).getOperand(1))
1457    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1458                       N1.getOperand(1).getOperand(0));
1459  // fold (A+((B-A)+or-C)) to (B+or-C)
1460  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1461      N1.getOperand(0).getOpcode() == ISD::SUB &&
1462      N0 == N1.getOperand(0).getOperand(1))
1463    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1464                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1465
1466  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1467  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1468    SDValue N00 = N0.getOperand(0);
1469    SDValue N01 = N0.getOperand(1);
1470    SDValue N10 = N1.getOperand(0);
1471    SDValue N11 = N1.getOperand(1);
1472
1473    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1474      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1475                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1476                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1477  }
1478
1479  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1480    return SDValue(N, 0);
1481
1482  // fold (a+b) -> (a|b) iff a and b share no bits.
1483  if (VT.isInteger() && !VT.isVector()) {
1484    APInt LHSZero, LHSOne;
1485    APInt RHSZero, RHSOne;
1486    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1487
1488    if (LHSZero.getBoolValue()) {
1489      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1490
1491      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1492      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1493      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1494        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1495    }
1496  }
1497
1498  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1499  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1500    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1501    if (Result.getNode()) return Result;
1502  }
1503  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1504    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1505    if (Result.getNode()) return Result;
1506  }
1507
1508  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1509  if (N1.getOpcode() == ISD::SHL &&
1510      N1.getOperand(0).getOpcode() == ISD::SUB)
1511    if (ConstantSDNode *C =
1512          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1513      if (C->getAPIntValue() == 0)
1514        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1515                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1516                                       N1.getOperand(0).getOperand(1),
1517                                       N1.getOperand(1)));
1518  if (N0.getOpcode() == ISD::SHL &&
1519      N0.getOperand(0).getOpcode() == ISD::SUB)
1520    if (ConstantSDNode *C =
1521          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1522      if (C->getAPIntValue() == 0)
1523        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1524                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1525                                       N0.getOperand(0).getOperand(1),
1526                                       N0.getOperand(1)));
1527
1528  if (N1.getOpcode() == ISD::AND) {
1529    SDValue AndOp0 = N1.getOperand(0);
1530    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1531    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1532    unsigned DestBits = VT.getScalarType().getSizeInBits();
1533
1534    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1535    // and similar xforms where the inner op is either ~0 or 0.
1536    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1537      SDLoc DL(N);
1538      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1539    }
1540  }
1541
1542  // add (sext i1), X -> sub X, (zext i1)
1543  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1544      N0.getOperand(0).getValueType() == MVT::i1 &&
1545      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1546    SDLoc DL(N);
1547    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1548    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1549  }
1550
1551  return SDValue();
1552}
1553
1554SDValue DAGCombiner::visitADDC(SDNode *N) {
1555  SDValue N0 = N->getOperand(0);
1556  SDValue N1 = N->getOperand(1);
1557  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1558  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1559  EVT VT = N0.getValueType();
1560
1561  // If the flag result is dead, turn this into an ADD.
1562  if (!N->hasAnyUseOfValue(1))
1563    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1564                     DAG.getNode(ISD::CARRY_FALSE,
1565                                 SDLoc(N), MVT::Glue));
1566
1567  // canonicalize constant to RHS.
1568  if (N0C && !N1C)
1569    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1570
1571  // fold (addc x, 0) -> x + no carry out
1572  if (N1C && N1C->isNullValue())
1573    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1574                                        SDLoc(N), MVT::Glue));
1575
1576  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1577  APInt LHSZero, LHSOne;
1578  APInt RHSZero, RHSOne;
1579  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1580
1581  if (LHSZero.getBoolValue()) {
1582    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1583
1584    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1585    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1586    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1587      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1588                       DAG.getNode(ISD::CARRY_FALSE,
1589                                   SDLoc(N), MVT::Glue));
1590  }
1591
1592  return SDValue();
1593}
1594
1595SDValue DAGCombiner::visitADDE(SDNode *N) {
1596  SDValue N0 = N->getOperand(0);
1597  SDValue N1 = N->getOperand(1);
1598  SDValue CarryIn = N->getOperand(2);
1599  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1600  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1601
1602  // canonicalize constant to RHS
1603  if (N0C && !N1C)
1604    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1605                       N1, N0, CarryIn);
1606
1607  // fold (adde x, y, false) -> (addc x, y)
1608  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1609    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1610
1611  return SDValue();
1612}
1613
1614// Since it may not be valid to emit a fold to zero for vector initializers
1615// check if we can before folding.
1616static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1617                             SelectionDAG &DAG,
1618                             bool LegalOperations, bool LegalTypes) {
1619  if (!VT.isVector())
1620    return DAG.getConstant(0, VT);
1621  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1622    // Produce a vector of zeros.
1623    EVT ElemTy = VT.getVectorElementType();
1624    if (LegalTypes && TLI.getTypeAction(*DAG.getContext(), ElemTy) ==
1625                      TargetLowering::TypePromoteInteger)
1626      ElemTy = TLI.getTypeToTransformTo(*DAG.getContext(), ElemTy);
1627    assert((!LegalTypes || TLI.isTypeLegal(ElemTy)) &&
1628           "Type for zero vector elements is not legal");
1629    SDValue El = DAG.getConstant(0, ElemTy);
1630    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1631    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1632      &Ops[0], Ops.size());
1633  }
1634  return SDValue();
1635}
1636
1637SDValue DAGCombiner::visitSUB(SDNode *N) {
1638  SDValue N0 = N->getOperand(0);
1639  SDValue N1 = N->getOperand(1);
1640  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1641  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1642  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1643    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1644  EVT VT = N0.getValueType();
1645
1646  // fold vector ops
1647  if (VT.isVector()) {
1648    SDValue FoldedVOp = SimplifyVBinOp(N);
1649    if (FoldedVOp.getNode()) return FoldedVOp;
1650
1651    // fold (sub x, 0) -> x, vector edition
1652    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1653      return N0;
1654  }
1655
1656  // fold (sub x, x) -> 0
1657  // FIXME: Refactor this and xor and other similar operations together.
1658  if (N0 == N1)
1659    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1660  // fold (sub c1, c2) -> c1-c2
1661  if (N0C && N1C)
1662    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1663  // fold (sub x, c) -> (add x, -c)
1664  if (N1C)
1665    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1666                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1667  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1668  if (N0C && N0C->isAllOnesValue())
1669    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1670  // fold A-(A-B) -> B
1671  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1672    return N1.getOperand(1);
1673  // fold (A+B)-A -> B
1674  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1675    return N0.getOperand(1);
1676  // fold (A+B)-B -> A
1677  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1678    return N0.getOperand(0);
1679  // fold C2-(A+C1) -> (C2-C1)-A
1680  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1681    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1682                                   VT);
1683    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1684                       N1.getOperand(0));
1685  }
1686  // fold ((A+(B+or-C))-B) -> A+or-C
1687  if (N0.getOpcode() == ISD::ADD &&
1688      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1689       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1690      N0.getOperand(1).getOperand(0) == N1)
1691    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1692                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1693  // fold ((A+(C+B))-B) -> A+C
1694  if (N0.getOpcode() == ISD::ADD &&
1695      N0.getOperand(1).getOpcode() == ISD::ADD &&
1696      N0.getOperand(1).getOperand(1) == N1)
1697    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1698                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1699  // fold ((A-(B-C))-C) -> A-B
1700  if (N0.getOpcode() == ISD::SUB &&
1701      N0.getOperand(1).getOpcode() == ISD::SUB &&
1702      N0.getOperand(1).getOperand(1) == N1)
1703    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1704                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1705
1706  // If either operand of a sub is undef, the result is undef
1707  if (N0.getOpcode() == ISD::UNDEF)
1708    return N0;
1709  if (N1.getOpcode() == ISD::UNDEF)
1710    return N1;
1711
1712  // If the relocation model supports it, consider symbol offsets.
1713  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1714    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1715      // fold (sub Sym, c) -> Sym-c
1716      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1717        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1718                                    GA->getOffset() -
1719                                      (uint64_t)N1C->getSExtValue());
1720      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1721      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1722        if (GA->getGlobal() == GB->getGlobal())
1723          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1724                                 VT);
1725    }
1726
1727  return SDValue();
1728}
1729
1730SDValue DAGCombiner::visitSUBC(SDNode *N) {
1731  SDValue N0 = N->getOperand(0);
1732  SDValue N1 = N->getOperand(1);
1733  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1734  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1735  EVT VT = N0.getValueType();
1736
1737  // If the flag result is dead, turn this into an SUB.
1738  if (!N->hasAnyUseOfValue(1))
1739    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1740                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1741                                 MVT::Glue));
1742
1743  // fold (subc x, x) -> 0 + no borrow
1744  if (N0 == N1)
1745    return CombineTo(N, DAG.getConstant(0, VT),
1746                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1747                                 MVT::Glue));
1748
1749  // fold (subc x, 0) -> x + no borrow
1750  if (N1C && N1C->isNullValue())
1751    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1752                                        MVT::Glue));
1753
1754  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1755  if (N0C && N0C->isAllOnesValue())
1756    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1757                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1758                                 MVT::Glue));
1759
1760  return SDValue();
1761}
1762
1763SDValue DAGCombiner::visitSUBE(SDNode *N) {
1764  SDValue N0 = N->getOperand(0);
1765  SDValue N1 = N->getOperand(1);
1766  SDValue CarryIn = N->getOperand(2);
1767
1768  // fold (sube x, y, false) -> (subc x, y)
1769  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1770    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1771
1772  return SDValue();
1773}
1774
1775/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
1776/// all the same constant or undefined.
1777static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1778  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1779  if (!C)
1780    return false;
1781
1782  APInt SplatUndef;
1783  unsigned SplatBitSize;
1784  bool HasAnyUndefs;
1785  EVT EltVT = N->getValueType(0).getVectorElementType();
1786  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1787                             HasAnyUndefs) &&
1788          EltVT.getSizeInBits() >= SplatBitSize);
1789}
1790
1791SDValue DAGCombiner::visitMUL(SDNode *N) {
1792  SDValue N0 = N->getOperand(0);
1793  SDValue N1 = N->getOperand(1);
1794  EVT VT = N0.getValueType();
1795
1796  // fold (mul x, undef) -> 0
1797  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1798    return DAG.getConstant(0, VT);
1799
1800  bool N0IsConst = false;
1801  bool N1IsConst = false;
1802  APInt ConstValue0, ConstValue1;
1803  // fold vector ops
1804  if (VT.isVector()) {
1805    SDValue FoldedVOp = SimplifyVBinOp(N);
1806    if (FoldedVOp.getNode()) return FoldedVOp;
1807
1808    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1809    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1810  } else {
1811    N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1812    ConstValue0 = N0IsConst? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue() : APInt();
1813    N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1814    ConstValue1 = N1IsConst? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue() : APInt();
1815  }
1816
1817  // fold (mul c1, c2) -> c1*c2
1818  if (N0IsConst && N1IsConst)
1819    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1820
1821  // canonicalize constant to RHS
1822  if (N0IsConst && !N1IsConst)
1823    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1824  // fold (mul x, 0) -> 0
1825  if (N1IsConst && ConstValue1 == 0)
1826    return N1;
1827  // We require a splat of the entire scalar bit width for non-contiguous
1828  // bit patterns.
1829  bool IsFullSplat =
1830    ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1831  // fold (mul x, 1) -> x
1832  if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1833    return N0;
1834  // fold (mul x, -1) -> 0-x
1835  if (N1IsConst && ConstValue1.isAllOnesValue())
1836    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1837                       DAG.getConstant(0, VT), N0);
1838  // fold (mul x, (1 << c)) -> x << c
1839  if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1840    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1841                       DAG.getConstant(ConstValue1.logBase2(),
1842                                       getShiftAmountTy(N0.getValueType())));
1843  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1844  if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1845    unsigned Log2Val = (-ConstValue1).logBase2();
1846    // FIXME: If the input is something that is easily negated (e.g. a
1847    // single-use add), we should put the negate there.
1848    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1849                       DAG.getConstant(0, VT),
1850                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1851                            DAG.getConstant(Log2Val,
1852                                      getShiftAmountTy(N0.getValueType()))));
1853  }
1854
1855  APInt Val;
1856  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1857  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1858      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1859                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1860    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1861                             N1, N0.getOperand(1));
1862    AddToWorkList(C3.getNode());
1863    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1864                       N0.getOperand(0), C3);
1865  }
1866
1867  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1868  // use.
1869  {
1870    SDValue Sh(0,0), Y(0,0);
1871    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1872    if (N0.getOpcode() == ISD::SHL &&
1873        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1874                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1875        N0.getNode()->hasOneUse()) {
1876      Sh = N0; Y = N1;
1877    } else if (N1.getOpcode() == ISD::SHL &&
1878               isa<ConstantSDNode>(N1.getOperand(1)) &&
1879               N1.getNode()->hasOneUse()) {
1880      Sh = N1; Y = N0;
1881    }
1882
1883    if (Sh.getNode()) {
1884      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1885                                Sh.getOperand(0), Y);
1886      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1887                         Mul, Sh.getOperand(1));
1888    }
1889  }
1890
1891  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1892  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1893      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1894                     isa<ConstantSDNode>(N0.getOperand(1))))
1895    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1896                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1897                                   N0.getOperand(0), N1),
1898                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1899                                   N0.getOperand(1), N1));
1900
1901  // reassociate mul
1902  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1903  if (RMUL.getNode() != 0)
1904    return RMUL;
1905
1906  return SDValue();
1907}
1908
1909SDValue DAGCombiner::visitSDIV(SDNode *N) {
1910  SDValue N0 = N->getOperand(0);
1911  SDValue N1 = N->getOperand(1);
1912  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1913  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1914  EVT VT = N->getValueType(0);
1915
1916  // fold vector ops
1917  if (VT.isVector()) {
1918    SDValue FoldedVOp = SimplifyVBinOp(N);
1919    if (FoldedVOp.getNode()) return FoldedVOp;
1920  }
1921
1922  // fold (sdiv c1, c2) -> c1/c2
1923  if (N0C && N1C && !N1C->isNullValue())
1924    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1925  // fold (sdiv X, 1) -> X
1926  if (N1C && N1C->getAPIntValue() == 1LL)
1927    return N0;
1928  // fold (sdiv X, -1) -> 0-X
1929  if (N1C && N1C->isAllOnesValue())
1930    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1931                       DAG.getConstant(0, VT), N0);
1932  // If we know the sign bits of both operands are zero, strength reduce to a
1933  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1934  if (!VT.isVector()) {
1935    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1936      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1937                         N0, N1);
1938  }
1939  // fold (sdiv X, pow2) -> simple ops after legalize
1940  if (N1C && !N1C->isNullValue() &&
1941      (N1C->getAPIntValue().isPowerOf2() ||
1942       (-N1C->getAPIntValue()).isPowerOf2())) {
1943    // If dividing by powers of two is cheap, then don't perform the following
1944    // fold.
1945    if (TLI.isPow2DivCheap())
1946      return SDValue();
1947
1948    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1949
1950    // Splat the sign bit into the register
1951    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1952                              DAG.getConstant(VT.getSizeInBits()-1,
1953                                       getShiftAmountTy(N0.getValueType())));
1954    AddToWorkList(SGN.getNode());
1955
1956    // Add (N0 < 0) ? abs2 - 1 : 0;
1957    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1958                              DAG.getConstant(VT.getSizeInBits() - lg2,
1959                                       getShiftAmountTy(SGN.getValueType())));
1960    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1961    AddToWorkList(SRL.getNode());
1962    AddToWorkList(ADD.getNode());    // Divide by pow2
1963    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1964                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1965
1966    // If we're dividing by a positive value, we're done.  Otherwise, we must
1967    // negate the result.
1968    if (N1C->getAPIntValue().isNonNegative())
1969      return SRA;
1970
1971    AddToWorkList(SRA.getNode());
1972    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1973                       DAG.getConstant(0, VT), SRA);
1974  }
1975
1976  // if integer divide is expensive and we satisfy the requirements, emit an
1977  // alternate sequence.
1978  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1979    SDValue Op = BuildSDIV(N);
1980    if (Op.getNode()) return Op;
1981  }
1982
1983  // undef / X -> 0
1984  if (N0.getOpcode() == ISD::UNDEF)
1985    return DAG.getConstant(0, VT);
1986  // X / undef -> undef
1987  if (N1.getOpcode() == ISD::UNDEF)
1988    return N1;
1989
1990  return SDValue();
1991}
1992
1993SDValue DAGCombiner::visitUDIV(SDNode *N) {
1994  SDValue N0 = N->getOperand(0);
1995  SDValue N1 = N->getOperand(1);
1996  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1997  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1998  EVT VT = N->getValueType(0);
1999
2000  // fold vector ops
2001  if (VT.isVector()) {
2002    SDValue FoldedVOp = SimplifyVBinOp(N);
2003    if (FoldedVOp.getNode()) return FoldedVOp;
2004  }
2005
2006  // fold (udiv c1, c2) -> c1/c2
2007  if (N0C && N1C && !N1C->isNullValue())
2008    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2009  // fold (udiv x, (1 << c)) -> x >>u c
2010  if (N1C && N1C->getAPIntValue().isPowerOf2())
2011    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2012                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2013                                       getShiftAmountTy(N0.getValueType())));
2014  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2015  if (N1.getOpcode() == ISD::SHL) {
2016    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2017      if (SHC->getAPIntValue().isPowerOf2()) {
2018        EVT ADDVT = N1.getOperand(1).getValueType();
2019        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2020                                  N1.getOperand(1),
2021                                  DAG.getConstant(SHC->getAPIntValue()
2022                                                                  .logBase2(),
2023                                                  ADDVT));
2024        AddToWorkList(Add.getNode());
2025        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2026      }
2027    }
2028  }
2029  // fold (udiv x, c) -> alternate
2030  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2031    SDValue Op = BuildUDIV(N);
2032    if (Op.getNode()) return Op;
2033  }
2034
2035  // undef / X -> 0
2036  if (N0.getOpcode() == ISD::UNDEF)
2037    return DAG.getConstant(0, VT);
2038  // X / undef -> undef
2039  if (N1.getOpcode() == ISD::UNDEF)
2040    return N1;
2041
2042  return SDValue();
2043}
2044
2045SDValue DAGCombiner::visitSREM(SDNode *N) {
2046  SDValue N0 = N->getOperand(0);
2047  SDValue N1 = N->getOperand(1);
2048  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2049  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2050  EVT VT = N->getValueType(0);
2051
2052  // fold (srem c1, c2) -> c1%c2
2053  if (N0C && N1C && !N1C->isNullValue())
2054    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2055  // If we know the sign bits of both operands are zero, strength reduce to a
2056  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2057  if (!VT.isVector()) {
2058    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2059      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2060  }
2061
2062  // If X/C can be simplified by the division-by-constant logic, lower
2063  // X%C to the equivalent of X-X/C*C.
2064  if (N1C && !N1C->isNullValue()) {
2065    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2066    AddToWorkList(Div.getNode());
2067    SDValue OptimizedDiv = combine(Div.getNode());
2068    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2069      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2070                                OptimizedDiv, N1);
2071      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2072      AddToWorkList(Mul.getNode());
2073      return Sub;
2074    }
2075  }
2076
2077  // undef % X -> 0
2078  if (N0.getOpcode() == ISD::UNDEF)
2079    return DAG.getConstant(0, VT);
2080  // X % undef -> undef
2081  if (N1.getOpcode() == ISD::UNDEF)
2082    return N1;
2083
2084  return SDValue();
2085}
2086
2087SDValue DAGCombiner::visitUREM(SDNode *N) {
2088  SDValue N0 = N->getOperand(0);
2089  SDValue N1 = N->getOperand(1);
2090  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2091  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2092  EVT VT = N->getValueType(0);
2093
2094  // fold (urem c1, c2) -> c1%c2
2095  if (N0C && N1C && !N1C->isNullValue())
2096    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2097  // fold (urem x, pow2) -> (and x, pow2-1)
2098  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2099    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2100                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2101  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2102  if (N1.getOpcode() == ISD::SHL) {
2103    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2104      if (SHC->getAPIntValue().isPowerOf2()) {
2105        SDValue Add =
2106          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2107                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2108                                 VT));
2109        AddToWorkList(Add.getNode());
2110        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2111      }
2112    }
2113  }
2114
2115  // If X/C can be simplified by the division-by-constant logic, lower
2116  // X%C to the equivalent of X-X/C*C.
2117  if (N1C && !N1C->isNullValue()) {
2118    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2119    AddToWorkList(Div.getNode());
2120    SDValue OptimizedDiv = combine(Div.getNode());
2121    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2122      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2123                                OptimizedDiv, N1);
2124      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2125      AddToWorkList(Mul.getNode());
2126      return Sub;
2127    }
2128  }
2129
2130  // undef % X -> 0
2131  if (N0.getOpcode() == ISD::UNDEF)
2132    return DAG.getConstant(0, VT);
2133  // X % undef -> undef
2134  if (N1.getOpcode() == ISD::UNDEF)
2135    return N1;
2136
2137  return SDValue();
2138}
2139
2140SDValue DAGCombiner::visitMULHS(SDNode *N) {
2141  SDValue N0 = N->getOperand(0);
2142  SDValue N1 = N->getOperand(1);
2143  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2144  EVT VT = N->getValueType(0);
2145  SDLoc DL(N);
2146
2147  // fold (mulhs x, 0) -> 0
2148  if (N1C && N1C->isNullValue())
2149    return N1;
2150  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2151  if (N1C && N1C->getAPIntValue() == 1)
2152    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2153                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2154                                       getShiftAmountTy(N0.getValueType())));
2155  // fold (mulhs x, undef) -> 0
2156  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2157    return DAG.getConstant(0, VT);
2158
2159  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2160  // plus a shift.
2161  if (VT.isSimple() && !VT.isVector()) {
2162    MVT Simple = VT.getSimpleVT();
2163    unsigned SimpleSize = Simple.getSizeInBits();
2164    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2165    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2166      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2167      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2168      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2169      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2170            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2171      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2172    }
2173  }
2174
2175  return SDValue();
2176}
2177
2178SDValue DAGCombiner::visitMULHU(SDNode *N) {
2179  SDValue N0 = N->getOperand(0);
2180  SDValue N1 = N->getOperand(1);
2181  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2182  EVT VT = N->getValueType(0);
2183  SDLoc DL(N);
2184
2185  // fold (mulhu x, 0) -> 0
2186  if (N1C && N1C->isNullValue())
2187    return N1;
2188  // fold (mulhu x, 1) -> 0
2189  if (N1C && N1C->getAPIntValue() == 1)
2190    return DAG.getConstant(0, N0.getValueType());
2191  // fold (mulhu x, undef) -> 0
2192  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2193    return DAG.getConstant(0, VT);
2194
2195  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2196  // plus a shift.
2197  if (VT.isSimple() && !VT.isVector()) {
2198    MVT Simple = VT.getSimpleVT();
2199    unsigned SimpleSize = Simple.getSizeInBits();
2200    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2201    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2202      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2203      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2204      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2205      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2206            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2207      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2208    }
2209  }
2210
2211  return SDValue();
2212}
2213
2214/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2215/// compute two values. LoOp and HiOp give the opcodes for the two computations
2216/// that are being performed. Return true if a simplification was made.
2217///
2218SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2219                                                unsigned HiOp) {
2220  // If the high half is not needed, just compute the low half.
2221  bool HiExists = N->hasAnyUseOfValue(1);
2222  if (!HiExists &&
2223      (!LegalOperations ||
2224       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2225    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2226                              N->op_begin(), N->getNumOperands());
2227    return CombineTo(N, Res, Res);
2228  }
2229
2230  // If the low half is not needed, just compute the high half.
2231  bool LoExists = N->hasAnyUseOfValue(0);
2232  if (!LoExists &&
2233      (!LegalOperations ||
2234       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2235    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2236                              N->op_begin(), N->getNumOperands());
2237    return CombineTo(N, Res, Res);
2238  }
2239
2240  // If both halves are used, return as it is.
2241  if (LoExists && HiExists)
2242    return SDValue();
2243
2244  // If the two computed results can be simplified separately, separate them.
2245  if (LoExists) {
2246    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2247                             N->op_begin(), N->getNumOperands());
2248    AddToWorkList(Lo.getNode());
2249    SDValue LoOpt = combine(Lo.getNode());
2250    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2251        (!LegalOperations ||
2252         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2253      return CombineTo(N, LoOpt, LoOpt);
2254  }
2255
2256  if (HiExists) {
2257    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2258                             N->op_begin(), N->getNumOperands());
2259    AddToWorkList(Hi.getNode());
2260    SDValue HiOpt = combine(Hi.getNode());
2261    if (HiOpt.getNode() && HiOpt != Hi &&
2262        (!LegalOperations ||
2263         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2264      return CombineTo(N, HiOpt, HiOpt);
2265  }
2266
2267  return SDValue();
2268}
2269
2270SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2271  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2272  if (Res.getNode()) return Res;
2273
2274  EVT VT = N->getValueType(0);
2275  SDLoc DL(N);
2276
2277  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2278  // plus a shift.
2279  if (VT.isSimple() && !VT.isVector()) {
2280    MVT Simple = VT.getSimpleVT();
2281    unsigned SimpleSize = Simple.getSizeInBits();
2282    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2283    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2284      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2285      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2286      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2287      // Compute the high part as N1.
2288      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2289            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2290      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2291      // Compute the low part as N0.
2292      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2293      return CombineTo(N, Lo, Hi);
2294    }
2295  }
2296
2297  return SDValue();
2298}
2299
2300SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2301  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2302  if (Res.getNode()) return Res;
2303
2304  EVT VT = N->getValueType(0);
2305  SDLoc DL(N);
2306
2307  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2308  // plus a shift.
2309  if (VT.isSimple() && !VT.isVector()) {
2310    MVT Simple = VT.getSimpleVT();
2311    unsigned SimpleSize = Simple.getSizeInBits();
2312    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2313    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2314      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2315      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2316      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2317      // Compute the high part as N1.
2318      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2319            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2320      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2321      // Compute the low part as N0.
2322      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2323      return CombineTo(N, Lo, Hi);
2324    }
2325  }
2326
2327  return SDValue();
2328}
2329
2330SDValue DAGCombiner::visitSMULO(SDNode *N) {
2331  // (smulo x, 2) -> (saddo x, x)
2332  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2333    if (C2->getAPIntValue() == 2)
2334      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2335                         N->getOperand(0), N->getOperand(0));
2336
2337  return SDValue();
2338}
2339
2340SDValue DAGCombiner::visitUMULO(SDNode *N) {
2341  // (umulo x, 2) -> (uaddo x, x)
2342  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2343    if (C2->getAPIntValue() == 2)
2344      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2345                         N->getOperand(0), N->getOperand(0));
2346
2347  return SDValue();
2348}
2349
2350SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2351  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2352  if (Res.getNode()) return Res;
2353
2354  return SDValue();
2355}
2356
2357SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2358  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2359  if (Res.getNode()) return Res;
2360
2361  return SDValue();
2362}
2363
2364/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2365/// two operands of the same opcode, try to simplify it.
2366SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2367  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2368  EVT VT = N0.getValueType();
2369  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2370
2371  // Bail early if none of these transforms apply.
2372  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2373
2374  // For each of OP in AND/OR/XOR:
2375  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2376  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2377  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2378  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2379  //
2380  // do not sink logical op inside of a vector extend, since it may combine
2381  // into a vsetcc.
2382  EVT Op0VT = N0.getOperand(0).getValueType();
2383  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2384       N0.getOpcode() == ISD::SIGN_EXTEND ||
2385       // Avoid infinite looping with PromoteIntBinOp.
2386       (N0.getOpcode() == ISD::ANY_EXTEND &&
2387        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2388       (N0.getOpcode() == ISD::TRUNCATE &&
2389        (!TLI.isZExtFree(VT, Op0VT) ||
2390         !TLI.isTruncateFree(Op0VT, VT)) &&
2391        TLI.isTypeLegal(Op0VT))) &&
2392      !VT.isVector() &&
2393      Op0VT == N1.getOperand(0).getValueType() &&
2394      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2395    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2396                                 N0.getOperand(0).getValueType(),
2397                                 N0.getOperand(0), N1.getOperand(0));
2398    AddToWorkList(ORNode.getNode());
2399    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2400  }
2401
2402  // For each of OP in SHL/SRL/SRA/AND...
2403  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2404  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2405  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2406  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2407       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2408      N0.getOperand(1) == N1.getOperand(1)) {
2409    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2410                                 N0.getOperand(0).getValueType(),
2411                                 N0.getOperand(0), N1.getOperand(0));
2412    AddToWorkList(ORNode.getNode());
2413    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2414                       ORNode, N0.getOperand(1));
2415  }
2416
2417  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2418  // Only perform this optimization after type legalization and before
2419  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2420  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2421  // we don't want to undo this promotion.
2422  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2423  // on scalars.
2424  if ((N0.getOpcode() == ISD::BITCAST ||
2425       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2426      Level == AfterLegalizeTypes) {
2427    SDValue In0 = N0.getOperand(0);
2428    SDValue In1 = N1.getOperand(0);
2429    EVT In0Ty = In0.getValueType();
2430    EVT In1Ty = In1.getValueType();
2431    SDLoc DL(N);
2432    // If both incoming values are integers, and the original types are the
2433    // same.
2434    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2435      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2436      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2437      AddToWorkList(Op.getNode());
2438      return BC;
2439    }
2440  }
2441
2442  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2443  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2444  // If both shuffles use the same mask, and both shuffle within a single
2445  // vector, then it is worthwhile to move the swizzle after the operation.
2446  // The type-legalizer generates this pattern when loading illegal
2447  // vector types from memory. In many cases this allows additional shuffle
2448  // optimizations.
2449  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2450      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2451      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2452    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2453    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2454
2455    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2456           "Inputs to shuffles are not the same type");
2457
2458    unsigned NumElts = VT.getVectorNumElements();
2459
2460    // Check that both shuffles use the same mask. The masks are known to be of
2461    // the same length because the result vector type is the same.
2462    bool SameMask = true;
2463    for (unsigned i = 0; i != NumElts; ++i) {
2464      int Idx0 = SVN0->getMaskElt(i);
2465      int Idx1 = SVN1->getMaskElt(i);
2466      if (Idx0 != Idx1) {
2467        SameMask = false;
2468        break;
2469      }
2470    }
2471
2472    if (SameMask) {
2473      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2474                               N0.getOperand(0), N1.getOperand(0));
2475      AddToWorkList(Op.getNode());
2476      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2477                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2478    }
2479  }
2480
2481  return SDValue();
2482}
2483
2484SDValue DAGCombiner::visitAND(SDNode *N) {
2485  SDValue N0 = N->getOperand(0);
2486  SDValue N1 = N->getOperand(1);
2487  SDValue LL, LR, RL, RR, CC0, CC1;
2488  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2489  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2490  EVT VT = N1.getValueType();
2491  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2492
2493  // fold vector ops
2494  if (VT.isVector()) {
2495    SDValue FoldedVOp = SimplifyVBinOp(N);
2496    if (FoldedVOp.getNode()) return FoldedVOp;
2497
2498    // fold (and x, 0) -> 0, vector edition
2499    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2500      return N0;
2501    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2502      return N1;
2503
2504    // fold (and x, -1) -> x, vector edition
2505    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2506      return N1;
2507    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2508      return N0;
2509  }
2510
2511  // fold (and x, undef) -> 0
2512  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2513    return DAG.getConstant(0, VT);
2514  // fold (and c1, c2) -> c1&c2
2515  if (N0C && N1C)
2516    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2517  // canonicalize constant to RHS
2518  if (N0C && !N1C)
2519    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2520  // fold (and x, -1) -> x
2521  if (N1C && N1C->isAllOnesValue())
2522    return N0;
2523  // if (and x, c) is known to be zero, return 0
2524  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2525                                   APInt::getAllOnesValue(BitWidth)))
2526    return DAG.getConstant(0, VT);
2527  // reassociate and
2528  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2529  if (RAND.getNode() != 0)
2530    return RAND;
2531  // fold (and (or x, C), D) -> D if (C & D) == D
2532  if (N1C && N0.getOpcode() == ISD::OR)
2533    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2534      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2535        return N1;
2536  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2537  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2538    SDValue N0Op0 = N0.getOperand(0);
2539    APInt Mask = ~N1C->getAPIntValue();
2540    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2541    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2542      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2543                                 N0.getValueType(), N0Op0);
2544
2545      // Replace uses of the AND with uses of the Zero extend node.
2546      CombineTo(N, Zext);
2547
2548      // We actually want to replace all uses of the any_extend with the
2549      // zero_extend, to avoid duplicating things.  This will later cause this
2550      // AND to be folded.
2551      CombineTo(N0.getNode(), Zext);
2552      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2553    }
2554  }
2555  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2556  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2557  // already be zero by virtue of the width of the base type of the load.
2558  //
2559  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2560  // more cases.
2561  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2562       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2563      N0.getOpcode() == ISD::LOAD) {
2564    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2565                                         N0 : N0.getOperand(0) );
2566
2567    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2568    // This can be a pure constant or a vector splat, in which case we treat the
2569    // vector as a scalar and use the splat value.
2570    APInt Constant = APInt::getNullValue(1);
2571    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2572      Constant = C->getAPIntValue();
2573    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2574      APInt SplatValue, SplatUndef;
2575      unsigned SplatBitSize;
2576      bool HasAnyUndefs;
2577      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2578                                             SplatBitSize, HasAnyUndefs);
2579      if (IsSplat) {
2580        // Undef bits can contribute to a possible optimisation if set, so
2581        // set them.
2582        SplatValue |= SplatUndef;
2583
2584        // The splat value may be something like "0x00FFFFFF", which means 0 for
2585        // the first vector value and FF for the rest, repeating. We need a mask
2586        // that will apply equally to all members of the vector, so AND all the
2587        // lanes of the constant together.
2588        EVT VT = Vector->getValueType(0);
2589        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2590
2591        // If the splat value has been compressed to a bitlength lower
2592        // than the size of the vector lane, we need to re-expand it to
2593        // the lane size.
2594        if (BitWidth > SplatBitSize)
2595          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2596               SplatBitSize < BitWidth;
2597               SplatBitSize = SplatBitSize * 2)
2598            SplatValue |= SplatValue.shl(SplatBitSize);
2599
2600        Constant = APInt::getAllOnesValue(BitWidth);
2601        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2602          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2603      }
2604    }
2605
2606    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2607    // actually legal and isn't going to get expanded, else this is a false
2608    // optimisation.
2609    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2610                                                    Load->getMemoryVT());
2611
2612    // Resize the constant to the same size as the original memory access before
2613    // extension. If it is still the AllOnesValue then this AND is completely
2614    // unneeded.
2615    Constant =
2616      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2617
2618    bool B;
2619    switch (Load->getExtensionType()) {
2620    default: B = false; break;
2621    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2622    case ISD::ZEXTLOAD:
2623    case ISD::NON_EXTLOAD: B = true; break;
2624    }
2625
2626    if (B && Constant.isAllOnesValue()) {
2627      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2628      // preserve semantics once we get rid of the AND.
2629      SDValue NewLoad(Load, 0);
2630      if (Load->getExtensionType() == ISD::EXTLOAD) {
2631        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2632                              Load->getValueType(0), SDLoc(Load),
2633                              Load->getChain(), Load->getBasePtr(),
2634                              Load->getOffset(), Load->getMemoryVT(),
2635                              Load->getMemOperand());
2636        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2637        if (Load->getNumValues() == 3) {
2638          // PRE/POST_INC loads have 3 values.
2639          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2640                           NewLoad.getValue(2) };
2641          CombineTo(Load, To, 3, true);
2642        } else {
2643          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2644        }
2645      }
2646
2647      // Fold the AND away, taking care not to fold to the old load node if we
2648      // replaced it.
2649      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2650
2651      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2652    }
2653  }
2654  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2655  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2656    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2657    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2658
2659    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2660        LL.getValueType().isInteger()) {
2661      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2662      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2663        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2664                                     LR.getValueType(), LL, RL);
2665        AddToWorkList(ORNode.getNode());
2666        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2667      }
2668      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2669      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2670        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2671                                      LR.getValueType(), LL, RL);
2672        AddToWorkList(ANDNode.getNode());
2673        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2674      }
2675      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2676      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2677        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2678                                     LR.getValueType(), LL, RL);
2679        AddToWorkList(ORNode.getNode());
2680        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2681      }
2682    }
2683    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2684    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2685        Op0 == Op1 && LL.getValueType().isInteger() &&
2686      Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2687                                 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2688                                (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2689                                 cast<ConstantSDNode>(RR)->isNullValue()))) {
2690      SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2691                                    LL, DAG.getConstant(1, LL.getValueType()));
2692      AddToWorkList(ADDNode.getNode());
2693      return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2694                          DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2695    }
2696    // canonicalize equivalent to ll == rl
2697    if (LL == RR && LR == RL) {
2698      Op1 = ISD::getSetCCSwappedOperands(Op1);
2699      std::swap(RL, RR);
2700    }
2701    if (LL == RL && LR == RR) {
2702      bool isInteger = LL.getValueType().isInteger();
2703      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2704      if (Result != ISD::SETCC_INVALID &&
2705          (!LegalOperations ||
2706           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2707            TLI.isOperationLegal(ISD::SETCC,
2708                            getSetCCResultType(N0.getSimpleValueType())))))
2709        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2710                            LL, LR, Result);
2711    }
2712  }
2713
2714  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2715  if (N0.getOpcode() == N1.getOpcode()) {
2716    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2717    if (Tmp.getNode()) return Tmp;
2718  }
2719
2720  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2721  // fold (and (sra)) -> (and (srl)) when possible.
2722  if (!VT.isVector() &&
2723      SimplifyDemandedBits(SDValue(N, 0)))
2724    return SDValue(N, 0);
2725
2726  // fold (zext_inreg (extload x)) -> (zextload x)
2727  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2728    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2729    EVT MemVT = LN0->getMemoryVT();
2730    // If we zero all the possible extended bits, then we can turn this into
2731    // a zextload if we are running before legalize or the operation is legal.
2732    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2733    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2734                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2735        ((!LegalOperations && !LN0->isVolatile()) ||
2736         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2737      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2738                                       LN0->getChain(), LN0->getBasePtr(),
2739                                       LN0->getPointerInfo(), MemVT,
2740                                       LN0->isVolatile(), LN0->isNonTemporal(),
2741                                       LN0->getAlignment());
2742      AddToWorkList(N);
2743      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2744      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2745    }
2746  }
2747  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2748  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2749      N0.hasOneUse()) {
2750    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2751    EVT MemVT = LN0->getMemoryVT();
2752    // If we zero all the possible extended bits, then we can turn this into
2753    // a zextload if we are running before legalize or the operation is legal.
2754    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2755    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2756                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2757        ((!LegalOperations && !LN0->isVolatile()) ||
2758         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2759      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2760                                       LN0->getChain(),
2761                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2762                                       MemVT,
2763                                       LN0->isVolatile(), LN0->isNonTemporal(),
2764                                       LN0->getAlignment());
2765      AddToWorkList(N);
2766      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2767      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2768    }
2769  }
2770
2771  // fold (and (load x), 255) -> (zextload x, i8)
2772  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2773  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2774  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2775              (N0.getOpcode() == ISD::ANY_EXTEND &&
2776               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2777    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2778    LoadSDNode *LN0 = HasAnyExt
2779      ? cast<LoadSDNode>(N0.getOperand(0))
2780      : cast<LoadSDNode>(N0);
2781    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2782        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2783      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2784      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2785        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2786        EVT LoadedVT = LN0->getMemoryVT();
2787
2788        if (ExtVT == LoadedVT &&
2789            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2790          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2791
2792          SDValue NewLoad =
2793            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2794                           LN0->getChain(), LN0->getBasePtr(),
2795                           LN0->getPointerInfo(),
2796                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2797                           LN0->getAlignment());
2798          AddToWorkList(N);
2799          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2800          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2801        }
2802
2803        // Do not change the width of a volatile load.
2804        // Do not generate loads of non-round integer types since these can
2805        // be expensive (and would be wrong if the type is not byte sized).
2806        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2807            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2808          EVT PtrType = LN0->getOperand(1).getValueType();
2809
2810          unsigned Alignment = LN0->getAlignment();
2811          SDValue NewPtr = LN0->getBasePtr();
2812
2813          // For big endian targets, we need to add an offset to the pointer
2814          // to load the correct bytes.  For little endian systems, we merely
2815          // need to read fewer bytes from the same pointer.
2816          if (TLI.isBigEndian()) {
2817            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2818            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2819            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2820            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2821                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2822            Alignment = MinAlign(Alignment, PtrOff);
2823          }
2824
2825          AddToWorkList(NewPtr.getNode());
2826
2827          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2828          SDValue Load =
2829            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2830                           LN0->getChain(), NewPtr,
2831                           LN0->getPointerInfo(),
2832                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2833                           Alignment);
2834          AddToWorkList(N);
2835          CombineTo(LN0, Load, Load.getValue(1));
2836          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2837        }
2838      }
2839    }
2840  }
2841
2842  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2843      VT.getSizeInBits() <= 64) {
2844    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2845      APInt ADDC = ADDI->getAPIntValue();
2846      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2847        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2848        // immediate for an add, but it is legal if its top c2 bits are set,
2849        // transform the ADD so the immediate doesn't need to be materialized
2850        // in a register.
2851        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2852          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2853                                             SRLI->getZExtValue());
2854          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2855            ADDC |= Mask;
2856            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2857              SDValue NewAdd =
2858                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2859                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2860              CombineTo(N0.getNode(), NewAdd);
2861              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2862            }
2863          }
2864        }
2865      }
2866    }
2867  }
2868
2869  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2870  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2871    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2872                                       N0.getOperand(1), false);
2873    if (BSwap.getNode())
2874      return BSwap;
2875  }
2876
2877  return SDValue();
2878}
2879
2880/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2881///
2882SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2883                                        bool DemandHighBits) {
2884  if (!LegalOperations)
2885    return SDValue();
2886
2887  EVT VT = N->getValueType(0);
2888  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2889    return SDValue();
2890  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2891    return SDValue();
2892
2893  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2894  bool LookPassAnd0 = false;
2895  bool LookPassAnd1 = false;
2896  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2897      std::swap(N0, N1);
2898  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2899      std::swap(N0, N1);
2900  if (N0.getOpcode() == ISD::AND) {
2901    if (!N0.getNode()->hasOneUse())
2902      return SDValue();
2903    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2904    if (!N01C || N01C->getZExtValue() != 0xFF00)
2905      return SDValue();
2906    N0 = N0.getOperand(0);
2907    LookPassAnd0 = true;
2908  }
2909
2910  if (N1.getOpcode() == ISD::AND) {
2911    if (!N1.getNode()->hasOneUse())
2912      return SDValue();
2913    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2914    if (!N11C || N11C->getZExtValue() != 0xFF)
2915      return SDValue();
2916    N1 = N1.getOperand(0);
2917    LookPassAnd1 = true;
2918  }
2919
2920  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2921    std::swap(N0, N1);
2922  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2923    return SDValue();
2924  if (!N0.getNode()->hasOneUse() ||
2925      !N1.getNode()->hasOneUse())
2926    return SDValue();
2927
2928  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2929  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2930  if (!N01C || !N11C)
2931    return SDValue();
2932  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2933    return SDValue();
2934
2935  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2936  SDValue N00 = N0->getOperand(0);
2937  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2938    if (!N00.getNode()->hasOneUse())
2939      return SDValue();
2940    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2941    if (!N001C || N001C->getZExtValue() != 0xFF)
2942      return SDValue();
2943    N00 = N00.getOperand(0);
2944    LookPassAnd0 = true;
2945  }
2946
2947  SDValue N10 = N1->getOperand(0);
2948  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2949    if (!N10.getNode()->hasOneUse())
2950      return SDValue();
2951    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2952    if (!N101C || N101C->getZExtValue() != 0xFF00)
2953      return SDValue();
2954    N10 = N10.getOperand(0);
2955    LookPassAnd1 = true;
2956  }
2957
2958  if (N00 != N10)
2959    return SDValue();
2960
2961  // Make sure everything beyond the low halfword gets set to zero since the SRL
2962  // 16 will clear the top bits.
2963  unsigned OpSizeInBits = VT.getSizeInBits();
2964  if (DemandHighBits && OpSizeInBits > 16) {
2965    // If the left-shift isn't masked out then the only way this is a bswap is
2966    // if all bits beyond the low 8 are 0. In that case the entire pattern
2967    // reduces to a left shift anyway: leave it for other parts of the combiner.
2968    if (!LookPassAnd0)
2969      return SDValue();
2970
2971    // However, if the right shift isn't masked out then it might be because
2972    // it's not needed. See if we can spot that too.
2973    if (!LookPassAnd1 &&
2974        !DAG.MaskedValueIsZero(
2975            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
2976      return SDValue();
2977  }
2978
2979  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2980  if (OpSizeInBits > 16)
2981    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2982                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2983  return Res;
2984}
2985
2986/// isBSwapHWordElement - Return true if the specified node is an element
2987/// that makes up a 32-bit packed halfword byteswap. i.e.
2988/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2989static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
2990  if (!N.getNode()->hasOneUse())
2991    return false;
2992
2993  unsigned Opc = N.getOpcode();
2994  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2995    return false;
2996
2997  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2998  if (!N1C)
2999    return false;
3000
3001  unsigned Num;
3002  switch (N1C->getZExtValue()) {
3003  default:
3004    return false;
3005  case 0xFF:       Num = 0; break;
3006  case 0xFF00:     Num = 1; break;
3007  case 0xFF0000:   Num = 2; break;
3008  case 0xFF000000: Num = 3; break;
3009  }
3010
3011  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3012  SDValue N0 = N.getOperand(0);
3013  if (Opc == ISD::AND) {
3014    if (Num == 0 || Num == 2) {
3015      // (x >> 8) & 0xff
3016      // (x >> 8) & 0xff0000
3017      if (N0.getOpcode() != ISD::SRL)
3018        return false;
3019      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3020      if (!C || C->getZExtValue() != 8)
3021        return false;
3022    } else {
3023      // (x << 8) & 0xff00
3024      // (x << 8) & 0xff000000
3025      if (N0.getOpcode() != ISD::SHL)
3026        return false;
3027      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3028      if (!C || C->getZExtValue() != 8)
3029        return false;
3030    }
3031  } else if (Opc == ISD::SHL) {
3032    // (x & 0xff) << 8
3033    // (x & 0xff0000) << 8
3034    if (Num != 0 && Num != 2)
3035      return false;
3036    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3037    if (!C || C->getZExtValue() != 8)
3038      return false;
3039  } else { // Opc == ISD::SRL
3040    // (x & 0xff00) >> 8
3041    // (x & 0xff000000) >> 8
3042    if (Num != 1 && Num != 3)
3043      return false;
3044    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3045    if (!C || C->getZExtValue() != 8)
3046      return false;
3047  }
3048
3049  if (Parts[Num])
3050    return false;
3051
3052  Parts[Num] = N0.getOperand(0).getNode();
3053  return true;
3054}
3055
3056/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3057/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3058/// => (rotl (bswap x), 16)
3059SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3060  if (!LegalOperations)
3061    return SDValue();
3062
3063  EVT VT = N->getValueType(0);
3064  if (VT != MVT::i32)
3065    return SDValue();
3066  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3067    return SDValue();
3068
3069  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3070  // Look for either
3071  // (or (or (and), (and)), (or (and), (and)))
3072  // (or (or (or (and), (and)), (and)), (and))
3073  if (N0.getOpcode() != ISD::OR)
3074    return SDValue();
3075  SDValue N00 = N0.getOperand(0);
3076  SDValue N01 = N0.getOperand(1);
3077
3078  if (N1.getOpcode() == ISD::OR &&
3079      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3080    // (or (or (and), (and)), (or (and), (and)))
3081    SDValue N000 = N00.getOperand(0);
3082    if (!isBSwapHWordElement(N000, Parts))
3083      return SDValue();
3084
3085    SDValue N001 = N00.getOperand(1);
3086    if (!isBSwapHWordElement(N001, Parts))
3087      return SDValue();
3088    SDValue N010 = N01.getOperand(0);
3089    if (!isBSwapHWordElement(N010, Parts))
3090      return SDValue();
3091    SDValue N011 = N01.getOperand(1);
3092    if (!isBSwapHWordElement(N011, Parts))
3093      return SDValue();
3094  } else {
3095    // (or (or (or (and), (and)), (and)), (and))
3096    if (!isBSwapHWordElement(N1, Parts))
3097      return SDValue();
3098    if (!isBSwapHWordElement(N01, Parts))
3099      return SDValue();
3100    if (N00.getOpcode() != ISD::OR)
3101      return SDValue();
3102    SDValue N000 = N00.getOperand(0);
3103    if (!isBSwapHWordElement(N000, Parts))
3104      return SDValue();
3105    SDValue N001 = N00.getOperand(1);
3106    if (!isBSwapHWordElement(N001, Parts))
3107      return SDValue();
3108  }
3109
3110  // Make sure the parts are all coming from the same node.
3111  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3112    return SDValue();
3113
3114  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3115                              SDValue(Parts[0],0));
3116
3117  // Result of the bswap should be rotated by 16. If it's not legal, than
3118  // do  (x << 16) | (x >> 16).
3119  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3120  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3121    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3122  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3123    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3124  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3125                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3126                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3127}
3128
3129SDValue DAGCombiner::visitOR(SDNode *N) {
3130  SDValue N0 = N->getOperand(0);
3131  SDValue N1 = N->getOperand(1);
3132  SDValue LL, LR, RL, RR, CC0, CC1;
3133  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3134  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3135  EVT VT = N1.getValueType();
3136
3137  // fold vector ops
3138  if (VT.isVector()) {
3139    SDValue FoldedVOp = SimplifyVBinOp(N);
3140    if (FoldedVOp.getNode()) return FoldedVOp;
3141
3142    // fold (or x, 0) -> x, vector edition
3143    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3144      return N1;
3145    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3146      return N0;
3147
3148    // fold (or x, -1) -> -1, vector edition
3149    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3150      return N0;
3151    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3152      return N1;
3153  }
3154
3155  // fold (or x, undef) -> -1
3156  if (!LegalOperations &&
3157      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3158    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3159    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3160  }
3161  // fold (or c1, c2) -> c1|c2
3162  if (N0C && N1C)
3163    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3164  // canonicalize constant to RHS
3165  if (N0C && !N1C)
3166    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3167  // fold (or x, 0) -> x
3168  if (N1C && N1C->isNullValue())
3169    return N0;
3170  // fold (or x, -1) -> -1
3171  if (N1C && N1C->isAllOnesValue())
3172    return N1;
3173  // fold (or x, c) -> c iff (x & ~c) == 0
3174  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3175    return N1;
3176
3177  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3178  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3179  if (BSwap.getNode() != 0)
3180    return BSwap;
3181  BSwap = MatchBSwapHWordLow(N, N0, N1);
3182  if (BSwap.getNode() != 0)
3183    return BSwap;
3184
3185  // reassociate or
3186  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3187  if (ROR.getNode() != 0)
3188    return ROR;
3189  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3190  // iff (c1 & c2) == 0.
3191  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3192             isa<ConstantSDNode>(N0.getOperand(1))) {
3193    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3194    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3195      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3196                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3197                                     N0.getOperand(0), N1),
3198                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3199  }
3200  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3201  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3202    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3203    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3204
3205    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3206        LL.getValueType().isInteger()) {
3207      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3208      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3209      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3210          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3211        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3212                                     LR.getValueType(), LL, RL);
3213        AddToWorkList(ORNode.getNode());
3214        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3215      }
3216      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3217      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3218      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3219          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3220        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3221                                      LR.getValueType(), LL, RL);
3222        AddToWorkList(ANDNode.getNode());
3223        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3224      }
3225    }
3226    // canonicalize equivalent to ll == rl
3227    if (LL == RR && LR == RL) {
3228      Op1 = ISD::getSetCCSwappedOperands(Op1);
3229      std::swap(RL, RR);
3230    }
3231    if (LL == RL && LR == RR) {
3232      bool isInteger = LL.getValueType().isInteger();
3233      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3234      if (Result != ISD::SETCC_INVALID &&
3235          (!LegalOperations ||
3236           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3237            TLI.isOperationLegal(ISD::SETCC,
3238              getSetCCResultType(N0.getValueType())))))
3239        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3240                            LL, LR, Result);
3241    }
3242  }
3243
3244  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3245  if (N0.getOpcode() == N1.getOpcode()) {
3246    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3247    if (Tmp.getNode()) return Tmp;
3248  }
3249
3250  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3251  if (N0.getOpcode() == ISD::AND &&
3252      N1.getOpcode() == ISD::AND &&
3253      N0.getOperand(1).getOpcode() == ISD::Constant &&
3254      N1.getOperand(1).getOpcode() == ISD::Constant &&
3255      // Don't increase # computations.
3256      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3257    // We can only do this xform if we know that bits from X that are set in C2
3258    // but not in C1 are already zero.  Likewise for Y.
3259    const APInt &LHSMask =
3260      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3261    const APInt &RHSMask =
3262      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3263
3264    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3265        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3266      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3267                              N0.getOperand(0), N1.getOperand(0));
3268      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3269                         DAG.getConstant(LHSMask | RHSMask, VT));
3270    }
3271  }
3272
3273  // See if this is some rotate idiom.
3274  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3275    return SDValue(Rot, 0);
3276
3277  // Simplify the operands using demanded-bits information.
3278  if (!VT.isVector() &&
3279      SimplifyDemandedBits(SDValue(N, 0)))
3280    return SDValue(N, 0);
3281
3282  return SDValue();
3283}
3284
3285/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3286static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3287  if (Op.getOpcode() == ISD::AND) {
3288    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3289      Mask = Op.getOperand(1);
3290      Op = Op.getOperand(0);
3291    } else {
3292      return false;
3293    }
3294  }
3295
3296  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3297    Shift = Op;
3298    return true;
3299  }
3300
3301  return false;
3302}
3303
3304// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3305// idioms for rotate, and if the target supports rotation instructions, generate
3306// a rot[lr].
3307SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3308  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3309  EVT VT = LHS.getValueType();
3310  if (!TLI.isTypeLegal(VT)) return 0;
3311
3312  // The target must have at least one rotate flavor.
3313  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3314  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3315  if (!HasROTL && !HasROTR) return 0;
3316
3317  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3318  SDValue LHSShift;   // The shift.
3319  SDValue LHSMask;    // AND value if any.
3320  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3321    return 0; // Not part of a rotate.
3322
3323  SDValue RHSShift;   // The shift.
3324  SDValue RHSMask;    // AND value if any.
3325  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3326    return 0; // Not part of a rotate.
3327
3328  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3329    return 0;   // Not shifting the same value.
3330
3331  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3332    return 0;   // Shifts must disagree.
3333
3334  // Canonicalize shl to left side in a shl/srl pair.
3335  if (RHSShift.getOpcode() == ISD::SHL) {
3336    std::swap(LHS, RHS);
3337    std::swap(LHSShift, RHSShift);
3338    std::swap(LHSMask , RHSMask );
3339  }
3340
3341  unsigned OpSizeInBits = VT.getSizeInBits();
3342  SDValue LHSShiftArg = LHSShift.getOperand(0);
3343  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3344  SDValue RHSShiftArg = RHSShift.getOperand(0);
3345  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3346
3347  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3348  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3349  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3350      RHSShiftAmt.getOpcode() == ISD::Constant) {
3351    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3352    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3353    if ((LShVal + RShVal) != OpSizeInBits)
3354      return 0;
3355
3356    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3357                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3358
3359    // If there is an AND of either shifted operand, apply it to the result.
3360    if (LHSMask.getNode() || RHSMask.getNode()) {
3361      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3362
3363      if (LHSMask.getNode()) {
3364        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3365        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3366      }
3367      if (RHSMask.getNode()) {
3368        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3369        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3370      }
3371
3372      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3373    }
3374
3375    return Rot.getNode();
3376  }
3377
3378  // If there is a mask here, and we have a variable shift, we can't be sure
3379  // that we're masking out the right stuff.
3380  if (LHSMask.getNode() || RHSMask.getNode())
3381    return 0;
3382
3383  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3384  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3385  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3386      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3387    if (ConstantSDNode *SUBC =
3388          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3389      if (SUBC->getAPIntValue() == OpSizeInBits)
3390        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3391                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3392    }
3393  }
3394
3395  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3396  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3397  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3398      RHSShiftAmt == LHSShiftAmt.getOperand(1))
3399    if (ConstantSDNode *SUBC =
3400          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0)))
3401      if (SUBC->getAPIntValue() == OpSizeInBits)
3402        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3403                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3404
3405  // Look for sign/zext/any-extended or truncate cases:
3406  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3407       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3408       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3409       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3410      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3411       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3412       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3413       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3414    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3415    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3416    if (RExtOp0.getOpcode() == ISD::SUB &&
3417        RExtOp0.getOperand(1) == LExtOp0) {
3418      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3419      //   (rotl x, y)
3420      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3421      //   (rotr x, (sub 32, y))
3422      if (ConstantSDNode *SUBC =
3423            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0)))
3424        if (SUBC->getAPIntValue() == OpSizeInBits) {
3425          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3426                             LHSShiftArg,
3427                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3428        } else if (LHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3429                 LHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3430          // fold (or (shl (*ext x), (*ext y)),
3431          //          (srl (*ext x), (*ext (sub 32, y)))) ->
3432          //   (*ext (rotl x, y))
3433          // fold (or (shl (*ext x), (*ext y)),
3434          //          (srl (*ext x), (*ext (sub 32, y)))) ->
3435          //   (*ext (rotr x, (sub 32, y)))
3436          SDValue LArgExtOp0 = LHSShiftArg.getOperand(0);
3437          EVT LArgVT = LArgExtOp0.getValueType();
3438          if (LArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3439            SDValue V = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, LArgVT,
3440                             LArgExtOp0,
3441                             HasROTL ? LHSShiftAmt : RHSShiftAmt);
3442            return DAG.getNode(LHSShiftArg.getOpcode(), DL, VT, V).getNode();
3443          }
3444        }
3445    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3446               RExtOp0 == LExtOp0.getOperand(1)) {
3447      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3448      //   (rotr x, y)
3449      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3450      //   (rotl x, (sub 32, y))
3451      if (ConstantSDNode *SUBC =
3452            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0)))
3453        if (SUBC->getAPIntValue() == OpSizeInBits) {
3454          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3455                             LHSShiftArg,
3456                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3457        } else if (RHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3458                 RHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3459          // fold (or (shl (*ext x), (*ext (sub 32, y))),
3460          //          (srl (*ext x), (*ext y))) ->
3461          //   (*ext (rotl x, y))
3462          // fold (or (shl (*ext x), (*ext (sub 32, y))),
3463          //          (srl (*ext x), (*ext y))) ->
3464          //   (*ext (rotr x, (sub 32, y)))
3465          SDValue RArgExtOp0 = RHSShiftArg.getOperand(0);
3466          EVT RArgVT = RArgExtOp0.getValueType();
3467          if (RArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3468            SDValue V = DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, RArgVT,
3469                             RArgExtOp0,
3470                             HasROTR ? RHSShiftAmt : LHSShiftAmt);
3471            return DAG.getNode(RHSShiftArg.getOpcode(), DL, VT, V).getNode();
3472          }
3473        }
3474    }
3475  }
3476
3477  return 0;
3478}
3479
3480SDValue DAGCombiner::visitXOR(SDNode *N) {
3481  SDValue N0 = N->getOperand(0);
3482  SDValue N1 = N->getOperand(1);
3483  SDValue LHS, RHS, CC;
3484  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3485  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3486  EVT VT = N0.getValueType();
3487
3488  // fold vector ops
3489  if (VT.isVector()) {
3490    SDValue FoldedVOp = SimplifyVBinOp(N);
3491    if (FoldedVOp.getNode()) return FoldedVOp;
3492
3493    // fold (xor x, 0) -> x, vector edition
3494    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3495      return N1;
3496    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3497      return N0;
3498  }
3499
3500  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3501  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3502    return DAG.getConstant(0, VT);
3503  // fold (xor x, undef) -> undef
3504  if (N0.getOpcode() == ISD::UNDEF)
3505    return N0;
3506  if (N1.getOpcode() == ISD::UNDEF)
3507    return N1;
3508  // fold (xor c1, c2) -> c1^c2
3509  if (N0C && N1C)
3510    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3511  // canonicalize constant to RHS
3512  if (N0C && !N1C)
3513    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3514  // fold (xor x, 0) -> x
3515  if (N1C && N1C->isNullValue())
3516    return N0;
3517  // reassociate xor
3518  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3519  if (RXOR.getNode() != 0)
3520    return RXOR;
3521
3522  // fold !(x cc y) -> (x !cc y)
3523  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3524    bool isInt = LHS.getValueType().isInteger();
3525    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3526                                               isInt);
3527
3528    if (!LegalOperations ||
3529        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3530      switch (N0.getOpcode()) {
3531      default:
3532        llvm_unreachable("Unhandled SetCC Equivalent!");
3533      case ISD::SETCC:
3534        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3535      case ISD::SELECT_CC:
3536        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3537                               N0.getOperand(3), NotCC);
3538      }
3539    }
3540  }
3541
3542  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3543  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3544      N0.getNode()->hasOneUse() &&
3545      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3546    SDValue V = N0.getOperand(0);
3547    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3548                    DAG.getConstant(1, V.getValueType()));
3549    AddToWorkList(V.getNode());
3550    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3551  }
3552
3553  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3554  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3555      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3556    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3557    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3558      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3559      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3560      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3561      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3562      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3563    }
3564  }
3565  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3566  if (N1C && N1C->isAllOnesValue() &&
3567      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3568    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3569    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3570      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3571      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3572      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3573      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3574      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3575    }
3576  }
3577  // fold (xor (and x, y), y) -> (and (not x), y)
3578  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3579      N0->getOperand(1) == N1) {
3580    SDValue X = N0->getOperand(0);
3581    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3582    AddToWorkList(NotX.getNode());
3583    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3584  }
3585  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3586  if (N1C && N0.getOpcode() == ISD::XOR) {
3587    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3588    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3589    if (N00C)
3590      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3591                         DAG.getConstant(N1C->getAPIntValue() ^
3592                                         N00C->getAPIntValue(), VT));
3593    if (N01C)
3594      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3595                         DAG.getConstant(N1C->getAPIntValue() ^
3596                                         N01C->getAPIntValue(), VT));
3597  }
3598  // fold (xor x, x) -> 0
3599  if (N0 == N1)
3600    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3601
3602  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3603  if (N0.getOpcode() == N1.getOpcode()) {
3604    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3605    if (Tmp.getNode()) return Tmp;
3606  }
3607
3608  // Simplify the expression using non-local knowledge.
3609  if (!VT.isVector() &&
3610      SimplifyDemandedBits(SDValue(N, 0)))
3611    return SDValue(N, 0);
3612
3613  return SDValue();
3614}
3615
3616/// visitShiftByConstant - Handle transforms common to the three shifts, when
3617/// the shift amount is a constant.
3618SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3619  SDNode *LHS = N->getOperand(0).getNode();
3620  if (!LHS->hasOneUse()) return SDValue();
3621
3622  // We want to pull some binops through shifts, so that we have (and (shift))
3623  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3624  // thing happens with address calculations, so it's important to canonicalize
3625  // it.
3626  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3627
3628  switch (LHS->getOpcode()) {
3629  default: return SDValue();
3630  case ISD::OR:
3631  case ISD::XOR:
3632    HighBitSet = false; // We can only transform sra if the high bit is clear.
3633    break;
3634  case ISD::AND:
3635    HighBitSet = true;  // We can only transform sra if the high bit is set.
3636    break;
3637  case ISD::ADD:
3638    if (N->getOpcode() != ISD::SHL)
3639      return SDValue(); // only shl(add) not sr[al](add).
3640    HighBitSet = false; // We can only transform sra if the high bit is clear.
3641    break;
3642  }
3643
3644  // We require the RHS of the binop to be a constant as well.
3645  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3646  if (!BinOpCst) return SDValue();
3647
3648  // FIXME: disable this unless the input to the binop is a shift by a constant.
3649  // If it is not a shift, it pessimizes some common cases like:
3650  //
3651  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3652  //    int bar(int *X, int i) { return X[i & 255]; }
3653  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3654  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3655       BinOpLHSVal->getOpcode() != ISD::SRA &&
3656       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3657      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3658    return SDValue();
3659
3660  EVT VT = N->getValueType(0);
3661
3662  // If this is a signed shift right, and the high bit is modified by the
3663  // logical operation, do not perform the transformation. The highBitSet
3664  // boolean indicates the value of the high bit of the constant which would
3665  // cause it to be modified for this operation.
3666  if (N->getOpcode() == ISD::SRA) {
3667    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3668    if (BinOpRHSSignSet != HighBitSet)
3669      return SDValue();
3670  }
3671
3672  // Fold the constants, shifting the binop RHS by the shift amount.
3673  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3674                               N->getValueType(0),
3675                               LHS->getOperand(1), N->getOperand(1));
3676
3677  // Create the new shift.
3678  SDValue NewShift = DAG.getNode(N->getOpcode(),
3679                                 SDLoc(LHS->getOperand(0)),
3680                                 VT, LHS->getOperand(0), N->getOperand(1));
3681
3682  // Create the new binop.
3683  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3684}
3685
3686SDValue DAGCombiner::visitSHL(SDNode *N) {
3687  SDValue N0 = N->getOperand(0);
3688  SDValue N1 = N->getOperand(1);
3689  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3690  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3691  EVT VT = N0.getValueType();
3692  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3693
3694  // fold (shl c1, c2) -> c1<<c2
3695  if (N0C && N1C)
3696    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3697  // fold (shl 0, x) -> 0
3698  if (N0C && N0C->isNullValue())
3699    return N0;
3700  // fold (shl x, c >= size(x)) -> undef
3701  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3702    return DAG.getUNDEF(VT);
3703  // fold (shl x, 0) -> x
3704  if (N1C && N1C->isNullValue())
3705    return N0;
3706  // fold (shl undef, x) -> 0
3707  if (N0.getOpcode() == ISD::UNDEF)
3708    return DAG.getConstant(0, VT);
3709  // if (shl x, c) is known to be zero, return 0
3710  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3711                            APInt::getAllOnesValue(OpSizeInBits)))
3712    return DAG.getConstant(0, VT);
3713  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3714  if (N1.getOpcode() == ISD::TRUNCATE &&
3715      N1.getOperand(0).getOpcode() == ISD::AND &&
3716      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3717    SDValue N101 = N1.getOperand(0).getOperand(1);
3718    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3719      EVT TruncVT = N1.getValueType();
3720      SDValue N100 = N1.getOperand(0).getOperand(0);
3721      APInt TruncC = N101C->getAPIntValue();
3722      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3723      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3724                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3725                                     DAG.getNode(ISD::TRUNCATE,
3726                                                 SDLoc(N),
3727                                                 TruncVT, N100),
3728                                     DAG.getConstant(TruncC, TruncVT)));
3729    }
3730  }
3731
3732  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3733    return SDValue(N, 0);
3734
3735  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3736  if (N1C && N0.getOpcode() == ISD::SHL &&
3737      N0.getOperand(1).getOpcode() == ISD::Constant) {
3738    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3739    uint64_t c2 = N1C->getZExtValue();
3740    if (c1 + c2 >= OpSizeInBits)
3741      return DAG.getConstant(0, VT);
3742    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3743                       DAG.getConstant(c1 + c2, N1.getValueType()));
3744  }
3745
3746  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3747  // For this to be valid, the second form must not preserve any of the bits
3748  // that are shifted out by the inner shift in the first form.  This means
3749  // the outer shift size must be >= the number of bits added by the ext.
3750  // As a corollary, we don't care what kind of ext it is.
3751  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3752              N0.getOpcode() == ISD::ANY_EXTEND ||
3753              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3754      N0.getOperand(0).getOpcode() == ISD::SHL &&
3755      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3756    uint64_t c1 =
3757      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3758    uint64_t c2 = N1C->getZExtValue();
3759    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3760    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3761    if (c2 >= OpSizeInBits - InnerShiftSize) {
3762      if (c1 + c2 >= OpSizeInBits)
3763        return DAG.getConstant(0, VT);
3764      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3765                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3766                                     N0.getOperand(0)->getOperand(0)),
3767                         DAG.getConstant(c1 + c2, N1.getValueType()));
3768    }
3769  }
3770
3771  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3772  //                               (and (srl x, (sub c1, c2), MASK)
3773  // Only fold this if the inner shift has no other uses -- if it does, folding
3774  // this will increase the total number of instructions.
3775  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3776      N0.getOperand(1).getOpcode() == ISD::Constant) {
3777    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3778    if (c1 < VT.getSizeInBits()) {
3779      uint64_t c2 = N1C->getZExtValue();
3780      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3781                                         VT.getSizeInBits() - c1);
3782      SDValue Shift;
3783      if (c2 > c1) {
3784        Mask = Mask.shl(c2-c1);
3785        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3786                            DAG.getConstant(c2-c1, N1.getValueType()));
3787      } else {
3788        Mask = Mask.lshr(c1-c2);
3789        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3790                            DAG.getConstant(c1-c2, N1.getValueType()));
3791      }
3792      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3793                         DAG.getConstant(Mask, VT));
3794    }
3795  }
3796  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3797  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3798    SDValue HiBitsMask =
3799      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3800                                            VT.getSizeInBits() -
3801                                              N1C->getZExtValue()),
3802                      VT);
3803    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3804                       HiBitsMask);
3805  }
3806
3807  if (N1C) {
3808    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3809    if (NewSHL.getNode())
3810      return NewSHL;
3811  }
3812
3813  return SDValue();
3814}
3815
3816SDValue DAGCombiner::visitSRA(SDNode *N) {
3817  SDValue N0 = N->getOperand(0);
3818  SDValue N1 = N->getOperand(1);
3819  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3820  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3821  EVT VT = N0.getValueType();
3822  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3823
3824  // fold (sra c1, c2) -> (sra c1, c2)
3825  if (N0C && N1C)
3826    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3827  // fold (sra 0, x) -> 0
3828  if (N0C && N0C->isNullValue())
3829    return N0;
3830  // fold (sra -1, x) -> -1
3831  if (N0C && N0C->isAllOnesValue())
3832    return N0;
3833  // fold (sra x, (setge c, size(x))) -> undef
3834  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3835    return DAG.getUNDEF(VT);
3836  // fold (sra x, 0) -> x
3837  if (N1C && N1C->isNullValue())
3838    return N0;
3839  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3840  // sext_inreg.
3841  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3842    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3843    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3844    if (VT.isVector())
3845      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3846                               ExtVT, VT.getVectorNumElements());
3847    if ((!LegalOperations ||
3848         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3849      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3850                         N0.getOperand(0), DAG.getValueType(ExtVT));
3851  }
3852
3853  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3854  if (N1C && N0.getOpcode() == ISD::SRA) {
3855    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3856      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3857      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3858      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3859                         DAG.getConstant(Sum, N1C->getValueType(0)));
3860    }
3861  }
3862
3863  // fold (sra (shl X, m), (sub result_size, n))
3864  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3865  // result_size - n != m.
3866  // If truncate is free for the target sext(shl) is likely to result in better
3867  // code.
3868  if (N0.getOpcode() == ISD::SHL) {
3869    // Get the two constanst of the shifts, CN0 = m, CN = n.
3870    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3871    if (N01C && N1C) {
3872      // Determine what the truncate's result bitsize and type would be.
3873      EVT TruncVT =
3874        EVT::getIntegerVT(*DAG.getContext(),
3875                          OpSizeInBits - N1C->getZExtValue());
3876      // Determine the residual right-shift amount.
3877      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3878
3879      // If the shift is not a no-op (in which case this should be just a sign
3880      // extend already), the truncated to type is legal, sign_extend is legal
3881      // on that type, and the truncate to that type is both legal and free,
3882      // perform the transform.
3883      if ((ShiftAmt > 0) &&
3884          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3885          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3886          TLI.isTruncateFree(VT, TruncVT)) {
3887
3888          SDValue Amt = DAG.getConstant(ShiftAmt,
3889              getShiftAmountTy(N0.getOperand(0).getValueType()));
3890          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3891                                      N0.getOperand(0), Amt);
3892          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3893                                      Shift);
3894          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3895                             N->getValueType(0), Trunc);
3896      }
3897    }
3898  }
3899
3900  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3901  if (N1.getOpcode() == ISD::TRUNCATE &&
3902      N1.getOperand(0).getOpcode() == ISD::AND &&
3903      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3904    SDValue N101 = N1.getOperand(0).getOperand(1);
3905    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3906      EVT TruncVT = N1.getValueType();
3907      SDValue N100 = N1.getOperand(0).getOperand(0);
3908      APInt TruncC = N101C->getAPIntValue();
3909      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3910      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3911                         DAG.getNode(ISD::AND, SDLoc(N),
3912                                     TruncVT,
3913                                     DAG.getNode(ISD::TRUNCATE,
3914                                                 SDLoc(N),
3915                                                 TruncVT, N100),
3916                                     DAG.getConstant(TruncC, TruncVT)));
3917    }
3918  }
3919
3920  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3921  //      if c1 is equal to the number of bits the trunc removes
3922  if (N0.getOpcode() == ISD::TRUNCATE &&
3923      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3924       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3925      N0.getOperand(0).hasOneUse() &&
3926      N0.getOperand(0).getOperand(1).hasOneUse() &&
3927      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3928    EVT LargeVT = N0.getOperand(0).getValueType();
3929    ConstantSDNode *LargeShiftAmt =
3930      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3931
3932    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3933        LargeShiftAmt->getZExtValue()) {
3934      SDValue Amt =
3935        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3936              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3937      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3938                                N0.getOperand(0).getOperand(0), Amt);
3939      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3940    }
3941  }
3942
3943  // Simplify, based on bits shifted out of the LHS.
3944  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3945    return SDValue(N, 0);
3946
3947
3948  // If the sign bit is known to be zero, switch this to a SRL.
3949  if (DAG.SignBitIsZero(N0))
3950    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3951
3952  if (N1C) {
3953    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3954    if (NewSRA.getNode())
3955      return NewSRA;
3956  }
3957
3958  return SDValue();
3959}
3960
3961SDValue DAGCombiner::visitSRL(SDNode *N) {
3962  SDValue N0 = N->getOperand(0);
3963  SDValue N1 = N->getOperand(1);
3964  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3965  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3966  EVT VT = N0.getValueType();
3967  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3968
3969  // fold (srl c1, c2) -> c1 >>u c2
3970  if (N0C && N1C)
3971    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3972  // fold (srl 0, x) -> 0
3973  if (N0C && N0C->isNullValue())
3974    return N0;
3975  // fold (srl x, c >= size(x)) -> undef
3976  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3977    return DAG.getUNDEF(VT);
3978  // fold (srl x, 0) -> x
3979  if (N1C && N1C->isNullValue())
3980    return N0;
3981  // if (srl x, c) is known to be zero, return 0
3982  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3983                                   APInt::getAllOnesValue(OpSizeInBits)))
3984    return DAG.getConstant(0, VT);
3985
3986  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3987  if (N1C && N0.getOpcode() == ISD::SRL &&
3988      N0.getOperand(1).getOpcode() == ISD::Constant) {
3989    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3990    uint64_t c2 = N1C->getZExtValue();
3991    if (c1 + c2 >= OpSizeInBits)
3992      return DAG.getConstant(0, VT);
3993    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3994                       DAG.getConstant(c1 + c2, N1.getValueType()));
3995  }
3996
3997  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3998  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3999      N0.getOperand(0).getOpcode() == ISD::SRL &&
4000      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4001    uint64_t c1 =
4002      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4003    uint64_t c2 = N1C->getZExtValue();
4004    EVT InnerShiftVT = N0.getOperand(0).getValueType();
4005    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4006    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4007    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4008    if (c1 + OpSizeInBits == InnerShiftSize) {
4009      if (c1 + c2 >= InnerShiftSize)
4010        return DAG.getConstant(0, VT);
4011      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
4012                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
4013                                     N0.getOperand(0)->getOperand(0),
4014                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
4015    }
4016  }
4017
4018  // fold (srl (shl x, c), c) -> (and x, cst2)
4019  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
4020      N0.getValueSizeInBits() <= 64) {
4021    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
4022    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4023                       DAG.getConstant(~0ULL >> ShAmt, VT));
4024  }
4025
4026  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4027  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4028    // Shifting in all undef bits?
4029    EVT SmallVT = N0.getOperand(0).getValueType();
4030    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
4031      return DAG.getUNDEF(VT);
4032
4033    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4034      uint64_t ShiftAmt = N1C->getZExtValue();
4035      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4036                                       N0.getOperand(0),
4037                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4038      AddToWorkList(SmallShift.getNode());
4039      APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
4040      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4041                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4042                         DAG.getConstant(Mask, VT));
4043    }
4044  }
4045
4046  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4047  // bit, which is unmodified by sra.
4048  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
4049    if (N0.getOpcode() == ISD::SRA)
4050      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4051  }
4052
4053  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4054  if (N1C && N0.getOpcode() == ISD::CTLZ &&
4055      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
4056    APInt KnownZero, KnownOne;
4057    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4058
4059    // If any of the input bits are KnownOne, then the input couldn't be all
4060    // zeros, thus the result of the srl will always be zero.
4061    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4062
4063    // If all of the bits input the to ctlz node are known to be zero, then
4064    // the result of the ctlz is "32" and the result of the shift is one.
4065    APInt UnknownBits = ~KnownZero;
4066    if (UnknownBits == 0) return DAG.getConstant(1, VT);
4067
4068    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4069    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4070      // Okay, we know that only that the single bit specified by UnknownBits
4071      // could be set on input to the CTLZ node. If this bit is set, the SRL
4072      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4073      // to an SRL/XOR pair, which is likely to simplify more.
4074      unsigned ShAmt = UnknownBits.countTrailingZeros();
4075      SDValue Op = N0.getOperand(0);
4076
4077      if (ShAmt) {
4078        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4079                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4080        AddToWorkList(Op.getNode());
4081      }
4082
4083      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4084                         Op, DAG.getConstant(1, VT));
4085    }
4086  }
4087
4088  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4089  if (N1.getOpcode() == ISD::TRUNCATE &&
4090      N1.getOperand(0).getOpcode() == ISD::AND &&
4091      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4092    SDValue N101 = N1.getOperand(0).getOperand(1);
4093    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4094      EVT TruncVT = N1.getValueType();
4095      SDValue N100 = N1.getOperand(0).getOperand(0);
4096      APInt TruncC = N101C->getAPIntValue();
4097      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4098      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4099                         DAG.getNode(ISD::AND, SDLoc(N),
4100                                     TruncVT,
4101                                     DAG.getNode(ISD::TRUNCATE,
4102                                                 SDLoc(N),
4103                                                 TruncVT, N100),
4104                                     DAG.getConstant(TruncC, TruncVT)));
4105    }
4106  }
4107
4108  // fold operands of srl based on knowledge that the low bits are not
4109  // demanded.
4110  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4111    return SDValue(N, 0);
4112
4113  if (N1C) {
4114    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4115    if (NewSRL.getNode())
4116      return NewSRL;
4117  }
4118
4119  // Attempt to convert a srl of a load into a narrower zero-extending load.
4120  SDValue NarrowLoad = ReduceLoadWidth(N);
4121  if (NarrowLoad.getNode())
4122    return NarrowLoad;
4123
4124  // Here is a common situation. We want to optimize:
4125  //
4126  //   %a = ...
4127  //   %b = and i32 %a, 2
4128  //   %c = srl i32 %b, 1
4129  //   brcond i32 %c ...
4130  //
4131  // into
4132  //
4133  //   %a = ...
4134  //   %b = and %a, 2
4135  //   %c = setcc eq %b, 0
4136  //   brcond %c ...
4137  //
4138  // However when after the source operand of SRL is optimized into AND, the SRL
4139  // itself may not be optimized further. Look for it and add the BRCOND into
4140  // the worklist.
4141  if (N->hasOneUse()) {
4142    SDNode *Use = *N->use_begin();
4143    if (Use->getOpcode() == ISD::BRCOND)
4144      AddToWorkList(Use);
4145    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4146      // Also look pass the truncate.
4147      Use = *Use->use_begin();
4148      if (Use->getOpcode() == ISD::BRCOND)
4149        AddToWorkList(Use);
4150    }
4151  }
4152
4153  return SDValue();
4154}
4155
4156SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4157  SDValue N0 = N->getOperand(0);
4158  EVT VT = N->getValueType(0);
4159
4160  // fold (ctlz c1) -> c2
4161  if (isa<ConstantSDNode>(N0))
4162    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4163  return SDValue();
4164}
4165
4166SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4167  SDValue N0 = N->getOperand(0);
4168  EVT VT = N->getValueType(0);
4169
4170  // fold (ctlz_zero_undef c1) -> c2
4171  if (isa<ConstantSDNode>(N0))
4172    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4173  return SDValue();
4174}
4175
4176SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4177  SDValue N0 = N->getOperand(0);
4178  EVT VT = N->getValueType(0);
4179
4180  // fold (cttz c1) -> c2
4181  if (isa<ConstantSDNode>(N0))
4182    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4183  return SDValue();
4184}
4185
4186SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4187  SDValue N0 = N->getOperand(0);
4188  EVT VT = N->getValueType(0);
4189
4190  // fold (cttz_zero_undef c1) -> c2
4191  if (isa<ConstantSDNode>(N0))
4192    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4193  return SDValue();
4194}
4195
4196SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4197  SDValue N0 = N->getOperand(0);
4198  EVT VT = N->getValueType(0);
4199
4200  // fold (ctpop c1) -> c2
4201  if (isa<ConstantSDNode>(N0))
4202    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4203  return SDValue();
4204}
4205
4206SDValue DAGCombiner::visitSELECT(SDNode *N) {
4207  SDValue N0 = N->getOperand(0);
4208  SDValue N1 = N->getOperand(1);
4209  SDValue N2 = N->getOperand(2);
4210  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4211  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4212  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4213  EVT VT = N->getValueType(0);
4214  EVT VT0 = N0.getValueType();
4215
4216  // fold (select C, X, X) -> X
4217  if (N1 == N2)
4218    return N1;
4219  // fold (select true, X, Y) -> X
4220  if (N0C && !N0C->isNullValue())
4221    return N1;
4222  // fold (select false, X, Y) -> Y
4223  if (N0C && N0C->isNullValue())
4224    return N2;
4225  // fold (select C, 1, X) -> (or C, X)
4226  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4227    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4228  // fold (select C, 0, 1) -> (xor C, 1)
4229  if (VT.isInteger() &&
4230      (VT0 == MVT::i1 ||
4231       (VT0.isInteger() &&
4232        TLI.getBooleanContents(false) ==
4233        TargetLowering::ZeroOrOneBooleanContent)) &&
4234      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4235    SDValue XORNode;
4236    if (VT == VT0)
4237      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4238                         N0, DAG.getConstant(1, VT0));
4239    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4240                          N0, DAG.getConstant(1, VT0));
4241    AddToWorkList(XORNode.getNode());
4242    if (VT.bitsGT(VT0))
4243      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4244    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4245  }
4246  // fold (select C, 0, X) -> (and (not C), X)
4247  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4248    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4249    AddToWorkList(NOTNode.getNode());
4250    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4251  }
4252  // fold (select C, X, 1) -> (or (not C), X)
4253  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4254    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4255    AddToWorkList(NOTNode.getNode());
4256    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4257  }
4258  // fold (select C, X, 0) -> (and C, X)
4259  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4260    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4261  // fold (select X, X, Y) -> (or X, Y)
4262  // fold (select X, 1, Y) -> (or X, Y)
4263  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4264    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4265  // fold (select X, Y, X) -> (and X, Y)
4266  // fold (select X, Y, 0) -> (and X, Y)
4267  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4268    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4269
4270  // If we can fold this based on the true/false value, do so.
4271  if (SimplifySelectOps(N, N1, N2))
4272    return SDValue(N, 0);  // Don't revisit N.
4273
4274  // fold selects based on a setcc into other things, such as min/max/abs
4275  if (N0.getOpcode() == ISD::SETCC) {
4276    // FIXME:
4277    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4278    // having to say they don't support SELECT_CC on every type the DAG knows
4279    // about, since there is no way to mark an opcode illegal at all value types
4280    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4281        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4282      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4283                         N0.getOperand(0), N0.getOperand(1),
4284                         N1, N2, N0.getOperand(2));
4285    return SimplifySelect(SDLoc(N), N0, N1, N2);
4286  }
4287
4288  return SDValue();
4289}
4290
4291SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4292  SDValue N0 = N->getOperand(0);
4293  SDValue N1 = N->getOperand(1);
4294  SDValue N2 = N->getOperand(2);
4295  SDLoc DL(N);
4296
4297  // Canonicalize integer abs.
4298  // vselect (setg[te] X,  0),  X, -X ->
4299  // vselect (setgt    X, -1),  X, -X ->
4300  // vselect (setl[te] X,  0), -X,  X ->
4301  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4302  if (N0.getOpcode() == ISD::SETCC) {
4303    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4304    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4305    bool isAbs = false;
4306    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4307
4308    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4309         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4310        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4311      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4312    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4313             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4314      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4315
4316    if (isAbs) {
4317      EVT VT = LHS.getValueType();
4318      SDValue Shift = DAG.getNode(
4319          ISD::SRA, DL, VT, LHS,
4320          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4321      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4322      AddToWorkList(Shift.getNode());
4323      AddToWorkList(Add.getNode());
4324      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4325    }
4326  }
4327
4328  return SDValue();
4329}
4330
4331SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4332  SDValue N0 = N->getOperand(0);
4333  SDValue N1 = N->getOperand(1);
4334  SDValue N2 = N->getOperand(2);
4335  SDValue N3 = N->getOperand(3);
4336  SDValue N4 = N->getOperand(4);
4337  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4338
4339  // fold select_cc lhs, rhs, x, x, cc -> x
4340  if (N2 == N3)
4341    return N2;
4342
4343  // Determine if the condition we're dealing with is constant
4344  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4345                              N0, N1, CC, SDLoc(N), false);
4346  if (SCC.getNode()) {
4347    AddToWorkList(SCC.getNode());
4348
4349    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4350      if (!SCCC->isNullValue())
4351        return N2;    // cond always true -> true val
4352      else
4353        return N3;    // cond always false -> false val
4354    }
4355
4356    // Fold to a simpler select_cc
4357    if (SCC.getOpcode() == ISD::SETCC)
4358      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4359                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4360                         SCC.getOperand(2));
4361  }
4362
4363  // If we can fold this based on the true/false value, do so.
4364  if (SimplifySelectOps(N, N2, N3))
4365    return SDValue(N, 0);  // Don't revisit N.
4366
4367  // fold select_cc into other things, such as min/max/abs
4368  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4369}
4370
4371SDValue DAGCombiner::visitSETCC(SDNode *N) {
4372  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4373                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4374                       SDLoc(N));
4375}
4376
4377// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4378// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4379// transformation. Returns true if extension are possible and the above
4380// mentioned transformation is profitable.
4381static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4382                                    unsigned ExtOpc,
4383                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4384                                    const TargetLowering &TLI) {
4385  bool HasCopyToRegUses = false;
4386  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4387  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4388                            UE = N0.getNode()->use_end();
4389       UI != UE; ++UI) {
4390    SDNode *User = *UI;
4391    if (User == N)
4392      continue;
4393    if (UI.getUse().getResNo() != N0.getResNo())
4394      continue;
4395    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4396    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4397      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4398      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4399        // Sign bits will be lost after a zext.
4400        return false;
4401      bool Add = false;
4402      for (unsigned i = 0; i != 2; ++i) {
4403        SDValue UseOp = User->getOperand(i);
4404        if (UseOp == N0)
4405          continue;
4406        if (!isa<ConstantSDNode>(UseOp))
4407          return false;
4408        Add = true;
4409      }
4410      if (Add)
4411        ExtendNodes.push_back(User);
4412      continue;
4413    }
4414    // If truncates aren't free and there are users we can't
4415    // extend, it isn't worthwhile.
4416    if (!isTruncFree)
4417      return false;
4418    // Remember if this value is live-out.
4419    if (User->getOpcode() == ISD::CopyToReg)
4420      HasCopyToRegUses = true;
4421  }
4422
4423  if (HasCopyToRegUses) {
4424    bool BothLiveOut = false;
4425    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4426         UI != UE; ++UI) {
4427      SDUse &Use = UI.getUse();
4428      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4429        BothLiveOut = true;
4430        break;
4431      }
4432    }
4433    if (BothLiveOut)
4434      // Both unextended and extended values are live out. There had better be
4435      // a good reason for the transformation.
4436      return ExtendNodes.size();
4437  }
4438  return true;
4439}
4440
4441void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4442                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4443                                  ISD::NodeType ExtType) {
4444  // Extend SetCC uses if necessary.
4445  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4446    SDNode *SetCC = SetCCs[i];
4447    SmallVector<SDValue, 4> Ops;
4448
4449    for (unsigned j = 0; j != 2; ++j) {
4450      SDValue SOp = SetCC->getOperand(j);
4451      if (SOp == Trunc)
4452        Ops.push_back(ExtLoad);
4453      else
4454        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4455    }
4456
4457    Ops.push_back(SetCC->getOperand(2));
4458    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4459                                 &Ops[0], Ops.size()));
4460  }
4461}
4462
4463SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4464  SDValue N0 = N->getOperand(0);
4465  EVT VT = N->getValueType(0);
4466
4467  // fold (sext c1) -> c1
4468  if (isa<ConstantSDNode>(N0))
4469    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4470
4471  // fold (sext (sext x)) -> (sext x)
4472  // fold (sext (aext x)) -> (sext x)
4473  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4474    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4475                       N0.getOperand(0));
4476
4477  if (N0.getOpcode() == ISD::TRUNCATE) {
4478    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4479    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4480    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4481    if (NarrowLoad.getNode()) {
4482      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4483      if (NarrowLoad.getNode() != N0.getNode()) {
4484        CombineTo(N0.getNode(), NarrowLoad);
4485        // CombineTo deleted the truncate, if needed, but not what's under it.
4486        AddToWorkList(oye);
4487      }
4488      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4489    }
4490
4491    // See if the value being truncated is already sign extended.  If so, just
4492    // eliminate the trunc/sext pair.
4493    SDValue Op = N0.getOperand(0);
4494    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4495    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4496    unsigned DestBits = VT.getScalarType().getSizeInBits();
4497    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4498
4499    if (OpBits == DestBits) {
4500      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4501      // bits, it is already ready.
4502      if (NumSignBits > DestBits-MidBits)
4503        return Op;
4504    } else if (OpBits < DestBits) {
4505      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4506      // bits, just sext from i32.
4507      if (NumSignBits > OpBits-MidBits)
4508        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4509    } else {
4510      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4511      // bits, just truncate to i32.
4512      if (NumSignBits > OpBits-MidBits)
4513        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4514    }
4515
4516    // fold (sext (truncate x)) -> (sextinreg x).
4517    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4518                                                 N0.getValueType())) {
4519      if (OpBits < DestBits)
4520        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4521      else if (OpBits > DestBits)
4522        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4523      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4524                         DAG.getValueType(N0.getValueType()));
4525    }
4526  }
4527
4528  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4529  // None of the supported targets knows how to perform load and sign extend
4530  // on vectors in one instruction.  We only perform this transformation on
4531  // scalars.
4532  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4533      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4534       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4535    bool DoXform = true;
4536    SmallVector<SDNode*, 4> SetCCs;
4537    if (!N0.hasOneUse())
4538      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4539    if (DoXform) {
4540      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4541      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4542                                       LN0->getChain(),
4543                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4544                                       N0.getValueType(),
4545                                       LN0->isVolatile(), LN0->isNonTemporal(),
4546                                       LN0->getAlignment());
4547      CombineTo(N, ExtLoad);
4548      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4549                                  N0.getValueType(), ExtLoad);
4550      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4551      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4552                      ISD::SIGN_EXTEND);
4553      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4554    }
4555  }
4556
4557  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4558  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4559  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4560      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4561    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4562    EVT MemVT = LN0->getMemoryVT();
4563    if ((!LegalOperations && !LN0->isVolatile()) ||
4564        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4565      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4566                                       LN0->getChain(),
4567                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4568                                       MemVT,
4569                                       LN0->isVolatile(), LN0->isNonTemporal(),
4570                                       LN0->getAlignment());
4571      CombineTo(N, ExtLoad);
4572      CombineTo(N0.getNode(),
4573                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4574                            N0.getValueType(), ExtLoad),
4575                ExtLoad.getValue(1));
4576      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4577    }
4578  }
4579
4580  // fold (sext (and/or/xor (load x), cst)) ->
4581  //      (and/or/xor (sextload x), (sext cst))
4582  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4583       N0.getOpcode() == ISD::XOR) &&
4584      isa<LoadSDNode>(N0.getOperand(0)) &&
4585      N0.getOperand(1).getOpcode() == ISD::Constant &&
4586      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4587      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4588    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4589    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4590      bool DoXform = true;
4591      SmallVector<SDNode*, 4> SetCCs;
4592      if (!N0.hasOneUse())
4593        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4594                                          SetCCs, TLI);
4595      if (DoXform) {
4596        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4597                                         LN0->getChain(), LN0->getBasePtr(),
4598                                         LN0->getPointerInfo(),
4599                                         LN0->getMemoryVT(),
4600                                         LN0->isVolatile(),
4601                                         LN0->isNonTemporal(),
4602                                         LN0->getAlignment());
4603        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4604        Mask = Mask.sext(VT.getSizeInBits());
4605        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4606                                  ExtLoad, DAG.getConstant(Mask, VT));
4607        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4608                                    SDLoc(N0.getOperand(0)),
4609                                    N0.getOperand(0).getValueType(), ExtLoad);
4610        CombineTo(N, And);
4611        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4612        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4613                        ISD::SIGN_EXTEND);
4614        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4615      }
4616    }
4617  }
4618
4619  if (N0.getOpcode() == ISD::SETCC) {
4620    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4621    // Only do this before legalize for now.
4622    if (VT.isVector() && !LegalOperations &&
4623        TLI.getBooleanContents(true) ==
4624          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4625      EVT N0VT = N0.getOperand(0).getValueType();
4626      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4627      // of the same size as the compared operands. Only optimize sext(setcc())
4628      // if this is the case.
4629      EVT SVT = getSetCCResultType(N0VT);
4630
4631      // We know that the # elements of the results is the same as the
4632      // # elements of the compare (and the # elements of the compare result
4633      // for that matter).  Check to see that they are the same size.  If so,
4634      // we know that the element size of the sext'd result matches the
4635      // element size of the compare operands.
4636      if (VT.getSizeInBits() == SVT.getSizeInBits())
4637        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4638                             N0.getOperand(1),
4639                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4640
4641      // If the desired elements are smaller or larger than the source
4642      // elements we can use a matching integer vector type and then
4643      // truncate/sign extend
4644      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4645      if (SVT == MatchingVectorType) {
4646        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4647                               N0.getOperand(0), N0.getOperand(1),
4648                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4649        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4650      }
4651    }
4652
4653    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4654    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4655    SDValue NegOne =
4656      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4657    SDValue SCC =
4658      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4659                       NegOne, DAG.getConstant(0, VT),
4660                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4661    if (SCC.getNode()) return SCC;
4662    if (!VT.isVector() &&
4663        (!LegalOperations ||
4664         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4665      return DAG.getSelect(SDLoc(N), VT,
4666                           DAG.getSetCC(SDLoc(N),
4667                                        getSetCCResultType(VT),
4668                                        N0.getOperand(0), N0.getOperand(1),
4669                                        cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4670                           NegOne, DAG.getConstant(0, VT));
4671    }
4672  }
4673
4674  // fold (sext x) -> (zext x) if the sign bit is known zero.
4675  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4676      DAG.SignBitIsZero(N0))
4677    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4678
4679  return SDValue();
4680}
4681
4682// isTruncateOf - If N is a truncate of some other value, return true, record
4683// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4684// This function computes KnownZero to avoid a duplicated call to
4685// ComputeMaskedBits in the caller.
4686static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4687                         APInt &KnownZero) {
4688  APInt KnownOne;
4689  if (N->getOpcode() == ISD::TRUNCATE) {
4690    Op = N->getOperand(0);
4691    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4692    return true;
4693  }
4694
4695  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4696      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4697    return false;
4698
4699  SDValue Op0 = N->getOperand(0);
4700  SDValue Op1 = N->getOperand(1);
4701  assert(Op0.getValueType() == Op1.getValueType());
4702
4703  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4704  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4705  if (COp0 && COp0->isNullValue())
4706    Op = Op1;
4707  else if (COp1 && COp1->isNullValue())
4708    Op = Op0;
4709  else
4710    return false;
4711
4712  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4713
4714  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4715    return false;
4716
4717  return true;
4718}
4719
4720SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4721  SDValue N0 = N->getOperand(0);
4722  EVT VT = N->getValueType(0);
4723
4724  // fold (zext c1) -> c1
4725  if (isa<ConstantSDNode>(N0))
4726    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4727  // fold (zext (zext x)) -> (zext x)
4728  // fold (zext (aext x)) -> (zext x)
4729  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4730    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4731                       N0.getOperand(0));
4732
4733  // fold (zext (truncate x)) -> (zext x) or
4734  //      (zext (truncate x)) -> (truncate x)
4735  // This is valid when the truncated bits of x are already zero.
4736  // FIXME: We should extend this to work for vectors too.
4737  SDValue Op;
4738  APInt KnownZero;
4739  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4740    APInt TruncatedBits =
4741      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4742      APInt(Op.getValueSizeInBits(), 0) :
4743      APInt::getBitsSet(Op.getValueSizeInBits(),
4744                        N0.getValueSizeInBits(),
4745                        std::min(Op.getValueSizeInBits(),
4746                                 VT.getSizeInBits()));
4747    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4748      if (VT.bitsGT(Op.getValueType()))
4749        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4750      if (VT.bitsLT(Op.getValueType()))
4751        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4752
4753      return Op;
4754    }
4755  }
4756
4757  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4758  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4759  if (N0.getOpcode() == ISD::TRUNCATE) {
4760    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4761    if (NarrowLoad.getNode()) {
4762      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4763      if (NarrowLoad.getNode() != N0.getNode()) {
4764        CombineTo(N0.getNode(), NarrowLoad);
4765        // CombineTo deleted the truncate, if needed, but not what's under it.
4766        AddToWorkList(oye);
4767      }
4768      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4769    }
4770  }
4771
4772  // fold (zext (truncate x)) -> (and x, mask)
4773  if (N0.getOpcode() == ISD::TRUNCATE &&
4774      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4775
4776    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4777    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4778    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4779    if (NarrowLoad.getNode()) {
4780      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4781      if (NarrowLoad.getNode() != N0.getNode()) {
4782        CombineTo(N0.getNode(), NarrowLoad);
4783        // CombineTo deleted the truncate, if needed, but not what's under it.
4784        AddToWorkList(oye);
4785      }
4786      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4787    }
4788
4789    SDValue Op = N0.getOperand(0);
4790    if (Op.getValueType().bitsLT(VT)) {
4791      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4792      AddToWorkList(Op.getNode());
4793    } else if (Op.getValueType().bitsGT(VT)) {
4794      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4795      AddToWorkList(Op.getNode());
4796    }
4797    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4798                                  N0.getValueType().getScalarType());
4799  }
4800
4801  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4802  // if either of the casts is not free.
4803  if (N0.getOpcode() == ISD::AND &&
4804      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4805      N0.getOperand(1).getOpcode() == ISD::Constant &&
4806      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4807                           N0.getValueType()) ||
4808       !TLI.isZExtFree(N0.getValueType(), VT))) {
4809    SDValue X = N0.getOperand(0).getOperand(0);
4810    if (X.getValueType().bitsLT(VT)) {
4811      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4812    } else if (X.getValueType().bitsGT(VT)) {
4813      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4814    }
4815    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4816    Mask = Mask.zext(VT.getSizeInBits());
4817    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4818                       X, DAG.getConstant(Mask, VT));
4819  }
4820
4821  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4822  // None of the supported targets knows how to perform load and vector_zext
4823  // on vectors in one instruction.  We only perform this transformation on
4824  // scalars.
4825  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4826      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4827       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4828    bool DoXform = true;
4829    SmallVector<SDNode*, 4> SetCCs;
4830    if (!N0.hasOneUse())
4831      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4832    if (DoXform) {
4833      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4834      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4835                                       LN0->getChain(),
4836                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4837                                       N0.getValueType(),
4838                                       LN0->isVolatile(), LN0->isNonTemporal(),
4839                                       LN0->getAlignment());
4840      CombineTo(N, ExtLoad);
4841      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4842                                  N0.getValueType(), ExtLoad);
4843      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4844
4845      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4846                      ISD::ZERO_EXTEND);
4847      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4848    }
4849  }
4850
4851  // fold (zext (and/or/xor (load x), cst)) ->
4852  //      (and/or/xor (zextload x), (zext cst))
4853  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4854       N0.getOpcode() == ISD::XOR) &&
4855      isa<LoadSDNode>(N0.getOperand(0)) &&
4856      N0.getOperand(1).getOpcode() == ISD::Constant &&
4857      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4858      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4859    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4860    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4861      bool DoXform = true;
4862      SmallVector<SDNode*, 4> SetCCs;
4863      if (!N0.hasOneUse())
4864        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4865                                          SetCCs, TLI);
4866      if (DoXform) {
4867        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4868                                         LN0->getChain(), LN0->getBasePtr(),
4869                                         LN0->getPointerInfo(),
4870                                         LN0->getMemoryVT(),
4871                                         LN0->isVolatile(),
4872                                         LN0->isNonTemporal(),
4873                                         LN0->getAlignment());
4874        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4875        Mask = Mask.zext(VT.getSizeInBits());
4876        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4877                                  ExtLoad, DAG.getConstant(Mask, VT));
4878        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4879                                    SDLoc(N0.getOperand(0)),
4880                                    N0.getOperand(0).getValueType(), ExtLoad);
4881        CombineTo(N, And);
4882        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4883        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4884                        ISD::ZERO_EXTEND);
4885        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4886      }
4887    }
4888  }
4889
4890  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4891  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4892  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4893      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4894    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4895    EVT MemVT = LN0->getMemoryVT();
4896    if ((!LegalOperations && !LN0->isVolatile()) ||
4897        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4898      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4899                                       LN0->getChain(),
4900                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4901                                       MemVT,
4902                                       LN0->isVolatile(), LN0->isNonTemporal(),
4903                                       LN0->getAlignment());
4904      CombineTo(N, ExtLoad);
4905      CombineTo(N0.getNode(),
4906                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4907                            ExtLoad),
4908                ExtLoad.getValue(1));
4909      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4910    }
4911  }
4912
4913  if (N0.getOpcode() == ISD::SETCC) {
4914    if (!LegalOperations && VT.isVector()) {
4915      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4916      // Only do this before legalize for now.
4917      EVT N0VT = N0.getOperand(0).getValueType();
4918      EVT EltVT = VT.getVectorElementType();
4919      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4920                                    DAG.getConstant(1, EltVT));
4921      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4922        // We know that the # elements of the results is the same as the
4923        // # elements of the compare (and the # elements of the compare result
4924        // for that matter).  Check to see that they are the same size.  If so,
4925        // we know that the element size of the sext'd result matches the
4926        // element size of the compare operands.
4927        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4928                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4929                                         N0.getOperand(1),
4930                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4931                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4932                                       &OneOps[0], OneOps.size()));
4933
4934      // If the desired elements are smaller or larger than the source
4935      // elements we can use a matching integer vector type and then
4936      // truncate/sign extend
4937      EVT MatchingElementType =
4938        EVT::getIntegerVT(*DAG.getContext(),
4939                          N0VT.getScalarType().getSizeInBits());
4940      EVT MatchingVectorType =
4941        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4942                         N0VT.getVectorNumElements());
4943      SDValue VsetCC =
4944        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4945                      N0.getOperand(1),
4946                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4947      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4948                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4949                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4950                                     &OneOps[0], OneOps.size()));
4951    }
4952
4953    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4954    SDValue SCC =
4955      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4956                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4957                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4958    if (SCC.getNode()) return SCC;
4959  }
4960
4961  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4962  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4963      isa<ConstantSDNode>(N0.getOperand(1)) &&
4964      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4965      N0.hasOneUse()) {
4966    SDValue ShAmt = N0.getOperand(1);
4967    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4968    if (N0.getOpcode() == ISD::SHL) {
4969      SDValue InnerZExt = N0.getOperand(0);
4970      // If the original shl may be shifting out bits, do not perform this
4971      // transformation.
4972      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4973        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4974      if (ShAmtVal > KnownZeroBits)
4975        return SDValue();
4976    }
4977
4978    SDLoc DL(N);
4979
4980    // Ensure that the shift amount is wide enough for the shifted value.
4981    if (VT.getSizeInBits() >= 256)
4982      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4983
4984    return DAG.getNode(N0.getOpcode(), DL, VT,
4985                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4986                       ShAmt);
4987  }
4988
4989  return SDValue();
4990}
4991
4992SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4993  SDValue N0 = N->getOperand(0);
4994  EVT VT = N->getValueType(0);
4995
4996  // fold (aext c1) -> c1
4997  if (isa<ConstantSDNode>(N0))
4998    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
4999  // fold (aext (aext x)) -> (aext x)
5000  // fold (aext (zext x)) -> (zext x)
5001  // fold (aext (sext x)) -> (sext x)
5002  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
5003      N0.getOpcode() == ISD::ZERO_EXTEND ||
5004      N0.getOpcode() == ISD::SIGN_EXTEND)
5005    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5006
5007  // fold (aext (truncate (load x))) -> (aext (smaller load x))
5008  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5009  if (N0.getOpcode() == ISD::TRUNCATE) {
5010    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5011    if (NarrowLoad.getNode()) {
5012      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5013      if (NarrowLoad.getNode() != N0.getNode()) {
5014        CombineTo(N0.getNode(), NarrowLoad);
5015        // CombineTo deleted the truncate, if needed, but not what's under it.
5016        AddToWorkList(oye);
5017      }
5018      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5019    }
5020  }
5021
5022  // fold (aext (truncate x))
5023  if (N0.getOpcode() == ISD::TRUNCATE) {
5024    SDValue TruncOp = N0.getOperand(0);
5025    if (TruncOp.getValueType() == VT)
5026      return TruncOp; // x iff x size == zext size.
5027    if (TruncOp.getValueType().bitsGT(VT))
5028      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5029    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5030  }
5031
5032  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5033  // if the trunc is not free.
5034  if (N0.getOpcode() == ISD::AND &&
5035      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5036      N0.getOperand(1).getOpcode() == ISD::Constant &&
5037      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5038                          N0.getValueType())) {
5039    SDValue X = N0.getOperand(0).getOperand(0);
5040    if (X.getValueType().bitsLT(VT)) {
5041      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5042    } else if (X.getValueType().bitsGT(VT)) {
5043      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5044    }
5045    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5046    Mask = Mask.zext(VT.getSizeInBits());
5047    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5048                       X, DAG.getConstant(Mask, VT));
5049  }
5050
5051  // fold (aext (load x)) -> (aext (truncate (extload x)))
5052  // None of the supported targets knows how to perform load and any_ext
5053  // on vectors in one instruction.  We only perform this transformation on
5054  // scalars.
5055  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5056      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5057       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5058    bool DoXform = true;
5059    SmallVector<SDNode*, 4> SetCCs;
5060    if (!N0.hasOneUse())
5061      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5062    if (DoXform) {
5063      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5064      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5065                                       LN0->getChain(),
5066                                       LN0->getBasePtr(), LN0->getPointerInfo(),
5067                                       N0.getValueType(),
5068                                       LN0->isVolatile(), LN0->isNonTemporal(),
5069                                       LN0->getAlignment());
5070      CombineTo(N, ExtLoad);
5071      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5072                                  N0.getValueType(), ExtLoad);
5073      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5074      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5075                      ISD::ANY_EXTEND);
5076      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5077    }
5078  }
5079
5080  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5081  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5082  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5083  if (N0.getOpcode() == ISD::LOAD &&
5084      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5085      N0.hasOneUse()) {
5086    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5087    EVT MemVT = LN0->getMemoryVT();
5088    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5089                                     VT, LN0->getChain(), LN0->getBasePtr(),
5090                                     LN0->getPointerInfo(), MemVT,
5091                                     LN0->isVolatile(), LN0->isNonTemporal(),
5092                                     LN0->getAlignment());
5093    CombineTo(N, ExtLoad);
5094    CombineTo(N0.getNode(),
5095              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5096                          N0.getValueType(), ExtLoad),
5097              ExtLoad.getValue(1));
5098    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5099  }
5100
5101  if (N0.getOpcode() == ISD::SETCC) {
5102    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5103    // Only do this before legalize for now.
5104    if (VT.isVector() && !LegalOperations) {
5105      EVT N0VT = N0.getOperand(0).getValueType();
5106        // We know that the # elements of the results is the same as the
5107        // # elements of the compare (and the # elements of the compare result
5108        // for that matter).  Check to see that they are the same size.  If so,
5109        // we know that the element size of the sext'd result matches the
5110        // element size of the compare operands.
5111      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5112        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5113                             N0.getOperand(1),
5114                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5115      // If the desired elements are smaller or larger than the source
5116      // elements we can use a matching integer vector type and then
5117      // truncate/sign extend
5118      else {
5119        EVT MatchingElementType =
5120          EVT::getIntegerVT(*DAG.getContext(),
5121                            N0VT.getScalarType().getSizeInBits());
5122        EVT MatchingVectorType =
5123          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5124                           N0VT.getVectorNumElements());
5125        SDValue VsetCC =
5126          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5127                        N0.getOperand(1),
5128                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5129        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5130      }
5131    }
5132
5133    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5134    SDValue SCC =
5135      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5136                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5137                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5138    if (SCC.getNode())
5139      return SCC;
5140  }
5141
5142  return SDValue();
5143}
5144
5145/// GetDemandedBits - See if the specified operand can be simplified with the
5146/// knowledge that only the bits specified by Mask are used.  If so, return the
5147/// simpler operand, otherwise return a null SDValue.
5148SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5149  switch (V.getOpcode()) {
5150  default: break;
5151  case ISD::Constant: {
5152    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5153    assert(CV != 0 && "Const value should be ConstSDNode.");
5154    const APInt &CVal = CV->getAPIntValue();
5155    APInt NewVal = CVal & Mask;
5156    if (NewVal != CVal)
5157      return DAG.getConstant(NewVal, V.getValueType());
5158    break;
5159  }
5160  case ISD::OR:
5161  case ISD::XOR:
5162    // If the LHS or RHS don't contribute bits to the or, drop them.
5163    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5164      return V.getOperand(1);
5165    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5166      return V.getOperand(0);
5167    break;
5168  case ISD::SRL:
5169    // Only look at single-use SRLs.
5170    if (!V.getNode()->hasOneUse())
5171      break;
5172    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5173      // See if we can recursively simplify the LHS.
5174      unsigned Amt = RHSC->getZExtValue();
5175
5176      // Watch out for shift count overflow though.
5177      if (Amt >= Mask.getBitWidth()) break;
5178      APInt NewMask = Mask << Amt;
5179      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5180      if (SimplifyLHS.getNode())
5181        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5182                           SimplifyLHS, V.getOperand(1));
5183    }
5184  }
5185  return SDValue();
5186}
5187
5188/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5189/// bits and then truncated to a narrower type and where N is a multiple
5190/// of number of bits of the narrower type, transform it to a narrower load
5191/// from address + N / num of bits of new type. If the result is to be
5192/// extended, also fold the extension to form a extending load.
5193SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5194  unsigned Opc = N->getOpcode();
5195
5196  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5197  SDValue N0 = N->getOperand(0);
5198  EVT VT = N->getValueType(0);
5199  EVT ExtVT = VT;
5200
5201  // This transformation isn't valid for vector loads.
5202  if (VT.isVector())
5203    return SDValue();
5204
5205  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5206  // extended to VT.
5207  if (Opc == ISD::SIGN_EXTEND_INREG) {
5208    ExtType = ISD::SEXTLOAD;
5209    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5210  } else if (Opc == ISD::SRL) {
5211    // Another special-case: SRL is basically zero-extending a narrower value.
5212    ExtType = ISD::ZEXTLOAD;
5213    N0 = SDValue(N, 0);
5214    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5215    if (!N01) return SDValue();
5216    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5217                              VT.getSizeInBits() - N01->getZExtValue());
5218  }
5219  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5220    return SDValue();
5221
5222  unsigned EVTBits = ExtVT.getSizeInBits();
5223
5224  // Do not generate loads of non-round integer types since these can
5225  // be expensive (and would be wrong if the type is not byte sized).
5226  if (!ExtVT.isRound())
5227    return SDValue();
5228
5229  unsigned ShAmt = 0;
5230  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5231    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5232      ShAmt = N01->getZExtValue();
5233      // Is the shift amount a multiple of size of VT?
5234      if ((ShAmt & (EVTBits-1)) == 0) {
5235        N0 = N0.getOperand(0);
5236        // Is the load width a multiple of size of VT?
5237        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5238          return SDValue();
5239      }
5240
5241      // At this point, we must have a load or else we can't do the transform.
5242      if (!isa<LoadSDNode>(N0)) return SDValue();
5243
5244      // Because a SRL must be assumed to *need* to zero-extend the high bits
5245      // (as opposed to anyext the high bits), we can't combine the zextload
5246      // lowering of SRL and an sextload.
5247      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5248        return SDValue();
5249
5250      // If the shift amount is larger than the input type then we're not
5251      // accessing any of the loaded bytes.  If the load was a zextload/extload
5252      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5253      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5254        return SDValue();
5255    }
5256  }
5257
5258  // If the load is shifted left (and the result isn't shifted back right),
5259  // we can fold the truncate through the shift.
5260  unsigned ShLeftAmt = 0;
5261  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5262      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5263    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5264      ShLeftAmt = N01->getZExtValue();
5265      N0 = N0.getOperand(0);
5266    }
5267  }
5268
5269  // If we haven't found a load, we can't narrow it.  Don't transform one with
5270  // multiple uses, this would require adding a new load.
5271  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5272    return SDValue();
5273
5274  // Don't change the width of a volatile load.
5275  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5276  if (LN0->isVolatile())
5277    return SDValue();
5278
5279  // Verify that we are actually reducing a load width here.
5280  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5281    return SDValue();
5282
5283  // For the transform to be legal, the load must produce only two values
5284  // (the value loaded and the chain).  Don't transform a pre-increment
5285  // load, for example, which produces an extra value.  Otherwise the
5286  // transformation is not equivalent, and the downstream logic to replace
5287  // uses gets things wrong.
5288  if (LN0->getNumValues() > 2)
5289    return SDValue();
5290
5291  // If the load that we're shrinking is an extload and we're not just
5292  // discarding the extension we can't simply shrink the load. Bail.
5293  // TODO: It would be possible to merge the extensions in some cases.
5294  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5295      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5296    return SDValue();
5297
5298  EVT PtrType = N0.getOperand(1).getValueType();
5299
5300  if (PtrType == MVT::Untyped || PtrType.isExtended())
5301    // It's not possible to generate a constant of extended or untyped type.
5302    return SDValue();
5303
5304  // For big endian targets, we need to adjust the offset to the pointer to
5305  // load the correct bytes.
5306  if (TLI.isBigEndian()) {
5307    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5308    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5309    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5310  }
5311
5312  uint64_t PtrOff = ShAmt / 8;
5313  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5314  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5315                               PtrType, LN0->getBasePtr(),
5316                               DAG.getConstant(PtrOff, PtrType));
5317  AddToWorkList(NewPtr.getNode());
5318
5319  SDValue Load;
5320  if (ExtType == ISD::NON_EXTLOAD)
5321    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5322                        LN0->getPointerInfo().getWithOffset(PtrOff),
5323                        LN0->isVolatile(), LN0->isNonTemporal(),
5324                        LN0->isInvariant(), NewAlign);
5325  else
5326    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5327                          LN0->getPointerInfo().getWithOffset(PtrOff),
5328                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5329                          NewAlign);
5330
5331  // Replace the old load's chain with the new load's chain.
5332  WorkListRemover DeadNodes(*this);
5333  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5334
5335  // Shift the result left, if we've swallowed a left shift.
5336  SDValue Result = Load;
5337  if (ShLeftAmt != 0) {
5338    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5339    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5340      ShImmTy = VT;
5341    // If the shift amount is as large as the result size (but, presumably,
5342    // no larger than the source) then the useful bits of the result are
5343    // zero; we can't simply return the shortened shift, because the result
5344    // of that operation is undefined.
5345    if (ShLeftAmt >= VT.getSizeInBits())
5346      Result = DAG.getConstant(0, VT);
5347    else
5348      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5349                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5350  }
5351
5352  // Return the new loaded value.
5353  return Result;
5354}
5355
5356SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5357  SDValue N0 = N->getOperand(0);
5358  SDValue N1 = N->getOperand(1);
5359  EVT VT = N->getValueType(0);
5360  EVT EVT = cast<VTSDNode>(N1)->getVT();
5361  unsigned VTBits = VT.getScalarType().getSizeInBits();
5362  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5363
5364  // fold (sext_in_reg c1) -> c1
5365  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5366    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5367
5368  // If the input is already sign extended, just drop the extension.
5369  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5370    return N0;
5371
5372  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5373  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5374      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5375    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5376                       N0.getOperand(0), N1);
5377
5378  // fold (sext_in_reg (sext x)) -> (sext x)
5379  // fold (sext_in_reg (aext x)) -> (sext x)
5380  // if x is small enough.
5381  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5382    SDValue N00 = N0.getOperand(0);
5383    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5384        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5385      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5386  }
5387
5388  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5389  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5390    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5391
5392  // fold operands of sext_in_reg based on knowledge that the top bits are not
5393  // demanded.
5394  if (SimplifyDemandedBits(SDValue(N, 0)))
5395    return SDValue(N, 0);
5396
5397  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5398  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5399  SDValue NarrowLoad = ReduceLoadWidth(N);
5400  if (NarrowLoad.getNode())
5401    return NarrowLoad;
5402
5403  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5404  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5405  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5406  if (N0.getOpcode() == ISD::SRL) {
5407    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5408      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5409        // We can turn this into an SRA iff the input to the SRL is already sign
5410        // extended enough.
5411        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5412        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5413          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5414                             N0.getOperand(0), N0.getOperand(1));
5415      }
5416  }
5417
5418  // fold (sext_inreg (extload x)) -> (sextload x)
5419  if (ISD::isEXTLoad(N0.getNode()) &&
5420      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5421      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5422      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5423       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5424    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5425    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5426                                     LN0->getChain(),
5427                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5428                                     EVT,
5429                                     LN0->isVolatile(), LN0->isNonTemporal(),
5430                                     LN0->getAlignment());
5431    CombineTo(N, ExtLoad);
5432    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5433    AddToWorkList(ExtLoad.getNode());
5434    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5435  }
5436  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5437  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5438      N0.hasOneUse() &&
5439      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5440      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5441       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5442    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5443    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5444                                     LN0->getChain(),
5445                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5446                                     EVT,
5447                                     LN0->isVolatile(), LN0->isNonTemporal(),
5448                                     LN0->getAlignment());
5449    CombineTo(N, ExtLoad);
5450    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5451    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5452  }
5453
5454  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5455  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5456    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5457                                       N0.getOperand(1), false);
5458    if (BSwap.getNode() != 0)
5459      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5460                         BSwap, N1);
5461  }
5462
5463  return SDValue();
5464}
5465
5466SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5467  SDValue N0 = N->getOperand(0);
5468  EVT VT = N->getValueType(0);
5469  bool isLE = TLI.isLittleEndian();
5470
5471  // noop truncate
5472  if (N0.getValueType() == N->getValueType(0))
5473    return N0;
5474  // fold (truncate c1) -> c1
5475  if (isa<ConstantSDNode>(N0))
5476    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5477  // fold (truncate (truncate x)) -> (truncate x)
5478  if (N0.getOpcode() == ISD::TRUNCATE)
5479    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5480  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5481  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5482      N0.getOpcode() == ISD::SIGN_EXTEND ||
5483      N0.getOpcode() == ISD::ANY_EXTEND) {
5484    if (N0.getOperand(0).getValueType().bitsLT(VT))
5485      // if the source is smaller than the dest, we still need an extend
5486      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5487                         N0.getOperand(0));
5488    if (N0.getOperand(0).getValueType().bitsGT(VT))
5489      // if the source is larger than the dest, than we just need the truncate
5490      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5491    // if the source and dest are the same type, we can drop both the extend
5492    // and the truncate.
5493    return N0.getOperand(0);
5494  }
5495
5496  // Fold extract-and-trunc into a narrow extract. For example:
5497  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5498  //   i32 y = TRUNCATE(i64 x)
5499  //        -- becomes --
5500  //   v16i8 b = BITCAST (v2i64 val)
5501  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5502  //
5503  // Note: We only run this optimization after type legalization (which often
5504  // creates this pattern) and before operation legalization after which
5505  // we need to be more careful about the vector instructions that we generate.
5506  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5507      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5508
5509    EVT VecTy = N0.getOperand(0).getValueType();
5510    EVT ExTy = N0.getValueType();
5511    EVT TrTy = N->getValueType(0);
5512
5513    unsigned NumElem = VecTy.getVectorNumElements();
5514    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5515
5516    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5517    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5518
5519    SDValue EltNo = N0->getOperand(1);
5520    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5521      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5522      EVT IndexTy = TLI.getVectorIdxTy();
5523      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5524
5525      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5526                              NVT, N0.getOperand(0));
5527
5528      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5529                         SDLoc(N), TrTy, V,
5530                         DAG.getConstant(Index, IndexTy));
5531    }
5532  }
5533
5534  // Fold a series of buildvector, bitcast, and truncate if possible.
5535  // For example fold
5536  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5537  //   (2xi32 (buildvector x, y)).
5538  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5539      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5540      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5541      N0.getOperand(0).hasOneUse()) {
5542
5543    SDValue BuildVect = N0.getOperand(0);
5544    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5545    EVT TruncVecEltTy = VT.getVectorElementType();
5546
5547    // Check that the element types match.
5548    if (BuildVectEltTy == TruncVecEltTy) {
5549      // Now we only need to compute the offset of the truncated elements.
5550      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5551      unsigned TruncVecNumElts = VT.getVectorNumElements();
5552      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5553
5554      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5555             "Invalid number of elements");
5556
5557      SmallVector<SDValue, 8> Opnds;
5558      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5559        Opnds.push_back(BuildVect.getOperand(i));
5560
5561      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5562                         Opnds.size());
5563    }
5564  }
5565
5566  // See if we can simplify the input to this truncate through knowledge that
5567  // only the low bits are being used.
5568  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5569  // Currently we only perform this optimization on scalars because vectors
5570  // may have different active low bits.
5571  if (!VT.isVector()) {
5572    SDValue Shorter =
5573      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5574                                               VT.getSizeInBits()));
5575    if (Shorter.getNode())
5576      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5577  }
5578  // fold (truncate (load x)) -> (smaller load x)
5579  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5580  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5581    SDValue Reduced = ReduceLoadWidth(N);
5582    if (Reduced.getNode())
5583      return Reduced;
5584  }
5585  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5586  // where ... are all 'undef'.
5587  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5588    SmallVector<EVT, 8> VTs;
5589    SDValue V;
5590    unsigned Idx = 0;
5591    unsigned NumDefs = 0;
5592
5593    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5594      SDValue X = N0.getOperand(i);
5595      if (X.getOpcode() != ISD::UNDEF) {
5596        V = X;
5597        Idx = i;
5598        NumDefs++;
5599      }
5600      // Stop if more than one members are non-undef.
5601      if (NumDefs > 1)
5602        break;
5603      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5604                                     VT.getVectorElementType(),
5605                                     X.getValueType().getVectorNumElements()));
5606    }
5607
5608    if (NumDefs == 0)
5609      return DAG.getUNDEF(VT);
5610
5611    if (NumDefs == 1) {
5612      assert(V.getNode() && "The single defined operand is empty!");
5613      SmallVector<SDValue, 8> Opnds;
5614      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5615        if (i != Idx) {
5616          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5617          continue;
5618        }
5619        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5620        AddToWorkList(NV.getNode());
5621        Opnds.push_back(NV);
5622      }
5623      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5624                         &Opnds[0], Opnds.size());
5625    }
5626  }
5627
5628  // Simplify the operands using demanded-bits information.
5629  if (!VT.isVector() &&
5630      SimplifyDemandedBits(SDValue(N, 0)))
5631    return SDValue(N, 0);
5632
5633  return SDValue();
5634}
5635
5636static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5637  SDValue Elt = N->getOperand(i);
5638  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5639    return Elt.getNode();
5640  return Elt.getOperand(Elt.getResNo()).getNode();
5641}
5642
5643/// CombineConsecutiveLoads - build_pair (load, load) -> load
5644/// if load locations are consecutive.
5645SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5646  assert(N->getOpcode() == ISD::BUILD_PAIR);
5647
5648  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5649  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5650  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5651      LD1->getPointerInfo().getAddrSpace() !=
5652         LD2->getPointerInfo().getAddrSpace())
5653    return SDValue();
5654  EVT LD1VT = LD1->getValueType(0);
5655
5656  if (ISD::isNON_EXTLoad(LD2) &&
5657      LD2->hasOneUse() &&
5658      // If both are volatile this would reduce the number of volatile loads.
5659      // If one is volatile it might be ok, but play conservative and bail out.
5660      !LD1->isVolatile() &&
5661      !LD2->isVolatile() &&
5662      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5663    unsigned Align = LD1->getAlignment();
5664    unsigned NewAlign = TLI.getDataLayout()->
5665      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5666
5667    if (NewAlign <= Align &&
5668        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5669      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5670                         LD1->getBasePtr(), LD1->getPointerInfo(),
5671                         false, false, false, Align);
5672  }
5673
5674  return SDValue();
5675}
5676
5677SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5678  SDValue N0 = N->getOperand(0);
5679  EVT VT = N->getValueType(0);
5680
5681  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5682  // Only do this before legalize, since afterward the target may be depending
5683  // on the bitconvert.
5684  // First check to see if this is all constant.
5685  if (!LegalTypes &&
5686      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5687      VT.isVector()) {
5688    bool isSimple = true;
5689    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5690      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5691          N0.getOperand(i).getOpcode() != ISD::Constant &&
5692          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5693        isSimple = false;
5694        break;
5695      }
5696
5697    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5698    assert(!DestEltVT.isVector() &&
5699           "Element type of vector ValueType must not be vector!");
5700    if (isSimple)
5701      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5702  }
5703
5704  // If the input is a constant, let getNode fold it.
5705  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5706    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5707    if (Res.getNode() != N) {
5708      if (!LegalOperations ||
5709          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5710        return Res;
5711
5712      // Folding it resulted in an illegal node, and it's too late to
5713      // do that. Clean up the old node and forego the transformation.
5714      // Ideally this won't happen very often, because instcombine
5715      // and the earlier dagcombine runs (where illegal nodes are
5716      // permitted) should have folded most of them already.
5717      DAG.DeleteNode(Res.getNode());
5718    }
5719  }
5720
5721  // (conv (conv x, t1), t2) -> (conv x, t2)
5722  if (N0.getOpcode() == ISD::BITCAST)
5723    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5724                       N0.getOperand(0));
5725
5726  // fold (conv (load x)) -> (load (conv*)x)
5727  // If the resultant load doesn't need a higher alignment than the original!
5728  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5729      // Do not change the width of a volatile load.
5730      !cast<LoadSDNode>(N0)->isVolatile() &&
5731      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5732    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5733    unsigned Align = TLI.getDataLayout()->
5734      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5735    unsigned OrigAlign = LN0->getAlignment();
5736
5737    if (Align <= OrigAlign) {
5738      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5739                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5740                                 LN0->isVolatile(), LN0->isNonTemporal(),
5741                                 LN0->isInvariant(), OrigAlign);
5742      AddToWorkList(N);
5743      CombineTo(N0.getNode(),
5744                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5745                            N0.getValueType(), Load),
5746                Load.getValue(1));
5747      return Load;
5748    }
5749  }
5750
5751  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5752  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5753  // This often reduces constant pool loads.
5754  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5755       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5756      N0.getNode()->hasOneUse() && VT.isInteger() &&
5757      !VT.isVector() && !N0.getValueType().isVector()) {
5758    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5759                                  N0.getOperand(0));
5760    AddToWorkList(NewConv.getNode());
5761
5762    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5763    if (N0.getOpcode() == ISD::FNEG)
5764      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5765                         NewConv, DAG.getConstant(SignBit, VT));
5766    assert(N0.getOpcode() == ISD::FABS);
5767    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5768                       NewConv, DAG.getConstant(~SignBit, VT));
5769  }
5770
5771  // fold (bitconvert (fcopysign cst, x)) ->
5772  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5773  // Note that we don't handle (copysign x, cst) because this can always be
5774  // folded to an fneg or fabs.
5775  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5776      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5777      VT.isInteger() && !VT.isVector()) {
5778    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5779    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5780    if (isTypeLegal(IntXVT)) {
5781      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5782                              IntXVT, N0.getOperand(1));
5783      AddToWorkList(X.getNode());
5784
5785      // If X has a different width than the result/lhs, sext it or truncate it.
5786      unsigned VTWidth = VT.getSizeInBits();
5787      if (OrigXWidth < VTWidth) {
5788        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5789        AddToWorkList(X.getNode());
5790      } else if (OrigXWidth > VTWidth) {
5791        // To get the sign bit in the right place, we have to shift it right
5792        // before truncating.
5793        X = DAG.getNode(ISD::SRL, SDLoc(X),
5794                        X.getValueType(), X,
5795                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5796        AddToWorkList(X.getNode());
5797        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5798        AddToWorkList(X.getNode());
5799      }
5800
5801      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5802      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5803                      X, DAG.getConstant(SignBit, VT));
5804      AddToWorkList(X.getNode());
5805
5806      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5807                                VT, N0.getOperand(0));
5808      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5809                        Cst, DAG.getConstant(~SignBit, VT));
5810      AddToWorkList(Cst.getNode());
5811
5812      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5813    }
5814  }
5815
5816  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5817  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5818    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5819    if (CombineLD.getNode())
5820      return CombineLD;
5821  }
5822
5823  return SDValue();
5824}
5825
5826SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5827  EVT VT = N->getValueType(0);
5828  return CombineConsecutiveLoads(N, VT);
5829}
5830
5831/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5832/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5833/// destination element value type.
5834SDValue DAGCombiner::
5835ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5836  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5837
5838  // If this is already the right type, we're done.
5839  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5840
5841  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5842  unsigned DstBitSize = DstEltVT.getSizeInBits();
5843
5844  // If this is a conversion of N elements of one type to N elements of another
5845  // type, convert each element.  This handles FP<->INT cases.
5846  if (SrcBitSize == DstBitSize) {
5847    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5848                              BV->getValueType(0).getVectorNumElements());
5849
5850    // Due to the FP element handling below calling this routine recursively,
5851    // we can end up with a scalar-to-vector node here.
5852    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5853      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5854                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5855                                     DstEltVT, BV->getOperand(0)));
5856
5857    SmallVector<SDValue, 8> Ops;
5858    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5859      SDValue Op = BV->getOperand(i);
5860      // If the vector element type is not legal, the BUILD_VECTOR operands
5861      // are promoted and implicitly truncated.  Make that explicit here.
5862      if (Op.getValueType() != SrcEltVT)
5863        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5864      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5865                                DstEltVT, Op));
5866      AddToWorkList(Ops.back().getNode());
5867    }
5868    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5869                       &Ops[0], Ops.size());
5870  }
5871
5872  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5873  // handle annoying details of growing/shrinking FP values, we convert them to
5874  // int first.
5875  if (SrcEltVT.isFloatingPoint()) {
5876    // Convert the input float vector to a int vector where the elements are the
5877    // same sizes.
5878    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5879    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5880    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5881    SrcEltVT = IntVT;
5882  }
5883
5884  // Now we know the input is an integer vector.  If the output is a FP type,
5885  // convert to integer first, then to FP of the right size.
5886  if (DstEltVT.isFloatingPoint()) {
5887    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5888    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5889    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5890
5891    // Next, convert to FP elements of the same size.
5892    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5893  }
5894
5895  // Okay, we know the src/dst types are both integers of differing types.
5896  // Handling growing first.
5897  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5898  if (SrcBitSize < DstBitSize) {
5899    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5900
5901    SmallVector<SDValue, 8> Ops;
5902    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5903         i += NumInputsPerOutput) {
5904      bool isLE = TLI.isLittleEndian();
5905      APInt NewBits = APInt(DstBitSize, 0);
5906      bool EltIsUndef = true;
5907      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5908        // Shift the previously computed bits over.
5909        NewBits <<= SrcBitSize;
5910        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5911        if (Op.getOpcode() == ISD::UNDEF) continue;
5912        EltIsUndef = false;
5913
5914        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5915                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5916      }
5917
5918      if (EltIsUndef)
5919        Ops.push_back(DAG.getUNDEF(DstEltVT));
5920      else
5921        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5922    }
5923
5924    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5925    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5926                       &Ops[0], Ops.size());
5927  }
5928
5929  // Finally, this must be the case where we are shrinking elements: each input
5930  // turns into multiple outputs.
5931  bool isS2V = ISD::isScalarToVector(BV);
5932  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5933  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5934                            NumOutputsPerInput*BV->getNumOperands());
5935  SmallVector<SDValue, 8> Ops;
5936
5937  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5938    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5939      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5940        Ops.push_back(DAG.getUNDEF(DstEltVT));
5941      continue;
5942    }
5943
5944    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5945                  getAPIntValue().zextOrTrunc(SrcBitSize);
5946
5947    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5948      APInt ThisVal = OpVal.trunc(DstBitSize);
5949      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5950      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5951        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5952        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5953                           Ops[0]);
5954      OpVal = OpVal.lshr(DstBitSize);
5955    }
5956
5957    // For big endian targets, swap the order of the pieces of each element.
5958    if (TLI.isBigEndian())
5959      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5960  }
5961
5962  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5963                     &Ops[0], Ops.size());
5964}
5965
5966SDValue DAGCombiner::visitFADD(SDNode *N) {
5967  SDValue N0 = N->getOperand(0);
5968  SDValue N1 = N->getOperand(1);
5969  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5970  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5971  EVT VT = N->getValueType(0);
5972
5973  // fold vector ops
5974  if (VT.isVector()) {
5975    SDValue FoldedVOp = SimplifyVBinOp(N);
5976    if (FoldedVOp.getNode()) return FoldedVOp;
5977  }
5978
5979  // fold (fadd c1, c2) -> c1 + c2
5980  if (N0CFP && N1CFP)
5981    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
5982  // canonicalize constant to RHS
5983  if (N0CFP && !N1CFP)
5984    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
5985  // fold (fadd A, 0) -> A
5986  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5987      N1CFP->getValueAPF().isZero())
5988    return N0;
5989  // fold (fadd A, (fneg B)) -> (fsub A, B)
5990  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5991    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5992    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
5993                       GetNegatedExpression(N1, DAG, LegalOperations));
5994  // fold (fadd (fneg A), B) -> (fsub B, A)
5995  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5996    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5997    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
5998                       GetNegatedExpression(N0, DAG, LegalOperations));
5999
6000  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6001  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6002      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6003      isa<ConstantFPSDNode>(N0.getOperand(1)))
6004    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6005                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
6006                                   N0.getOperand(1), N1));
6007
6008  // No FP constant should be created after legalization as Instruction
6009  // Selection pass has hard time in dealing with FP constant.
6010  //
6011  // We don't need test this condition for transformation like following, as
6012  // the DAG being transformed implies it is legal to take FP constant as
6013  // operand.
6014  //
6015  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
6016  //
6017  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6018
6019  // If allow, fold (fadd (fneg x), x) -> 0.0
6020  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6021      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6022    return DAG.getConstantFP(0.0, VT);
6023
6024    // If allow, fold (fadd x, (fneg x)) -> 0.0
6025  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6026      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6027    return DAG.getConstantFP(0.0, VT);
6028
6029  // In unsafe math mode, we can fold chains of FADD's of the same value
6030  // into multiplications.  This transform is not safe in general because
6031  // we are reducing the number of rounding steps.
6032  if (DAG.getTarget().Options.UnsafeFPMath &&
6033      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6034      !N0CFP && !N1CFP) {
6035    if (N0.getOpcode() == ISD::FMUL) {
6036      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6037      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6038
6039      // (fadd (fmul c, x), x) -> (fmul x, c+1)
6040      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6041        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6042                                     SDValue(CFP00, 0),
6043                                     DAG.getConstantFP(1.0, VT));
6044        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6045                           N1, NewCFP);
6046      }
6047
6048      // (fadd (fmul x, c), x) -> (fmul x, c+1)
6049      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6050        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6051                                     SDValue(CFP01, 0),
6052                                     DAG.getConstantFP(1.0, VT));
6053        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6054                           N1, NewCFP);
6055      }
6056
6057      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6058      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6059          N1.getOperand(0) == N1.getOperand(1) &&
6060          N0.getOperand(1) == N1.getOperand(0)) {
6061        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6062                                     SDValue(CFP00, 0),
6063                                     DAG.getConstantFP(2.0, VT));
6064        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6065                           N0.getOperand(1), NewCFP);
6066      }
6067
6068      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6069      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6070          N1.getOperand(0) == N1.getOperand(1) &&
6071          N0.getOperand(0) == N1.getOperand(0)) {
6072        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6073                                     SDValue(CFP01, 0),
6074                                     DAG.getConstantFP(2.0, VT));
6075        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6076                           N0.getOperand(0), NewCFP);
6077      }
6078    }
6079
6080    if (N1.getOpcode() == ISD::FMUL) {
6081      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6082      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6083
6084      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6085      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6086        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6087                                     SDValue(CFP10, 0),
6088                                     DAG.getConstantFP(1.0, VT));
6089        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6090                           N0, NewCFP);
6091      }
6092
6093      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6094      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6095        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6096                                     SDValue(CFP11, 0),
6097                                     DAG.getConstantFP(1.0, VT));
6098        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6099                           N0, NewCFP);
6100      }
6101
6102
6103      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6104      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6105          N0.getOperand(0) == N0.getOperand(1) &&
6106          N1.getOperand(1) == N0.getOperand(0)) {
6107        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6108                                     SDValue(CFP10, 0),
6109                                     DAG.getConstantFP(2.0, VT));
6110        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6111                           N1.getOperand(1), NewCFP);
6112      }
6113
6114      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6115      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6116          N0.getOperand(0) == N0.getOperand(1) &&
6117          N1.getOperand(0) == N0.getOperand(0)) {
6118        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6119                                     SDValue(CFP11, 0),
6120                                     DAG.getConstantFP(2.0, VT));
6121        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6122                           N1.getOperand(0), NewCFP);
6123      }
6124    }
6125
6126    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6127      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6128      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6129      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6130          (N0.getOperand(0) == N1))
6131        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6132                           N1, DAG.getConstantFP(3.0, VT));
6133    }
6134
6135    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6136      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6137      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6138      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6139          N1.getOperand(0) == N0)
6140        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6141                           N0, DAG.getConstantFP(3.0, VT));
6142    }
6143
6144    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6145    if (AllowNewFpConst &&
6146        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6147        N0.getOperand(0) == N0.getOperand(1) &&
6148        N1.getOperand(0) == N1.getOperand(1) &&
6149        N0.getOperand(0) == N1.getOperand(0))
6150      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6151                         N0.getOperand(0),
6152                         DAG.getConstantFP(4.0, VT));
6153  }
6154
6155  // FADD -> FMA combines:
6156  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6157       DAG.getTarget().Options.UnsafeFPMath) &&
6158      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6159      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6160
6161    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6162    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6163      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6164                         N0.getOperand(0), N0.getOperand(1), N1);
6165
6166    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6167    // Note: Commutes FADD operands.
6168    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6169      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6170                         N1.getOperand(0), N1.getOperand(1), N0);
6171  }
6172
6173  return SDValue();
6174}
6175
6176SDValue DAGCombiner::visitFSUB(SDNode *N) {
6177  SDValue N0 = N->getOperand(0);
6178  SDValue N1 = N->getOperand(1);
6179  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6180  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6181  EVT VT = N->getValueType(0);
6182  SDLoc dl(N);
6183
6184  // fold vector ops
6185  if (VT.isVector()) {
6186    SDValue FoldedVOp = SimplifyVBinOp(N);
6187    if (FoldedVOp.getNode()) return FoldedVOp;
6188  }
6189
6190  // fold (fsub c1, c2) -> c1-c2
6191  if (N0CFP && N1CFP)
6192    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6193  // fold (fsub A, 0) -> A
6194  if (DAG.getTarget().Options.UnsafeFPMath &&
6195      N1CFP && N1CFP->getValueAPF().isZero())
6196    return N0;
6197  // fold (fsub 0, B) -> -B
6198  if (DAG.getTarget().Options.UnsafeFPMath &&
6199      N0CFP && N0CFP->getValueAPF().isZero()) {
6200    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6201      return GetNegatedExpression(N1, DAG, LegalOperations);
6202    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6203      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6204  }
6205  // fold (fsub A, (fneg B)) -> (fadd A, B)
6206  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6207    return DAG.getNode(ISD::FADD, dl, VT, N0,
6208                       GetNegatedExpression(N1, DAG, LegalOperations));
6209
6210  // If 'unsafe math' is enabled, fold
6211  //    (fsub x, x) -> 0.0 &
6212  //    (fsub x, (fadd x, y)) -> (fneg y) &
6213  //    (fsub x, (fadd y, x)) -> (fneg y)
6214  if (DAG.getTarget().Options.UnsafeFPMath) {
6215    if (N0 == N1)
6216      return DAG.getConstantFP(0.0f, VT);
6217
6218    if (N1.getOpcode() == ISD::FADD) {
6219      SDValue N10 = N1->getOperand(0);
6220      SDValue N11 = N1->getOperand(1);
6221
6222      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6223                                          &DAG.getTarget().Options))
6224        return GetNegatedExpression(N11, DAG, LegalOperations);
6225
6226      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6227                                          &DAG.getTarget().Options))
6228        return GetNegatedExpression(N10, DAG, LegalOperations);
6229    }
6230  }
6231
6232  // FSUB -> FMA combines:
6233  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6234       DAG.getTarget().Options.UnsafeFPMath) &&
6235      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6236      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6237
6238    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6239    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6240      return DAG.getNode(ISD::FMA, dl, VT,
6241                         N0.getOperand(0), N0.getOperand(1),
6242                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6243
6244    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6245    // Note: Commutes FSUB operands.
6246    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6247      return DAG.getNode(ISD::FMA, dl, VT,
6248                         DAG.getNode(ISD::FNEG, dl, VT,
6249                         N1.getOperand(0)),
6250                         N1.getOperand(1), N0);
6251
6252    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6253    if (N0.getOpcode() == ISD::FNEG &&
6254        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6255        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6256      SDValue N00 = N0.getOperand(0).getOperand(0);
6257      SDValue N01 = N0.getOperand(0).getOperand(1);
6258      return DAG.getNode(ISD::FMA, dl, VT,
6259                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6260                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6261    }
6262  }
6263
6264  return SDValue();
6265}
6266
6267SDValue DAGCombiner::visitFMUL(SDNode *N) {
6268  SDValue N0 = N->getOperand(0);
6269  SDValue N1 = N->getOperand(1);
6270  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6271  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6272  EVT VT = N->getValueType(0);
6273  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6274
6275  // fold vector ops
6276  if (VT.isVector()) {
6277    SDValue FoldedVOp = SimplifyVBinOp(N);
6278    if (FoldedVOp.getNode()) return FoldedVOp;
6279  }
6280
6281  // fold (fmul c1, c2) -> c1*c2
6282  if (N0CFP && N1CFP)
6283    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6284  // canonicalize constant to RHS
6285  if (N0CFP && !N1CFP)
6286    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6287  // fold (fmul A, 0) -> 0
6288  if (DAG.getTarget().Options.UnsafeFPMath &&
6289      N1CFP && N1CFP->getValueAPF().isZero())
6290    return N1;
6291  // fold (fmul A, 0) -> 0, vector edition.
6292  if (DAG.getTarget().Options.UnsafeFPMath &&
6293      ISD::isBuildVectorAllZeros(N1.getNode()))
6294    return N1;
6295  // fold (fmul A, 1.0) -> A
6296  if (N1CFP && N1CFP->isExactlyValue(1.0))
6297    return N0;
6298  // fold (fmul X, 2.0) -> (fadd X, X)
6299  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6300    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6301  // fold (fmul X, -1.0) -> (fneg X)
6302  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6303    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6304      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6305
6306  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6307  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6308                                       &DAG.getTarget().Options)) {
6309    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6310                                         &DAG.getTarget().Options)) {
6311      // Both can be negated for free, check to see if at least one is cheaper
6312      // negated.
6313      if (LHSNeg == 2 || RHSNeg == 2)
6314        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6315                           GetNegatedExpression(N0, DAG, LegalOperations),
6316                           GetNegatedExpression(N1, DAG, LegalOperations));
6317    }
6318  }
6319
6320  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6321  if (DAG.getTarget().Options.UnsafeFPMath &&
6322      N1CFP && N0.getOpcode() == ISD::FMUL &&
6323      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6324    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6325                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6326                                   N0.getOperand(1), N1));
6327
6328  return SDValue();
6329}
6330
6331SDValue DAGCombiner::visitFMA(SDNode *N) {
6332  SDValue N0 = N->getOperand(0);
6333  SDValue N1 = N->getOperand(1);
6334  SDValue N2 = N->getOperand(2);
6335  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6336  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6337  EVT VT = N->getValueType(0);
6338  SDLoc dl(N);
6339
6340  if (DAG.getTarget().Options.UnsafeFPMath) {
6341    if (N0CFP && N0CFP->isZero())
6342      return N2;
6343    if (N1CFP && N1CFP->isZero())
6344      return N2;
6345  }
6346  if (N0CFP && N0CFP->isExactlyValue(1.0))
6347    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6348  if (N1CFP && N1CFP->isExactlyValue(1.0))
6349    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6350
6351  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6352  if (N0CFP && !N1CFP)
6353    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6354
6355  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6356  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6357      N2.getOpcode() == ISD::FMUL &&
6358      N0 == N2.getOperand(0) &&
6359      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6360    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6361                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6362  }
6363
6364
6365  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6366  if (DAG.getTarget().Options.UnsafeFPMath &&
6367      N0.getOpcode() == ISD::FMUL && N1CFP &&
6368      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6369    return DAG.getNode(ISD::FMA, dl, VT,
6370                       N0.getOperand(0),
6371                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6372                       N2);
6373  }
6374
6375  // (fma x, 1, y) -> (fadd x, y)
6376  // (fma x, -1, y) -> (fadd (fneg x), y)
6377  if (N1CFP) {
6378    if (N1CFP->isExactlyValue(1.0))
6379      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6380
6381    if (N1CFP->isExactlyValue(-1.0) &&
6382        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6383      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6384      AddToWorkList(RHSNeg.getNode());
6385      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6386    }
6387  }
6388
6389  // (fma x, c, x) -> (fmul x, (c+1))
6390  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6391    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6392                       DAG.getNode(ISD::FADD, dl, VT,
6393                                   N1, DAG.getConstantFP(1.0, VT)));
6394
6395  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6396  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6397      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6398    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6399                       DAG.getNode(ISD::FADD, dl, VT,
6400                                   N1, DAG.getConstantFP(-1.0, VT)));
6401
6402
6403  return SDValue();
6404}
6405
6406SDValue DAGCombiner::visitFDIV(SDNode *N) {
6407  SDValue N0 = N->getOperand(0);
6408  SDValue N1 = N->getOperand(1);
6409  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6410  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6411  EVT VT = N->getValueType(0);
6412  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6413
6414  // fold vector ops
6415  if (VT.isVector()) {
6416    SDValue FoldedVOp = SimplifyVBinOp(N);
6417    if (FoldedVOp.getNode()) return FoldedVOp;
6418  }
6419
6420  // fold (fdiv c1, c2) -> c1/c2
6421  if (N0CFP && N1CFP)
6422    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6423
6424  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6425  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6426    // Compute the reciprocal 1.0 / c2.
6427    APFloat N1APF = N1CFP->getValueAPF();
6428    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6429    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6430    // Only do the transform if the reciprocal is a legal fp immediate that
6431    // isn't too nasty (eg NaN, denormal, ...).
6432    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6433        (!LegalOperations ||
6434         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6435         // backend)... we should handle this gracefully after Legalize.
6436         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6437         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6438         TLI.isFPImmLegal(Recip, VT)))
6439      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6440                         DAG.getConstantFP(Recip, VT));
6441  }
6442
6443  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6444  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6445                                       &DAG.getTarget().Options)) {
6446    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6447                                         &DAG.getTarget().Options)) {
6448      // Both can be negated for free, check to see if at least one is cheaper
6449      // negated.
6450      if (LHSNeg == 2 || RHSNeg == 2)
6451        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6452                           GetNegatedExpression(N0, DAG, LegalOperations),
6453                           GetNegatedExpression(N1, DAG, LegalOperations));
6454    }
6455  }
6456
6457  return SDValue();
6458}
6459
6460SDValue DAGCombiner::visitFREM(SDNode *N) {
6461  SDValue N0 = N->getOperand(0);
6462  SDValue N1 = N->getOperand(1);
6463  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6464  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6465  EVT VT = N->getValueType(0);
6466
6467  // fold (frem c1, c2) -> fmod(c1,c2)
6468  if (N0CFP && N1CFP)
6469    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6470
6471  return SDValue();
6472}
6473
6474SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6475  SDValue N0 = N->getOperand(0);
6476  SDValue N1 = N->getOperand(1);
6477  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6478  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6479  EVT VT = N->getValueType(0);
6480
6481  if (N0CFP && N1CFP)  // Constant fold
6482    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6483
6484  if (N1CFP) {
6485    const APFloat& V = N1CFP->getValueAPF();
6486    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6487    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6488    if (!V.isNegative()) {
6489      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6490        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6491    } else {
6492      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6493        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6494                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6495    }
6496  }
6497
6498  // copysign(fabs(x), y) -> copysign(x, y)
6499  // copysign(fneg(x), y) -> copysign(x, y)
6500  // copysign(copysign(x,z), y) -> copysign(x, y)
6501  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6502      N0.getOpcode() == ISD::FCOPYSIGN)
6503    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6504                       N0.getOperand(0), N1);
6505
6506  // copysign(x, abs(y)) -> abs(x)
6507  if (N1.getOpcode() == ISD::FABS)
6508    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6509
6510  // copysign(x, copysign(y,z)) -> copysign(x, z)
6511  if (N1.getOpcode() == ISD::FCOPYSIGN)
6512    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6513                       N0, N1.getOperand(1));
6514
6515  // copysign(x, fp_extend(y)) -> copysign(x, y)
6516  // copysign(x, fp_round(y)) -> copysign(x, y)
6517  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6518    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6519                       N0, N1.getOperand(0));
6520
6521  return SDValue();
6522}
6523
6524SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6525  SDValue N0 = N->getOperand(0);
6526  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6527  EVT VT = N->getValueType(0);
6528  EVT OpVT = N0.getValueType();
6529
6530  // fold (sint_to_fp c1) -> c1fp
6531  if (N0C &&
6532      // ...but only if the target supports immediate floating-point values
6533      (!LegalOperations ||
6534       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6535    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6536
6537  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6538  // but UINT_TO_FP is legal on this target, try to convert.
6539  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6540      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6541    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6542    if (DAG.SignBitIsZero(N0))
6543      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6544  }
6545
6546  // The next optimizations are desireable only if SELECT_CC can be lowered.
6547  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6548  // having to say they don't support SELECT_CC on every type the DAG knows
6549  // about, since there is no way to mark an opcode illegal at all value types
6550  // (See also visitSELECT)
6551  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6552    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6553    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6554        !VT.isVector() &&
6555        (!LegalOperations ||
6556         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6557      SDValue Ops[] =
6558        { N0.getOperand(0), N0.getOperand(1),
6559          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6560          N0.getOperand(2) };
6561      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6562    }
6563
6564    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6565    //      (select_cc x, y, 1.0, 0.0,, cc)
6566    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6567        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6568        (!LegalOperations ||
6569         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6570      SDValue Ops[] =
6571        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6572          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6573          N0.getOperand(0).getOperand(2) };
6574      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6575    }
6576  }
6577
6578  return SDValue();
6579}
6580
6581SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6582  SDValue N0 = N->getOperand(0);
6583  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6584  EVT VT = N->getValueType(0);
6585  EVT OpVT = N0.getValueType();
6586
6587  // fold (uint_to_fp c1) -> c1fp
6588  if (N0C &&
6589      // ...but only if the target supports immediate floating-point values
6590      (!LegalOperations ||
6591       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6592    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6593
6594  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6595  // but SINT_TO_FP is legal on this target, try to convert.
6596  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6597      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6598    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6599    if (DAG.SignBitIsZero(N0))
6600      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6601  }
6602
6603  // The next optimizations are desireable only if SELECT_CC can be lowered.
6604  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6605  // having to say they don't support SELECT_CC on every type the DAG knows
6606  // about, since there is no way to mark an opcode illegal at all value types
6607  // (See also visitSELECT)
6608  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6609    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6610
6611    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6612        (!LegalOperations ||
6613         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6614      SDValue Ops[] =
6615        { N0.getOperand(0), N0.getOperand(1),
6616          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6617          N0.getOperand(2) };
6618      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6619    }
6620  }
6621
6622  return SDValue();
6623}
6624
6625SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6626  SDValue N0 = N->getOperand(0);
6627  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6628  EVT VT = N->getValueType(0);
6629
6630  // fold (fp_to_sint c1fp) -> c1
6631  if (N0CFP)
6632    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6633
6634  return SDValue();
6635}
6636
6637SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6638  SDValue N0 = N->getOperand(0);
6639  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6640  EVT VT = N->getValueType(0);
6641
6642  // fold (fp_to_uint c1fp) -> c1
6643  if (N0CFP)
6644    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6645
6646  return SDValue();
6647}
6648
6649SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6650  SDValue N0 = N->getOperand(0);
6651  SDValue N1 = N->getOperand(1);
6652  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6653  EVT VT = N->getValueType(0);
6654
6655  // fold (fp_round c1fp) -> c1fp
6656  if (N0CFP)
6657    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6658
6659  // fold (fp_round (fp_extend x)) -> x
6660  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6661    return N0.getOperand(0);
6662
6663  // fold (fp_round (fp_round x)) -> (fp_round x)
6664  if (N0.getOpcode() == ISD::FP_ROUND) {
6665    // This is a value preserving truncation if both round's are.
6666    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6667                   N0.getNode()->getConstantOperandVal(1) == 1;
6668    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6669                       DAG.getIntPtrConstant(IsTrunc));
6670  }
6671
6672  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6673  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6674    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6675                              N0.getOperand(0), N1);
6676    AddToWorkList(Tmp.getNode());
6677    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6678                       Tmp, N0.getOperand(1));
6679  }
6680
6681  return SDValue();
6682}
6683
6684SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6685  SDValue N0 = N->getOperand(0);
6686  EVT VT = N->getValueType(0);
6687  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6688  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6689
6690  // fold (fp_round_inreg c1fp) -> c1fp
6691  if (N0CFP && isTypeLegal(EVT)) {
6692    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6693    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6694  }
6695
6696  return SDValue();
6697}
6698
6699SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6700  SDValue N0 = N->getOperand(0);
6701  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6702  EVT VT = N->getValueType(0);
6703
6704  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6705  if (N->hasOneUse() &&
6706      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6707    return SDValue();
6708
6709  // fold (fp_extend c1fp) -> c1fp
6710  if (N0CFP)
6711    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6712
6713  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6714  // value of X.
6715  if (N0.getOpcode() == ISD::FP_ROUND
6716      && N0.getNode()->getConstantOperandVal(1) == 1) {
6717    SDValue In = N0.getOperand(0);
6718    if (In.getValueType() == VT) return In;
6719    if (VT.bitsLT(In.getValueType()))
6720      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6721                         In, N0.getOperand(1));
6722    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6723  }
6724
6725  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6726  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6727      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6728       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6729    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6730    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6731                                     LN0->getChain(),
6732                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6733                                     N0.getValueType(),
6734                                     LN0->isVolatile(), LN0->isNonTemporal(),
6735                                     LN0->getAlignment());
6736    CombineTo(N, ExtLoad);
6737    CombineTo(N0.getNode(),
6738              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6739                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6740              ExtLoad.getValue(1));
6741    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6742  }
6743
6744  return SDValue();
6745}
6746
6747SDValue DAGCombiner::visitFNEG(SDNode *N) {
6748  SDValue N0 = N->getOperand(0);
6749  EVT VT = N->getValueType(0);
6750
6751  if (VT.isVector()) {
6752    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6753    if (FoldedVOp.getNode()) return FoldedVOp;
6754  }
6755
6756  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6757                         &DAG.getTarget().Options))
6758    return GetNegatedExpression(N0, DAG, LegalOperations);
6759
6760  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6761  // constant pool values.
6762  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6763      !VT.isVector() &&
6764      N0.getNode()->hasOneUse() &&
6765      N0.getOperand(0).getValueType().isInteger()) {
6766    SDValue Int = N0.getOperand(0);
6767    EVT IntVT = Int.getValueType();
6768    if (IntVT.isInteger() && !IntVT.isVector()) {
6769      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6770              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6771      AddToWorkList(Int.getNode());
6772      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6773                         VT, Int);
6774    }
6775  }
6776
6777  // (fneg (fmul c, x)) -> (fmul -c, x)
6778  if (N0.getOpcode() == ISD::FMUL) {
6779    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6780    if (CFP1)
6781      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6782                         N0.getOperand(0),
6783                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6784                                     N0.getOperand(1)));
6785  }
6786
6787  return SDValue();
6788}
6789
6790SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6791  SDValue N0 = N->getOperand(0);
6792  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6793  EVT VT = N->getValueType(0);
6794
6795  // fold (fceil c1) -> fceil(c1)
6796  if (N0CFP)
6797    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6798
6799  return SDValue();
6800}
6801
6802SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6803  SDValue N0 = N->getOperand(0);
6804  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6805  EVT VT = N->getValueType(0);
6806
6807  // fold (ftrunc c1) -> ftrunc(c1)
6808  if (N0CFP)
6809    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6810
6811  return SDValue();
6812}
6813
6814SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6815  SDValue N0 = N->getOperand(0);
6816  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6817  EVT VT = N->getValueType(0);
6818
6819  // fold (ffloor c1) -> ffloor(c1)
6820  if (N0CFP)
6821    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6822
6823  return SDValue();
6824}
6825
6826SDValue DAGCombiner::visitFABS(SDNode *N) {
6827  SDValue N0 = N->getOperand(0);
6828  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6829  EVT VT = N->getValueType(0);
6830
6831  if (VT.isVector()) {
6832    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6833    if (FoldedVOp.getNode()) return FoldedVOp;
6834  }
6835
6836  // fold (fabs c1) -> fabs(c1)
6837  if (N0CFP)
6838    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6839  // fold (fabs (fabs x)) -> (fabs x)
6840  if (N0.getOpcode() == ISD::FABS)
6841    return N->getOperand(0);
6842  // fold (fabs (fneg x)) -> (fabs x)
6843  // fold (fabs (fcopysign x, y)) -> (fabs x)
6844  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6845    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6846
6847  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6848  // constant pool values.
6849  if (!TLI.isFAbsFree(VT) &&
6850      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6851      N0.getOperand(0).getValueType().isInteger() &&
6852      !N0.getOperand(0).getValueType().isVector()) {
6853    SDValue Int = N0.getOperand(0);
6854    EVT IntVT = Int.getValueType();
6855    if (IntVT.isInteger() && !IntVT.isVector()) {
6856      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6857             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6858      AddToWorkList(Int.getNode());
6859      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6860                         N->getValueType(0), Int);
6861    }
6862  }
6863
6864  return SDValue();
6865}
6866
6867SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6868  SDValue Chain = N->getOperand(0);
6869  SDValue N1 = N->getOperand(1);
6870  SDValue N2 = N->getOperand(2);
6871
6872  // If N is a constant we could fold this into a fallthrough or unconditional
6873  // branch. However that doesn't happen very often in normal code, because
6874  // Instcombine/SimplifyCFG should have handled the available opportunities.
6875  // If we did this folding here, it would be necessary to update the
6876  // MachineBasicBlock CFG, which is awkward.
6877
6878  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6879  // on the target.
6880  if (N1.getOpcode() == ISD::SETCC &&
6881      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6882                                   N1.getOperand(0).getValueType())) {
6883    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6884                       Chain, N1.getOperand(2),
6885                       N1.getOperand(0), N1.getOperand(1), N2);
6886  }
6887
6888  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6889      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6890       (N1.getOperand(0).hasOneUse() &&
6891        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6892    SDNode *Trunc = 0;
6893    if (N1.getOpcode() == ISD::TRUNCATE) {
6894      // Look pass the truncate.
6895      Trunc = N1.getNode();
6896      N1 = N1.getOperand(0);
6897    }
6898
6899    // Match this pattern so that we can generate simpler code:
6900    //
6901    //   %a = ...
6902    //   %b = and i32 %a, 2
6903    //   %c = srl i32 %b, 1
6904    //   brcond i32 %c ...
6905    //
6906    // into
6907    //
6908    //   %a = ...
6909    //   %b = and i32 %a, 2
6910    //   %c = setcc eq %b, 0
6911    //   brcond %c ...
6912    //
6913    // This applies only when the AND constant value has one bit set and the
6914    // SRL constant is equal to the log2 of the AND constant. The back-end is
6915    // smart enough to convert the result into a TEST/JMP sequence.
6916    SDValue Op0 = N1.getOperand(0);
6917    SDValue Op1 = N1.getOperand(1);
6918
6919    if (Op0.getOpcode() == ISD::AND &&
6920        Op1.getOpcode() == ISD::Constant) {
6921      SDValue AndOp1 = Op0.getOperand(1);
6922
6923      if (AndOp1.getOpcode() == ISD::Constant) {
6924        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6925
6926        if (AndConst.isPowerOf2() &&
6927            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6928          SDValue SetCC =
6929            DAG.getSetCC(SDLoc(N),
6930                         getSetCCResultType(Op0.getValueType()),
6931                         Op0, DAG.getConstant(0, Op0.getValueType()),
6932                         ISD::SETNE);
6933
6934          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6935                                          MVT::Other, Chain, SetCC, N2);
6936          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6937          // will convert it back to (X & C1) >> C2.
6938          CombineTo(N, NewBRCond, false);
6939          // Truncate is dead.
6940          if (Trunc) {
6941            removeFromWorkList(Trunc);
6942            DAG.DeleteNode(Trunc);
6943          }
6944          // Replace the uses of SRL with SETCC
6945          WorkListRemover DeadNodes(*this);
6946          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6947          removeFromWorkList(N1.getNode());
6948          DAG.DeleteNode(N1.getNode());
6949          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6950        }
6951      }
6952    }
6953
6954    if (Trunc)
6955      // Restore N1 if the above transformation doesn't match.
6956      N1 = N->getOperand(1);
6957  }
6958
6959  // Transform br(xor(x, y)) -> br(x != y)
6960  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6961  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6962    SDNode *TheXor = N1.getNode();
6963    SDValue Op0 = TheXor->getOperand(0);
6964    SDValue Op1 = TheXor->getOperand(1);
6965    if (Op0.getOpcode() == Op1.getOpcode()) {
6966      // Avoid missing important xor optimizations.
6967      SDValue Tmp = visitXOR(TheXor);
6968      if (Tmp.getNode()) {
6969        if (Tmp.getNode() != TheXor) {
6970          DEBUG(dbgs() << "\nReplacing.8 ";
6971                TheXor->dump(&DAG);
6972                dbgs() << "\nWith: ";
6973                Tmp.getNode()->dump(&DAG);
6974                dbgs() << '\n');
6975          WorkListRemover DeadNodes(*this);
6976          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6977          removeFromWorkList(TheXor);
6978          DAG.DeleteNode(TheXor);
6979          return DAG.getNode(ISD::BRCOND, SDLoc(N),
6980                             MVT::Other, Chain, Tmp, N2);
6981        }
6982
6983        // visitXOR has changed XOR's operands or replaced the XOR completely,
6984        // bail out.
6985        return SDValue(N, 0);
6986      }
6987    }
6988
6989    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6990      bool Equal = false;
6991      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6992        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6993            Op0.getOpcode() == ISD::XOR) {
6994          TheXor = Op0.getNode();
6995          Equal = true;
6996        }
6997
6998      EVT SetCCVT = N1.getValueType();
6999      if (LegalTypes)
7000        SetCCVT = getSetCCResultType(SetCCVT);
7001      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7002                                   SetCCVT,
7003                                   Op0, Op1,
7004                                   Equal ? ISD::SETEQ : ISD::SETNE);
7005      // Replace the uses of XOR with SETCC
7006      WorkListRemover DeadNodes(*this);
7007      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7008      removeFromWorkList(N1.getNode());
7009      DAG.DeleteNode(N1.getNode());
7010      return DAG.getNode(ISD::BRCOND, SDLoc(N),
7011                         MVT::Other, Chain, SetCC, N2);
7012    }
7013  }
7014
7015  return SDValue();
7016}
7017
7018// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7019//
7020SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7021  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7022  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7023
7024  // If N is a constant we could fold this into a fallthrough or unconditional
7025  // branch. However that doesn't happen very often in normal code, because
7026  // Instcombine/SimplifyCFG should have handled the available opportunities.
7027  // If we did this folding here, it would be necessary to update the
7028  // MachineBasicBlock CFG, which is awkward.
7029
7030  // Use SimplifySetCC to simplify SETCC's.
7031  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7032                               CondLHS, CondRHS, CC->get(), SDLoc(N),
7033                               false);
7034  if (Simp.getNode()) AddToWorkList(Simp.getNode());
7035
7036  // fold to a simpler setcc
7037  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7038    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7039                       N->getOperand(0), Simp.getOperand(2),
7040                       Simp.getOperand(0), Simp.getOperand(1),
7041                       N->getOperand(4));
7042
7043  return SDValue();
7044}
7045
7046/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7047/// uses N as its base pointer and that N may be folded in the load / store
7048/// addressing mode.
7049static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7050                                    SelectionDAG &DAG,
7051                                    const TargetLowering &TLI) {
7052  EVT VT;
7053  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
7054    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7055      return false;
7056    VT = Use->getValueType(0);
7057  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
7058    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7059      return false;
7060    VT = ST->getValue().getValueType();
7061  } else
7062    return false;
7063
7064  TargetLowering::AddrMode AM;
7065  if (N->getOpcode() == ISD::ADD) {
7066    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7067    if (Offset)
7068      // [reg +/- imm]
7069      AM.BaseOffs = Offset->getSExtValue();
7070    else
7071      // [reg +/- reg]
7072      AM.Scale = 1;
7073  } else if (N->getOpcode() == ISD::SUB) {
7074    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7075    if (Offset)
7076      // [reg +/- imm]
7077      AM.BaseOffs = -Offset->getSExtValue();
7078    else
7079      // [reg +/- reg]
7080      AM.Scale = 1;
7081  } else
7082    return false;
7083
7084  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7085}
7086
7087/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7088/// pre-indexed load / store when the base pointer is an add or subtract
7089/// and it has other uses besides the load / store. After the
7090/// transformation, the new indexed load / store has effectively folded
7091/// the add / subtract in and all of its other uses are redirected to the
7092/// new load / store.
7093bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7094  if (Level < AfterLegalizeDAG)
7095    return false;
7096
7097  bool isLoad = true;
7098  SDValue Ptr;
7099  EVT VT;
7100  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7101    if (LD->isIndexed())
7102      return false;
7103    VT = LD->getMemoryVT();
7104    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7105        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7106      return false;
7107    Ptr = LD->getBasePtr();
7108  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7109    if (ST->isIndexed())
7110      return false;
7111    VT = ST->getMemoryVT();
7112    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7113        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7114      return false;
7115    Ptr = ST->getBasePtr();
7116    isLoad = false;
7117  } else {
7118    return false;
7119  }
7120
7121  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7122  // out.  There is no reason to make this a preinc/predec.
7123  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7124      Ptr.getNode()->hasOneUse())
7125    return false;
7126
7127  // Ask the target to do addressing mode selection.
7128  SDValue BasePtr;
7129  SDValue Offset;
7130  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7131  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7132    return false;
7133
7134  // Backends without true r+i pre-indexed forms may need to pass a
7135  // constant base with a variable offset so that constant coercion
7136  // will work with the patterns in canonical form.
7137  bool Swapped = false;
7138  if (isa<ConstantSDNode>(BasePtr)) {
7139    std::swap(BasePtr, Offset);
7140    Swapped = true;
7141  }
7142
7143  // Don't create a indexed load / store with zero offset.
7144  if (isa<ConstantSDNode>(Offset) &&
7145      cast<ConstantSDNode>(Offset)->isNullValue())
7146    return false;
7147
7148  // Try turning it into a pre-indexed load / store except when:
7149  // 1) The new base ptr is a frame index.
7150  // 2) If N is a store and the new base ptr is either the same as or is a
7151  //    predecessor of the value being stored.
7152  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7153  //    that would create a cycle.
7154  // 4) All uses are load / store ops that use it as old base ptr.
7155
7156  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7157  // (plus the implicit offset) to a register to preinc anyway.
7158  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7159    return false;
7160
7161  // Check #2.
7162  if (!isLoad) {
7163    SDValue Val = cast<StoreSDNode>(N)->getValue();
7164    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7165      return false;
7166  }
7167
7168  // If the offset is a constant, there may be other adds of constants that
7169  // can be folded with this one. We should do this to avoid having to keep
7170  // a copy of the original base pointer.
7171  SmallVector<SDNode *, 16> OtherUses;
7172  if (isa<ConstantSDNode>(Offset))
7173    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7174         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7175      SDNode *Use = *I;
7176      if (Use == Ptr.getNode())
7177        continue;
7178
7179      if (Use->isPredecessorOf(N))
7180        continue;
7181
7182      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7183        OtherUses.clear();
7184        break;
7185      }
7186
7187      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7188      if (Op1.getNode() == BasePtr.getNode())
7189        std::swap(Op0, Op1);
7190      assert(Op0.getNode() == BasePtr.getNode() &&
7191             "Use of ADD/SUB but not an operand");
7192
7193      if (!isa<ConstantSDNode>(Op1)) {
7194        OtherUses.clear();
7195        break;
7196      }
7197
7198      // FIXME: In some cases, we can be smarter about this.
7199      if (Op1.getValueType() != Offset.getValueType()) {
7200        OtherUses.clear();
7201        break;
7202      }
7203
7204      OtherUses.push_back(Use);
7205    }
7206
7207  if (Swapped)
7208    std::swap(BasePtr, Offset);
7209
7210  // Now check for #3 and #4.
7211  bool RealUse = false;
7212
7213  // Caches for hasPredecessorHelper
7214  SmallPtrSet<const SDNode *, 32> Visited;
7215  SmallVector<const SDNode *, 16> Worklist;
7216
7217  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7218         E = Ptr.getNode()->use_end(); I != E; ++I) {
7219    SDNode *Use = *I;
7220    if (Use == N)
7221      continue;
7222    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7223      return false;
7224
7225    // If Ptr may be folded in addressing mode of other use, then it's
7226    // not profitable to do this transformation.
7227    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7228      RealUse = true;
7229  }
7230
7231  if (!RealUse)
7232    return false;
7233
7234  SDValue Result;
7235  if (isLoad)
7236    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7237                                BasePtr, Offset, AM);
7238  else
7239    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7240                                 BasePtr, Offset, AM);
7241  ++PreIndexedNodes;
7242  ++NodesCombined;
7243  DEBUG(dbgs() << "\nReplacing.4 ";
7244        N->dump(&DAG);
7245        dbgs() << "\nWith: ";
7246        Result.getNode()->dump(&DAG);
7247        dbgs() << '\n');
7248  WorkListRemover DeadNodes(*this);
7249  if (isLoad) {
7250    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7251    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7252  } else {
7253    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7254  }
7255
7256  // Finally, since the node is now dead, remove it from the graph.
7257  DAG.DeleteNode(N);
7258
7259  if (Swapped)
7260    std::swap(BasePtr, Offset);
7261
7262  // Replace other uses of BasePtr that can be updated to use Ptr
7263  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7264    unsigned OffsetIdx = 1;
7265    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7266      OffsetIdx = 0;
7267    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7268           BasePtr.getNode() && "Expected BasePtr operand");
7269
7270    // We need to replace ptr0 in the following expression:
7271    //   x0 * offset0 + y0 * ptr0 = t0
7272    // knowing that
7273    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7274    //
7275    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7276    // indexed load/store and the expresion that needs to be re-written.
7277    //
7278    // Therefore, we have:
7279    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7280
7281    ConstantSDNode *CN =
7282      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7283    int X0, X1, Y0, Y1;
7284    APInt Offset0 = CN->getAPIntValue();
7285    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7286
7287    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7288    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7289    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7290    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7291
7292    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7293
7294    APInt CNV = Offset0;
7295    if (X0 < 0) CNV = -CNV;
7296    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7297    else CNV = CNV - Offset1;
7298
7299    // We can now generate the new expression.
7300    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7301    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7302
7303    SDValue NewUse = DAG.getNode(Opcode,
7304                                 SDLoc(OtherUses[i]),
7305                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7306    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7307    removeFromWorkList(OtherUses[i]);
7308    DAG.DeleteNode(OtherUses[i]);
7309  }
7310
7311  // Replace the uses of Ptr with uses of the updated base value.
7312  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7313  removeFromWorkList(Ptr.getNode());
7314  DAG.DeleteNode(Ptr.getNode());
7315
7316  return true;
7317}
7318
7319/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7320/// add / sub of the base pointer node into a post-indexed load / store.
7321/// The transformation folded the add / subtract into the new indexed
7322/// load / store effectively and all of its uses are redirected to the
7323/// new load / store.
7324bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7325  if (Level < AfterLegalizeDAG)
7326    return false;
7327
7328  bool isLoad = true;
7329  SDValue Ptr;
7330  EVT VT;
7331  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7332    if (LD->isIndexed())
7333      return false;
7334    VT = LD->getMemoryVT();
7335    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7336        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7337      return false;
7338    Ptr = LD->getBasePtr();
7339  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7340    if (ST->isIndexed())
7341      return false;
7342    VT = ST->getMemoryVT();
7343    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7344        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7345      return false;
7346    Ptr = ST->getBasePtr();
7347    isLoad = false;
7348  } else {
7349    return false;
7350  }
7351
7352  if (Ptr.getNode()->hasOneUse())
7353    return false;
7354
7355  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7356         E = Ptr.getNode()->use_end(); I != E; ++I) {
7357    SDNode *Op = *I;
7358    if (Op == N ||
7359        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7360      continue;
7361
7362    SDValue BasePtr;
7363    SDValue Offset;
7364    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7365    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7366      // Don't create a indexed load / store with zero offset.
7367      if (isa<ConstantSDNode>(Offset) &&
7368          cast<ConstantSDNode>(Offset)->isNullValue())
7369        continue;
7370
7371      // Try turning it into a post-indexed load / store except when
7372      // 1) All uses are load / store ops that use it as base ptr (and
7373      //    it may be folded as addressing mmode).
7374      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7375      //    nor a successor of N. Otherwise, if Op is folded that would
7376      //    create a cycle.
7377
7378      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7379        continue;
7380
7381      // Check for #1.
7382      bool TryNext = false;
7383      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7384             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7385        SDNode *Use = *II;
7386        if (Use == Ptr.getNode())
7387          continue;
7388
7389        // If all the uses are load / store addresses, then don't do the
7390        // transformation.
7391        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7392          bool RealUse = false;
7393          for (SDNode::use_iterator III = Use->use_begin(),
7394                 EEE = Use->use_end(); III != EEE; ++III) {
7395            SDNode *UseUse = *III;
7396            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7397              RealUse = true;
7398          }
7399
7400          if (!RealUse) {
7401            TryNext = true;
7402            break;
7403          }
7404        }
7405      }
7406
7407      if (TryNext)
7408        continue;
7409
7410      // Check for #2
7411      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7412        SDValue Result = isLoad
7413          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7414                               BasePtr, Offset, AM)
7415          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7416                                BasePtr, Offset, AM);
7417        ++PostIndexedNodes;
7418        ++NodesCombined;
7419        DEBUG(dbgs() << "\nReplacing.5 ";
7420              N->dump(&DAG);
7421              dbgs() << "\nWith: ";
7422              Result.getNode()->dump(&DAG);
7423              dbgs() << '\n');
7424        WorkListRemover DeadNodes(*this);
7425        if (isLoad) {
7426          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7427          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7428        } else {
7429          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7430        }
7431
7432        // Finally, since the node is now dead, remove it from the graph.
7433        DAG.DeleteNode(N);
7434
7435        // Replace the uses of Use with uses of the updated base value.
7436        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7437                                      Result.getValue(isLoad ? 1 : 0));
7438        removeFromWorkList(Op);
7439        DAG.DeleteNode(Op);
7440        return true;
7441      }
7442    }
7443  }
7444
7445  return false;
7446}
7447
7448SDValue DAGCombiner::visitLOAD(SDNode *N) {
7449  LoadSDNode *LD  = cast<LoadSDNode>(N);
7450  SDValue Chain = LD->getChain();
7451  SDValue Ptr   = LD->getBasePtr();
7452
7453  // If load is not volatile and there are no uses of the loaded value (and
7454  // the updated indexed value in case of indexed loads), change uses of the
7455  // chain value into uses of the chain input (i.e. delete the dead load).
7456  if (!LD->isVolatile()) {
7457    if (N->getValueType(1) == MVT::Other) {
7458      // Unindexed loads.
7459      if (!N->hasAnyUseOfValue(0)) {
7460        // It's not safe to use the two value CombineTo variant here. e.g.
7461        // v1, chain2 = load chain1, loc
7462        // v2, chain3 = load chain2, loc
7463        // v3         = add v2, c
7464        // Now we replace use of chain2 with chain1.  This makes the second load
7465        // isomorphic to the one we are deleting, and thus makes this load live.
7466        DEBUG(dbgs() << "\nReplacing.6 ";
7467              N->dump(&DAG);
7468              dbgs() << "\nWith chain: ";
7469              Chain.getNode()->dump(&DAG);
7470              dbgs() << "\n");
7471        WorkListRemover DeadNodes(*this);
7472        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7473
7474        if (N->use_empty()) {
7475          removeFromWorkList(N);
7476          DAG.DeleteNode(N);
7477        }
7478
7479        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7480      }
7481    } else {
7482      // Indexed loads.
7483      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7484      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7485        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7486        DEBUG(dbgs() << "\nReplacing.7 ";
7487              N->dump(&DAG);
7488              dbgs() << "\nWith: ";
7489              Undef.getNode()->dump(&DAG);
7490              dbgs() << " and 2 other values\n");
7491        WorkListRemover DeadNodes(*this);
7492        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7493        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7494                                      DAG.getUNDEF(N->getValueType(1)));
7495        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7496        removeFromWorkList(N);
7497        DAG.DeleteNode(N);
7498        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7499      }
7500    }
7501  }
7502
7503  // If this load is directly stored, replace the load value with the stored
7504  // value.
7505  // TODO: Handle store large -> read small portion.
7506  // TODO: Handle TRUNCSTORE/LOADEXT
7507  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7508    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7509      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7510      if (PrevST->getBasePtr() == Ptr &&
7511          PrevST->getValue().getValueType() == N->getValueType(0))
7512      return CombineTo(N, Chain.getOperand(1), Chain);
7513    }
7514  }
7515
7516  // Try to infer better alignment information than the load already has.
7517  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7518    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7519      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7520        SDValue NewLoad =
7521               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7522                              LD->getValueType(0),
7523                              Chain, Ptr, LD->getPointerInfo(),
7524                              LD->getMemoryVT(),
7525                              LD->isVolatile(), LD->isNonTemporal(), Align);
7526        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7527      }
7528    }
7529  }
7530
7531  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
7532    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
7533  if (UseAA) {
7534    // Walk up chain skipping non-aliasing memory nodes.
7535    SDValue BetterChain = FindBetterChain(N, Chain);
7536
7537    // If there is a better chain.
7538    if (Chain != BetterChain) {
7539      SDValue ReplLoad;
7540
7541      // Replace the chain to void dependency.
7542      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7543        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7544                               BetterChain, Ptr, LD->getPointerInfo(),
7545                               LD->isVolatile(), LD->isNonTemporal(),
7546                               LD->isInvariant(), LD->getAlignment());
7547      } else {
7548        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7549                                  LD->getValueType(0),
7550                                  BetterChain, Ptr, LD->getPointerInfo(),
7551                                  LD->getMemoryVT(),
7552                                  LD->isVolatile(),
7553                                  LD->isNonTemporal(),
7554                                  LD->getAlignment());
7555      }
7556
7557      // Create token factor to keep old chain connected.
7558      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7559                                  MVT::Other, Chain, ReplLoad.getValue(1));
7560
7561      // Make sure the new and old chains are cleaned up.
7562      AddToWorkList(Token.getNode());
7563
7564      // Replace uses with load result and token factor. Don't add users
7565      // to work list.
7566      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7567    }
7568  }
7569
7570  // Try transforming N to an indexed load.
7571  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7572    return SDValue(N, 0);
7573
7574  return SDValue();
7575}
7576
7577/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7578/// load is having specific bytes cleared out.  If so, return the byte size
7579/// being masked out and the shift amount.
7580static std::pair<unsigned, unsigned>
7581CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7582  std::pair<unsigned, unsigned> Result(0, 0);
7583
7584  // Check for the structure we're looking for.
7585  if (V->getOpcode() != ISD::AND ||
7586      !isa<ConstantSDNode>(V->getOperand(1)) ||
7587      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7588    return Result;
7589
7590  // Check the chain and pointer.
7591  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7592  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7593
7594  // The store should be chained directly to the load or be an operand of a
7595  // tokenfactor.
7596  if (LD == Chain.getNode())
7597    ; // ok.
7598  else if (Chain->getOpcode() != ISD::TokenFactor)
7599    return Result; // Fail.
7600  else {
7601    bool isOk = false;
7602    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7603      if (Chain->getOperand(i).getNode() == LD) {
7604        isOk = true;
7605        break;
7606      }
7607    if (!isOk) return Result;
7608  }
7609
7610  // This only handles simple types.
7611  if (V.getValueType() != MVT::i16 &&
7612      V.getValueType() != MVT::i32 &&
7613      V.getValueType() != MVT::i64)
7614    return Result;
7615
7616  // Check the constant mask.  Invert it so that the bits being masked out are
7617  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7618  // follow the sign bit for uniformity.
7619  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7620  unsigned NotMaskLZ = countLeadingZeros(NotMask);
7621  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7622  unsigned NotMaskTZ = countTrailingZeros(NotMask);
7623  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7624  if (NotMaskLZ == 64) return Result;  // All zero mask.
7625
7626  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7627  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7628    return Result;
7629
7630  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7631  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7632    NotMaskLZ -= 64-V.getValueSizeInBits();
7633
7634  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7635  switch (MaskedBytes) {
7636  case 1:
7637  case 2:
7638  case 4: break;
7639  default: return Result; // All one mask, or 5-byte mask.
7640  }
7641
7642  // Verify that the first bit starts at a multiple of mask so that the access
7643  // is aligned the same as the access width.
7644  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7645
7646  Result.first = MaskedBytes;
7647  Result.second = NotMaskTZ/8;
7648  return Result;
7649}
7650
7651
7652/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7653/// provides a value as specified by MaskInfo.  If so, replace the specified
7654/// store with a narrower store of truncated IVal.
7655static SDNode *
7656ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7657                                SDValue IVal, StoreSDNode *St,
7658                                DAGCombiner *DC) {
7659  unsigned NumBytes = MaskInfo.first;
7660  unsigned ByteShift = MaskInfo.second;
7661  SelectionDAG &DAG = DC->getDAG();
7662
7663  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7664  // that uses this.  If not, this is not a replacement.
7665  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7666                                  ByteShift*8, (ByteShift+NumBytes)*8);
7667  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7668
7669  // Check that it is legal on the target to do this.  It is legal if the new
7670  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7671  // legalization.
7672  MVT VT = MVT::getIntegerVT(NumBytes*8);
7673  if (!DC->isTypeLegal(VT))
7674    return 0;
7675
7676  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7677  // shifted by ByteShift and truncated down to NumBytes.
7678  if (ByteShift)
7679    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
7680                       DAG.getConstant(ByteShift*8,
7681                                    DC->getShiftAmountTy(IVal.getValueType())));
7682
7683  // Figure out the offset for the store and the alignment of the access.
7684  unsigned StOffset;
7685  unsigned NewAlign = St->getAlignment();
7686
7687  if (DAG.getTargetLoweringInfo().isLittleEndian())
7688    StOffset = ByteShift;
7689  else
7690    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7691
7692  SDValue Ptr = St->getBasePtr();
7693  if (StOffset) {
7694    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
7695                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7696    NewAlign = MinAlign(NewAlign, StOffset);
7697  }
7698
7699  // Truncate down to the new size.
7700  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
7701
7702  ++OpsNarrowed;
7703  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
7704                      St->getPointerInfo().getWithOffset(StOffset),
7705                      false, false, NewAlign).getNode();
7706}
7707
7708
7709/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7710/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7711/// of the loaded bits, try narrowing the load and store if it would end up
7712/// being a win for performance or code size.
7713SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7714  StoreSDNode *ST  = cast<StoreSDNode>(N);
7715  if (ST->isVolatile())
7716    return SDValue();
7717
7718  SDValue Chain = ST->getChain();
7719  SDValue Value = ST->getValue();
7720  SDValue Ptr   = ST->getBasePtr();
7721  EVT VT = Value.getValueType();
7722
7723  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7724    return SDValue();
7725
7726  unsigned Opc = Value.getOpcode();
7727
7728  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7729  // is a byte mask indicating a consecutive number of bytes, check to see if
7730  // Y is known to provide just those bytes.  If so, we try to replace the
7731  // load + replace + store sequence with a single (narrower) store, which makes
7732  // the load dead.
7733  if (Opc == ISD::OR) {
7734    std::pair<unsigned, unsigned> MaskedLoad;
7735    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7736    if (MaskedLoad.first)
7737      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7738                                                  Value.getOperand(1), ST,this))
7739        return SDValue(NewST, 0);
7740
7741    // Or is commutative, so try swapping X and Y.
7742    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7743    if (MaskedLoad.first)
7744      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7745                                                  Value.getOperand(0), ST,this))
7746        return SDValue(NewST, 0);
7747  }
7748
7749  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7750      Value.getOperand(1).getOpcode() != ISD::Constant)
7751    return SDValue();
7752
7753  SDValue N0 = Value.getOperand(0);
7754  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7755      Chain == SDValue(N0.getNode(), 1)) {
7756    LoadSDNode *LD = cast<LoadSDNode>(N0);
7757    if (LD->getBasePtr() != Ptr ||
7758        LD->getPointerInfo().getAddrSpace() !=
7759        ST->getPointerInfo().getAddrSpace())
7760      return SDValue();
7761
7762    // Find the type to narrow it the load / op / store to.
7763    SDValue N1 = Value.getOperand(1);
7764    unsigned BitWidth = N1.getValueSizeInBits();
7765    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7766    if (Opc == ISD::AND)
7767      Imm ^= APInt::getAllOnesValue(BitWidth);
7768    if (Imm == 0 || Imm.isAllOnesValue())
7769      return SDValue();
7770    unsigned ShAmt = Imm.countTrailingZeros();
7771    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7772    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7773    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7774    while (NewBW < BitWidth &&
7775           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7776             TLI.isNarrowingProfitable(VT, NewVT))) {
7777      NewBW = NextPowerOf2(NewBW);
7778      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7779    }
7780    if (NewBW >= BitWidth)
7781      return SDValue();
7782
7783    // If the lsb changed does not start at the type bitwidth boundary,
7784    // start at the previous one.
7785    if (ShAmt % NewBW)
7786      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7787    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
7788                                   std::min(BitWidth, ShAmt + NewBW));
7789    if ((Imm & Mask) == Imm) {
7790      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7791      if (Opc == ISD::AND)
7792        NewImm ^= APInt::getAllOnesValue(NewBW);
7793      uint64_t PtrOff = ShAmt / 8;
7794      // For big endian targets, we need to adjust the offset to the pointer to
7795      // load the correct bytes.
7796      if (TLI.isBigEndian())
7797        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7798
7799      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7800      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7801      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7802        return SDValue();
7803
7804      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
7805                                   Ptr.getValueType(), Ptr,
7806                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7807      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
7808                                  LD->getChain(), NewPtr,
7809                                  LD->getPointerInfo().getWithOffset(PtrOff),
7810                                  LD->isVolatile(), LD->isNonTemporal(),
7811                                  LD->isInvariant(), NewAlign);
7812      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
7813                                   DAG.getConstant(NewImm, NewVT));
7814      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
7815                                   NewVal, NewPtr,
7816                                   ST->getPointerInfo().getWithOffset(PtrOff),
7817                                   false, false, NewAlign);
7818
7819      AddToWorkList(NewPtr.getNode());
7820      AddToWorkList(NewLD.getNode());
7821      AddToWorkList(NewVal.getNode());
7822      WorkListRemover DeadNodes(*this);
7823      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7824      ++OpsNarrowed;
7825      return NewST;
7826    }
7827  }
7828
7829  return SDValue();
7830}
7831
7832/// TransformFPLoadStorePair - For a given floating point load / store pair,
7833/// if the load value isn't used by any other operations, then consider
7834/// transforming the pair to integer load / store operations if the target
7835/// deems the transformation profitable.
7836SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7837  StoreSDNode *ST  = cast<StoreSDNode>(N);
7838  SDValue Chain = ST->getChain();
7839  SDValue Value = ST->getValue();
7840  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7841      Value.hasOneUse() &&
7842      Chain == SDValue(Value.getNode(), 1)) {
7843    LoadSDNode *LD = cast<LoadSDNode>(Value);
7844    EVT VT = LD->getMemoryVT();
7845    if (!VT.isFloatingPoint() ||
7846        VT != ST->getMemoryVT() ||
7847        LD->isNonTemporal() ||
7848        ST->isNonTemporal() ||
7849        LD->getPointerInfo().getAddrSpace() != 0 ||
7850        ST->getPointerInfo().getAddrSpace() != 0)
7851      return SDValue();
7852
7853    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7854    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7855        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7856        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7857        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7858      return SDValue();
7859
7860    unsigned LDAlign = LD->getAlignment();
7861    unsigned STAlign = ST->getAlignment();
7862    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7863    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7864    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7865      return SDValue();
7866
7867    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
7868                                LD->getChain(), LD->getBasePtr(),
7869                                LD->getPointerInfo(),
7870                                false, false, false, LDAlign);
7871
7872    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
7873                                 NewLD, ST->getBasePtr(),
7874                                 ST->getPointerInfo(),
7875                                 false, false, STAlign);
7876
7877    AddToWorkList(NewLD.getNode());
7878    AddToWorkList(NewST.getNode());
7879    WorkListRemover DeadNodes(*this);
7880    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7881    ++LdStFP2Int;
7882    return NewST;
7883  }
7884
7885  return SDValue();
7886}
7887
7888/// Helper struct to parse and store a memory address as base + index + offset.
7889/// We ignore sign extensions when it is safe to do so.
7890/// The following two expressions are not equivalent. To differentiate we need
7891/// to store whether there was a sign extension involved in the index
7892/// computation.
7893///  (load (i64 add (i64 copyfromreg %c)
7894///                 (i64 signextend (add (i8 load %index)
7895///                                      (i8 1))))
7896/// vs
7897///
7898/// (load (i64 add (i64 copyfromreg %c)
7899///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
7900///                                         (i32 1)))))
7901struct BaseIndexOffset {
7902  SDValue Base;
7903  SDValue Index;
7904  int64_t Offset;
7905  bool IsIndexSignExt;
7906
7907  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
7908
7909  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
7910                  bool IsIndexSignExt) :
7911    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
7912
7913  bool equalBaseIndex(const BaseIndexOffset &Other) {
7914    return Other.Base == Base && Other.Index == Index &&
7915      Other.IsIndexSignExt == IsIndexSignExt;
7916  }
7917
7918  /// Parses tree in Ptr for base, index, offset addresses.
7919  static BaseIndexOffset match(SDValue Ptr) {
7920    bool IsIndexSignExt = false;
7921
7922    // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
7923    // instruction, then it could be just the BASE or everything else we don't
7924    // know how to handle. Just use Ptr as BASE and give up.
7925    if (Ptr->getOpcode() != ISD::ADD)
7926      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7927
7928    // We know that we have at least an ADD instruction. Try to pattern match
7929    // the simple case of BASE + OFFSET.
7930    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
7931      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7932      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
7933                              IsIndexSignExt);
7934    }
7935
7936    // Inside a loop the current BASE pointer is calculated using an ADD and a
7937    // MUL instruction. In this case Ptr is the actual BASE pointer.
7938    // (i64 add (i64 %array_ptr)
7939    //          (i64 mul (i64 %induction_var)
7940    //                   (i64 %element_size)))
7941    if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
7942      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7943
7944    // Look at Base + Index + Offset cases.
7945    SDValue Base = Ptr->getOperand(0);
7946    SDValue IndexOffset = Ptr->getOperand(1);
7947
7948    // Skip signextends.
7949    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
7950      IndexOffset = IndexOffset->getOperand(0);
7951      IsIndexSignExt = true;
7952    }
7953
7954    // Either the case of Base + Index (no offset) or something else.
7955    if (IndexOffset->getOpcode() != ISD::ADD)
7956      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
7957
7958    // Now we have the case of Base + Index + offset.
7959    SDValue Index = IndexOffset->getOperand(0);
7960    SDValue Offset = IndexOffset->getOperand(1);
7961
7962    if (!isa<ConstantSDNode>(Offset))
7963      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7964
7965    // Ignore signextends.
7966    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
7967      Index = Index->getOperand(0);
7968      IsIndexSignExt = true;
7969    } else IsIndexSignExt = false;
7970
7971    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
7972    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
7973  }
7974};
7975
7976/// Holds a pointer to an LSBaseSDNode as well as information on where it
7977/// is located in a sequence of memory operations connected by a chain.
7978struct MemOpLink {
7979  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7980    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7981  // Ptr to the mem node.
7982  LSBaseSDNode *MemNode;
7983  // Offset from the base ptr.
7984  int64_t OffsetFromBase;
7985  // What is the sequence number of this mem node.
7986  // Lowest mem operand in the DAG starts at zero.
7987  unsigned SequenceNum;
7988};
7989
7990/// Sorts store nodes in a link according to their offset from a shared
7991// base ptr.
7992struct ConsecutiveMemoryChainSorter {
7993  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7994    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7995  }
7996};
7997
7998bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7999  EVT MemVT = St->getMemoryVT();
8000  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
8001  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
8002    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
8003
8004  // Don't merge vectors into wider inputs.
8005  if (MemVT.isVector() || !MemVT.isSimple())
8006    return false;
8007
8008  // Perform an early exit check. Do not bother looking at stored values that
8009  // are not constants or loads.
8010  SDValue StoredVal = St->getValue();
8011  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
8012  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
8013      !IsLoadSrc)
8014    return false;
8015
8016  // Only look at ends of store sequences.
8017  SDValue Chain = SDValue(St, 1);
8018  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
8019    return false;
8020
8021  // This holds the base pointer, index, and the offset in bytes from the base
8022  // pointer.
8023  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
8024
8025  // We must have a base and an offset.
8026  if (!BasePtr.Base.getNode())
8027    return false;
8028
8029  // Do not handle stores to undef base pointers.
8030  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
8031    return false;
8032
8033  // Save the LoadSDNodes that we find in the chain.
8034  // We need to make sure that these nodes do not interfere with
8035  // any of the store nodes.
8036  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
8037
8038  // Save the StoreSDNodes that we find in the chain.
8039  SmallVector<MemOpLink, 8> StoreNodes;
8040
8041  // Walk up the chain and look for nodes with offsets from the same
8042  // base pointer. Stop when reaching an instruction with a different kind
8043  // or instruction which has a different base pointer.
8044  unsigned Seq = 0;
8045  StoreSDNode *Index = St;
8046  while (Index) {
8047    // If the chain has more than one use, then we can't reorder the mem ops.
8048    if (Index != St && !SDValue(Index, 1)->hasOneUse())
8049      break;
8050
8051    // Find the base pointer and offset for this memory node.
8052    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
8053
8054    // Check that the base pointer is the same as the original one.
8055    if (!Ptr.equalBaseIndex(BasePtr))
8056      break;
8057
8058    // Check that the alignment is the same.
8059    if (Index->getAlignment() != St->getAlignment())
8060      break;
8061
8062    // The memory operands must not be volatile.
8063    if (Index->isVolatile() || Index->isIndexed())
8064      break;
8065
8066    // No truncation.
8067    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
8068      if (St->isTruncatingStore())
8069        break;
8070
8071    // The stored memory type must be the same.
8072    if (Index->getMemoryVT() != MemVT)
8073      break;
8074
8075    // We do not allow unaligned stores because we want to prevent overriding
8076    // stores.
8077    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8078      break;
8079
8080    // We found a potential memory operand to merge.
8081    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8082
8083    // Find the next memory operand in the chain. If the next operand in the
8084    // chain is a store then move up and continue the scan with the next
8085    // memory operand. If the next operand is a load save it and use alias
8086    // information to check if it interferes with anything.
8087    SDNode *NextInChain = Index->getChain().getNode();
8088    while (1) {
8089      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8090        // We found a store node. Use it for the next iteration.
8091        Index = STn;
8092        break;
8093      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8094        // Save the load node for later. Continue the scan.
8095        AliasLoadNodes.push_back(Ldn);
8096        NextInChain = Ldn->getChain().getNode();
8097        continue;
8098      } else {
8099        Index = NULL;
8100        break;
8101      }
8102    }
8103  }
8104
8105  // Check if there is anything to merge.
8106  if (StoreNodes.size() < 2)
8107    return false;
8108
8109  // Sort the memory operands according to their distance from the base pointer.
8110  std::sort(StoreNodes.begin(), StoreNodes.end(),
8111            ConsecutiveMemoryChainSorter());
8112
8113  // Scan the memory operations on the chain and find the first non-consecutive
8114  // store memory address.
8115  unsigned LastConsecutiveStore = 0;
8116  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8117  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8118
8119    // Check that the addresses are consecutive starting from the second
8120    // element in the list of stores.
8121    if (i > 0) {
8122      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8123      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8124        break;
8125    }
8126
8127    bool Alias = false;
8128    // Check if this store interferes with any of the loads that we found.
8129    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8130      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8131        Alias = true;
8132        break;
8133      }
8134    // We found a load that alias with this store. Stop the sequence.
8135    if (Alias)
8136      break;
8137
8138    // Mark this node as useful.
8139    LastConsecutiveStore = i;
8140  }
8141
8142  // The node with the lowest store address.
8143  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8144
8145  // Store the constants into memory as one consecutive store.
8146  if (!IsLoadSrc) {
8147    unsigned LastLegalType = 0;
8148    unsigned LastLegalVectorType = 0;
8149    bool NonZero = false;
8150    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8151      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8152      SDValue StoredVal = St->getValue();
8153
8154      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8155        NonZero |= !C->isNullValue();
8156      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8157        NonZero |= !C->getConstantFPValue()->isNullValue();
8158      } else {
8159        // Non constant.
8160        break;
8161      }
8162
8163      // Find a legal type for the constant store.
8164      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8165      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8166      if (TLI.isTypeLegal(StoreTy))
8167        LastLegalType = i+1;
8168      // Or check whether a truncstore is legal.
8169      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8170               TargetLowering::TypePromoteInteger) {
8171        EVT LegalizedStoredValueTy =
8172          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8173        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8174          LastLegalType = i+1;
8175      }
8176
8177      // Find a legal type for the vector store.
8178      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8179      if (TLI.isTypeLegal(Ty))
8180        LastLegalVectorType = i + 1;
8181    }
8182
8183    // We only use vectors if the constant is known to be zero and the
8184    // function is not marked with the noimplicitfloat attribute.
8185    if (NonZero || NoVectors)
8186      LastLegalVectorType = 0;
8187
8188    // Check if we found a legal integer type to store.
8189    if (LastLegalType == 0 && LastLegalVectorType == 0)
8190      return false;
8191
8192    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8193    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8194
8195    // Make sure we have something to merge.
8196    if (NumElem < 2)
8197      return false;
8198
8199    unsigned EarliestNodeUsed = 0;
8200    for (unsigned i=0; i < NumElem; ++i) {
8201      // Find a chain for the new wide-store operand. Notice that some
8202      // of the store nodes that we found may not be selected for inclusion
8203      // in the wide store. The chain we use needs to be the chain of the
8204      // earliest store node which is *used* and replaced by the wide store.
8205      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8206        EarliestNodeUsed = i;
8207    }
8208
8209    // The earliest Node in the DAG.
8210    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8211    SDLoc DL(StoreNodes[0].MemNode);
8212
8213    SDValue StoredVal;
8214    if (UseVector) {
8215      // Find a legal type for the vector store.
8216      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8217      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8218      StoredVal = DAG.getConstant(0, Ty);
8219    } else {
8220      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8221      APInt StoreInt(StoreBW, 0);
8222
8223      // Construct a single integer constant which is made of the smaller
8224      // constant inputs.
8225      bool IsLE = TLI.isLittleEndian();
8226      for (unsigned i = 0; i < NumElem ; ++i) {
8227        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8228        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8229        SDValue Val = St->getValue();
8230        StoreInt<<=ElementSizeBytes*8;
8231        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8232          StoreInt|=C->getAPIntValue().zext(StoreBW);
8233        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8234          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8235        } else {
8236          assert(false && "Invalid constant element type");
8237        }
8238      }
8239
8240      // Create the new Load and Store operations.
8241      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8242      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8243    }
8244
8245    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8246                                    FirstInChain->getBasePtr(),
8247                                    FirstInChain->getPointerInfo(),
8248                                    false, false,
8249                                    FirstInChain->getAlignment());
8250
8251    // Replace the first store with the new store
8252    CombineTo(EarliestOp, NewStore);
8253    // Erase all other stores.
8254    for (unsigned i = 0; i < NumElem ; ++i) {
8255      if (StoreNodes[i].MemNode == EarliestOp)
8256        continue;
8257      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8258      // ReplaceAllUsesWith will replace all uses that existed when it was
8259      // called, but graph optimizations may cause new ones to appear. For
8260      // example, the case in pr14333 looks like
8261      //
8262      //  St's chain -> St -> another store -> X
8263      //
8264      // And the only difference from St to the other store is the chain.
8265      // When we change it's chain to be St's chain they become identical,
8266      // get CSEed and the net result is that X is now a use of St.
8267      // Since we know that St is redundant, just iterate.
8268      while (!St->use_empty())
8269        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8270      removeFromWorkList(St);
8271      DAG.DeleteNode(St);
8272    }
8273
8274    return true;
8275  }
8276
8277  // Below we handle the case of multiple consecutive stores that
8278  // come from multiple consecutive loads. We merge them into a single
8279  // wide load and a single wide store.
8280
8281  // Look for load nodes which are used by the stored values.
8282  SmallVector<MemOpLink, 8> LoadNodes;
8283
8284  // Find acceptable loads. Loads need to have the same chain (token factor),
8285  // must not be zext, volatile, indexed, and they must be consecutive.
8286  BaseIndexOffset LdBasePtr;
8287  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8288    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8289    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8290    if (!Ld) break;
8291
8292    // Loads must only have one use.
8293    if (!Ld->hasNUsesOfValue(1, 0))
8294      break;
8295
8296    // Check that the alignment is the same as the stores.
8297    if (Ld->getAlignment() != St->getAlignment())
8298      break;
8299
8300    // The memory operands must not be volatile.
8301    if (Ld->isVolatile() || Ld->isIndexed())
8302      break;
8303
8304    // We do not accept ext loads.
8305    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8306      break;
8307
8308    // The stored memory type must be the same.
8309    if (Ld->getMemoryVT() != MemVT)
8310      break;
8311
8312    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8313    // If this is not the first ptr that we check.
8314    if (LdBasePtr.Base.getNode()) {
8315      // The base ptr must be the same.
8316      if (!LdPtr.equalBaseIndex(LdBasePtr))
8317        break;
8318    } else {
8319      // Check that all other base pointers are the same as this one.
8320      LdBasePtr = LdPtr;
8321    }
8322
8323    // We found a potential memory operand to merge.
8324    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8325  }
8326
8327  if (LoadNodes.size() < 2)
8328    return false;
8329
8330  // Scan the memory operations on the chain and find the first non-consecutive
8331  // load memory address. These variables hold the index in the store node
8332  // array.
8333  unsigned LastConsecutiveLoad = 0;
8334  // This variable refers to the size and not index in the array.
8335  unsigned LastLegalVectorType = 0;
8336  unsigned LastLegalIntegerType = 0;
8337  StartAddress = LoadNodes[0].OffsetFromBase;
8338  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8339  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8340    // All loads much share the same chain.
8341    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8342      break;
8343
8344    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8345    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8346      break;
8347    LastConsecutiveLoad = i;
8348
8349    // Find a legal type for the vector store.
8350    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8351    if (TLI.isTypeLegal(StoreTy))
8352      LastLegalVectorType = i + 1;
8353
8354    // Find a legal type for the integer store.
8355    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8356    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8357    if (TLI.isTypeLegal(StoreTy))
8358      LastLegalIntegerType = i + 1;
8359    // Or check whether a truncstore and extload is legal.
8360    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8361             TargetLowering::TypePromoteInteger) {
8362      EVT LegalizedStoredValueTy =
8363        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8364      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8365          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8366          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8367          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8368        LastLegalIntegerType = i+1;
8369    }
8370  }
8371
8372  // Only use vector types if the vector type is larger than the integer type.
8373  // If they are the same, use integers.
8374  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8375  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8376
8377  // We add +1 here because the LastXXX variables refer to location while
8378  // the NumElem refers to array/index size.
8379  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8380  NumElem = std::min(LastLegalType, NumElem);
8381
8382  if (NumElem < 2)
8383    return false;
8384
8385  // The earliest Node in the DAG.
8386  unsigned EarliestNodeUsed = 0;
8387  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8388  for (unsigned i=1; i<NumElem; ++i) {
8389    // Find a chain for the new wide-store operand. Notice that some
8390    // of the store nodes that we found may not be selected for inclusion
8391    // in the wide store. The chain we use needs to be the chain of the
8392    // earliest store node which is *used* and replaced by the wide store.
8393    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8394      EarliestNodeUsed = i;
8395  }
8396
8397  // Find if it is better to use vectors or integers to load and store
8398  // to memory.
8399  EVT JointMemOpVT;
8400  if (UseVectorTy) {
8401    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8402  } else {
8403    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8404    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8405  }
8406
8407  SDLoc LoadDL(LoadNodes[0].MemNode);
8408  SDLoc StoreDL(StoreNodes[0].MemNode);
8409
8410  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8411  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8412                                FirstLoad->getChain(),
8413                                FirstLoad->getBasePtr(),
8414                                FirstLoad->getPointerInfo(),
8415                                false, false, false,
8416                                FirstLoad->getAlignment());
8417
8418  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8419                                  FirstInChain->getBasePtr(),
8420                                  FirstInChain->getPointerInfo(), false, false,
8421                                  FirstInChain->getAlignment());
8422
8423  // Replace one of the loads with the new load.
8424  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8425  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8426                                SDValue(NewLoad.getNode(), 1));
8427
8428  // Remove the rest of the load chains.
8429  for (unsigned i = 1; i < NumElem ; ++i) {
8430    // Replace all chain users of the old load nodes with the chain of the new
8431    // load node.
8432    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8433    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8434  }
8435
8436  // Replace the first store with the new store.
8437  CombineTo(EarliestOp, NewStore);
8438  // Erase all other stores.
8439  for (unsigned i = 0; i < NumElem ; ++i) {
8440    // Remove all Store nodes.
8441    if (StoreNodes[i].MemNode == EarliestOp)
8442      continue;
8443    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8444    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8445    removeFromWorkList(St);
8446    DAG.DeleteNode(St);
8447  }
8448
8449  return true;
8450}
8451
8452SDValue DAGCombiner::visitSTORE(SDNode *N) {
8453  StoreSDNode *ST  = cast<StoreSDNode>(N);
8454  SDValue Chain = ST->getChain();
8455  SDValue Value = ST->getValue();
8456  SDValue Ptr   = ST->getBasePtr();
8457
8458  // If this is a store of a bit convert, store the input value if the
8459  // resultant store does not need a higher alignment than the original.
8460  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8461      ST->isUnindexed()) {
8462    unsigned OrigAlign = ST->getAlignment();
8463    EVT SVT = Value.getOperand(0).getValueType();
8464    unsigned Align = TLI.getDataLayout()->
8465      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8466    if (Align <= OrigAlign &&
8467        ((!LegalOperations && !ST->isVolatile()) ||
8468         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8469      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
8470                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8471                          ST->isNonTemporal(), OrigAlign);
8472  }
8473
8474  // Turn 'store undef, Ptr' -> nothing.
8475  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8476    return Chain;
8477
8478  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8479  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8480    // NOTE: If the original store is volatile, this transform must not increase
8481    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8482    // processor operation but an i64 (which is not legal) requires two.  So the
8483    // transform should not be done in this case.
8484    if (Value.getOpcode() != ISD::TargetConstantFP) {
8485      SDValue Tmp;
8486      switch (CFP->getSimpleValueType(0).SimpleTy) {
8487      default: llvm_unreachable("Unknown FP type");
8488      case MVT::f16:    // We don't do this for these yet.
8489      case MVT::f80:
8490      case MVT::f128:
8491      case MVT::ppcf128:
8492        break;
8493      case MVT::f32:
8494        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8495            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8496          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8497                              bitcastToAPInt().getZExtValue(), MVT::i32);
8498          return DAG.getStore(Chain, SDLoc(N), Tmp,
8499                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8500                              ST->isNonTemporal(), ST->getAlignment());
8501        }
8502        break;
8503      case MVT::f64:
8504        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8505             !ST->isVolatile()) ||
8506            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8507          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8508                                getZExtValue(), MVT::i64);
8509          return DAG.getStore(Chain, SDLoc(N), Tmp,
8510                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8511                              ST->isNonTemporal(), ST->getAlignment());
8512        }
8513
8514        if (!ST->isVolatile() &&
8515            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8516          // Many FP stores are not made apparent until after legalize, e.g. for
8517          // argument passing.  Since this is so common, custom legalize the
8518          // 64-bit integer store into two 32-bit stores.
8519          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8520          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8521          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8522          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8523
8524          unsigned Alignment = ST->getAlignment();
8525          bool isVolatile = ST->isVolatile();
8526          bool isNonTemporal = ST->isNonTemporal();
8527
8528          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
8529                                     Ptr, ST->getPointerInfo(),
8530                                     isVolatile, isNonTemporal,
8531                                     ST->getAlignment());
8532          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
8533                            DAG.getConstant(4, Ptr.getValueType()));
8534          Alignment = MinAlign(Alignment, 4U);
8535          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
8536                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8537                                     isVolatile, isNonTemporal,
8538                                     Alignment);
8539          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
8540                             St0, St1);
8541        }
8542
8543        break;
8544      }
8545    }
8546  }
8547
8548  // Try to infer better alignment information than the store already has.
8549  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8550    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8551      if (Align > ST->getAlignment())
8552        return DAG.getTruncStore(Chain, SDLoc(N), Value,
8553                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8554                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8555    }
8556  }
8557
8558  // Try transforming a pair floating point load / store ops to integer
8559  // load / store ops.
8560  SDValue NewST = TransformFPLoadStorePair(N);
8561  if (NewST.getNode())
8562    return NewST;
8563
8564  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
8565    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
8566  if (UseAA) {
8567    // Walk up chain skipping non-aliasing memory nodes.
8568    SDValue BetterChain = FindBetterChain(N, Chain);
8569
8570    // If there is a better chain.
8571    if (Chain != BetterChain) {
8572      SDValue ReplStore;
8573
8574      // Replace the chain to avoid dependency.
8575      if (ST->isTruncatingStore()) {
8576        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
8577                                      ST->getPointerInfo(),
8578                                      ST->getMemoryVT(), ST->isVolatile(),
8579                                      ST->isNonTemporal(), ST->getAlignment());
8580      } else {
8581        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
8582                                 ST->getPointerInfo(),
8583                                 ST->isVolatile(), ST->isNonTemporal(),
8584                                 ST->getAlignment());
8585      }
8586
8587      // Create token to keep both nodes around.
8588      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
8589                                  MVT::Other, Chain, ReplStore);
8590
8591      // Make sure the new and old chains are cleaned up.
8592      AddToWorkList(Token.getNode());
8593
8594      // Don't add users to work list.
8595      return CombineTo(N, Token, false);
8596    }
8597  }
8598
8599  // Try transforming N to an indexed store.
8600  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8601    return SDValue(N, 0);
8602
8603  // FIXME: is there such a thing as a truncating indexed store?
8604  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8605      Value.getValueType().isInteger()) {
8606    // See if we can simplify the input to this truncstore with knowledge that
8607    // only the low bits are being used.  For example:
8608    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8609    SDValue Shorter =
8610      GetDemandedBits(Value,
8611                      APInt::getLowBitsSet(
8612                        Value.getValueType().getScalarType().getSizeInBits(),
8613                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8614    AddToWorkList(Value.getNode());
8615    if (Shorter.getNode())
8616      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
8617                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8618                               ST->isVolatile(), ST->isNonTemporal(),
8619                               ST->getAlignment());
8620
8621    // Otherwise, see if we can simplify the operation with
8622    // SimplifyDemandedBits, which only works if the value has a single use.
8623    if (SimplifyDemandedBits(Value,
8624                        APInt::getLowBitsSet(
8625                          Value.getValueType().getScalarType().getSizeInBits(),
8626                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8627      return SDValue(N, 0);
8628  }
8629
8630  // If this is a load followed by a store to the same location, then the store
8631  // is dead/noop.
8632  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8633    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8634        ST->isUnindexed() && !ST->isVolatile() &&
8635        // There can't be any side effects between the load and store, such as
8636        // a call or store.
8637        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8638      // The store is dead, remove it.
8639      return Chain;
8640    }
8641  }
8642
8643  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8644  // truncating store.  We can do this even if this is already a truncstore.
8645  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8646      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8647      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8648                            ST->getMemoryVT())) {
8649    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
8650                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8651                             ST->isVolatile(), ST->isNonTemporal(),
8652                             ST->getAlignment());
8653  }
8654
8655  // Only perform this optimization before the types are legal, because we
8656  // don't want to perform this optimization on every DAGCombine invocation.
8657  if (!LegalTypes) {
8658    bool EverChanged = false;
8659
8660    do {
8661      // There can be multiple store sequences on the same chain.
8662      // Keep trying to merge store sequences until we are unable to do so
8663      // or until we merge the last store on the chain.
8664      bool Changed = MergeConsecutiveStores(ST);
8665      EverChanged |= Changed;
8666      if (!Changed) break;
8667    } while (ST->getOpcode() != ISD::DELETED_NODE);
8668
8669    if (EverChanged)
8670      return SDValue(N, 0);
8671  }
8672
8673  return ReduceLoadOpStoreWidth(N);
8674}
8675
8676SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8677  SDValue InVec = N->getOperand(0);
8678  SDValue InVal = N->getOperand(1);
8679  SDValue EltNo = N->getOperand(2);
8680  SDLoc dl(N);
8681
8682  // If the inserted element is an UNDEF, just use the input vector.
8683  if (InVal.getOpcode() == ISD::UNDEF)
8684    return InVec;
8685
8686  EVT VT = InVec.getValueType();
8687
8688  // If we can't generate a legal BUILD_VECTOR, exit
8689  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8690    return SDValue();
8691
8692  // Check that we know which element is being inserted
8693  if (!isa<ConstantSDNode>(EltNo))
8694    return SDValue();
8695  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8696
8697  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8698  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8699  // vector elements.
8700  SmallVector<SDValue, 8> Ops;
8701  // Do not combine these two vectors if the output vector will not replace
8702  // the input vector.
8703  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
8704    Ops.append(InVec.getNode()->op_begin(),
8705               InVec.getNode()->op_end());
8706  } else if (InVec.getOpcode() == ISD::UNDEF) {
8707    unsigned NElts = VT.getVectorNumElements();
8708    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8709  } else {
8710    return SDValue();
8711  }
8712
8713  // Insert the element
8714  if (Elt < Ops.size()) {
8715    // All the operands of BUILD_VECTOR must have the same type;
8716    // we enforce that here.
8717    EVT OpVT = Ops[0].getValueType();
8718    if (InVal.getValueType() != OpVT)
8719      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8720                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8721                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8722    Ops[Elt] = InVal;
8723  }
8724
8725  // Return the new vector
8726  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8727                     VT, &Ops[0], Ops.size());
8728}
8729
8730SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8731  // (vextract (scalar_to_vector val, 0) -> val
8732  SDValue InVec = N->getOperand(0);
8733  EVT VT = InVec.getValueType();
8734  EVT NVT = N->getValueType(0);
8735
8736  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8737    // Check if the result type doesn't match the inserted element type. A
8738    // SCALAR_TO_VECTOR may truncate the inserted element and the
8739    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8740    SDValue InOp = InVec.getOperand(0);
8741    if (InOp.getValueType() != NVT) {
8742      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8743      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
8744    }
8745    return InOp;
8746  }
8747
8748  SDValue EltNo = N->getOperand(1);
8749  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8750
8751  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8752  // We only perform this optimization before the op legalization phase because
8753  // we may introduce new vector instructions which are not backed by TD
8754  // patterns. For example on AVX, extracting elements from a wide vector
8755  // without using extract_subvector.
8756  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8757      && ConstEltNo && !LegalOperations) {
8758    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8759    int NumElem = VT.getVectorNumElements();
8760    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8761    // Find the new index to extract from.
8762    int OrigElt = SVOp->getMaskElt(Elt);
8763
8764    // Extracting an undef index is undef.
8765    if (OrigElt == -1)
8766      return DAG.getUNDEF(NVT);
8767
8768    // Select the right vector half to extract from.
8769    if (OrigElt < NumElem) {
8770      InVec = InVec->getOperand(0);
8771    } else {
8772      InVec = InVec->getOperand(1);
8773      OrigElt -= NumElem;
8774    }
8775
8776    EVT IndexTy = TLI.getVectorIdxTy();
8777    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
8778                       InVec, DAG.getConstant(OrigElt, IndexTy));
8779  }
8780
8781  // Perform only after legalization to ensure build_vector / vector_shuffle
8782  // optimizations have already been done.
8783  if (!LegalOperations) return SDValue();
8784
8785  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8786  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8787  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8788
8789  if (ConstEltNo) {
8790    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8791    bool NewLoad = false;
8792    bool BCNumEltsChanged = false;
8793    EVT ExtVT = VT.getVectorElementType();
8794    EVT LVT = ExtVT;
8795
8796    // If the result of load has to be truncated, then it's not necessarily
8797    // profitable.
8798    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8799      return SDValue();
8800
8801    if (InVec.getOpcode() == ISD::BITCAST) {
8802      // Don't duplicate a load with other uses.
8803      if (!InVec.hasOneUse())
8804        return SDValue();
8805
8806      EVT BCVT = InVec.getOperand(0).getValueType();
8807      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8808        return SDValue();
8809      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8810        BCNumEltsChanged = true;
8811      InVec = InVec.getOperand(0);
8812      ExtVT = BCVT.getVectorElementType();
8813      NewLoad = true;
8814    }
8815
8816    LoadSDNode *LN0 = NULL;
8817    const ShuffleVectorSDNode *SVN = NULL;
8818    if (ISD::isNormalLoad(InVec.getNode())) {
8819      LN0 = cast<LoadSDNode>(InVec);
8820    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8821               InVec.getOperand(0).getValueType() == ExtVT &&
8822               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8823      // Don't duplicate a load with other uses.
8824      if (!InVec.hasOneUse())
8825        return SDValue();
8826
8827      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8828    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8829      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8830      // =>
8831      // (load $addr+1*size)
8832
8833      // Don't duplicate a load with other uses.
8834      if (!InVec.hasOneUse())
8835        return SDValue();
8836
8837      // If the bit convert changed the number of elements, it is unsafe
8838      // to examine the mask.
8839      if (BCNumEltsChanged)
8840        return SDValue();
8841
8842      // Select the input vector, guarding against out of range extract vector.
8843      unsigned NumElems = VT.getVectorNumElements();
8844      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8845      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8846
8847      if (InVec.getOpcode() == ISD::BITCAST) {
8848        // Don't duplicate a load with other uses.
8849        if (!InVec.hasOneUse())
8850          return SDValue();
8851
8852        InVec = InVec.getOperand(0);
8853      }
8854      if (ISD::isNormalLoad(InVec.getNode())) {
8855        LN0 = cast<LoadSDNode>(InVec);
8856        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8857      }
8858    }
8859
8860    // Make sure we found a non-volatile load and the extractelement is
8861    // the only use.
8862    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8863      return SDValue();
8864
8865    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8866    if (Elt == -1)
8867      return DAG.getUNDEF(LVT);
8868
8869    unsigned Align = LN0->getAlignment();
8870    if (NewLoad) {
8871      // Check the resultant load doesn't need a higher alignment than the
8872      // original load.
8873      unsigned NewAlign =
8874        TLI.getDataLayout()
8875            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8876
8877      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8878        return SDValue();
8879
8880      Align = NewAlign;
8881    }
8882
8883    SDValue NewPtr = LN0->getBasePtr();
8884    unsigned PtrOff = 0;
8885
8886    if (Elt) {
8887      PtrOff = LVT.getSizeInBits() * Elt / 8;
8888      EVT PtrType = NewPtr.getValueType();
8889      if (TLI.isBigEndian())
8890        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8891      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
8892                           DAG.getConstant(PtrOff, PtrType));
8893    }
8894
8895    // The replacement we need to do here is a little tricky: we need to
8896    // replace an extractelement of a load with a load.
8897    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8898    // Note that this replacement assumes that the extractvalue is the only
8899    // use of the load; that's okay because we don't want to perform this
8900    // transformation in other cases anyway.
8901    SDValue Load;
8902    SDValue Chain;
8903    if (NVT.bitsGT(LVT)) {
8904      // If the result type of vextract is wider than the load, then issue an
8905      // extending load instead.
8906      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8907        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8908      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
8909                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8910                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8911      Chain = Load.getValue(1);
8912    } else {
8913      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
8914                         LN0->getPointerInfo().getWithOffset(PtrOff),
8915                         LN0->isVolatile(), LN0->isNonTemporal(),
8916                         LN0->isInvariant(), Align);
8917      Chain = Load.getValue(1);
8918      if (NVT.bitsLT(LVT))
8919        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
8920      else
8921        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
8922    }
8923    WorkListRemover DeadNodes(*this);
8924    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8925    SDValue To[] = { Load, Chain };
8926    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8927    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8928    // worklist explicitly as well.
8929    AddToWorkList(Load.getNode());
8930    AddUsersToWorkList(Load.getNode()); // Add users too
8931    // Make sure to revisit this node to clean it up; it will usually be dead.
8932    AddToWorkList(N);
8933    return SDValue(N, 0);
8934  }
8935
8936  return SDValue();
8937}
8938
8939// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8940SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8941  // We perform this optimization post type-legalization because
8942  // the type-legalizer often scalarizes integer-promoted vectors.
8943  // Performing this optimization before may create bit-casts which
8944  // will be type-legalized to complex code sequences.
8945  // We perform this optimization only before the operation legalizer because we
8946  // may introduce illegal operations.
8947  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8948    return SDValue();
8949
8950  unsigned NumInScalars = N->getNumOperands();
8951  SDLoc dl(N);
8952  EVT VT = N->getValueType(0);
8953
8954  // Check to see if this is a BUILD_VECTOR of a bunch of values
8955  // which come from any_extend or zero_extend nodes. If so, we can create
8956  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8957  // optimizations. We do not handle sign-extend because we can't fill the sign
8958  // using shuffles.
8959  EVT SourceType = MVT::Other;
8960  bool AllAnyExt = true;
8961
8962  for (unsigned i = 0; i != NumInScalars; ++i) {
8963    SDValue In = N->getOperand(i);
8964    // Ignore undef inputs.
8965    if (In.getOpcode() == ISD::UNDEF) continue;
8966
8967    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8968    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8969
8970    // Abort if the element is not an extension.
8971    if (!ZeroExt && !AnyExt) {
8972      SourceType = MVT::Other;
8973      break;
8974    }
8975
8976    // The input is a ZeroExt or AnyExt. Check the original type.
8977    EVT InTy = In.getOperand(0).getValueType();
8978
8979    // Check that all of the widened source types are the same.
8980    if (SourceType == MVT::Other)
8981      // First time.
8982      SourceType = InTy;
8983    else if (InTy != SourceType) {
8984      // Multiple income types. Abort.
8985      SourceType = MVT::Other;
8986      break;
8987    }
8988
8989    // Check if all of the extends are ANY_EXTENDs.
8990    AllAnyExt &= AnyExt;
8991  }
8992
8993  // In order to have valid types, all of the inputs must be extended from the
8994  // same source type and all of the inputs must be any or zero extend.
8995  // Scalar sizes must be a power of two.
8996  EVT OutScalarTy = VT.getScalarType();
8997  bool ValidTypes = SourceType != MVT::Other &&
8998                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8999                 isPowerOf2_32(SourceType.getSizeInBits());
9000
9001  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
9002  // turn into a single shuffle instruction.
9003  if (!ValidTypes)
9004    return SDValue();
9005
9006  bool isLE = TLI.isLittleEndian();
9007  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
9008  assert(ElemRatio > 1 && "Invalid element size ratio");
9009  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
9010                               DAG.getConstant(0, SourceType);
9011
9012  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
9013  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
9014
9015  // Populate the new build_vector
9016  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9017    SDValue Cast = N->getOperand(i);
9018    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
9019            Cast.getOpcode() == ISD::ZERO_EXTEND ||
9020            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
9021    SDValue In;
9022    if (Cast.getOpcode() == ISD::UNDEF)
9023      In = DAG.getUNDEF(SourceType);
9024    else
9025      In = Cast->getOperand(0);
9026    unsigned Index = isLE ? (i * ElemRatio) :
9027                            (i * ElemRatio + (ElemRatio - 1));
9028
9029    assert(Index < Ops.size() && "Invalid index");
9030    Ops[Index] = In;
9031  }
9032
9033  // The type of the new BUILD_VECTOR node.
9034  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
9035  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
9036         "Invalid vector size");
9037  // Check if the new vector type is legal.
9038  if (!isTypeLegal(VecVT)) return SDValue();
9039
9040  // Make the new BUILD_VECTOR.
9041  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
9042
9043  // The new BUILD_VECTOR node has the potential to be further optimized.
9044  AddToWorkList(BV.getNode());
9045  // Bitcast to the desired type.
9046  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9047}
9048
9049SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
9050  EVT VT = N->getValueType(0);
9051
9052  unsigned NumInScalars = N->getNumOperands();
9053  SDLoc dl(N);
9054
9055  EVT SrcVT = MVT::Other;
9056  unsigned Opcode = ISD::DELETED_NODE;
9057  unsigned NumDefs = 0;
9058
9059  for (unsigned i = 0; i != NumInScalars; ++i) {
9060    SDValue In = N->getOperand(i);
9061    unsigned Opc = In.getOpcode();
9062
9063    if (Opc == ISD::UNDEF)
9064      continue;
9065
9066    // If all scalar values are floats and converted from integers.
9067    if (Opcode == ISD::DELETED_NODE &&
9068        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
9069      Opcode = Opc;
9070    }
9071
9072    if (Opc != Opcode)
9073      return SDValue();
9074
9075    EVT InVT = In.getOperand(0).getValueType();
9076
9077    // If all scalar values are typed differently, bail out. It's chosen to
9078    // simplify BUILD_VECTOR of integer types.
9079    if (SrcVT == MVT::Other)
9080      SrcVT = InVT;
9081    if (SrcVT != InVT)
9082      return SDValue();
9083    NumDefs++;
9084  }
9085
9086  // If the vector has just one element defined, it's not worth to fold it into
9087  // a vectorized one.
9088  if (NumDefs < 2)
9089    return SDValue();
9090
9091  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9092         && "Should only handle conversion from integer to float.");
9093  assert(SrcVT != MVT::Other && "Cannot determine source type!");
9094
9095  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9096
9097  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9098    return SDValue();
9099
9100  SmallVector<SDValue, 8> Opnds;
9101  for (unsigned i = 0; i != NumInScalars; ++i) {
9102    SDValue In = N->getOperand(i);
9103
9104    if (In.getOpcode() == ISD::UNDEF)
9105      Opnds.push_back(DAG.getUNDEF(SrcVT));
9106    else
9107      Opnds.push_back(In.getOperand(0));
9108  }
9109  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9110                           &Opnds[0], Opnds.size());
9111  AddToWorkList(BV.getNode());
9112
9113  return DAG.getNode(Opcode, dl, VT, BV);
9114}
9115
9116SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9117  unsigned NumInScalars = N->getNumOperands();
9118  SDLoc dl(N);
9119  EVT VT = N->getValueType(0);
9120
9121  // A vector built entirely of undefs is undef.
9122  if (ISD::allOperandsUndef(N))
9123    return DAG.getUNDEF(VT);
9124
9125  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9126  if (V.getNode())
9127    return V;
9128
9129  V = reduceBuildVecConvertToConvertBuildVec(N);
9130  if (V.getNode())
9131    return V;
9132
9133  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9134  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9135  // at most two distinct vectors, turn this into a shuffle node.
9136
9137  // May only combine to shuffle after legalize if shuffle is legal.
9138  if (LegalOperations &&
9139      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9140    return SDValue();
9141
9142  SDValue VecIn1, VecIn2;
9143  for (unsigned i = 0; i != NumInScalars; ++i) {
9144    // Ignore undef inputs.
9145    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9146
9147    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9148    // constant index, bail out.
9149    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9150        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9151      VecIn1 = VecIn2 = SDValue(0, 0);
9152      break;
9153    }
9154
9155    // We allow up to two distinct input vectors.
9156    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9157    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9158      continue;
9159
9160    if (VecIn1.getNode() == 0) {
9161      VecIn1 = ExtractedFromVec;
9162    } else if (VecIn2.getNode() == 0) {
9163      VecIn2 = ExtractedFromVec;
9164    } else {
9165      // Too many inputs.
9166      VecIn1 = VecIn2 = SDValue(0, 0);
9167      break;
9168    }
9169  }
9170
9171    // If everything is good, we can make a shuffle operation.
9172  if (VecIn1.getNode()) {
9173    SmallVector<int, 8> Mask;
9174    for (unsigned i = 0; i != NumInScalars; ++i) {
9175      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9176        Mask.push_back(-1);
9177        continue;
9178      }
9179
9180      // If extracting from the first vector, just use the index directly.
9181      SDValue Extract = N->getOperand(i);
9182      SDValue ExtVal = Extract.getOperand(1);
9183      if (Extract.getOperand(0) == VecIn1) {
9184        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9185        if (ExtIndex > VT.getVectorNumElements())
9186          return SDValue();
9187
9188        Mask.push_back(ExtIndex);
9189        continue;
9190      }
9191
9192      // Otherwise, use InIdx + VecSize
9193      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9194      Mask.push_back(Idx+NumInScalars);
9195    }
9196
9197    // We can't generate a shuffle node with mismatched input and output types.
9198    // Attempt to transform a single input vector to the correct type.
9199    if ((VT != VecIn1.getValueType())) {
9200      // We don't support shuffeling between TWO values of different types.
9201      if (VecIn2.getNode() != 0)
9202        return SDValue();
9203
9204      // We only support widening of vectors which are half the size of the
9205      // output registers. For example XMM->YMM widening on X86 with AVX.
9206      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9207        return SDValue();
9208
9209      // If the input vector type has a different base type to the output
9210      // vector type, bail out.
9211      if (VecIn1.getValueType().getVectorElementType() !=
9212          VT.getVectorElementType())
9213        return SDValue();
9214
9215      // Widen the input vector by adding undef values.
9216      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9217                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9218    }
9219
9220    // If VecIn2 is unused then change it to undef.
9221    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9222
9223    // Check that we were able to transform all incoming values to the same
9224    // type.
9225    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9226        VecIn1.getValueType() != VT)
9227          return SDValue();
9228
9229    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9230    if (!isTypeLegal(VT))
9231      return SDValue();
9232
9233    // Return the new VECTOR_SHUFFLE node.
9234    SDValue Ops[2];
9235    Ops[0] = VecIn1;
9236    Ops[1] = VecIn2;
9237    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9238  }
9239
9240  return SDValue();
9241}
9242
9243SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9244  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9245  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9246  // inputs come from at most two distinct vectors, turn this into a shuffle
9247  // node.
9248
9249  // If we only have one input vector, we don't need to do any concatenation.
9250  if (N->getNumOperands() == 1)
9251    return N->getOperand(0);
9252
9253  // Check if all of the operands are undefs.
9254  if (ISD::allOperandsUndef(N))
9255    return DAG.getUNDEF(N->getValueType(0));
9256
9257  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9258  // nodes often generate nop CONCAT_VECTOR nodes.
9259  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9260  // place the incoming vectors at the exact same location.
9261  SDValue SingleSource = SDValue();
9262  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9263
9264  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9265    SDValue Op = N->getOperand(i);
9266
9267    if (Op.getOpcode() == ISD::UNDEF)
9268      continue;
9269
9270    // Check if this is the identity extract:
9271    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9272      return SDValue();
9273
9274    // Find the single incoming vector for the extract_subvector.
9275    if (SingleSource.getNode()) {
9276      if (Op.getOperand(0) != SingleSource)
9277        return SDValue();
9278    } else {
9279      SingleSource = Op.getOperand(0);
9280
9281      // Check the source type is the same as the type of the result.
9282      // If not, this concat may extend the vector, so we can not
9283      // optimize it away.
9284      if (SingleSource.getValueType() != N->getValueType(0))
9285        return SDValue();
9286    }
9287
9288    unsigned IdentityIndex = i * PartNumElem;
9289    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9290    // The extract index must be constant.
9291    if (!CS)
9292      return SDValue();
9293
9294    // Check that we are reading from the identity index.
9295    if (CS->getZExtValue() != IdentityIndex)
9296      return SDValue();
9297  }
9298
9299  if (SingleSource.getNode())
9300    return SingleSource;
9301
9302  return SDValue();
9303}
9304
9305SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9306  EVT NVT = N->getValueType(0);
9307  SDValue V = N->getOperand(0);
9308
9309  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9310    // Combine:
9311    //    (extract_subvec (concat V1, V2, ...), i)
9312    // Into:
9313    //    Vi if possible
9314    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
9315    if (V->getOperand(0).getValueType() != NVT)
9316      return SDValue();
9317    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9318    unsigned NumElems = NVT.getVectorNumElements();
9319    assert((Idx % NumElems) == 0 &&
9320           "IDX in concat is not a multiple of the result vector length.");
9321    return V->getOperand(Idx / NumElems);
9322  }
9323
9324  // Skip bitcasting
9325  if (V->getOpcode() == ISD::BITCAST)
9326    V = V.getOperand(0);
9327
9328  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9329    SDLoc dl(N);
9330    // Handle only simple case where vector being inserted and vector
9331    // being extracted are of same type, and are half size of larger vectors.
9332    EVT BigVT = V->getOperand(0).getValueType();
9333    EVT SmallVT = V->getOperand(1).getValueType();
9334    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9335      return SDValue();
9336
9337    // Only handle cases where both indexes are constants with the same type.
9338    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9339    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9340
9341    if (InsIdx && ExtIdx &&
9342        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9343        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9344      // Combine:
9345      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9346      // Into:
9347      //    indices are equal or bit offsets are equal => V1
9348      //    otherwise => (extract_subvec V1, ExtIdx)
9349      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9350          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9351        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9352      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9353                         DAG.getNode(ISD::BITCAST, dl,
9354                                     N->getOperand(0).getValueType(),
9355                                     V->getOperand(0)), N->getOperand(1));
9356    }
9357  }
9358
9359  return SDValue();
9360}
9361
9362// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9363static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9364  EVT VT = N->getValueType(0);
9365  unsigned NumElts = VT.getVectorNumElements();
9366
9367  SDValue N0 = N->getOperand(0);
9368  SDValue N1 = N->getOperand(1);
9369  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9370
9371  SmallVector<SDValue, 4> Ops;
9372  EVT ConcatVT = N0.getOperand(0).getValueType();
9373  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9374  unsigned NumConcats = NumElts / NumElemsPerConcat;
9375
9376  // Look at every vector that's inserted. We're looking for exact
9377  // subvector-sized copies from a concatenated vector
9378  for (unsigned I = 0; I != NumConcats; ++I) {
9379    // Make sure we're dealing with a copy.
9380    unsigned Begin = I * NumElemsPerConcat;
9381    bool AllUndef = true, NoUndef = true;
9382    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9383      if (SVN->getMaskElt(J) >= 0)
9384        AllUndef = false;
9385      else
9386        NoUndef = false;
9387    }
9388
9389    if (NoUndef) {
9390      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9391        return SDValue();
9392
9393      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9394        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9395          return SDValue();
9396
9397      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9398      if (FirstElt < N0.getNumOperands())
9399        Ops.push_back(N0.getOperand(FirstElt));
9400      else
9401        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9402
9403    } else if (AllUndef) {
9404      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9405    } else { // Mixed with general masks and undefs, can't do optimization.
9406      return SDValue();
9407    }
9408  }
9409
9410  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9411                     Ops.size());
9412}
9413
9414SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9415  EVT VT = N->getValueType(0);
9416  unsigned NumElts = VT.getVectorNumElements();
9417
9418  SDValue N0 = N->getOperand(0);
9419  SDValue N1 = N->getOperand(1);
9420
9421  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
9422
9423  // Canonicalize shuffle undef, undef -> undef
9424  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
9425    return DAG.getUNDEF(VT);
9426
9427  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9428
9429  // Canonicalize shuffle v, v -> v, undef
9430  if (N0 == N1) {
9431    SmallVector<int, 8> NewMask;
9432    for (unsigned i = 0; i != NumElts; ++i) {
9433      int Idx = SVN->getMaskElt(i);
9434      if (Idx >= (int)NumElts) Idx -= NumElts;
9435      NewMask.push_back(Idx);
9436    }
9437    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
9438                                &NewMask[0]);
9439  }
9440
9441  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
9442  if (N0.getOpcode() == ISD::UNDEF) {
9443    SmallVector<int, 8> NewMask;
9444    for (unsigned i = 0; i != NumElts; ++i) {
9445      int Idx = SVN->getMaskElt(i);
9446      if (Idx >= 0) {
9447        if (Idx >= (int)NumElts)
9448          Idx -= NumElts;
9449        else
9450          Idx = -1; // remove reference to lhs
9451      }
9452      NewMask.push_back(Idx);
9453    }
9454    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
9455                                &NewMask[0]);
9456  }
9457
9458  // Remove references to rhs if it is undef
9459  if (N1.getOpcode() == ISD::UNDEF) {
9460    bool Changed = false;
9461    SmallVector<int, 8> NewMask;
9462    for (unsigned i = 0; i != NumElts; ++i) {
9463      int Idx = SVN->getMaskElt(i);
9464      if (Idx >= (int)NumElts) {
9465        Idx = -1;
9466        Changed = true;
9467      }
9468      NewMask.push_back(Idx);
9469    }
9470    if (Changed)
9471      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
9472  }
9473
9474  // If it is a splat, check if the argument vector is another splat or a
9475  // build_vector with all scalar elements the same.
9476  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
9477    SDNode *V = N0.getNode();
9478
9479    // If this is a bit convert that changes the element type of the vector but
9480    // not the number of vector elements, look through it.  Be careful not to
9481    // look though conversions that change things like v4f32 to v2f64.
9482    if (V->getOpcode() == ISD::BITCAST) {
9483      SDValue ConvInput = V->getOperand(0);
9484      if (ConvInput.getValueType().isVector() &&
9485          ConvInput.getValueType().getVectorNumElements() == NumElts)
9486        V = ConvInput.getNode();
9487    }
9488
9489    if (V->getOpcode() == ISD::BUILD_VECTOR) {
9490      assert(V->getNumOperands() == NumElts &&
9491             "BUILD_VECTOR has wrong number of operands");
9492      SDValue Base;
9493      bool AllSame = true;
9494      for (unsigned i = 0; i != NumElts; ++i) {
9495        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
9496          Base = V->getOperand(i);
9497          break;
9498        }
9499      }
9500      // Splat of <u, u, u, u>, return <u, u, u, u>
9501      if (!Base.getNode())
9502        return N0;
9503      for (unsigned i = 0; i != NumElts; ++i) {
9504        if (V->getOperand(i) != Base) {
9505          AllSame = false;
9506          break;
9507        }
9508      }
9509      // Splat of <x, x, x, x>, return <x, x, x, x>
9510      if (AllSame)
9511        return N0;
9512    }
9513  }
9514
9515  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
9516      Level < AfterLegalizeVectorOps &&
9517      (N1.getOpcode() == ISD::UNDEF ||
9518      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
9519       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
9520    SDValue V = partitionShuffleOfConcats(N, DAG);
9521
9522    if (V.getNode())
9523      return V;
9524  }
9525
9526  // If this shuffle node is simply a swizzle of another shuffle node,
9527  // and it reverses the swizzle of the previous shuffle then we can
9528  // optimize shuffle(shuffle(x, undef), undef) -> x.
9529  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
9530      N1.getOpcode() == ISD::UNDEF) {
9531
9532    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
9533
9534    // Shuffle nodes can only reverse shuffles with a single non-undef value.
9535    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
9536      return SDValue();
9537
9538    // The incoming shuffle must be of the same type as the result of the
9539    // current shuffle.
9540    assert(OtherSV->getOperand(0).getValueType() == VT &&
9541           "Shuffle types don't match");
9542
9543    for (unsigned i = 0; i != NumElts; ++i) {
9544      int Idx = SVN->getMaskElt(i);
9545      assert(Idx < (int)NumElts && "Index references undef operand");
9546      // Next, this index comes from the first value, which is the incoming
9547      // shuffle. Adopt the incoming index.
9548      if (Idx >= 0)
9549        Idx = OtherSV->getMaskElt(Idx);
9550
9551      // The combined shuffle must map each index to itself.
9552      if (Idx >= 0 && (unsigned)Idx != i)
9553        return SDValue();
9554    }
9555
9556    return OtherSV->getOperand(0);
9557  }
9558
9559  return SDValue();
9560}
9561
9562/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9563/// an AND to a vector_shuffle with the destination vector and a zero vector.
9564/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9565///      vector_shuffle V, Zero, <0, 4, 2, 4>
9566SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9567  EVT VT = N->getValueType(0);
9568  SDLoc dl(N);
9569  SDValue LHS = N->getOperand(0);
9570  SDValue RHS = N->getOperand(1);
9571  if (N->getOpcode() == ISD::AND) {
9572    if (RHS.getOpcode() == ISD::BITCAST)
9573      RHS = RHS.getOperand(0);
9574    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9575      SmallVector<int, 8> Indices;
9576      unsigned NumElts = RHS.getNumOperands();
9577      for (unsigned i = 0; i != NumElts; ++i) {
9578        SDValue Elt = RHS.getOperand(i);
9579        if (!isa<ConstantSDNode>(Elt))
9580          return SDValue();
9581
9582        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9583          Indices.push_back(i);
9584        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9585          Indices.push_back(NumElts);
9586        else
9587          return SDValue();
9588      }
9589
9590      // Let's see if the target supports this vector_shuffle.
9591      EVT RVT = RHS.getValueType();
9592      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9593        return SDValue();
9594
9595      // Return the new VECTOR_SHUFFLE node.
9596      EVT EltVT = RVT.getVectorElementType();
9597      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9598                                     DAG.getConstant(0, EltVT));
9599      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9600                                 RVT, &ZeroOps[0], ZeroOps.size());
9601      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9602      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9603      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9604    }
9605  }
9606
9607  return SDValue();
9608}
9609
9610/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9611SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9612  assert(N->getValueType(0).isVector() &&
9613         "SimplifyVBinOp only works on vectors!");
9614
9615  SDValue LHS = N->getOperand(0);
9616  SDValue RHS = N->getOperand(1);
9617  SDValue Shuffle = XformToShuffleWithZero(N);
9618  if (Shuffle.getNode()) return Shuffle;
9619
9620  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9621  // this operation.
9622  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9623      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9624    SmallVector<SDValue, 8> Ops;
9625    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9626      SDValue LHSOp = LHS.getOperand(i);
9627      SDValue RHSOp = RHS.getOperand(i);
9628      // If these two elements can't be folded, bail out.
9629      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9630           LHSOp.getOpcode() != ISD::Constant &&
9631           LHSOp.getOpcode() != ISD::ConstantFP) ||
9632          (RHSOp.getOpcode() != ISD::UNDEF &&
9633           RHSOp.getOpcode() != ISD::Constant &&
9634           RHSOp.getOpcode() != ISD::ConstantFP))
9635        break;
9636
9637      // Can't fold divide by zero.
9638      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9639          N->getOpcode() == ISD::FDIV) {
9640        if ((RHSOp.getOpcode() == ISD::Constant &&
9641             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9642            (RHSOp.getOpcode() == ISD::ConstantFP &&
9643             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9644          break;
9645      }
9646
9647      EVT VT = LHSOp.getValueType();
9648      EVT RVT = RHSOp.getValueType();
9649      if (RVT != VT) {
9650        // Integer BUILD_VECTOR operands may have types larger than the element
9651        // size (e.g., when the element type is not legal).  Prior to type
9652        // legalization, the types may not match between the two BUILD_VECTORS.
9653        // Truncate one of the operands to make them match.
9654        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9655          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
9656        } else {
9657          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
9658          VT = RVT;
9659        }
9660      }
9661      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
9662                                   LHSOp, RHSOp);
9663      if (FoldOp.getOpcode() != ISD::UNDEF &&
9664          FoldOp.getOpcode() != ISD::Constant &&
9665          FoldOp.getOpcode() != ISD::ConstantFP)
9666        break;
9667      Ops.push_back(FoldOp);
9668      AddToWorkList(FoldOp.getNode());
9669    }
9670
9671    if (Ops.size() == LHS.getNumOperands())
9672      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9673                         LHS.getValueType(), &Ops[0], Ops.size());
9674  }
9675
9676  return SDValue();
9677}
9678
9679/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9680SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9681  assert(N->getValueType(0).isVector() &&
9682         "SimplifyVUnaryOp only works on vectors!");
9683
9684  SDValue N0 = N->getOperand(0);
9685
9686  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9687    return SDValue();
9688
9689  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9690  SmallVector<SDValue, 8> Ops;
9691  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9692    SDValue Op = N0.getOperand(i);
9693    if (Op.getOpcode() != ISD::UNDEF &&
9694        Op.getOpcode() != ISD::ConstantFP)
9695      break;
9696    EVT EltVT = Op.getValueType();
9697    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
9698    if (FoldOp.getOpcode() != ISD::UNDEF &&
9699        FoldOp.getOpcode() != ISD::ConstantFP)
9700      break;
9701    Ops.push_back(FoldOp);
9702    AddToWorkList(FoldOp.getNode());
9703  }
9704
9705  if (Ops.size() != N0.getNumOperands())
9706    return SDValue();
9707
9708  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9709                     N0.getValueType(), &Ops[0], Ops.size());
9710}
9711
9712SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
9713                                    SDValue N1, SDValue N2){
9714  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9715
9716  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9717                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9718
9719  // If we got a simplified select_cc node back from SimplifySelectCC, then
9720  // break it down into a new SETCC node, and a new SELECT node, and then return
9721  // the SELECT node, since we were called with a SELECT node.
9722  if (SCC.getNode()) {
9723    // Check to see if we got a select_cc back (to turn into setcc/select).
9724    // Otherwise, just return whatever node we got back, like fabs.
9725    if (SCC.getOpcode() == ISD::SELECT_CC) {
9726      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
9727                                  N0.getValueType(),
9728                                  SCC.getOperand(0), SCC.getOperand(1),
9729                                  SCC.getOperand(4));
9730      AddToWorkList(SETCC.getNode());
9731      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
9732                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
9733    }
9734
9735    return SCC;
9736  }
9737  return SDValue();
9738}
9739
9740/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9741/// are the two values being selected between, see if we can simplify the
9742/// select.  Callers of this should assume that TheSelect is deleted if this
9743/// returns true.  As such, they should return the appropriate thing (e.g. the
9744/// node) back to the top-level of the DAG combiner loop to avoid it being
9745/// looked at.
9746bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9747                                    SDValue RHS) {
9748
9749  // Cannot simplify select with vector condition
9750  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9751
9752  // If this is a select from two identical things, try to pull the operation
9753  // through the select.
9754  if (LHS.getOpcode() != RHS.getOpcode() ||
9755      !LHS.hasOneUse() || !RHS.hasOneUse())
9756    return false;
9757
9758  // If this is a load and the token chain is identical, replace the select
9759  // of two loads with a load through a select of the address to load from.
9760  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9761  // constants have been dropped into the constant pool.
9762  if (LHS.getOpcode() == ISD::LOAD) {
9763    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9764    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9765
9766    // Token chains must be identical.
9767    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9768        // Do not let this transformation reduce the number of volatile loads.
9769        LLD->isVolatile() || RLD->isVolatile() ||
9770        // If this is an EXTLOAD, the VT's must match.
9771        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9772        // If this is an EXTLOAD, the kind of extension must match.
9773        (LLD->getExtensionType() != RLD->getExtensionType() &&
9774         // The only exception is if one of the extensions is anyext.
9775         LLD->getExtensionType() != ISD::EXTLOAD &&
9776         RLD->getExtensionType() != ISD::EXTLOAD) ||
9777        // FIXME: this discards src value information.  This is
9778        // over-conservative. It would be beneficial to be able to remember
9779        // both potential memory locations.  Since we are discarding
9780        // src value info, don't do the transformation if the memory
9781        // locations are not in the default address space.
9782        LLD->getPointerInfo().getAddrSpace() != 0 ||
9783        RLD->getPointerInfo().getAddrSpace() != 0 ||
9784        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
9785                                      LLD->getBasePtr().getValueType()))
9786      return false;
9787
9788    // Check that the select condition doesn't reach either load.  If so,
9789    // folding this will induce a cycle into the DAG.  If not, this is safe to
9790    // xform, so create a select of the addresses.
9791    SDValue Addr;
9792    if (TheSelect->getOpcode() == ISD::SELECT) {
9793      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9794      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9795          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9796        return false;
9797      // The loads must not depend on one another.
9798      if (LLD->isPredecessorOf(RLD) ||
9799          RLD->isPredecessorOf(LLD))
9800        return false;
9801      Addr = DAG.getSelect(SDLoc(TheSelect),
9802                           LLD->getBasePtr().getValueType(),
9803                           TheSelect->getOperand(0), LLD->getBasePtr(),
9804                           RLD->getBasePtr());
9805    } else {  // Otherwise SELECT_CC
9806      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9807      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9808
9809      if ((LLD->hasAnyUseOfValue(1) &&
9810           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9811          (RLD->hasAnyUseOfValue(1) &&
9812           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9813        return false;
9814
9815      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
9816                         LLD->getBasePtr().getValueType(),
9817                         TheSelect->getOperand(0),
9818                         TheSelect->getOperand(1),
9819                         LLD->getBasePtr(), RLD->getBasePtr(),
9820                         TheSelect->getOperand(4));
9821    }
9822
9823    SDValue Load;
9824    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9825      Load = DAG.getLoad(TheSelect->getValueType(0),
9826                         SDLoc(TheSelect),
9827                         // FIXME: Discards pointer info.
9828                         LLD->getChain(), Addr, MachinePointerInfo(),
9829                         LLD->isVolatile(), LLD->isNonTemporal(),
9830                         LLD->isInvariant(), LLD->getAlignment());
9831    } else {
9832      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9833                            RLD->getExtensionType() : LLD->getExtensionType(),
9834                            SDLoc(TheSelect),
9835                            TheSelect->getValueType(0),
9836                            // FIXME: Discards pointer info.
9837                            LLD->getChain(), Addr, MachinePointerInfo(),
9838                            LLD->getMemoryVT(), LLD->isVolatile(),
9839                            LLD->isNonTemporal(), LLD->getAlignment());
9840    }
9841
9842    // Users of the select now use the result of the load.
9843    CombineTo(TheSelect, Load);
9844
9845    // Users of the old loads now use the new load's chain.  We know the
9846    // old-load value is dead now.
9847    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9848    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9849    return true;
9850  }
9851
9852  return false;
9853}
9854
9855/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9856/// where 'cond' is the comparison specified by CC.
9857SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
9858                                      SDValue N2, SDValue N3,
9859                                      ISD::CondCode CC, bool NotExtCompare) {
9860  // (x ? y : y) -> y.
9861  if (N2 == N3) return N2;
9862
9863  EVT VT = N2.getValueType();
9864  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9865  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9866  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9867
9868  // Determine if the condition we're dealing with is constant
9869  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
9870                              N0, N1, CC, DL, false);
9871  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9872  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9873
9874  // fold select_cc true, x, y -> x
9875  if (SCCC && !SCCC->isNullValue())
9876    return N2;
9877  // fold select_cc false, x, y -> y
9878  if (SCCC && SCCC->isNullValue())
9879    return N3;
9880
9881  // Check to see if we can simplify the select into an fabs node
9882  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9883    // Allow either -0.0 or 0.0
9884    if (CFP->getValueAPF().isZero()) {
9885      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9886      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9887          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9888          N2 == N3.getOperand(0))
9889        return DAG.getNode(ISD::FABS, DL, VT, N0);
9890
9891      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9892      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9893          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9894          N2.getOperand(0) == N3)
9895        return DAG.getNode(ISD::FABS, DL, VT, N3);
9896    }
9897  }
9898
9899  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9900  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9901  // in it.  This is a win when the constant is not otherwise available because
9902  // it replaces two constant pool loads with one.  We only do this if the FP
9903  // type is known to be legal, because if it isn't, then we are before legalize
9904  // types an we want the other legalization to happen first (e.g. to avoid
9905  // messing with soft float) and if the ConstantFP is not legal, because if
9906  // it is legal, we may not need to store the FP constant in a constant pool.
9907  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9908    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9909      if (TLI.isTypeLegal(N2.getValueType()) &&
9910          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9911           TargetLowering::Legal) &&
9912          // If both constants have multiple uses, then we won't need to do an
9913          // extra load, they are likely around in registers for other users.
9914          (TV->hasOneUse() || FV->hasOneUse())) {
9915        Constant *Elts[] = {
9916          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9917          const_cast<ConstantFP*>(TV->getConstantFPValue())
9918        };
9919        Type *FPTy = Elts[0]->getType();
9920        const DataLayout &TD = *TLI.getDataLayout();
9921
9922        // Create a ConstantArray of the two constants.
9923        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9924        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9925                                            TD.getPrefTypeAlignment(FPTy));
9926        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9927
9928        // Get the offsets to the 0 and 1 element of the array so that we can
9929        // select between them.
9930        SDValue Zero = DAG.getIntPtrConstant(0);
9931        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9932        SDValue One = DAG.getIntPtrConstant(EltSize);
9933
9934        SDValue Cond = DAG.getSetCC(DL,
9935                                    getSetCCResultType(N0.getValueType()),
9936                                    N0, N1, CC);
9937        AddToWorkList(Cond.getNode());
9938        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
9939                                          Cond, One, Zero);
9940        AddToWorkList(CstOffset.getNode());
9941        CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
9942                            CstOffset);
9943        AddToWorkList(CPIdx.getNode());
9944        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9945                           MachinePointerInfo::getConstantPool(), false,
9946                           false, false, Alignment);
9947
9948      }
9949    }
9950
9951  // Check to see if we can perform the "gzip trick", transforming
9952  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9953  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9954      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9955       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9956    EVT XType = N0.getValueType();
9957    EVT AType = N2.getValueType();
9958    if (XType.bitsGE(AType)) {
9959      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9960      // single-bit constant.
9961      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9962        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9963        ShCtV = XType.getSizeInBits()-ShCtV-1;
9964        SDValue ShCt = DAG.getConstant(ShCtV,
9965                                       getShiftAmountTy(N0.getValueType()));
9966        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
9967                                    XType, N0, ShCt);
9968        AddToWorkList(Shift.getNode());
9969
9970        if (XType.bitsGT(AType)) {
9971          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9972          AddToWorkList(Shift.getNode());
9973        }
9974
9975        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9976      }
9977
9978      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
9979                                  XType, N0,
9980                                  DAG.getConstant(XType.getSizeInBits()-1,
9981                                         getShiftAmountTy(N0.getValueType())));
9982      AddToWorkList(Shift.getNode());
9983
9984      if (XType.bitsGT(AType)) {
9985        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9986        AddToWorkList(Shift.getNode());
9987      }
9988
9989      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9990    }
9991  }
9992
9993  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9994  // where y is has a single bit set.
9995  // A plaintext description would be, we can turn the SELECT_CC into an AND
9996  // when the condition can be materialized as an all-ones register.  Any
9997  // single bit-test can be materialized as an all-ones register with
9998  // shift-left and shift-right-arith.
9999  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
10000      N0->getValueType(0) == VT &&
10001      N1C && N1C->isNullValue() &&
10002      N2C && N2C->isNullValue()) {
10003    SDValue AndLHS = N0->getOperand(0);
10004    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10005    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
10006      // Shift the tested bit over the sign bit.
10007      APInt AndMask = ConstAndRHS->getAPIntValue();
10008      SDValue ShlAmt =
10009        DAG.getConstant(AndMask.countLeadingZeros(),
10010                        getShiftAmountTy(AndLHS.getValueType()));
10011      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
10012
10013      // Now arithmetic right shift it all the way over, so the result is either
10014      // all-ones, or zero.
10015      SDValue ShrAmt =
10016        DAG.getConstant(AndMask.getBitWidth()-1,
10017                        getShiftAmountTy(Shl.getValueType()));
10018      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
10019
10020      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
10021    }
10022  }
10023
10024  // fold select C, 16, 0 -> shl C, 4
10025  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
10026    TLI.getBooleanContents(N0.getValueType().isVector()) ==
10027      TargetLowering::ZeroOrOneBooleanContent) {
10028
10029    // If the caller doesn't want us to simplify this into a zext of a compare,
10030    // don't do it.
10031    if (NotExtCompare && N2C->getAPIntValue() == 1)
10032      return SDValue();
10033
10034    // Get a SetCC of the condition
10035    // NOTE: Don't create a SETCC if it's not legal on this target.
10036    if (!LegalOperations ||
10037        TLI.isOperationLegal(ISD::SETCC,
10038          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
10039      SDValue Temp, SCC;
10040      // cast from setcc result type to select result type
10041      if (LegalTypes) {
10042        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
10043                            N0, N1, CC);
10044        if (N2.getValueType().bitsLT(SCC.getValueType()))
10045          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
10046                                        N2.getValueType());
10047        else
10048          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10049                             N2.getValueType(), SCC);
10050      } else {
10051        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
10052        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10053                           N2.getValueType(), SCC);
10054      }
10055
10056      AddToWorkList(SCC.getNode());
10057      AddToWorkList(Temp.getNode());
10058
10059      if (N2C->getAPIntValue() == 1)
10060        return Temp;
10061
10062      // shl setcc result by log2 n2c
10063      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
10064                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
10065                                         getShiftAmountTy(Temp.getValueType())));
10066    }
10067  }
10068
10069  // Check to see if this is the equivalent of setcc
10070  // FIXME: Turn all of these into setcc if setcc if setcc is legal
10071  // otherwise, go ahead with the folds.
10072  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10073    EVT XType = N0.getValueType();
10074    if (!LegalOperations ||
10075        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10076      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10077      if (Res.getValueType() != VT)
10078        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10079      return Res;
10080    }
10081
10082    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10083    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10084        (!LegalOperations ||
10085         TLI.isOperationLegal(ISD::CTLZ, XType))) {
10086      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10087      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10088                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
10089                                       getShiftAmountTy(Ctlz.getValueType())));
10090    }
10091    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10092    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10093      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10094                                  XType, DAG.getConstant(0, XType), N0);
10095      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10096      return DAG.getNode(ISD::SRL, DL, XType,
10097                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10098                         DAG.getConstant(XType.getSizeInBits()-1,
10099                                         getShiftAmountTy(XType)));
10100    }
10101    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10102    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10103      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10104                                 DAG.getConstant(XType.getSizeInBits()-1,
10105                                         getShiftAmountTy(N0.getValueType())));
10106      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10107    }
10108  }
10109
10110  // Check to see if this is an integer abs.
10111  // select_cc setg[te] X,  0,  X, -X ->
10112  // select_cc setgt    X, -1,  X, -X ->
10113  // select_cc setl[te] X,  0, -X,  X ->
10114  // select_cc setlt    X,  1, -X,  X ->
10115  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10116  if (N1C) {
10117    ConstantSDNode *SubC = NULL;
10118    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10119         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10120        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10121      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10122    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10123              (N1C->isOne() && CC == ISD::SETLT)) &&
10124             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10125      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10126
10127    EVT XType = N0.getValueType();
10128    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10129      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10130                                  N0,
10131                                  DAG.getConstant(XType.getSizeInBits()-1,
10132                                         getShiftAmountTy(N0.getValueType())));
10133      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10134                                XType, N0, Shift);
10135      AddToWorkList(Shift.getNode());
10136      AddToWorkList(Add.getNode());
10137      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10138    }
10139  }
10140
10141  return SDValue();
10142}
10143
10144/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10145SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10146                                   SDValue N1, ISD::CondCode Cond,
10147                                   SDLoc DL, bool foldBooleans) {
10148  TargetLowering::DAGCombinerInfo
10149    DagCombineInfo(DAG, Level, false, this);
10150  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10151}
10152
10153/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10154/// return a DAG expression to select that will generate the same value by
10155/// multiplying by a magic number.  See:
10156/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10157SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10158  std::vector<SDNode*> Built;
10159  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10160
10161  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10162       ii != ee; ++ii)
10163    AddToWorkList(*ii);
10164  return S;
10165}
10166
10167/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10168/// return a DAG expression to select that will generate the same value by
10169/// multiplying by a magic number.  See:
10170/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10171SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10172  std::vector<SDNode*> Built;
10173  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10174
10175  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10176       ii != ee; ++ii)
10177    AddToWorkList(*ii);
10178  return S;
10179}
10180
10181/// FindBaseOffset - Return true if base is a frame index, which is known not
10182// to alias with anything but itself.  Provides base object and offset as
10183// results.
10184static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10185                           const GlobalValue *&GV, const void *&CV) {
10186  // Assume it is a primitive operation.
10187  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10188
10189  // If it's an adding a simple constant then integrate the offset.
10190  if (Base.getOpcode() == ISD::ADD) {
10191    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10192      Base = Base.getOperand(0);
10193      Offset += C->getZExtValue();
10194    }
10195  }
10196
10197  // Return the underlying GlobalValue, and update the Offset.  Return false
10198  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10199  // by multiple nodes with different offsets.
10200  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10201    GV = G->getGlobal();
10202    Offset += G->getOffset();
10203    return false;
10204  }
10205
10206  // Return the underlying Constant value, and update the Offset.  Return false
10207  // for ConstantSDNodes since the same constant pool entry may be represented
10208  // by multiple nodes with different offsets.
10209  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10210    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10211                                         : (const void *)C->getConstVal();
10212    Offset += C->getOffset();
10213    return false;
10214  }
10215  // If it's any of the following then it can't alias with anything but itself.
10216  return isa<FrameIndexSDNode>(Base);
10217}
10218
10219/// isAlias - Return true if there is any possibility that the two addresses
10220/// overlap.
10221bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
10222                          const Value *SrcValue1, int SrcValueOffset1,
10223                          unsigned SrcValueAlign1,
10224                          const MDNode *TBAAInfo1,
10225                          SDValue Ptr2, int64_t Size2,
10226                          const Value *SrcValue2, int SrcValueOffset2,
10227                          unsigned SrcValueAlign2,
10228                          const MDNode *TBAAInfo2) const {
10229  // If they are the same then they must be aliases.
10230  if (Ptr1 == Ptr2) return true;
10231
10232  // Gather base node and offset information.
10233  SDValue Base1, Base2;
10234  int64_t Offset1, Offset2;
10235  const GlobalValue *GV1, *GV2;
10236  const void *CV1, *CV2;
10237  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10238  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10239
10240  // If they have a same base address then check to see if they overlap.
10241  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10242    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10243
10244  // It is possible for different frame indices to alias each other, mostly
10245  // when tail call optimization reuses return address slots for arguments.
10246  // To catch this case, look up the actual index of frame indices to compute
10247  // the real alias relationship.
10248  if (isFrameIndex1 && isFrameIndex2) {
10249    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10250    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10251    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10252    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10253  }
10254
10255  // Otherwise, if we know what the bases are, and they aren't identical, then
10256  // we know they cannot alias.
10257  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10258    return false;
10259
10260  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10261  // compared to the size and offset of the access, we may be able to prove they
10262  // do not alias.  This check is conservative for now to catch cases created by
10263  // splitting vector types.
10264  if ((SrcValueAlign1 == SrcValueAlign2) &&
10265      (SrcValueOffset1 != SrcValueOffset2) &&
10266      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10267    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10268    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10269
10270    // There is no overlap between these relatively aligned accesses of similar
10271    // size, return no alias.
10272    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10273      return false;
10274  }
10275
10276  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
10277    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
10278  if (UseAA && SrcValue1 && SrcValue2) {
10279    // Use alias analysis information.
10280    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10281    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10282    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10283    AliasAnalysis::AliasResult AAResult =
10284      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10285               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10286    if (AAResult == AliasAnalysis::NoAlias)
10287      return false;
10288  }
10289
10290  // Otherwise we have to assume they alias.
10291  return true;
10292}
10293
10294bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10295  SDValue Ptr0, Ptr1;
10296  int64_t Size0, Size1;
10297  const Value *SrcValue0, *SrcValue1;
10298  int SrcValueOffset0, SrcValueOffset1;
10299  unsigned SrcValueAlign0, SrcValueAlign1;
10300  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10301  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
10302                SrcValueAlign0, SrcTBAAInfo0);
10303  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
10304                SrcValueAlign1, SrcTBAAInfo1);
10305  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
10306                 SrcValueAlign0, SrcTBAAInfo0,
10307                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
10308                 SrcValueAlign1, SrcTBAAInfo1);
10309}
10310
10311/// FindAliasInfo - Extracts the relevant alias information from the memory
10312/// node.  Returns true if the operand was a load.
10313bool DAGCombiner::FindAliasInfo(SDNode *N,
10314                                SDValue &Ptr, int64_t &Size,
10315                                const Value *&SrcValue,
10316                                int &SrcValueOffset,
10317                                unsigned &SrcValueAlign,
10318                                const MDNode *&TBAAInfo) const {
10319  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10320
10321  Ptr = LS->getBasePtr();
10322  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10323  SrcValue = LS->getSrcValue();
10324  SrcValueOffset = LS->getSrcValueOffset();
10325  SrcValueAlign = LS->getOriginalAlignment();
10326  TBAAInfo = LS->getTBAAInfo();
10327  return isa<LoadSDNode>(LS);
10328}
10329
10330/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10331/// looking for aliasing nodes and adding them to the Aliases vector.
10332void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10333                                   SmallVectorImpl<SDValue> &Aliases) {
10334  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10335  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10336
10337  // Get alias information for node.
10338  SDValue Ptr;
10339  int64_t Size;
10340  const Value *SrcValue;
10341  int SrcValueOffset;
10342  unsigned SrcValueAlign;
10343  const MDNode *SrcTBAAInfo;
10344  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10345                              SrcValueAlign, SrcTBAAInfo);
10346
10347  // Starting off.
10348  Chains.push_back(OriginalChain);
10349  unsigned Depth = 0;
10350
10351  // Look at each chain and determine if it is an alias.  If so, add it to the
10352  // aliases list.  If not, then continue up the chain looking for the next
10353  // candidate.
10354  while (!Chains.empty()) {
10355    SDValue Chain = Chains.back();
10356    Chains.pop_back();
10357
10358    // For TokenFactor nodes, look at each operand and only continue up the
10359    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10360    // find more and revert to original chain since the xform is unlikely to be
10361    // profitable.
10362    //
10363    // FIXME: The depth check could be made to return the last non-aliasing
10364    // chain we found before we hit a tokenfactor rather than the original
10365    // chain.
10366    if (Depth > 6 || Aliases.size() == 2) {
10367      Aliases.clear();
10368      Aliases.push_back(OriginalChain);
10369      break;
10370    }
10371
10372    // Don't bother if we've been before.
10373    if (!Visited.insert(Chain.getNode()))
10374      continue;
10375
10376    switch (Chain.getOpcode()) {
10377    case ISD::EntryToken:
10378      // Entry token is ideal chain operand, but handled in FindBetterChain.
10379      break;
10380
10381    case ISD::LOAD:
10382    case ISD::STORE: {
10383      // Get alias information for Chain.
10384      SDValue OpPtr;
10385      int64_t OpSize;
10386      const Value *OpSrcValue;
10387      int OpSrcValueOffset;
10388      unsigned OpSrcValueAlign;
10389      const MDNode *OpSrcTBAAInfo;
10390      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10391                                    OpSrcValue, OpSrcValueOffset,
10392                                    OpSrcValueAlign,
10393                                    OpSrcTBAAInfo);
10394
10395      // If chain is alias then stop here.
10396      if (!(IsLoad && IsOpLoad) &&
10397          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10398                  SrcTBAAInfo,
10399                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10400                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10401        Aliases.push_back(Chain);
10402      } else {
10403        // Look further up the chain.
10404        Chains.push_back(Chain.getOperand(0));
10405        ++Depth;
10406      }
10407      break;
10408    }
10409
10410    case ISD::TokenFactor:
10411      // We have to check each of the operands of the token factor for "small"
10412      // token factors, so we queue them up.  Adding the operands to the queue
10413      // (stack) in reverse order maintains the original order and increases the
10414      // likelihood that getNode will find a matching token factor (CSE.)
10415      if (Chain.getNumOperands() > 16) {
10416        Aliases.push_back(Chain);
10417        break;
10418      }
10419      for (unsigned n = Chain.getNumOperands(); n;)
10420        Chains.push_back(Chain.getOperand(--n));
10421      ++Depth;
10422      break;
10423
10424    default:
10425      // For all other instructions we will just have to take what we can get.
10426      Aliases.push_back(Chain);
10427      break;
10428    }
10429  }
10430}
10431
10432/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
10433/// for a better chain (aliasing node.)
10434SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
10435  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
10436
10437  // Accumulate all the aliases to this node.
10438  GatherAllAliases(N, OldChain, Aliases);
10439
10440  // If no operands then chain to entry token.
10441  if (Aliases.size() == 0)
10442    return DAG.getEntryNode();
10443
10444  // If a single operand then chain to it.  We don't need to revisit it.
10445  if (Aliases.size() == 1)
10446    return Aliases[0];
10447
10448  // Construct a custom tailored token factor.
10449  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
10450                     &Aliases[0], Aliases.size());
10451}
10452
10453// SelectionDAG::Combine - This is the entry point for the file.
10454//
10455void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
10456                           CodeGenOpt::Level OptLevel) {
10457  /// run - This is the main entry point to this class.
10458  ///
10459  DAGCombiner(*this, AA, OptLevel).Run(Level);
10460}
10461