DAGCombiner.cpp revision f79e60649a5edea03bdccf8521d77c15cbb33af4
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(*UI);
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op) {
122      APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
123      return SimplifyDemandedBits(Op, Demanded);
124    }
125
126    bool SimplifyDemandedBits(SDOperand Op, const APInt &Demanded);
127
128    bool CombineToPreIndexedLoadStore(SDNode *N);
129    bool CombineToPostIndexedLoadStore(SDNode *N);
130
131
132    /// combine - call the node-specific routine that knows how to fold each
133    /// particular type of node. If that doesn't do anything, try the
134    /// target-specific DAG combines.
135    SDOperand combine(SDNode *N);
136
137    // Visitation implementation - Implement dag node combining for different
138    // node types.  The semantics are as follows:
139    // Return Value:
140    //   SDOperand.Val == 0   - No change was made
141    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
142    //   otherwise            - N should be replaced by the returned Operand.
143    //
144    SDOperand visitTokenFactor(SDNode *N);
145    SDOperand visitMERGE_VALUES(SDNode *N);
146    SDOperand visitADD(SDNode *N);
147    SDOperand visitSUB(SDNode *N);
148    SDOperand visitADDC(SDNode *N);
149    SDOperand visitADDE(SDNode *N);
150    SDOperand visitMUL(SDNode *N);
151    SDOperand visitSDIV(SDNode *N);
152    SDOperand visitUDIV(SDNode *N);
153    SDOperand visitSREM(SDNode *N);
154    SDOperand visitUREM(SDNode *N);
155    SDOperand visitMULHU(SDNode *N);
156    SDOperand visitMULHS(SDNode *N);
157    SDOperand visitSMUL_LOHI(SDNode *N);
158    SDOperand visitUMUL_LOHI(SDNode *N);
159    SDOperand visitSDIVREM(SDNode *N);
160    SDOperand visitUDIVREM(SDNode *N);
161    SDOperand visitAND(SDNode *N);
162    SDOperand visitOR(SDNode *N);
163    SDOperand visitXOR(SDNode *N);
164    SDOperand SimplifyVBinOp(SDNode *N);
165    SDOperand visitSHL(SDNode *N);
166    SDOperand visitSRA(SDNode *N);
167    SDOperand visitSRL(SDNode *N);
168    SDOperand visitCTLZ(SDNode *N);
169    SDOperand visitCTTZ(SDNode *N);
170    SDOperand visitCTPOP(SDNode *N);
171    SDOperand visitSELECT(SDNode *N);
172    SDOperand visitSELECT_CC(SDNode *N);
173    SDOperand visitSETCC(SDNode *N);
174    SDOperand visitSIGN_EXTEND(SDNode *N);
175    SDOperand visitZERO_EXTEND(SDNode *N);
176    SDOperand visitANY_EXTEND(SDNode *N);
177    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
178    SDOperand visitTRUNCATE(SDNode *N);
179    SDOperand visitBIT_CONVERT(SDNode *N);
180    SDOperand visitFADD(SDNode *N);
181    SDOperand visitFSUB(SDNode *N);
182    SDOperand visitFMUL(SDNode *N);
183    SDOperand visitFDIV(SDNode *N);
184    SDOperand visitFREM(SDNode *N);
185    SDOperand visitFCOPYSIGN(SDNode *N);
186    SDOperand visitSINT_TO_FP(SDNode *N);
187    SDOperand visitUINT_TO_FP(SDNode *N);
188    SDOperand visitFP_TO_SINT(SDNode *N);
189    SDOperand visitFP_TO_UINT(SDNode *N);
190    SDOperand visitFP_ROUND(SDNode *N);
191    SDOperand visitFP_ROUND_INREG(SDNode *N);
192    SDOperand visitFP_EXTEND(SDNode *N);
193    SDOperand visitFNEG(SDNode *N);
194    SDOperand visitFABS(SDNode *N);
195    SDOperand visitBRCOND(SDNode *N);
196    SDOperand visitBR_CC(SDNode *N);
197    SDOperand visitLOAD(SDNode *N);
198    SDOperand visitSTORE(SDNode *N);
199    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
200    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
201    SDOperand visitBUILD_VECTOR(SDNode *N);
202    SDOperand visitCONCAT_VECTORS(SDNode *N);
203    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
204
205    SDOperand XformToShuffleWithZero(SDNode *N);
206    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
207
208    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
209
210    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
211    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
212    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
213    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
214                               SDOperand N3, ISD::CondCode CC,
215                               bool NotExtCompare = false);
216    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
217                            ISD::CondCode Cond, bool foldBooleans = true);
218    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
219                                         unsigned HiOp);
220    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
221    SDOperand BuildSDIV(SDNode *N);
222    SDOperand BuildUDIV(SDNode *N);
223    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
224    SDOperand ReduceLoadWidth(SDNode *N);
225
226    SDOperand GetDemandedBits(SDOperand V, const APInt &Mask);
227
228    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
229    /// looking for aliasing nodes and adding them to the Aliases vector.
230    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
231                          SmallVector<SDOperand, 8> &Aliases);
232
233    /// isAlias - Return true if there is any possibility that the two addresses
234    /// overlap.
235    bool isAlias(SDOperand Ptr1, int64_t Size1,
236                 const Value *SrcValue1, int SrcValueOffset1,
237                 SDOperand Ptr2, int64_t Size2,
238                 const Value *SrcValue2, int SrcValueOffset2);
239
240    /// FindAliasInfo - Extracts the relevant alias information from the memory
241    /// node.  Returns true if the operand was a load.
242    bool FindAliasInfo(SDNode *N,
243                       SDOperand &Ptr, int64_t &Size,
244                       const Value *&SrcValue, int &SrcValueOffset);
245
246    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
247    /// looking for a better chain (aliasing node.)
248    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
249
250public:
251    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
252      : DAG(D),
253        TLI(D.getTargetLoweringInfo()),
254        AfterLegalize(false),
255        AA(A) {}
256
257    /// Run - runs the dag combiner on all nodes in the work list
258    void Run(bool RunningAfterLegalize);
259  };
260}
261
262
263namespace {
264/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
265/// nodes from the worklist.
266class VISIBILITY_HIDDEN WorkListRemover :
267  public SelectionDAG::DAGUpdateListener {
268  DAGCombiner &DC;
269public:
270  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
271
272  virtual void NodeDeleted(SDNode *N) {
273    DC.removeFromWorkList(N);
274  }
275
276  virtual void NodeUpdated(SDNode *N) {
277    // Ignore updates.
278  }
279};
280}
281
282//===----------------------------------------------------------------------===//
283//  TargetLowering::DAGCombinerInfo implementation
284//===----------------------------------------------------------------------===//
285
286void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
287  ((DAGCombiner*)DC)->AddToWorkList(N);
288}
289
290SDOperand TargetLowering::DAGCombinerInfo::
291CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
292  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
293}
294
295SDOperand TargetLowering::DAGCombinerInfo::
296CombineTo(SDNode *N, SDOperand Res) {
297  return ((DAGCombiner*)DC)->CombineTo(N, Res);
298}
299
300
301SDOperand TargetLowering::DAGCombinerInfo::
302CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
303  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
304}
305
306
307//===----------------------------------------------------------------------===//
308// Helper Functions
309//===----------------------------------------------------------------------===//
310
311/// isNegatibleForFree - Return 1 if we can compute the negated form of the
312/// specified expression for the same cost as the expression itself, or 2 if we
313/// can compute the negated form more cheaply than the expression itself.
314static char isNegatibleForFree(SDOperand Op, bool AfterLegalize,
315                               unsigned Depth = 0) {
316  // No compile time optimizations on this type.
317  if (Op.getValueType() == MVT::ppcf128)
318    return 0;
319
320  // fneg is removable even if it has multiple uses.
321  if (Op.getOpcode() == ISD::FNEG) return 2;
322
323  // Don't allow anything with multiple uses.
324  if (!Op.hasOneUse()) return 0;
325
326  // Don't recurse exponentially.
327  if (Depth > 6) return 0;
328
329  switch (Op.getOpcode()) {
330  default: return false;
331  case ISD::ConstantFP:
332    // Don't invert constant FP values after legalize.  The negated constant
333    // isn't necessarily legal.
334    return AfterLegalize ? 0 : 1;
335  case ISD::FADD:
336    // FIXME: determine better conditions for this xform.
337    if (!UnsafeFPMath) return 0;
338
339    // -(A+B) -> -A - B
340    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
341      return V;
342    // -(A+B) -> -B - A
343    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
344  case ISD::FSUB:
345    // We can't turn -(A-B) into B-A when we honor signed zeros.
346    if (!UnsafeFPMath) return 0;
347
348    // -(A-B) -> B-A
349    return 1;
350
351  case ISD::FMUL:
352  case ISD::FDIV:
353    if (HonorSignDependentRoundingFPMath()) return 0;
354
355    // -(X*Y) -> (-X * Y) or (X*-Y)
356    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
357      return V;
358
359    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
360
361  case ISD::FP_EXTEND:
362  case ISD::FP_ROUND:
363  case ISD::FSIN:
364    return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1);
365  }
366}
367
368/// GetNegatedExpression - If isNegatibleForFree returns true, this function
369/// returns the newly negated expression.
370static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
371                                      bool AfterLegalize, unsigned Depth = 0) {
372  // fneg is removable even if it has multiple uses.
373  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
374
375  // Don't allow anything with multiple uses.
376  assert(Op.hasOneUse() && "Unknown reuse!");
377
378  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
379  switch (Op.getOpcode()) {
380  default: assert(0 && "Unknown code");
381  case ISD::ConstantFP: {
382    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
383    V.changeSign();
384    return DAG.getConstantFP(V, Op.getValueType());
385  }
386  case ISD::FADD:
387    // FIXME: determine better conditions for this xform.
388    assert(UnsafeFPMath);
389
390    // -(A+B) -> -A - B
391    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
392      return DAG.getNode(ISD::FSUB, Op.getValueType(),
393                         GetNegatedExpression(Op.getOperand(0), DAG,
394                                              AfterLegalize, Depth+1),
395                         Op.getOperand(1));
396    // -(A+B) -> -B - A
397    return DAG.getNode(ISD::FSUB, Op.getValueType(),
398                       GetNegatedExpression(Op.getOperand(1), DAG,
399                                            AfterLegalize, Depth+1),
400                       Op.getOperand(0));
401  case ISD::FSUB:
402    // We can't turn -(A-B) into B-A when we honor signed zeros.
403    assert(UnsafeFPMath);
404
405    // -(0-B) -> B
406    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
407      if (N0CFP->getValueAPF().isZero())
408        return Op.getOperand(1);
409
410    // -(A-B) -> B-A
411    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
412                       Op.getOperand(0));
413
414  case ISD::FMUL:
415  case ISD::FDIV:
416    assert(!HonorSignDependentRoundingFPMath());
417
418    // -(X*Y) -> -X * Y
419    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
420      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
421                         GetNegatedExpression(Op.getOperand(0), DAG,
422                                              AfterLegalize, Depth+1),
423                         Op.getOperand(1));
424
425    // -(X*Y) -> X * -Y
426    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
427                       Op.getOperand(0),
428                       GetNegatedExpression(Op.getOperand(1), DAG,
429                                            AfterLegalize, Depth+1));
430
431  case ISD::FP_EXTEND:
432  case ISD::FSIN:
433    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
434                       GetNegatedExpression(Op.getOperand(0), DAG,
435                                            AfterLegalize, Depth+1));
436  case ISD::FP_ROUND:
437      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
438                         GetNegatedExpression(Op.getOperand(0), DAG,
439                                              AfterLegalize, Depth+1),
440                         Op.getOperand(1));
441  }
442}
443
444
445// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
446// that selects between the values 1 and 0, making it equivalent to a setcc.
447// Also, set the incoming LHS, RHS, and CC references to the appropriate
448// nodes based on the type of node we are checking.  This simplifies life a
449// bit for the callers.
450static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
451                              SDOperand &CC) {
452  if (N.getOpcode() == ISD::SETCC) {
453    LHS = N.getOperand(0);
454    RHS = N.getOperand(1);
455    CC  = N.getOperand(2);
456    return true;
457  }
458  if (N.getOpcode() == ISD::SELECT_CC &&
459      N.getOperand(2).getOpcode() == ISD::Constant &&
460      N.getOperand(3).getOpcode() == ISD::Constant &&
461      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
462      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
463    LHS = N.getOperand(0);
464    RHS = N.getOperand(1);
465    CC  = N.getOperand(4);
466    return true;
467  }
468  return false;
469}
470
471// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
472// one use.  If this is true, it allows the users to invert the operation for
473// free when it is profitable to do so.
474static bool isOneUseSetCC(SDOperand N) {
475  SDOperand N0, N1, N2;
476  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
477    return true;
478  return false;
479}
480
481SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
482  MVT::ValueType VT = N0.getValueType();
483  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
484  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
485  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
486    if (isa<ConstantSDNode>(N1)) {
487      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
488      AddToWorkList(OpNode.Val);
489      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
490    } else if (N0.hasOneUse()) {
491      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
492      AddToWorkList(OpNode.Val);
493      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
494    }
495  }
496  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
497  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
498  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
499    if (isa<ConstantSDNode>(N0)) {
500      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
501      AddToWorkList(OpNode.Val);
502      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
503    } else if (N1.hasOneUse()) {
504      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
505      AddToWorkList(OpNode.Val);
506      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
507    }
508  }
509  return SDOperand();
510}
511
512SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
513                                 bool AddTo) {
514  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
515  ++NodesCombined;
516  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
517  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
518  DOUT << " and " << NumTo-1 << " other values\n";
519  WorkListRemover DeadNodes(*this);
520  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
521
522  if (AddTo) {
523    // Push the new nodes and any users onto the worklist
524    for (unsigned i = 0, e = NumTo; i != e; ++i) {
525      AddToWorkList(To[i].Val);
526      AddUsersToWorkList(To[i].Val);
527    }
528  }
529
530  // Nodes can be reintroduced into the worklist.  Make sure we do not
531  // process a node that has been replaced.
532  removeFromWorkList(N);
533
534  // Finally, since the node is now dead, remove it from the graph.
535  DAG.DeleteNode(N);
536  return SDOperand(N, 0);
537}
538
539/// SimplifyDemandedBits - Check the specified integer node value to see if
540/// it can be simplified or if things it uses can be simplified by bit
541/// propagation.  If so, return true.
542bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, const APInt &Demanded) {
543  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
544  APInt KnownZero, KnownOne;
545  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
546    return false;
547
548  // Revisit the node.
549  AddToWorkList(Op.Val);
550
551  // Replace the old value with the new one.
552  ++NodesCombined;
553  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
554  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
555  DOUT << '\n';
556
557  // Replace all uses.  If any nodes become isomorphic to other nodes and
558  // are deleted, make sure to remove them from our worklist.
559  WorkListRemover DeadNodes(*this);
560  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
561
562  // Push the new node and any (possibly new) users onto the worklist.
563  AddToWorkList(TLO.New.Val);
564  AddUsersToWorkList(TLO.New.Val);
565
566  // Finally, if the node is now dead, remove it from the graph.  The node
567  // may not be dead if the replacement process recursively simplified to
568  // something else needing this node.
569  if (TLO.Old.Val->use_empty()) {
570    removeFromWorkList(TLO.Old.Val);
571
572    // If the operands of this node are only used by the node, they will now
573    // be dead.  Make sure to visit them first to delete dead nodes early.
574    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
575      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
576        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
577
578    DAG.DeleteNode(TLO.Old.Val);
579  }
580  return true;
581}
582
583//===----------------------------------------------------------------------===//
584//  Main DAG Combiner implementation
585//===----------------------------------------------------------------------===//
586
587void DAGCombiner::Run(bool RunningAfterLegalize) {
588  // set the instance variable, so that the various visit routines may use it.
589  AfterLegalize = RunningAfterLegalize;
590
591  // Add all the dag nodes to the worklist.
592  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
593       E = DAG.allnodes_end(); I != E; ++I)
594    WorkList.push_back(I);
595
596  // Create a dummy node (which is not added to allnodes), that adds a reference
597  // to the root node, preventing it from being deleted, and tracking any
598  // changes of the root.
599  HandleSDNode Dummy(DAG.getRoot());
600
601  // The root of the dag may dangle to deleted nodes until the dag combiner is
602  // done.  Set it to null to avoid confusion.
603  DAG.setRoot(SDOperand());
604
605  // while the worklist isn't empty, inspect the node on the end of it and
606  // try and combine it.
607  while (!WorkList.empty()) {
608    SDNode *N = WorkList.back();
609    WorkList.pop_back();
610
611    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
612    // N is deleted from the DAG, since they too may now be dead or may have a
613    // reduced number of uses, allowing other xforms.
614    if (N->use_empty() && N != &Dummy) {
615      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
616        AddToWorkList(N->getOperand(i).Val);
617
618      DAG.DeleteNode(N);
619      continue;
620    }
621
622    SDOperand RV = combine(N);
623
624    if (RV.Val == 0)
625      continue;
626
627    ++NodesCombined;
628
629    // If we get back the same node we passed in, rather than a new node or
630    // zero, we know that the node must have defined multiple values and
631    // CombineTo was used.  Since CombineTo takes care of the worklist
632    // mechanics for us, we have no work to do in this case.
633    if (RV.Val == N)
634      continue;
635
636    assert(N->getOpcode() != ISD::DELETED_NODE &&
637           RV.Val->getOpcode() != ISD::DELETED_NODE &&
638           "Node was deleted but visit returned new node!");
639
640    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
641    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
642    DOUT << '\n';
643    WorkListRemover DeadNodes(*this);
644    if (N->getNumValues() == RV.Val->getNumValues())
645      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
646    else {
647      assert(N->getValueType(0) == RV.getValueType() &&
648             N->getNumValues() == 1 && "Type mismatch");
649      SDOperand OpV = RV;
650      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
651    }
652
653    // Push the new node and any users onto the worklist
654    AddToWorkList(RV.Val);
655    AddUsersToWorkList(RV.Val);
656
657    // Add any uses of the old node to the worklist in case this node is the
658    // last one that uses them.  They may become dead after this node is
659    // deleted.
660    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
661      AddToWorkList(N->getOperand(i).Val);
662
663    // Nodes can be reintroduced into the worklist.  Make sure we do not
664    // process a node that has been replaced.
665    removeFromWorkList(N);
666
667    // Finally, since the node is now dead, remove it from the graph.
668    DAG.DeleteNode(N);
669  }
670
671  // If the root changed (e.g. it was a dead load, update the root).
672  DAG.setRoot(Dummy.getValue());
673}
674
675SDOperand DAGCombiner::visit(SDNode *N) {
676  switch(N->getOpcode()) {
677  default: break;
678  case ISD::TokenFactor:        return visitTokenFactor(N);
679  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
680  case ISD::ADD:                return visitADD(N);
681  case ISD::SUB:                return visitSUB(N);
682  case ISD::ADDC:               return visitADDC(N);
683  case ISD::ADDE:               return visitADDE(N);
684  case ISD::MUL:                return visitMUL(N);
685  case ISD::SDIV:               return visitSDIV(N);
686  case ISD::UDIV:               return visitUDIV(N);
687  case ISD::SREM:               return visitSREM(N);
688  case ISD::UREM:               return visitUREM(N);
689  case ISD::MULHU:              return visitMULHU(N);
690  case ISD::MULHS:              return visitMULHS(N);
691  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
692  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
693  case ISD::SDIVREM:            return visitSDIVREM(N);
694  case ISD::UDIVREM:            return visitUDIVREM(N);
695  case ISD::AND:                return visitAND(N);
696  case ISD::OR:                 return visitOR(N);
697  case ISD::XOR:                return visitXOR(N);
698  case ISD::SHL:                return visitSHL(N);
699  case ISD::SRA:                return visitSRA(N);
700  case ISD::SRL:                return visitSRL(N);
701  case ISD::CTLZ:               return visitCTLZ(N);
702  case ISD::CTTZ:               return visitCTTZ(N);
703  case ISD::CTPOP:              return visitCTPOP(N);
704  case ISD::SELECT:             return visitSELECT(N);
705  case ISD::SELECT_CC:          return visitSELECT_CC(N);
706  case ISD::SETCC:              return visitSETCC(N);
707  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
708  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
709  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
710  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
711  case ISD::TRUNCATE:           return visitTRUNCATE(N);
712  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
713  case ISD::FADD:               return visitFADD(N);
714  case ISD::FSUB:               return visitFSUB(N);
715  case ISD::FMUL:               return visitFMUL(N);
716  case ISD::FDIV:               return visitFDIV(N);
717  case ISD::FREM:               return visitFREM(N);
718  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
719  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
720  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
721  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
722  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
723  case ISD::FP_ROUND:           return visitFP_ROUND(N);
724  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
725  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
726  case ISD::FNEG:               return visitFNEG(N);
727  case ISD::FABS:               return visitFABS(N);
728  case ISD::BRCOND:             return visitBRCOND(N);
729  case ISD::BR_CC:              return visitBR_CC(N);
730  case ISD::LOAD:               return visitLOAD(N);
731  case ISD::STORE:              return visitSTORE(N);
732  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
733  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
734  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
735  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
736  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
737  }
738  return SDOperand();
739}
740
741SDOperand DAGCombiner::combine(SDNode *N) {
742
743  SDOperand RV = visit(N);
744
745  // If nothing happened, try a target-specific DAG combine.
746  if (RV.Val == 0) {
747    assert(N->getOpcode() != ISD::DELETED_NODE &&
748           "Node was deleted but visit returned NULL!");
749
750    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
751        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
752
753      // Expose the DAG combiner to the target combiner impls.
754      TargetLowering::DAGCombinerInfo
755        DagCombineInfo(DAG, !AfterLegalize, false, this);
756
757      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
758    }
759  }
760
761  return RV;
762}
763
764/// getInputChainForNode - Given a node, return its input chain if it has one,
765/// otherwise return a null sd operand.
766static SDOperand getInputChainForNode(SDNode *N) {
767  if (unsigned NumOps = N->getNumOperands()) {
768    if (N->getOperand(0).getValueType() == MVT::Other)
769      return N->getOperand(0);
770    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
771      return N->getOperand(NumOps-1);
772    for (unsigned i = 1; i < NumOps-1; ++i)
773      if (N->getOperand(i).getValueType() == MVT::Other)
774        return N->getOperand(i);
775  }
776  return SDOperand(0, 0);
777}
778
779SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
780  // If N has two operands, where one has an input chain equal to the other,
781  // the 'other' chain is redundant.
782  if (N->getNumOperands() == 2) {
783    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
784      return N->getOperand(0);
785    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
786      return N->getOperand(1);
787  }
788
789  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
790  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
791  SmallPtrSet<SDNode*, 16> SeenOps;
792  bool Changed = false;             // If we should replace this token factor.
793
794  // Start out with this token factor.
795  TFs.push_back(N);
796
797  // Iterate through token factors.  The TFs grows when new token factors are
798  // encountered.
799  for (unsigned i = 0; i < TFs.size(); ++i) {
800    SDNode *TF = TFs[i];
801
802    // Check each of the operands.
803    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
804      SDOperand Op = TF->getOperand(i);
805
806      switch (Op.getOpcode()) {
807      case ISD::EntryToken:
808        // Entry tokens don't need to be added to the list. They are
809        // rededundant.
810        Changed = true;
811        break;
812
813      case ISD::TokenFactor:
814        if ((CombinerAA || Op.hasOneUse()) &&
815            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
816          // Queue up for processing.
817          TFs.push_back(Op.Val);
818          // Clean up in case the token factor is removed.
819          AddToWorkList(Op.Val);
820          Changed = true;
821          break;
822        }
823        // Fall thru
824
825      default:
826        // Only add if it isn't already in the list.
827        if (SeenOps.insert(Op.Val))
828          Ops.push_back(Op);
829        else
830          Changed = true;
831        break;
832      }
833    }
834  }
835
836  SDOperand Result;
837
838  // If we've change things around then replace token factor.
839  if (Changed) {
840    if (Ops.empty()) {
841      // The entry token is the only possible outcome.
842      Result = DAG.getEntryNode();
843    } else {
844      // New and improved token factor.
845      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
846    }
847
848    // Don't add users to work list.
849    return CombineTo(N, Result, false);
850  }
851
852  return Result;
853}
854
855/// MERGE_VALUES can always be eliminated.
856SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) {
857  WorkListRemover DeadNodes(*this);
858  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
859    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i),
860                                  &DeadNodes);
861  removeFromWorkList(N);
862  DAG.DeleteNode(N);
863  return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
864}
865
866
867static
868SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
869  MVT::ValueType VT = N0.getValueType();
870  SDOperand N00 = N0.getOperand(0);
871  SDOperand N01 = N0.getOperand(1);
872  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
873  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
874      isa<ConstantSDNode>(N00.getOperand(1))) {
875    N0 = DAG.getNode(ISD::ADD, VT,
876                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
877                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
878    return DAG.getNode(ISD::ADD, VT, N0, N1);
879  }
880  return SDOperand();
881}
882
883static
884SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
885                              SelectionDAG &DAG) {
886  MVT::ValueType VT = N->getValueType(0);
887  unsigned Opc = N->getOpcode();
888  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
889  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
890  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
891  ISD::CondCode CC = ISD::SETCC_INVALID;
892  if (isSlctCC)
893    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
894  else {
895    SDOperand CCOp = Slct.getOperand(0);
896    if (CCOp.getOpcode() == ISD::SETCC)
897      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
898  }
899
900  bool DoXform = false;
901  bool InvCC = false;
902  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
903          "Bad input!");
904  if (LHS.getOpcode() == ISD::Constant &&
905      cast<ConstantSDNode>(LHS)->isNullValue())
906    DoXform = true;
907  else if (CC != ISD::SETCC_INVALID &&
908           RHS.getOpcode() == ISD::Constant &&
909           cast<ConstantSDNode>(RHS)->isNullValue()) {
910    std::swap(LHS, RHS);
911    SDOperand Op0 = Slct.getOperand(0);
912    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
913                                : Op0.getOperand(0).getValueType());
914    CC = ISD::getSetCCInverse(CC, isInt);
915    DoXform = true;
916    InvCC = true;
917  }
918
919  if (DoXform) {
920    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
921    if (isSlctCC)
922      return DAG.getSelectCC(OtherOp, Result,
923                             Slct.getOperand(0), Slct.getOperand(1), CC);
924    SDOperand CCOp = Slct.getOperand(0);
925    if (InvCC)
926      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
927                          CCOp.getOperand(1), CC);
928    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
929  }
930  return SDOperand();
931}
932
933SDOperand DAGCombiner::visitADD(SDNode *N) {
934  SDOperand N0 = N->getOperand(0);
935  SDOperand N1 = N->getOperand(1);
936  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
937  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
938  MVT::ValueType VT = N0.getValueType();
939
940  // fold vector ops
941  if (MVT::isVector(VT)) {
942    SDOperand FoldedVOp = SimplifyVBinOp(N);
943    if (FoldedVOp.Val) return FoldedVOp;
944  }
945
946  // fold (add x, undef) -> undef
947  if (N0.getOpcode() == ISD::UNDEF)
948    return N0;
949  if (N1.getOpcode() == ISD::UNDEF)
950    return N1;
951  // fold (add c1, c2) -> c1+c2
952  if (N0C && N1C)
953    return DAG.getConstant(N0C->getValue() + N1C->getValue(), VT);
954  // canonicalize constant to RHS
955  if (N0C && !N1C)
956    return DAG.getNode(ISD::ADD, VT, N1, N0);
957  // fold (add x, 0) -> x
958  if (N1C && N1C->isNullValue())
959    return N0;
960  // fold ((c1-A)+c2) -> (c1+c2)-A
961  if (N1C && N0.getOpcode() == ISD::SUB)
962    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
963      return DAG.getNode(ISD::SUB, VT,
964                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
965                         N0.getOperand(1));
966  // reassociate add
967  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
968  if (RADD.Val != 0)
969    return RADD;
970  // fold ((0-A) + B) -> B-A
971  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
972      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
973    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
974  // fold (A + (0-B)) -> A-B
975  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
976      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
977    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
978  // fold (A+(B-A)) -> B
979  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
980    return N1.getOperand(0);
981
982  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
983    return SDOperand(N, 0);
984
985  // fold (a+b) -> (a|b) iff a and b share no bits.
986  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
987    APInt LHSZero, LHSOne;
988    APInt RHSZero, RHSOne;
989    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
990    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
991    if (LHSZero.getBoolValue()) {
992      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
993
994      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
995      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
996      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
997          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
998        return DAG.getNode(ISD::OR, VT, N0, N1);
999    }
1000  }
1001
1002  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1003  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
1004    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
1005    if (Result.Val) return Result;
1006  }
1007  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
1008    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
1009    if (Result.Val) return Result;
1010  }
1011
1012  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1013  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
1014    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
1015    if (Result.Val) return Result;
1016  }
1017  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1018    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1019    if (Result.Val) return Result;
1020  }
1021
1022  return SDOperand();
1023}
1024
1025SDOperand DAGCombiner::visitADDC(SDNode *N) {
1026  SDOperand N0 = N->getOperand(0);
1027  SDOperand N1 = N->getOperand(1);
1028  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1029  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1030  MVT::ValueType VT = N0.getValueType();
1031
1032  // If the flag result is dead, turn this into an ADD.
1033  if (N->hasNUsesOfValue(0, 1))
1034    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1035                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1036
1037  // canonicalize constant to RHS.
1038  if (N0C && !N1C) {
1039    SDOperand Ops[] = { N1, N0 };
1040    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1041  }
1042
1043  // fold (addc x, 0) -> x + no carry out
1044  if (N1C && N1C->isNullValue())
1045    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1046
1047  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1048  APInt LHSZero, LHSOne;
1049  APInt RHSZero, RHSOne;
1050  APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1051  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1052  if (LHSZero.getBoolValue()) {
1053    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1054
1055    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1056    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1057    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1058        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1059      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1060                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1061  }
1062
1063  return SDOperand();
1064}
1065
1066SDOperand DAGCombiner::visitADDE(SDNode *N) {
1067  SDOperand N0 = N->getOperand(0);
1068  SDOperand N1 = N->getOperand(1);
1069  SDOperand CarryIn = N->getOperand(2);
1070  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1071  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1072  //MVT::ValueType VT = N0.getValueType();
1073
1074  // canonicalize constant to RHS
1075  if (N0C && !N1C) {
1076    SDOperand Ops[] = { N1, N0, CarryIn };
1077    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1078  }
1079
1080  // fold (adde x, y, false) -> (addc x, y)
1081  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1082    SDOperand Ops[] = { N1, N0 };
1083    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1084  }
1085
1086  return SDOperand();
1087}
1088
1089
1090
1091SDOperand DAGCombiner::visitSUB(SDNode *N) {
1092  SDOperand N0 = N->getOperand(0);
1093  SDOperand N1 = N->getOperand(1);
1094  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1096  MVT::ValueType VT = N0.getValueType();
1097
1098  // fold vector ops
1099  if (MVT::isVector(VT)) {
1100    SDOperand FoldedVOp = SimplifyVBinOp(N);
1101    if (FoldedVOp.Val) return FoldedVOp;
1102  }
1103
1104  // fold (sub x, x) -> 0
1105  if (N0 == N1)
1106    if (ISD::isBuildVectorAllZeros(N0.Val))
1107      // Zero vectors might be normalized to a particular vector type to ensure
1108      // they are CSE'd. Return it as it is.
1109      return N0;
1110    return DAG.getConstant(0, N->getValueType(0));
1111  // fold (sub c1, c2) -> c1-c2
1112  if (N0C && N1C)
1113    return DAG.getNode(ISD::SUB, VT, N0, N1);
1114  // fold (sub x, c) -> (add x, -c)
1115  if (N1C)
1116    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1117  // fold (A+B)-A -> B
1118  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1119    return N0.getOperand(1);
1120  // fold (A+B)-B -> A
1121  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1122    return N0.getOperand(0);
1123  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1124  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1125    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1126    if (Result.Val) return Result;
1127  }
1128  // If either operand of a sub is undef, the result is undef
1129  if (N0.getOpcode() == ISD::UNDEF)
1130    return N0;
1131  if (N1.getOpcode() == ISD::UNDEF)
1132    return N1;
1133
1134  return SDOperand();
1135}
1136
1137SDOperand DAGCombiner::visitMUL(SDNode *N) {
1138  SDOperand N0 = N->getOperand(0);
1139  SDOperand N1 = N->getOperand(1);
1140  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1141  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1142  MVT::ValueType VT = N0.getValueType();
1143
1144  // fold vector ops
1145  if (MVT::isVector(VT)) {
1146    SDOperand FoldedVOp = SimplifyVBinOp(N);
1147    if (FoldedVOp.Val) return FoldedVOp;
1148  }
1149
1150  // fold (mul x, undef) -> 0
1151  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1152    return DAG.getConstant(0, VT);
1153  // fold (mul c1, c2) -> c1*c2
1154  if (N0C && N1C)
1155    return DAG.getNode(ISD::MUL, VT, N0, N1);
1156  // canonicalize constant to RHS
1157  if (N0C && !N1C)
1158    return DAG.getNode(ISD::MUL, VT, N1, N0);
1159  // fold (mul x, 0) -> 0
1160  if (N1C && N1C->isNullValue())
1161    return N1;
1162  // fold (mul x, -1) -> 0-x
1163  if (N1C && N1C->isAllOnesValue())
1164    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1165  // fold (mul x, (1 << c)) -> x << c
1166  if (N1C && isPowerOf2_64(N1C->getValue()))
1167    return DAG.getNode(ISD::SHL, VT, N0,
1168                       DAG.getConstant(Log2_64(N1C->getValue()),
1169                                       TLI.getShiftAmountTy()));
1170  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1171  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1172    // FIXME: If the input is something that is easily negated (e.g. a
1173    // single-use add), we should put the negate there.
1174    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1175                       DAG.getNode(ISD::SHL, VT, N0,
1176                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1177                                            TLI.getShiftAmountTy())));
1178  }
1179
1180  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1181  if (N1C && N0.getOpcode() == ISD::SHL &&
1182      isa<ConstantSDNode>(N0.getOperand(1))) {
1183    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1184    AddToWorkList(C3.Val);
1185    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1186  }
1187
1188  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1189  // use.
1190  {
1191    SDOperand Sh(0,0), Y(0,0);
1192    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1193    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1194        N0.Val->hasOneUse()) {
1195      Sh = N0; Y = N1;
1196    } else if (N1.getOpcode() == ISD::SHL &&
1197               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1198      Sh = N1; Y = N0;
1199    }
1200    if (Sh.Val) {
1201      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1202      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1203    }
1204  }
1205  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1206  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1207      isa<ConstantSDNode>(N0.getOperand(1))) {
1208    return DAG.getNode(ISD::ADD, VT,
1209                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1210                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1211  }
1212
1213  // reassociate mul
1214  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1215  if (RMUL.Val != 0)
1216    return RMUL;
1217
1218  return SDOperand();
1219}
1220
1221SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1222  SDOperand N0 = N->getOperand(0);
1223  SDOperand N1 = N->getOperand(1);
1224  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1225  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1226  MVT::ValueType VT = N->getValueType(0);
1227
1228  // fold vector ops
1229  if (MVT::isVector(VT)) {
1230    SDOperand FoldedVOp = SimplifyVBinOp(N);
1231    if (FoldedVOp.Val) return FoldedVOp;
1232  }
1233
1234  // fold (sdiv c1, c2) -> c1/c2
1235  if (N0C && N1C && !N1C->isNullValue())
1236    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1237  // fold (sdiv X, 1) -> X
1238  if (N1C && N1C->getSignExtended() == 1LL)
1239    return N0;
1240  // fold (sdiv X, -1) -> 0-X
1241  if (N1C && N1C->isAllOnesValue())
1242    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1243  // If we know the sign bits of both operands are zero, strength reduce to a
1244  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1245  if (!MVT::isVector(VT)) {
1246    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1247      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1248  }
1249  // fold (sdiv X, pow2) -> simple ops after legalize
1250  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1251      (isPowerOf2_64(N1C->getSignExtended()) ||
1252       isPowerOf2_64(-N1C->getSignExtended()))) {
1253    // If dividing by powers of two is cheap, then don't perform the following
1254    // fold.
1255    if (TLI.isPow2DivCheap())
1256      return SDOperand();
1257    int64_t pow2 = N1C->getSignExtended();
1258    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1259    unsigned lg2 = Log2_64(abs2);
1260    // Splat the sign bit into the register
1261    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1262                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1263                                                TLI.getShiftAmountTy()));
1264    AddToWorkList(SGN.Val);
1265    // Add (N0 < 0) ? abs2 - 1 : 0;
1266    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1267                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1268                                                TLI.getShiftAmountTy()));
1269    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1270    AddToWorkList(SRL.Val);
1271    AddToWorkList(ADD.Val);    // Divide by pow2
1272    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1273                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1274    // If we're dividing by a positive value, we're done.  Otherwise, we must
1275    // negate the result.
1276    if (pow2 > 0)
1277      return SRA;
1278    AddToWorkList(SRA.Val);
1279    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1280  }
1281  // if integer divide is expensive and we satisfy the requirements, emit an
1282  // alternate sequence.
1283  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1284      !TLI.isIntDivCheap()) {
1285    SDOperand Op = BuildSDIV(N);
1286    if (Op.Val) return Op;
1287  }
1288
1289  // undef / X -> 0
1290  if (N0.getOpcode() == ISD::UNDEF)
1291    return DAG.getConstant(0, VT);
1292  // X / undef -> undef
1293  if (N1.getOpcode() == ISD::UNDEF)
1294    return N1;
1295
1296  return SDOperand();
1297}
1298
1299SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1300  SDOperand N0 = N->getOperand(0);
1301  SDOperand N1 = N->getOperand(1);
1302  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1303  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1304  MVT::ValueType VT = N->getValueType(0);
1305
1306  // fold vector ops
1307  if (MVT::isVector(VT)) {
1308    SDOperand FoldedVOp = SimplifyVBinOp(N);
1309    if (FoldedVOp.Val) return FoldedVOp;
1310  }
1311
1312  // fold (udiv c1, c2) -> c1/c2
1313  if (N0C && N1C && !N1C->isNullValue())
1314    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1315  // fold (udiv x, (1 << c)) -> x >>u c
1316  if (N1C && isPowerOf2_64(N1C->getValue()))
1317    return DAG.getNode(ISD::SRL, VT, N0,
1318                       DAG.getConstant(Log2_64(N1C->getValue()),
1319                                       TLI.getShiftAmountTy()));
1320  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1321  if (N1.getOpcode() == ISD::SHL) {
1322    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1323      if (isPowerOf2_64(SHC->getValue())) {
1324        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1325        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1326                                    DAG.getConstant(Log2_64(SHC->getValue()),
1327                                                    ADDVT));
1328        AddToWorkList(Add.Val);
1329        return DAG.getNode(ISD::SRL, VT, N0, Add);
1330      }
1331    }
1332  }
1333  // fold (udiv x, c) -> alternate
1334  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1335    SDOperand Op = BuildUDIV(N);
1336    if (Op.Val) return Op;
1337  }
1338
1339  // undef / X -> 0
1340  if (N0.getOpcode() == ISD::UNDEF)
1341    return DAG.getConstant(0, VT);
1342  // X / undef -> undef
1343  if (N1.getOpcode() == ISD::UNDEF)
1344    return N1;
1345
1346  return SDOperand();
1347}
1348
1349SDOperand DAGCombiner::visitSREM(SDNode *N) {
1350  SDOperand N0 = N->getOperand(0);
1351  SDOperand N1 = N->getOperand(1);
1352  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1353  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1354  MVT::ValueType VT = N->getValueType(0);
1355
1356  // fold (srem c1, c2) -> c1%c2
1357  if (N0C && N1C && !N1C->isNullValue())
1358    return DAG.getNode(ISD::SREM, VT, N0, N1);
1359  // If we know the sign bits of both operands are zero, strength reduce to a
1360  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1361  if (!MVT::isVector(VT)) {
1362    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1363      return DAG.getNode(ISD::UREM, VT, N0, N1);
1364  }
1365
1366  // If X/C can be simplified by the division-by-constant logic, lower
1367  // X%C to the equivalent of X-X/C*C.
1368  if (N1C && !N1C->isNullValue()) {
1369    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1370    AddToWorkList(Div.Val);
1371    SDOperand OptimizedDiv = combine(Div.Val);
1372    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1373      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1374      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1375      AddToWorkList(Mul.Val);
1376      return Sub;
1377    }
1378  }
1379
1380  // undef % X -> 0
1381  if (N0.getOpcode() == ISD::UNDEF)
1382    return DAG.getConstant(0, VT);
1383  // X % undef -> undef
1384  if (N1.getOpcode() == ISD::UNDEF)
1385    return N1;
1386
1387  return SDOperand();
1388}
1389
1390SDOperand DAGCombiner::visitUREM(SDNode *N) {
1391  SDOperand N0 = N->getOperand(0);
1392  SDOperand N1 = N->getOperand(1);
1393  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1394  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1395  MVT::ValueType VT = N->getValueType(0);
1396
1397  // fold (urem c1, c2) -> c1%c2
1398  if (N0C && N1C && !N1C->isNullValue())
1399    return DAG.getNode(ISD::UREM, VT, N0, N1);
1400  // fold (urem x, pow2) -> (and x, pow2-1)
1401  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1402    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1403  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1404  if (N1.getOpcode() == ISD::SHL) {
1405    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1406      if (isPowerOf2_64(SHC->getValue())) {
1407        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1408        AddToWorkList(Add.Val);
1409        return DAG.getNode(ISD::AND, VT, N0, Add);
1410      }
1411    }
1412  }
1413
1414  // If X/C can be simplified by the division-by-constant logic, lower
1415  // X%C to the equivalent of X-X/C*C.
1416  if (N1C && !N1C->isNullValue()) {
1417    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1418    SDOperand OptimizedDiv = combine(Div.Val);
1419    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1420      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1421      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1422      AddToWorkList(Mul.Val);
1423      return Sub;
1424    }
1425  }
1426
1427  // undef % X -> 0
1428  if (N0.getOpcode() == ISD::UNDEF)
1429    return DAG.getConstant(0, VT);
1430  // X % undef -> undef
1431  if (N1.getOpcode() == ISD::UNDEF)
1432    return N1;
1433
1434  return SDOperand();
1435}
1436
1437SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1438  SDOperand N0 = N->getOperand(0);
1439  SDOperand N1 = N->getOperand(1);
1440  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1441  MVT::ValueType VT = N->getValueType(0);
1442
1443  // fold (mulhs x, 0) -> 0
1444  if (N1C && N1C->isNullValue())
1445    return N1;
1446  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1447  if (N1C && N1C->getValue() == 1)
1448    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1449                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1450                                       TLI.getShiftAmountTy()));
1451  // fold (mulhs x, undef) -> 0
1452  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1453    return DAG.getConstant(0, VT);
1454
1455  return SDOperand();
1456}
1457
1458SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1459  SDOperand N0 = N->getOperand(0);
1460  SDOperand N1 = N->getOperand(1);
1461  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1462  MVT::ValueType VT = N->getValueType(0);
1463
1464  // fold (mulhu x, 0) -> 0
1465  if (N1C && N1C->isNullValue())
1466    return N1;
1467  // fold (mulhu x, 1) -> 0
1468  if (N1C && N1C->getValue() == 1)
1469    return DAG.getConstant(0, N0.getValueType());
1470  // fold (mulhu x, undef) -> 0
1471  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1472    return DAG.getConstant(0, VT);
1473
1474  return SDOperand();
1475}
1476
1477/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1478/// compute two values. LoOp and HiOp give the opcodes for the two computations
1479/// that are being performed. Return true if a simplification was made.
1480///
1481SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1482                                                  unsigned HiOp) {
1483  // If the high half is not needed, just compute the low half.
1484  bool HiExists = N->hasAnyUseOfValue(1);
1485  if (!HiExists &&
1486      (!AfterLegalize ||
1487       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1488    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1489                                N->getNumOperands());
1490    return CombineTo(N, Res, Res);
1491  }
1492
1493  // If the low half is not needed, just compute the high half.
1494  bool LoExists = N->hasAnyUseOfValue(0);
1495  if (!LoExists &&
1496      (!AfterLegalize ||
1497       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1498    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1499                                N->getNumOperands());
1500    return CombineTo(N, Res, Res);
1501  }
1502
1503  // If both halves are used, return as it is.
1504  if (LoExists && HiExists)
1505    return SDOperand();
1506
1507  // If the two computed results can be simplified separately, separate them.
1508  if (LoExists) {
1509    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1510                               N->op_begin(), N->getNumOperands());
1511    AddToWorkList(Lo.Val);
1512    SDOperand LoOpt = combine(Lo.Val);
1513    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1514        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1515      return CombineTo(N, LoOpt, LoOpt);
1516  }
1517
1518  if (HiExists) {
1519    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1520                               N->op_begin(), N->getNumOperands());
1521    AddToWorkList(Hi.Val);
1522    SDOperand HiOpt = combine(Hi.Val);
1523    if (HiOpt.Val && HiOpt != Hi &&
1524        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1525      return CombineTo(N, HiOpt, HiOpt);
1526  }
1527  return SDOperand();
1528}
1529
1530SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1531  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1532  if (Res.Val) return Res;
1533
1534  return SDOperand();
1535}
1536
1537SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1538  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1539  if (Res.Val) return Res;
1540
1541  return SDOperand();
1542}
1543
1544SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1545  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1546  if (Res.Val) return Res;
1547
1548  return SDOperand();
1549}
1550
1551SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1552  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1553  if (Res.Val) return Res;
1554
1555  return SDOperand();
1556}
1557
1558/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1559/// two operands of the same opcode, try to simplify it.
1560SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1561  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1562  MVT::ValueType VT = N0.getValueType();
1563  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1564
1565  // For each of OP in AND/OR/XOR:
1566  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1567  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1568  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1569  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1570  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1571       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1572      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1573    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1574                                   N0.getOperand(0).getValueType(),
1575                                   N0.getOperand(0), N1.getOperand(0));
1576    AddToWorkList(ORNode.Val);
1577    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1578  }
1579
1580  // For each of OP in SHL/SRL/SRA/AND...
1581  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1582  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1583  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1584  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1585       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1586      N0.getOperand(1) == N1.getOperand(1)) {
1587    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1588                                   N0.getOperand(0).getValueType(),
1589                                   N0.getOperand(0), N1.getOperand(0));
1590    AddToWorkList(ORNode.Val);
1591    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1592  }
1593
1594  return SDOperand();
1595}
1596
1597SDOperand DAGCombiner::visitAND(SDNode *N) {
1598  SDOperand N0 = N->getOperand(0);
1599  SDOperand N1 = N->getOperand(1);
1600  SDOperand LL, LR, RL, RR, CC0, CC1;
1601  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1602  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1603  MVT::ValueType VT = N1.getValueType();
1604  unsigned BitWidth = MVT::getSizeInBits(VT);
1605
1606  // fold vector ops
1607  if (MVT::isVector(VT)) {
1608    SDOperand FoldedVOp = SimplifyVBinOp(N);
1609    if (FoldedVOp.Val) return FoldedVOp;
1610  }
1611
1612  // fold (and x, undef) -> 0
1613  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1614    return DAG.getConstant(0, VT);
1615  // fold (and c1, c2) -> c1&c2
1616  if (N0C && N1C)
1617    return DAG.getNode(ISD::AND, VT, N0, N1);
1618  // canonicalize constant to RHS
1619  if (N0C && !N1C)
1620    return DAG.getNode(ISD::AND, VT, N1, N0);
1621  // fold (and x, -1) -> x
1622  if (N1C && N1C->isAllOnesValue())
1623    return N0;
1624  // if (and x, c) is known to be zero, return 0
1625  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
1626                                   APInt::getAllOnesValue(BitWidth)))
1627    return DAG.getConstant(0, VT);
1628  // reassociate and
1629  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1630  if (RAND.Val != 0)
1631    return RAND;
1632  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1633  if (N1C && N0.getOpcode() == ISD::OR)
1634    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1635      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1636        return N1;
1637  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1638  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1639    SDOperand N0Op0 = N0.getOperand(0);
1640    APInt Mask = ~N1C->getAPIntValue();
1641    Mask.trunc(N0Op0.getValueSizeInBits());
1642    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1643      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1644                                   N0Op0);
1645
1646      // Replace uses of the AND with uses of the Zero extend node.
1647      CombineTo(N, Zext);
1648
1649      // We actually want to replace all uses of the any_extend with the
1650      // zero_extend, to avoid duplicating things.  This will later cause this
1651      // AND to be folded.
1652      CombineTo(N0.Val, Zext);
1653      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1654    }
1655  }
1656  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1657  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1658    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1659    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1660
1661    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1662        MVT::isInteger(LL.getValueType())) {
1663      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1664      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1665        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1666        AddToWorkList(ORNode.Val);
1667        return DAG.getSetCC(VT, ORNode, LR, Op1);
1668      }
1669      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1670      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1671        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1672        AddToWorkList(ANDNode.Val);
1673        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1674      }
1675      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1676      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1677        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1678        AddToWorkList(ORNode.Val);
1679        return DAG.getSetCC(VT, ORNode, LR, Op1);
1680      }
1681    }
1682    // canonicalize equivalent to ll == rl
1683    if (LL == RR && LR == RL) {
1684      Op1 = ISD::getSetCCSwappedOperands(Op1);
1685      std::swap(RL, RR);
1686    }
1687    if (LL == RL && LR == RR) {
1688      bool isInteger = MVT::isInteger(LL.getValueType());
1689      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1690      if (Result != ISD::SETCC_INVALID)
1691        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1692    }
1693  }
1694
1695  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1696  if (N0.getOpcode() == N1.getOpcode()) {
1697    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1698    if (Tmp.Val) return Tmp;
1699  }
1700
1701  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1702  // fold (and (sra)) -> (and (srl)) when possible.
1703  if (!MVT::isVector(VT) &&
1704      SimplifyDemandedBits(SDOperand(N, 0)))
1705    return SDOperand(N, 0);
1706  // fold (zext_inreg (extload x)) -> (zextload x)
1707  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1708    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1709    MVT::ValueType EVT = LN0->getMemoryVT();
1710    // If we zero all the possible extended bits, then we can turn this into
1711    // a zextload if we are running before legalize or the operation is legal.
1712    unsigned BitWidth = N1.getValueSizeInBits();
1713    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1714                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1715        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1716      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1717                                         LN0->getBasePtr(), LN0->getSrcValue(),
1718                                         LN0->getSrcValueOffset(), EVT,
1719                                         LN0->isVolatile(),
1720                                         LN0->getAlignment());
1721      AddToWorkList(N);
1722      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1723      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1724    }
1725  }
1726  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1727  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1728      N0.hasOneUse()) {
1729    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1730    MVT::ValueType EVT = LN0->getMemoryVT();
1731    // If we zero all the possible extended bits, then we can turn this into
1732    // a zextload if we are running before legalize or the operation is legal.
1733    unsigned BitWidth = N1.getValueSizeInBits();
1734    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1735                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1736        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1737      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1738                                         LN0->getBasePtr(), LN0->getSrcValue(),
1739                                         LN0->getSrcValueOffset(), EVT,
1740                                         LN0->isVolatile(),
1741                                         LN0->getAlignment());
1742      AddToWorkList(N);
1743      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1744      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1745    }
1746  }
1747
1748  // fold (and (load x), 255) -> (zextload x, i8)
1749  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1750  if (N1C && N0.getOpcode() == ISD::LOAD) {
1751    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1752    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1753        LN0->isUnindexed() && N0.hasOneUse()) {
1754      MVT::ValueType EVT, LoadedVT;
1755      if (N1C->getValue() == 255)
1756        EVT = MVT::i8;
1757      else if (N1C->getValue() == 65535)
1758        EVT = MVT::i16;
1759      else if (N1C->getValue() == ~0U)
1760        EVT = MVT::i32;
1761      else
1762        EVT = MVT::Other;
1763
1764      LoadedVT = LN0->getMemoryVT();
1765      if (EVT != MVT::Other && LoadedVT > EVT &&
1766          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1767        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1768        // For big endian targets, we need to add an offset to the pointer to
1769        // load the correct bytes.  For little endian systems, we merely need to
1770        // read fewer bytes from the same pointer.
1771        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1772        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1773        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1774        unsigned Alignment = LN0->getAlignment();
1775        SDOperand NewPtr = LN0->getBasePtr();
1776        if (TLI.isBigEndian()) {
1777          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1778                               DAG.getConstant(PtrOff, PtrType));
1779          Alignment = MinAlign(Alignment, PtrOff);
1780        }
1781        AddToWorkList(NewPtr.Val);
1782        SDOperand Load =
1783          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1784                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1785                         LN0->isVolatile(), Alignment);
1786        AddToWorkList(N);
1787        CombineTo(N0.Val, Load, Load.getValue(1));
1788        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1789      }
1790    }
1791  }
1792
1793  return SDOperand();
1794}
1795
1796SDOperand DAGCombiner::visitOR(SDNode *N) {
1797  SDOperand N0 = N->getOperand(0);
1798  SDOperand N1 = N->getOperand(1);
1799  SDOperand LL, LR, RL, RR, CC0, CC1;
1800  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1801  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1802  MVT::ValueType VT = N1.getValueType();
1803
1804  // fold vector ops
1805  if (MVT::isVector(VT)) {
1806    SDOperand FoldedVOp = SimplifyVBinOp(N);
1807    if (FoldedVOp.Val) return FoldedVOp;
1808  }
1809
1810  // fold (or x, undef) -> -1
1811  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1812    return DAG.getConstant(~0ULL, VT);
1813  // fold (or c1, c2) -> c1|c2
1814  if (N0C && N1C)
1815    return DAG.getNode(ISD::OR, VT, N0, N1);
1816  // canonicalize constant to RHS
1817  if (N0C && !N1C)
1818    return DAG.getNode(ISD::OR, VT, N1, N0);
1819  // fold (or x, 0) -> x
1820  if (N1C && N1C->isNullValue())
1821    return N0;
1822  // fold (or x, -1) -> -1
1823  if (N1C && N1C->isAllOnesValue())
1824    return N1;
1825  // fold (or x, c) -> c iff (x & ~c) == 0
1826  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1827    return N1;
1828  // reassociate or
1829  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1830  if (ROR.Val != 0)
1831    return ROR;
1832  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1833  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1834             isa<ConstantSDNode>(N0.getOperand(1))) {
1835    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1836    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1837                                                 N1),
1838                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1839  }
1840  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1841  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1842    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1843    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1844
1845    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1846        MVT::isInteger(LL.getValueType())) {
1847      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1848      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1849      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1850          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1851        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1852        AddToWorkList(ORNode.Val);
1853        return DAG.getSetCC(VT, ORNode, LR, Op1);
1854      }
1855      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1856      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1857      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1858          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1859        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1860        AddToWorkList(ANDNode.Val);
1861        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1862      }
1863    }
1864    // canonicalize equivalent to ll == rl
1865    if (LL == RR && LR == RL) {
1866      Op1 = ISD::getSetCCSwappedOperands(Op1);
1867      std::swap(RL, RR);
1868    }
1869    if (LL == RL && LR == RR) {
1870      bool isInteger = MVT::isInteger(LL.getValueType());
1871      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1872      if (Result != ISD::SETCC_INVALID)
1873        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1874    }
1875  }
1876
1877  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1878  if (N0.getOpcode() == N1.getOpcode()) {
1879    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1880    if (Tmp.Val) return Tmp;
1881  }
1882
1883  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1884  if (N0.getOpcode() == ISD::AND &&
1885      N1.getOpcode() == ISD::AND &&
1886      N0.getOperand(1).getOpcode() == ISD::Constant &&
1887      N1.getOperand(1).getOpcode() == ISD::Constant &&
1888      // Don't increase # computations.
1889      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1890    // We can only do this xform if we know that bits from X that are set in C2
1891    // but not in C1 are already zero.  Likewise for Y.
1892    const APInt &LHSMask =
1893      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1894    const APInt &RHSMask =
1895      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
1896
1897    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1898        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1899      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1900      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1901    }
1902  }
1903
1904
1905  // See if this is some rotate idiom.
1906  if (SDNode *Rot = MatchRotate(N0, N1))
1907    return SDOperand(Rot, 0);
1908
1909  return SDOperand();
1910}
1911
1912
1913/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1914static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1915  if (Op.getOpcode() == ISD::AND) {
1916    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1917      Mask = Op.getOperand(1);
1918      Op = Op.getOperand(0);
1919    } else {
1920      return false;
1921    }
1922  }
1923
1924  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1925    Shift = Op;
1926    return true;
1927  }
1928  return false;
1929}
1930
1931
1932// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1933// idioms for rotate, and if the target supports rotation instructions, generate
1934// a rot[lr].
1935SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1936  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1937  MVT::ValueType VT = LHS.getValueType();
1938  if (!TLI.isTypeLegal(VT)) return 0;
1939
1940  // The target must have at least one rotate flavor.
1941  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1942  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1943  if (!HasROTL && !HasROTR) return 0;
1944
1945  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1946  SDOperand LHSShift;   // The shift.
1947  SDOperand LHSMask;    // AND value if any.
1948  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1949    return 0; // Not part of a rotate.
1950
1951  SDOperand RHSShift;   // The shift.
1952  SDOperand RHSMask;    // AND value if any.
1953  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1954    return 0; // Not part of a rotate.
1955
1956  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1957    return 0;   // Not shifting the same value.
1958
1959  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1960    return 0;   // Shifts must disagree.
1961
1962  // Canonicalize shl to left side in a shl/srl pair.
1963  if (RHSShift.getOpcode() == ISD::SHL) {
1964    std::swap(LHS, RHS);
1965    std::swap(LHSShift, RHSShift);
1966    std::swap(LHSMask , RHSMask );
1967  }
1968
1969  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1970  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1971  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1972  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1973
1974  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1975  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1976  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1977      RHSShiftAmt.getOpcode() == ISD::Constant) {
1978    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1979    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1980    if ((LShVal + RShVal) != OpSizeInBits)
1981      return 0;
1982
1983    SDOperand Rot;
1984    if (HasROTL)
1985      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1986    else
1987      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1988
1989    // If there is an AND of either shifted operand, apply it to the result.
1990    if (LHSMask.Val || RHSMask.Val) {
1991      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
1992
1993      if (LHSMask.Val) {
1994        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
1995        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
1996      }
1997      if (RHSMask.Val) {
1998        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
1999        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2000      }
2001
2002      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
2003    }
2004
2005    return Rot.Val;
2006  }
2007
2008  // If there is a mask here, and we have a variable shift, we can't be sure
2009  // that we're masking out the right stuff.
2010  if (LHSMask.Val || RHSMask.Val)
2011    return 0;
2012
2013  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2014  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2015  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2016      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2017    if (ConstantSDNode *SUBC =
2018          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2019      if (SUBC->getValue() == OpSizeInBits) {
2020        if (HasROTL)
2021          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2022        else
2023          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2024      }
2025    }
2026  }
2027
2028  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2029  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2030  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2031      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2032    if (ConstantSDNode *SUBC =
2033          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2034      if (SUBC->getValue() == OpSizeInBits) {
2035        if (HasROTL)
2036          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2037        else
2038          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2039      }
2040    }
2041  }
2042
2043  // Look for sign/zext/any-extended cases:
2044  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2045       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2046       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2047      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2048       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2049       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2050    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2051    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2052    if (RExtOp0.getOpcode() == ISD::SUB &&
2053        RExtOp0.getOperand(1) == LExtOp0) {
2054      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2055      //   (rotr x, y)
2056      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2057      //   (rotl x, (sub 32, y))
2058      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2059        if (SUBC->getValue() == OpSizeInBits) {
2060          if (HasROTL)
2061            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2062          else
2063            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2064        }
2065      }
2066    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2067               RExtOp0 == LExtOp0.getOperand(1)) {
2068      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2069      //   (rotl x, y)
2070      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2071      //   (rotr x, (sub 32, y))
2072      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2073        if (SUBC->getValue() == OpSizeInBits) {
2074          if (HasROTL)
2075            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2076          else
2077            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2078        }
2079      }
2080    }
2081  }
2082
2083  return 0;
2084}
2085
2086
2087SDOperand DAGCombiner::visitXOR(SDNode *N) {
2088  SDOperand N0 = N->getOperand(0);
2089  SDOperand N1 = N->getOperand(1);
2090  SDOperand LHS, RHS, CC;
2091  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2092  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2093  MVT::ValueType VT = N0.getValueType();
2094
2095  // fold vector ops
2096  if (MVT::isVector(VT)) {
2097    SDOperand FoldedVOp = SimplifyVBinOp(N);
2098    if (FoldedVOp.Val) return FoldedVOp;
2099  }
2100
2101  // fold (xor x, undef) -> undef
2102  if (N0.getOpcode() == ISD::UNDEF)
2103    return N0;
2104  if (N1.getOpcode() == ISD::UNDEF)
2105    return N1;
2106  // fold (xor c1, c2) -> c1^c2
2107  if (N0C && N1C)
2108    return DAG.getNode(ISD::XOR, VT, N0, N1);
2109  // canonicalize constant to RHS
2110  if (N0C && !N1C)
2111    return DAG.getNode(ISD::XOR, VT, N1, N0);
2112  // fold (xor x, 0) -> x
2113  if (N1C && N1C->isNullValue())
2114    return N0;
2115  // reassociate xor
2116  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2117  if (RXOR.Val != 0)
2118    return RXOR;
2119  // fold !(x cc y) -> (x !cc y)
2120  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2121    bool isInt = MVT::isInteger(LHS.getValueType());
2122    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2123                                               isInt);
2124    if (N0.getOpcode() == ISD::SETCC)
2125      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2126    if (N0.getOpcode() == ISD::SELECT_CC)
2127      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2128    assert(0 && "Unhandled SetCC Equivalent!");
2129    abort();
2130  }
2131  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2132  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2133      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2134    SDOperand V = N0.getOperand(0);
2135    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2136                    DAG.getConstant(1, V.getValueType()));
2137    AddToWorkList(V.Val);
2138    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2139  }
2140
2141  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2142  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2143      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2144    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2145    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2146      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2147      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2148      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2149      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2150      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2151    }
2152  }
2153  // fold !(x or y) -> (!x and !y) iff x or y are constants
2154  if (N1C && N1C->isAllOnesValue() &&
2155      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2156    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2157    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2158      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2159      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2160      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2161      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2162      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2163    }
2164  }
2165  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2166  if (N1C && N0.getOpcode() == ISD::XOR) {
2167    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2168    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2169    if (N00C)
2170      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2171                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2172    if (N01C)
2173      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2174                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2175  }
2176  // fold (xor x, x) -> 0
2177  if (N0 == N1) {
2178    if (!MVT::isVector(VT)) {
2179      return DAG.getConstant(0, VT);
2180    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2181      // Produce a vector of zeros.
2182      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2183      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2184      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2185    }
2186  }
2187
2188  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2189  if (N0.getOpcode() == N1.getOpcode()) {
2190    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2191    if (Tmp.Val) return Tmp;
2192  }
2193
2194  // Simplify the expression using non-local knowledge.
2195  if (!MVT::isVector(VT) &&
2196      SimplifyDemandedBits(SDOperand(N, 0)))
2197    return SDOperand(N, 0);
2198
2199  return SDOperand();
2200}
2201
2202/// visitShiftByConstant - Handle transforms common to the three shifts, when
2203/// the shift amount is a constant.
2204SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2205  SDNode *LHS = N->getOperand(0).Val;
2206  if (!LHS->hasOneUse()) return SDOperand();
2207
2208  // We want to pull some binops through shifts, so that we have (and (shift))
2209  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2210  // thing happens with address calculations, so it's important to canonicalize
2211  // it.
2212  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2213
2214  switch (LHS->getOpcode()) {
2215  default: return SDOperand();
2216  case ISD::OR:
2217  case ISD::XOR:
2218    HighBitSet = false; // We can only transform sra if the high bit is clear.
2219    break;
2220  case ISD::AND:
2221    HighBitSet = true;  // We can only transform sra if the high bit is set.
2222    break;
2223  case ISD::ADD:
2224    if (N->getOpcode() != ISD::SHL)
2225      return SDOperand(); // only shl(add) not sr[al](add).
2226    HighBitSet = false; // We can only transform sra if the high bit is clear.
2227    break;
2228  }
2229
2230  // We require the RHS of the binop to be a constant as well.
2231  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2232  if (!BinOpCst) return SDOperand();
2233
2234
2235  // FIXME: disable this for unless the input to the binop is a shift by a
2236  // constant.  If it is not a shift, it pessimizes some common cases like:
2237  //
2238  //void foo(int *X, int i) { X[i & 1235] = 1; }
2239  //int bar(int *X, int i) { return X[i & 255]; }
2240  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2241  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2242       BinOpLHSVal->getOpcode() != ISD::SRA &&
2243       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2244      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2245    return SDOperand();
2246
2247  MVT::ValueType VT = N->getValueType(0);
2248
2249  // If this is a signed shift right, and the high bit is modified
2250  // by the logical operation, do not perform the transformation.
2251  // The highBitSet boolean indicates the value of the high bit of
2252  // the constant which would cause it to be modified for this
2253  // operation.
2254  if (N->getOpcode() == ISD::SRA) {
2255    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2256    if (BinOpRHSSignSet != HighBitSet)
2257      return SDOperand();
2258  }
2259
2260  // Fold the constants, shifting the binop RHS by the shift amount.
2261  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2262                                 LHS->getOperand(1), N->getOperand(1));
2263
2264  // Create the new shift.
2265  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2266                                   N->getOperand(1));
2267
2268  // Create the new binop.
2269  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2270}
2271
2272
2273SDOperand DAGCombiner::visitSHL(SDNode *N) {
2274  SDOperand N0 = N->getOperand(0);
2275  SDOperand N1 = N->getOperand(1);
2276  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2277  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2278  MVT::ValueType VT = N0.getValueType();
2279  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2280
2281  // fold (shl c1, c2) -> c1<<c2
2282  if (N0C && N1C)
2283    return DAG.getNode(ISD::SHL, VT, N0, N1);
2284  // fold (shl 0, x) -> 0
2285  if (N0C && N0C->isNullValue())
2286    return N0;
2287  // fold (shl x, c >= size(x)) -> undef
2288  if (N1C && N1C->getValue() >= OpSizeInBits)
2289    return DAG.getNode(ISD::UNDEF, VT);
2290  // fold (shl x, 0) -> x
2291  if (N1C && N1C->isNullValue())
2292    return N0;
2293  // if (shl x, c) is known to be zero, return 0
2294  if (DAG.MaskedValueIsZero(SDOperand(N, 0),
2295                            APInt::getAllOnesValue(MVT::getSizeInBits(VT))))
2296    return DAG.getConstant(0, VT);
2297  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2298    return SDOperand(N, 0);
2299  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2300  if (N1C && N0.getOpcode() == ISD::SHL &&
2301      N0.getOperand(1).getOpcode() == ISD::Constant) {
2302    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2303    uint64_t c2 = N1C->getValue();
2304    if (c1 + c2 > OpSizeInBits)
2305      return DAG.getConstant(0, VT);
2306    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2307                       DAG.getConstant(c1 + c2, N1.getValueType()));
2308  }
2309  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2310  //                               (srl (and x, -1 << c1), c1-c2)
2311  if (N1C && N0.getOpcode() == ISD::SRL &&
2312      N0.getOperand(1).getOpcode() == ISD::Constant) {
2313    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2314    uint64_t c2 = N1C->getValue();
2315    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2316                                 DAG.getConstant(~0ULL << c1, VT));
2317    if (c2 > c1)
2318      return DAG.getNode(ISD::SHL, VT, Mask,
2319                         DAG.getConstant(c2-c1, N1.getValueType()));
2320    else
2321      return DAG.getNode(ISD::SRL, VT, Mask,
2322                         DAG.getConstant(c1-c2, N1.getValueType()));
2323  }
2324  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2325  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2326    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2327                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2328
2329  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2330}
2331
2332SDOperand DAGCombiner::visitSRA(SDNode *N) {
2333  SDOperand N0 = N->getOperand(0);
2334  SDOperand N1 = N->getOperand(1);
2335  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2336  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2337  MVT::ValueType VT = N0.getValueType();
2338
2339  // fold (sra c1, c2) -> c1>>c2
2340  if (N0C && N1C)
2341    return DAG.getNode(ISD::SRA, VT, N0, N1);
2342  // fold (sra 0, x) -> 0
2343  if (N0C && N0C->isNullValue())
2344    return N0;
2345  // fold (sra -1, x) -> -1
2346  if (N0C && N0C->isAllOnesValue())
2347    return N0;
2348  // fold (sra x, c >= size(x)) -> undef
2349  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2350    return DAG.getNode(ISD::UNDEF, VT);
2351  // fold (sra x, 0) -> x
2352  if (N1C && N1C->isNullValue())
2353    return N0;
2354  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2355  // sext_inreg.
2356  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2357    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2358    MVT::ValueType EVT;
2359    switch (LowBits) {
2360    default: EVT = MVT::Other; break;
2361    case  1: EVT = MVT::i1;    break;
2362    case  8: EVT = MVT::i8;    break;
2363    case 16: EVT = MVT::i16;   break;
2364    case 32: EVT = MVT::i32;   break;
2365    }
2366    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2367      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2368                         DAG.getValueType(EVT));
2369  }
2370
2371  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2372  if (N1C && N0.getOpcode() == ISD::SRA) {
2373    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2374      unsigned Sum = N1C->getValue() + C1->getValue();
2375      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2376      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2377                         DAG.getConstant(Sum, N1C->getValueType(0)));
2378    }
2379  }
2380
2381  // Simplify, based on bits shifted out of the LHS.
2382  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2383    return SDOperand(N, 0);
2384
2385
2386  // If the sign bit is known to be zero, switch this to a SRL.
2387  if (DAG.SignBitIsZero(N0))
2388    return DAG.getNode(ISD::SRL, VT, N0, N1);
2389
2390  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2391}
2392
2393SDOperand DAGCombiner::visitSRL(SDNode *N) {
2394  SDOperand N0 = N->getOperand(0);
2395  SDOperand N1 = N->getOperand(1);
2396  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2397  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2398  MVT::ValueType VT = N0.getValueType();
2399  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2400
2401  // fold (srl c1, c2) -> c1 >>u c2
2402  if (N0C && N1C)
2403    return DAG.getNode(ISD::SRL, VT, N0, N1);
2404  // fold (srl 0, x) -> 0
2405  if (N0C && N0C->isNullValue())
2406    return N0;
2407  // fold (srl x, c >= size(x)) -> undef
2408  if (N1C && N1C->getValue() >= OpSizeInBits)
2409    return DAG.getNode(ISD::UNDEF, VT);
2410  // fold (srl x, 0) -> x
2411  if (N1C && N1C->isNullValue())
2412    return N0;
2413  // if (srl x, c) is known to be zero, return 0
2414  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
2415                                   APInt::getAllOnesValue(OpSizeInBits)))
2416    return DAG.getConstant(0, VT);
2417
2418  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2419  if (N1C && N0.getOpcode() == ISD::SRL &&
2420      N0.getOperand(1).getOpcode() == ISD::Constant) {
2421    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2422    uint64_t c2 = N1C->getValue();
2423    if (c1 + c2 > OpSizeInBits)
2424      return DAG.getConstant(0, VT);
2425    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2426                       DAG.getConstant(c1 + c2, N1.getValueType()));
2427  }
2428
2429  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2430  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2431    // Shifting in all undef bits?
2432    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2433    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2434      return DAG.getNode(ISD::UNDEF, VT);
2435
2436    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2437    AddToWorkList(SmallShift.Val);
2438    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2439  }
2440
2441  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2442  // bit, which is unmodified by sra.
2443  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2444    if (N0.getOpcode() == ISD::SRA)
2445      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2446  }
2447
2448  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2449  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2450      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2451    APInt KnownZero, KnownOne;
2452    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
2453    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2454
2455    // If any of the input bits are KnownOne, then the input couldn't be all
2456    // zeros, thus the result of the srl will always be zero.
2457    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2458
2459    // If all of the bits input the to ctlz node are known to be zero, then
2460    // the result of the ctlz is "32" and the result of the shift is one.
2461    APInt UnknownBits = ~KnownZero & Mask;
2462    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2463
2464    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2465    if ((UnknownBits & (UnknownBits-1)) == 0) {
2466      // Okay, we know that only that the single bit specified by UnknownBits
2467      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2468      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2469      // to an SRL,XOR pair, which is likely to simplify more.
2470      unsigned ShAmt = UnknownBits.countTrailingZeros();
2471      SDOperand Op = N0.getOperand(0);
2472      if (ShAmt) {
2473        Op = DAG.getNode(ISD::SRL, VT, Op,
2474                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2475        AddToWorkList(Op.Val);
2476      }
2477      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2478    }
2479  }
2480
2481  // fold operands of srl based on knowledge that the low bits are not
2482  // demanded.
2483  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2484    return SDOperand(N, 0);
2485
2486  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2487}
2488
2489SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2490  SDOperand N0 = N->getOperand(0);
2491  MVT::ValueType VT = N->getValueType(0);
2492
2493  // fold (ctlz c1) -> c2
2494  if (isa<ConstantSDNode>(N0))
2495    return DAG.getNode(ISD::CTLZ, VT, N0);
2496  return SDOperand();
2497}
2498
2499SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2500  SDOperand N0 = N->getOperand(0);
2501  MVT::ValueType VT = N->getValueType(0);
2502
2503  // fold (cttz c1) -> c2
2504  if (isa<ConstantSDNode>(N0))
2505    return DAG.getNode(ISD::CTTZ, VT, N0);
2506  return SDOperand();
2507}
2508
2509SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2510  SDOperand N0 = N->getOperand(0);
2511  MVT::ValueType VT = N->getValueType(0);
2512
2513  // fold (ctpop c1) -> c2
2514  if (isa<ConstantSDNode>(N0))
2515    return DAG.getNode(ISD::CTPOP, VT, N0);
2516  return SDOperand();
2517}
2518
2519SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2520  SDOperand N0 = N->getOperand(0);
2521  SDOperand N1 = N->getOperand(1);
2522  SDOperand N2 = N->getOperand(2);
2523  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2524  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2525  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2526  MVT::ValueType VT = N->getValueType(0);
2527  MVT::ValueType VT0 = N0.getValueType();
2528
2529  // fold select C, X, X -> X
2530  if (N1 == N2)
2531    return N1;
2532  // fold select true, X, Y -> X
2533  if (N0C && !N0C->isNullValue())
2534    return N1;
2535  // fold select false, X, Y -> Y
2536  if (N0C && N0C->isNullValue())
2537    return N2;
2538  // fold select C, 1, X -> C | X
2539  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2540    return DAG.getNode(ISD::OR, VT, N0, N2);
2541  // fold select C, 0, 1 -> ~C
2542  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2543      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2544    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2545    if (VT == VT0)
2546      return XORNode;
2547    AddToWorkList(XORNode.Val);
2548    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2549      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2550    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2551  }
2552  // fold select C, 0, X -> ~C & X
2553  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2554    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2555    AddToWorkList(XORNode.Val);
2556    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2557  }
2558  // fold select C, X, 1 -> ~C | X
2559  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) {
2560    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2561    AddToWorkList(XORNode.Val);
2562    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2563  }
2564  // fold select C, X, 0 -> C & X
2565  // FIXME: this should check for C type == X type, not i1?
2566  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2567    return DAG.getNode(ISD::AND, VT, N0, N1);
2568  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2569  if (MVT::i1 == VT && N0 == N1)
2570    return DAG.getNode(ISD::OR, VT, N0, N2);
2571  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2572  if (MVT::i1 == VT && N0 == N2)
2573    return DAG.getNode(ISD::AND, VT, N0, N1);
2574
2575  // If we can fold this based on the true/false value, do so.
2576  if (SimplifySelectOps(N, N1, N2))
2577    return SDOperand(N, 0);  // Don't revisit N.
2578
2579  // fold selects based on a setcc into other things, such as min/max/abs
2580  if (N0.getOpcode() == ISD::SETCC) {
2581    // FIXME:
2582    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2583    // having to say they don't support SELECT_CC on every type the DAG knows
2584    // about, since there is no way to mark an opcode illegal at all value types
2585    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2586      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2587                         N1, N2, N0.getOperand(2));
2588    else
2589      return SimplifySelect(N0, N1, N2);
2590  }
2591  return SDOperand();
2592}
2593
2594SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2595  SDOperand N0 = N->getOperand(0);
2596  SDOperand N1 = N->getOperand(1);
2597  SDOperand N2 = N->getOperand(2);
2598  SDOperand N3 = N->getOperand(3);
2599  SDOperand N4 = N->getOperand(4);
2600  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2601
2602  // fold select_cc lhs, rhs, x, x, cc -> x
2603  if (N2 == N3)
2604    return N2;
2605
2606  // Determine if the condition we're dealing with is constant
2607  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2608  if (SCC.Val) AddToWorkList(SCC.Val);
2609
2610  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2611    if (SCCC->getValue())
2612      return N2;    // cond always true -> true val
2613    else
2614      return N3;    // cond always false -> false val
2615  }
2616
2617  // Fold to a simpler select_cc
2618  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2619    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2620                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2621                       SCC.getOperand(2));
2622
2623  // If we can fold this based on the true/false value, do so.
2624  if (SimplifySelectOps(N, N2, N3))
2625    return SDOperand(N, 0);  // Don't revisit N.
2626
2627  // fold select_cc into other things, such as min/max/abs
2628  return SimplifySelectCC(N0, N1, N2, N3, CC);
2629}
2630
2631SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2632  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2633                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2634}
2635
2636// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2637// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2638// transformation. Returns true if extension are possible and the above
2639// mentioned transformation is profitable.
2640static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2641                                    unsigned ExtOpc,
2642                                    SmallVector<SDNode*, 4> &ExtendNodes,
2643                                    TargetLowering &TLI) {
2644  bool HasCopyToRegUses = false;
2645  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2646  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2647       UI != UE; ++UI) {
2648    SDNode *User = *UI;
2649    if (User == N)
2650      continue;
2651    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2652    if (User->getOpcode() == ISD::SETCC) {
2653      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2654      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2655        // Sign bits will be lost after a zext.
2656        return false;
2657      bool Add = false;
2658      for (unsigned i = 0; i != 2; ++i) {
2659        SDOperand UseOp = User->getOperand(i);
2660        if (UseOp == N0)
2661          continue;
2662        if (!isa<ConstantSDNode>(UseOp))
2663          return false;
2664        Add = true;
2665      }
2666      if (Add)
2667        ExtendNodes.push_back(User);
2668    } else {
2669      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2670        SDOperand UseOp = User->getOperand(i);
2671        if (UseOp == N0) {
2672          // If truncate from extended type to original load type is free
2673          // on this target, then it's ok to extend a CopyToReg.
2674          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2675            HasCopyToRegUses = true;
2676          else
2677            return false;
2678        }
2679      }
2680    }
2681  }
2682
2683  if (HasCopyToRegUses) {
2684    bool BothLiveOut = false;
2685    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2686         UI != UE; ++UI) {
2687      SDNode *User = *UI;
2688      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2689        SDOperand UseOp = User->getOperand(i);
2690        if (UseOp.Val == N && UseOp.ResNo == 0) {
2691          BothLiveOut = true;
2692          break;
2693        }
2694      }
2695    }
2696    if (BothLiveOut)
2697      // Both unextended and extended values are live out. There had better be
2698      // good a reason for the transformation.
2699      return ExtendNodes.size();
2700  }
2701  return true;
2702}
2703
2704SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2705  SDOperand N0 = N->getOperand(0);
2706  MVT::ValueType VT = N->getValueType(0);
2707
2708  // fold (sext c1) -> c1
2709  if (isa<ConstantSDNode>(N0))
2710    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2711
2712  // fold (sext (sext x)) -> (sext x)
2713  // fold (sext (aext x)) -> (sext x)
2714  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2715    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2716
2717  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2718  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2719  if (N0.getOpcode() == ISD::TRUNCATE) {
2720    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2721    if (NarrowLoad.Val) {
2722      if (NarrowLoad.Val != N0.Val)
2723        CombineTo(N0.Val, NarrowLoad);
2724      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2725    }
2726  }
2727
2728  // See if the value being truncated is already sign extended.  If so, just
2729  // eliminate the trunc/sext pair.
2730  if (N0.getOpcode() == ISD::TRUNCATE) {
2731    SDOperand Op = N0.getOperand(0);
2732    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2733    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2734    unsigned DestBits = MVT::getSizeInBits(VT);
2735    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2736
2737    if (OpBits == DestBits) {
2738      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2739      // bits, it is already ready.
2740      if (NumSignBits > DestBits-MidBits)
2741        return Op;
2742    } else if (OpBits < DestBits) {
2743      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2744      // bits, just sext from i32.
2745      if (NumSignBits > OpBits-MidBits)
2746        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2747    } else {
2748      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2749      // bits, just truncate to i32.
2750      if (NumSignBits > OpBits-MidBits)
2751        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2752    }
2753
2754    // fold (sext (truncate x)) -> (sextinreg x).
2755    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2756                                               N0.getValueType())) {
2757      if (Op.getValueType() < VT)
2758        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2759      else if (Op.getValueType() > VT)
2760        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2761      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2762                         DAG.getValueType(N0.getValueType()));
2763    }
2764  }
2765
2766  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2767  if (ISD::isNON_EXTLoad(N0.Val) &&
2768      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2769    bool DoXform = true;
2770    SmallVector<SDNode*, 4> SetCCs;
2771    if (!N0.hasOneUse())
2772      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2773    if (DoXform) {
2774      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2775      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2776                                         LN0->getBasePtr(), LN0->getSrcValue(),
2777                                         LN0->getSrcValueOffset(),
2778                                         N0.getValueType(),
2779                                         LN0->isVolatile(),
2780                                         LN0->getAlignment());
2781      CombineTo(N, ExtLoad);
2782      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2783      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2784      // Extend SetCC uses if necessary.
2785      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2786        SDNode *SetCC = SetCCs[i];
2787        SmallVector<SDOperand, 4> Ops;
2788        for (unsigned j = 0; j != 2; ++j) {
2789          SDOperand SOp = SetCC->getOperand(j);
2790          if (SOp == Trunc)
2791            Ops.push_back(ExtLoad);
2792          else
2793            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2794          }
2795        Ops.push_back(SetCC->getOperand(2));
2796        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2797                                     &Ops[0], Ops.size()));
2798      }
2799      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2800    }
2801  }
2802
2803  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2804  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2805  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2806      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2807    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2808    MVT::ValueType EVT = LN0->getMemoryVT();
2809    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2810      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2811                                         LN0->getBasePtr(), LN0->getSrcValue(),
2812                                         LN0->getSrcValueOffset(), EVT,
2813                                         LN0->isVolatile(),
2814                                         LN0->getAlignment());
2815      CombineTo(N, ExtLoad);
2816      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2817                ExtLoad.getValue(1));
2818      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2819    }
2820  }
2821
2822  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2823  if (N0.getOpcode() == ISD::SETCC) {
2824    SDOperand SCC =
2825      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2826                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2827                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2828    if (SCC.Val) return SCC;
2829  }
2830
2831  return SDOperand();
2832}
2833
2834SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2835  SDOperand N0 = N->getOperand(0);
2836  MVT::ValueType VT = N->getValueType(0);
2837
2838  // fold (zext c1) -> c1
2839  if (isa<ConstantSDNode>(N0))
2840    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2841  // fold (zext (zext x)) -> (zext x)
2842  // fold (zext (aext x)) -> (zext x)
2843  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2844    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2845
2846  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2847  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2848  if (N0.getOpcode() == ISD::TRUNCATE) {
2849    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2850    if (NarrowLoad.Val) {
2851      if (NarrowLoad.Val != N0.Val)
2852        CombineTo(N0.Val, NarrowLoad);
2853      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2854    }
2855  }
2856
2857  // fold (zext (truncate x)) -> (and x, mask)
2858  if (N0.getOpcode() == ISD::TRUNCATE &&
2859      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2860    SDOperand Op = N0.getOperand(0);
2861    if (Op.getValueType() < VT) {
2862      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2863    } else if (Op.getValueType() > VT) {
2864      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2865    }
2866    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2867  }
2868
2869  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2870  if (N0.getOpcode() == ISD::AND &&
2871      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2872      N0.getOperand(1).getOpcode() == ISD::Constant) {
2873    SDOperand X = N0.getOperand(0).getOperand(0);
2874    if (X.getValueType() < VT) {
2875      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2876    } else if (X.getValueType() > VT) {
2877      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2878    }
2879    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2880    Mask.zext(MVT::getSizeInBits(VT));
2881    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2882  }
2883
2884  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2885  if (ISD::isNON_EXTLoad(N0.Val) &&
2886      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2887    bool DoXform = true;
2888    SmallVector<SDNode*, 4> SetCCs;
2889    if (!N0.hasOneUse())
2890      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2891    if (DoXform) {
2892      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2893      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2894                                         LN0->getBasePtr(), LN0->getSrcValue(),
2895                                         LN0->getSrcValueOffset(),
2896                                         N0.getValueType(),
2897                                         LN0->isVolatile(),
2898                                         LN0->getAlignment());
2899      CombineTo(N, ExtLoad);
2900      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2901      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2902      // Extend SetCC uses if necessary.
2903      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2904        SDNode *SetCC = SetCCs[i];
2905        SmallVector<SDOperand, 4> Ops;
2906        for (unsigned j = 0; j != 2; ++j) {
2907          SDOperand SOp = SetCC->getOperand(j);
2908          if (SOp == Trunc)
2909            Ops.push_back(ExtLoad);
2910          else
2911            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2912          }
2913        Ops.push_back(SetCC->getOperand(2));
2914        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2915                                     &Ops[0], Ops.size()));
2916      }
2917      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2918    }
2919  }
2920
2921  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2922  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2923  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2924      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2925    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2926    MVT::ValueType EVT = LN0->getMemoryVT();
2927    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2928                                       LN0->getBasePtr(), LN0->getSrcValue(),
2929                                       LN0->getSrcValueOffset(), EVT,
2930                                       LN0->isVolatile(),
2931                                       LN0->getAlignment());
2932    CombineTo(N, ExtLoad);
2933    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2934              ExtLoad.getValue(1));
2935    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2936  }
2937
2938  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2939  if (N0.getOpcode() == ISD::SETCC) {
2940    SDOperand SCC =
2941      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2942                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2943                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2944    if (SCC.Val) return SCC;
2945  }
2946
2947  return SDOperand();
2948}
2949
2950SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2951  SDOperand N0 = N->getOperand(0);
2952  MVT::ValueType VT = N->getValueType(0);
2953
2954  // fold (aext c1) -> c1
2955  if (isa<ConstantSDNode>(N0))
2956    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2957  // fold (aext (aext x)) -> (aext x)
2958  // fold (aext (zext x)) -> (zext x)
2959  // fold (aext (sext x)) -> (sext x)
2960  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2961      N0.getOpcode() == ISD::ZERO_EXTEND ||
2962      N0.getOpcode() == ISD::SIGN_EXTEND)
2963    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2964
2965  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2966  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2967  if (N0.getOpcode() == ISD::TRUNCATE) {
2968    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2969    if (NarrowLoad.Val) {
2970      if (NarrowLoad.Val != N0.Val)
2971        CombineTo(N0.Val, NarrowLoad);
2972      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2973    }
2974  }
2975
2976  // fold (aext (truncate x))
2977  if (N0.getOpcode() == ISD::TRUNCATE) {
2978    SDOperand TruncOp = N0.getOperand(0);
2979    if (TruncOp.getValueType() == VT)
2980      return TruncOp; // x iff x size == zext size.
2981    if (TruncOp.getValueType() > VT)
2982      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2983    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2984  }
2985
2986  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2987  if (N0.getOpcode() == ISD::AND &&
2988      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2989      N0.getOperand(1).getOpcode() == ISD::Constant) {
2990    SDOperand X = N0.getOperand(0).getOperand(0);
2991    if (X.getValueType() < VT) {
2992      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2993    } else if (X.getValueType() > VT) {
2994      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2995    }
2996    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2997    Mask.zext(MVT::getSizeInBits(VT));
2998    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2999  }
3000
3001  // fold (aext (load x)) -> (aext (truncate (extload x)))
3002  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3003      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3004    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3005    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3006                                       LN0->getBasePtr(), LN0->getSrcValue(),
3007                                       LN0->getSrcValueOffset(),
3008                                       N0.getValueType(),
3009                                       LN0->isVolatile(),
3010                                       LN0->getAlignment());
3011    CombineTo(N, ExtLoad);
3012    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3013              ExtLoad.getValue(1));
3014    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3015  }
3016
3017  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3018  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3019  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
3020  if (N0.getOpcode() == ISD::LOAD &&
3021      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3022      N0.hasOneUse()) {
3023    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3024    MVT::ValueType EVT = LN0->getMemoryVT();
3025    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
3026                                       LN0->getChain(), LN0->getBasePtr(),
3027                                       LN0->getSrcValue(),
3028                                       LN0->getSrcValueOffset(), EVT,
3029                                       LN0->isVolatile(),
3030                                       LN0->getAlignment());
3031    CombineTo(N, ExtLoad);
3032    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3033              ExtLoad.getValue(1));
3034    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3035  }
3036
3037  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3038  if (N0.getOpcode() == ISD::SETCC) {
3039    SDOperand SCC =
3040      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3041                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3042                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3043    if (SCC.Val)
3044      return SCC;
3045  }
3046
3047  return SDOperand();
3048}
3049
3050/// GetDemandedBits - See if the specified operand can be simplified with the
3051/// knowledge that only the bits specified by Mask are used.  If so, return the
3052/// simpler operand, otherwise return a null SDOperand.
3053SDOperand DAGCombiner::GetDemandedBits(SDOperand V, const APInt &Mask) {
3054  switch (V.getOpcode()) {
3055  default: break;
3056  case ISD::OR:
3057  case ISD::XOR:
3058    // If the LHS or RHS don't contribute bits to the or, drop them.
3059    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3060      return V.getOperand(1);
3061    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3062      return V.getOperand(0);
3063    break;
3064  case ISD::SRL:
3065    // Only look at single-use SRLs.
3066    if (!V.Val->hasOneUse())
3067      break;
3068    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3069      // See if we can recursively simplify the LHS.
3070      unsigned Amt = RHSC->getValue();
3071      APInt NewMask = Mask << Amt;
3072      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3073      if (SimplifyLHS.Val) {
3074        return DAG.getNode(ISD::SRL, V.getValueType(),
3075                           SimplifyLHS, V.getOperand(1));
3076      }
3077    }
3078  }
3079  return SDOperand();
3080}
3081
3082/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3083/// bits and then truncated to a narrower type and where N is a multiple
3084/// of number of bits of the narrower type, transform it to a narrower load
3085/// from address + N / num of bits of new type. If the result is to be
3086/// extended, also fold the extension to form a extending load.
3087SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3088  unsigned Opc = N->getOpcode();
3089  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3090  SDOperand N0 = N->getOperand(0);
3091  MVT::ValueType VT = N->getValueType(0);
3092  MVT::ValueType EVT = N->getValueType(0);
3093
3094  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3095  // extended to VT.
3096  if (Opc == ISD::SIGN_EXTEND_INREG) {
3097    ExtType = ISD::SEXTLOAD;
3098    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3099    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3100      return SDOperand();
3101  }
3102
3103  unsigned EVTBits = MVT::getSizeInBits(EVT);
3104  unsigned ShAmt = 0;
3105  bool CombineSRL =  false;
3106  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3107    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3108      ShAmt = N01->getValue();
3109      // Is the shift amount a multiple of size of VT?
3110      if ((ShAmt & (EVTBits-1)) == 0) {
3111        N0 = N0.getOperand(0);
3112        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3113          return SDOperand();
3114        CombineSRL = true;
3115      }
3116    }
3117  }
3118
3119  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3120      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3121      // zero extended form: by shrinking the load, we lose track of the fact
3122      // that it is already zero extended.
3123      // FIXME: This should be reevaluated.
3124      VT != MVT::i1) {
3125    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3126           "Cannot truncate to larger type!");
3127    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3128    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3129    // For big endian targets, we need to adjust the offset to the pointer to
3130    // load the correct bytes.
3131    if (TLI.isBigEndian()) {
3132      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3133      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3134      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3135    }
3136    uint64_t PtrOff =  ShAmt / 8;
3137    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3138    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3139                                   DAG.getConstant(PtrOff, PtrType));
3140    AddToWorkList(NewPtr.Val);
3141    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3142      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3143                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3144                    LN0->isVolatile(), NewAlign)
3145      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3146                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3147                       LN0->isVolatile(), NewAlign);
3148    AddToWorkList(N);
3149    if (CombineSRL) {
3150      WorkListRemover DeadNodes(*this);
3151      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3152                                    &DeadNodes);
3153      CombineTo(N->getOperand(0).Val, Load);
3154    } else
3155      CombineTo(N0.Val, Load, Load.getValue(1));
3156    if (ShAmt) {
3157      if (Opc == ISD::SIGN_EXTEND_INREG)
3158        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3159      else
3160        return DAG.getNode(Opc, VT, Load);
3161    }
3162    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3163  }
3164
3165  return SDOperand();
3166}
3167
3168
3169SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3170  SDOperand N0 = N->getOperand(0);
3171  SDOperand N1 = N->getOperand(1);
3172  MVT::ValueType VT = N->getValueType(0);
3173  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3174  unsigned VTBits = MVT::getSizeInBits(VT);
3175  unsigned EVTBits = MVT::getSizeInBits(EVT);
3176
3177  // fold (sext_in_reg c1) -> c1
3178  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3179    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3180
3181  // If the input is already sign extended, just drop the extension.
3182  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3183    return N0;
3184
3185  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3186  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3187      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3188    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3189  }
3190
3191  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3192  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3193    return DAG.getZeroExtendInReg(N0, EVT);
3194
3195  // fold operands of sext_in_reg based on knowledge that the top bits are not
3196  // demanded.
3197  if (SimplifyDemandedBits(SDOperand(N, 0)))
3198    return SDOperand(N, 0);
3199
3200  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3201  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3202  SDOperand NarrowLoad = ReduceLoadWidth(N);
3203  if (NarrowLoad.Val)
3204    return NarrowLoad;
3205
3206  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3207  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3208  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3209  if (N0.getOpcode() == ISD::SRL) {
3210    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3211      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3212        // We can turn this into an SRA iff the input to the SRL is already sign
3213        // extended enough.
3214        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3215        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3216          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3217      }
3218  }
3219
3220  // fold (sext_inreg (extload x)) -> (sextload x)
3221  if (ISD::isEXTLoad(N0.Val) &&
3222      ISD::isUNINDEXEDLoad(N0.Val) &&
3223      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3224      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3225    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3226    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3227                                       LN0->getBasePtr(), LN0->getSrcValue(),
3228                                       LN0->getSrcValueOffset(), EVT,
3229                                       LN0->isVolatile(),
3230                                       LN0->getAlignment());
3231    CombineTo(N, ExtLoad);
3232    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3233    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3234  }
3235  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3236  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3237      N0.hasOneUse() &&
3238      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3239      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3240    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3241    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3242                                       LN0->getBasePtr(), LN0->getSrcValue(),
3243                                       LN0->getSrcValueOffset(), EVT,
3244                                       LN0->isVolatile(),
3245                                       LN0->getAlignment());
3246    CombineTo(N, ExtLoad);
3247    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3248    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3249  }
3250  return SDOperand();
3251}
3252
3253SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3254  SDOperand N0 = N->getOperand(0);
3255  MVT::ValueType VT = N->getValueType(0);
3256
3257  // noop truncate
3258  if (N0.getValueType() == N->getValueType(0))
3259    return N0;
3260  // fold (truncate c1) -> c1
3261  if (isa<ConstantSDNode>(N0))
3262    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3263  // fold (truncate (truncate x)) -> (truncate x)
3264  if (N0.getOpcode() == ISD::TRUNCATE)
3265    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3266  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3267  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3268      N0.getOpcode() == ISD::ANY_EXTEND) {
3269    if (N0.getOperand(0).getValueType() < VT)
3270      // if the source is smaller than the dest, we still need an extend
3271      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3272    else if (N0.getOperand(0).getValueType() > VT)
3273      // if the source is larger than the dest, than we just need the truncate
3274      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3275    else
3276      // if the source and dest are the same type, we can drop both the extend
3277      // and the truncate
3278      return N0.getOperand(0);
3279  }
3280
3281  // See if we can simplify the input to this truncate through knowledge that
3282  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3283  // -> trunc y
3284  SDOperand Shorter =
3285    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3286                                             MVT::getSizeInBits(VT)));
3287  if (Shorter.Val)
3288    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3289
3290  // fold (truncate (load x)) -> (smaller load x)
3291  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3292  return ReduceLoadWidth(N);
3293}
3294
3295SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3296  SDOperand N0 = N->getOperand(0);
3297  MVT::ValueType VT = N->getValueType(0);
3298
3299  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3300  // Only do this before legalize, since afterward the target may be depending
3301  // on the bitconvert.
3302  // First check to see if this is all constant.
3303  if (!AfterLegalize &&
3304      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3305      MVT::isVector(VT)) {
3306    bool isSimple = true;
3307    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3308      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3309          N0.getOperand(i).getOpcode() != ISD::Constant &&
3310          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3311        isSimple = false;
3312        break;
3313      }
3314
3315    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3316    assert(!MVT::isVector(DestEltVT) &&
3317           "Element type of vector ValueType must not be vector!");
3318    if (isSimple) {
3319      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3320    }
3321  }
3322
3323  // If the input is a constant, let getNode() fold it.
3324  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3325    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3326    if (Res.Val != N) return Res;
3327  }
3328
3329  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3330    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3331
3332  // fold (conv (load x)) -> (load (conv*)x)
3333  // If the resultant load doesn't need a higher alignment than the original!
3334  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3335      TLI.isOperationLegal(ISD::LOAD, VT)) {
3336    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3337    unsigned Align = TLI.getTargetMachine().getTargetData()->
3338      getABITypeAlignment(MVT::getTypeForValueType(VT));
3339    unsigned OrigAlign = LN0->getAlignment();
3340    if (Align <= OrigAlign) {
3341      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3342                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3343                                   LN0->isVolatile(), Align);
3344      AddToWorkList(N);
3345      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3346                Load.getValue(1));
3347      return Load;
3348    }
3349  }
3350
3351  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3352  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3353  // This often reduces constant pool loads.
3354  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3355      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3356    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3357    AddToWorkList(NewConv.Val);
3358
3359    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3360    if (N0.getOpcode() == ISD::FNEG)
3361      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3362    assert(N0.getOpcode() == ISD::FABS);
3363    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3364  }
3365
3366  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3367  // Note that we don't handle copysign(x,cst) because this can always be folded
3368  // to an fneg or fabs.
3369  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3370      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3371      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3372    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3373    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3374                              N0.getOperand(1));
3375    AddToWorkList(X.Val);
3376
3377    // If X has a different width than the result/lhs, sext it or truncate it.
3378    unsigned VTWidth = MVT::getSizeInBits(VT);
3379    if (OrigXWidth < VTWidth) {
3380      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3381      AddToWorkList(X.Val);
3382    } else if (OrigXWidth > VTWidth) {
3383      // To get the sign bit in the right place, we have to shift it right
3384      // before truncating.
3385      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3386                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3387      AddToWorkList(X.Val);
3388      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3389      AddToWorkList(X.Val);
3390    }
3391
3392    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3393    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3394    AddToWorkList(X.Val);
3395
3396    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3397    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3398    AddToWorkList(Cst.Val);
3399
3400    return DAG.getNode(ISD::OR, VT, X, Cst);
3401  }
3402
3403  return SDOperand();
3404}
3405
3406/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3407/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3408/// destination element value type.
3409SDOperand DAGCombiner::
3410ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3411  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3412
3413  // If this is already the right type, we're done.
3414  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3415
3416  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3417  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3418
3419  // If this is a conversion of N elements of one type to N elements of another
3420  // type, convert each element.  This handles FP<->INT cases.
3421  if (SrcBitSize == DstBitSize) {
3422    SmallVector<SDOperand, 8> Ops;
3423    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3424      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3425      AddToWorkList(Ops.back().Val);
3426    }
3427    MVT::ValueType VT =
3428      MVT::getVectorType(DstEltVT,
3429                         MVT::getVectorNumElements(BV->getValueType(0)));
3430    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3431  }
3432
3433  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3434  // handle annoying details of growing/shrinking FP values, we convert them to
3435  // int first.
3436  if (MVT::isFloatingPoint(SrcEltVT)) {
3437    // Convert the input float vector to a int vector where the elements are the
3438    // same sizes.
3439    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3440    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3441    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3442    SrcEltVT = IntVT;
3443  }
3444
3445  // Now we know the input is an integer vector.  If the output is a FP type,
3446  // convert to integer first, then to FP of the right size.
3447  if (MVT::isFloatingPoint(DstEltVT)) {
3448    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3449    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3450    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3451
3452    // Next, convert to FP elements of the same size.
3453    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3454  }
3455
3456  // Okay, we know the src/dst types are both integers of differing types.
3457  // Handling growing first.
3458  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3459  if (SrcBitSize < DstBitSize) {
3460    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3461
3462    SmallVector<SDOperand, 8> Ops;
3463    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3464         i += NumInputsPerOutput) {
3465      bool isLE = TLI.isLittleEndian();
3466      APInt NewBits = APInt(DstBitSize, 0);
3467      bool EltIsUndef = true;
3468      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3469        // Shift the previously computed bits over.
3470        NewBits <<= SrcBitSize;
3471        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3472        if (Op.getOpcode() == ISD::UNDEF) continue;
3473        EltIsUndef = false;
3474
3475        NewBits |=
3476          APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize);
3477      }
3478
3479      if (EltIsUndef)
3480        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3481      else
3482        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3483    }
3484
3485    MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3486    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3487  }
3488
3489  // Finally, this must be the case where we are shrinking elements: each input
3490  // turns into multiple outputs.
3491  bool isS2V = ISD::isScalarToVector(BV);
3492  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3493  MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3494                                     NumOutputsPerInput * BV->getNumOperands());
3495  SmallVector<SDOperand, 8> Ops;
3496  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3497    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3498      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3499        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3500      continue;
3501    }
3502    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue();
3503    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3504      APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3505      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3506      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3507        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3508        return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]);
3509      OpVal = OpVal.lshr(DstBitSize);
3510    }
3511
3512    // For big endian targets, swap the order of the pieces of each element.
3513    if (TLI.isBigEndian())
3514      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3515  }
3516  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3517}
3518
3519
3520
3521SDOperand DAGCombiner::visitFADD(SDNode *N) {
3522  SDOperand N0 = N->getOperand(0);
3523  SDOperand N1 = N->getOperand(1);
3524  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3525  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3526  MVT::ValueType VT = N->getValueType(0);
3527
3528  // fold vector ops
3529  if (MVT::isVector(VT)) {
3530    SDOperand FoldedVOp = SimplifyVBinOp(N);
3531    if (FoldedVOp.Val) return FoldedVOp;
3532  }
3533
3534  // fold (fadd c1, c2) -> c1+c2
3535  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3536    return DAG.getNode(ISD::FADD, VT, N0, N1);
3537  // canonicalize constant to RHS
3538  if (N0CFP && !N1CFP)
3539    return DAG.getNode(ISD::FADD, VT, N1, N0);
3540  // fold (A + (-B)) -> A-B
3541  if (isNegatibleForFree(N1, AfterLegalize) == 2)
3542    return DAG.getNode(ISD::FSUB, VT, N0,
3543                       GetNegatedExpression(N1, DAG, AfterLegalize));
3544  // fold ((-A) + B) -> B-A
3545  if (isNegatibleForFree(N0, AfterLegalize) == 2)
3546    return DAG.getNode(ISD::FSUB, VT, N1,
3547                       GetNegatedExpression(N0, DAG, AfterLegalize));
3548
3549  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3550  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3551      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3552    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3553                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3554
3555  return SDOperand();
3556}
3557
3558SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3559  SDOperand N0 = N->getOperand(0);
3560  SDOperand N1 = N->getOperand(1);
3561  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3562  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3563  MVT::ValueType VT = N->getValueType(0);
3564
3565  // fold vector ops
3566  if (MVT::isVector(VT)) {
3567    SDOperand FoldedVOp = SimplifyVBinOp(N);
3568    if (FoldedVOp.Val) return FoldedVOp;
3569  }
3570
3571  // fold (fsub c1, c2) -> c1-c2
3572  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3573    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3574  // fold (0-B) -> -B
3575  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3576    if (isNegatibleForFree(N1, AfterLegalize))
3577      return GetNegatedExpression(N1, DAG, AfterLegalize);
3578    return DAG.getNode(ISD::FNEG, VT, N1);
3579  }
3580  // fold (A-(-B)) -> A+B
3581  if (isNegatibleForFree(N1, AfterLegalize))
3582    return DAG.getNode(ISD::FADD, VT, N0,
3583                       GetNegatedExpression(N1, DAG, AfterLegalize));
3584
3585  return SDOperand();
3586}
3587
3588SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3589  SDOperand N0 = N->getOperand(0);
3590  SDOperand N1 = N->getOperand(1);
3591  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3592  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3593  MVT::ValueType VT = N->getValueType(0);
3594
3595  // fold vector ops
3596  if (MVT::isVector(VT)) {
3597    SDOperand FoldedVOp = SimplifyVBinOp(N);
3598    if (FoldedVOp.Val) return FoldedVOp;
3599  }
3600
3601  // fold (fmul c1, c2) -> c1*c2
3602  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3603    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3604  // canonicalize constant to RHS
3605  if (N0CFP && !N1CFP)
3606    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3607  // fold (fmul X, 2.0) -> (fadd X, X)
3608  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3609    return DAG.getNode(ISD::FADD, VT, N0, N0);
3610  // fold (fmul X, -1.0) -> (fneg X)
3611  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3612    return DAG.getNode(ISD::FNEG, VT, N0);
3613
3614  // -X * -Y -> X*Y
3615  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3616    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3617      // Both can be negated for free, check to see if at least one is cheaper
3618      // negated.
3619      if (LHSNeg == 2 || RHSNeg == 2)
3620        return DAG.getNode(ISD::FMUL, VT,
3621                           GetNegatedExpression(N0, DAG, AfterLegalize),
3622                           GetNegatedExpression(N1, DAG, AfterLegalize));
3623    }
3624  }
3625
3626  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3627  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3628      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3629    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3630                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3631
3632  return SDOperand();
3633}
3634
3635SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3636  SDOperand N0 = N->getOperand(0);
3637  SDOperand N1 = N->getOperand(1);
3638  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3639  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3640  MVT::ValueType VT = N->getValueType(0);
3641
3642  // fold vector ops
3643  if (MVT::isVector(VT)) {
3644    SDOperand FoldedVOp = SimplifyVBinOp(N);
3645    if (FoldedVOp.Val) return FoldedVOp;
3646  }
3647
3648  // fold (fdiv c1, c2) -> c1/c2
3649  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3650    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3651
3652
3653  // -X / -Y -> X*Y
3654  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3655    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3656      // Both can be negated for free, check to see if at least one is cheaper
3657      // negated.
3658      if (LHSNeg == 2 || RHSNeg == 2)
3659        return DAG.getNode(ISD::FDIV, VT,
3660                           GetNegatedExpression(N0, DAG, AfterLegalize),
3661                           GetNegatedExpression(N1, DAG, AfterLegalize));
3662    }
3663  }
3664
3665  return SDOperand();
3666}
3667
3668SDOperand DAGCombiner::visitFREM(SDNode *N) {
3669  SDOperand N0 = N->getOperand(0);
3670  SDOperand N1 = N->getOperand(1);
3671  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3672  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3673  MVT::ValueType VT = N->getValueType(0);
3674
3675  // fold (frem c1, c2) -> fmod(c1,c2)
3676  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3677    return DAG.getNode(ISD::FREM, VT, N0, N1);
3678
3679  return SDOperand();
3680}
3681
3682SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3683  SDOperand N0 = N->getOperand(0);
3684  SDOperand N1 = N->getOperand(1);
3685  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3686  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3687  MVT::ValueType VT = N->getValueType(0);
3688
3689  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3690    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3691
3692  if (N1CFP) {
3693    const APFloat& V = N1CFP->getValueAPF();
3694    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3695    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3696    if (!V.isNegative())
3697      return DAG.getNode(ISD::FABS, VT, N0);
3698    else
3699      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3700  }
3701
3702  // copysign(fabs(x), y) -> copysign(x, y)
3703  // copysign(fneg(x), y) -> copysign(x, y)
3704  // copysign(copysign(x,z), y) -> copysign(x, y)
3705  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3706      N0.getOpcode() == ISD::FCOPYSIGN)
3707    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3708
3709  // copysign(x, abs(y)) -> abs(x)
3710  if (N1.getOpcode() == ISD::FABS)
3711    return DAG.getNode(ISD::FABS, VT, N0);
3712
3713  // copysign(x, copysign(y,z)) -> copysign(x, z)
3714  if (N1.getOpcode() == ISD::FCOPYSIGN)
3715    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3716
3717  // copysign(x, fp_extend(y)) -> copysign(x, y)
3718  // copysign(x, fp_round(y)) -> copysign(x, y)
3719  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3720    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3721
3722  return SDOperand();
3723}
3724
3725
3726
3727SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3728  SDOperand N0 = N->getOperand(0);
3729  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3730  MVT::ValueType VT = N->getValueType(0);
3731
3732  // fold (sint_to_fp c1) -> c1fp
3733  if (N0C && N0.getValueType() != MVT::ppcf128)
3734    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3735  return SDOperand();
3736}
3737
3738SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3739  SDOperand N0 = N->getOperand(0);
3740  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3741  MVT::ValueType VT = N->getValueType(0);
3742
3743  // fold (uint_to_fp c1) -> c1fp
3744  if (N0C && N0.getValueType() != MVT::ppcf128)
3745    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3746  return SDOperand();
3747}
3748
3749SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3750  SDOperand N0 = N->getOperand(0);
3751  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3752  MVT::ValueType VT = N->getValueType(0);
3753
3754  // fold (fp_to_sint c1fp) -> c1
3755  if (N0CFP)
3756    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3757  return SDOperand();
3758}
3759
3760SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3761  SDOperand N0 = N->getOperand(0);
3762  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3763  MVT::ValueType VT = N->getValueType(0);
3764
3765  // fold (fp_to_uint c1fp) -> c1
3766  if (N0CFP && VT != MVT::ppcf128)
3767    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3768  return SDOperand();
3769}
3770
3771SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3772  SDOperand N0 = N->getOperand(0);
3773  SDOperand N1 = N->getOperand(1);
3774  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3775  MVT::ValueType VT = N->getValueType(0);
3776
3777  // fold (fp_round c1fp) -> c1fp
3778  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3779    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3780
3781  // fold (fp_round (fp_extend x)) -> x
3782  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3783    return N0.getOperand(0);
3784
3785  // fold (fp_round (fp_round x)) -> (fp_round x)
3786  if (N0.getOpcode() == ISD::FP_ROUND) {
3787    // This is a value preserving truncation if both round's are.
3788    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3789                   N0.Val->getConstantOperandVal(1) == 1;
3790    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3791                       DAG.getIntPtrConstant(IsTrunc));
3792  }
3793
3794  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3795  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3796    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3797    AddToWorkList(Tmp.Val);
3798    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3799  }
3800
3801  return SDOperand();
3802}
3803
3804SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3805  SDOperand N0 = N->getOperand(0);
3806  MVT::ValueType VT = N->getValueType(0);
3807  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3808  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3809
3810  // fold (fp_round_inreg c1fp) -> c1fp
3811  if (N0CFP) {
3812    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3813    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3814  }
3815  return SDOperand();
3816}
3817
3818SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3819  SDOperand N0 = N->getOperand(0);
3820  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3821  MVT::ValueType VT = N->getValueType(0);
3822
3823  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3824  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3825    return SDOperand();
3826
3827  // fold (fp_extend c1fp) -> c1fp
3828  if (N0CFP && VT != MVT::ppcf128)
3829    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3830
3831  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3832  // value of X.
3833  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3834    SDOperand In = N0.getOperand(0);
3835    if (In.getValueType() == VT) return In;
3836    if (VT < In.getValueType())
3837      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3838    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3839  }
3840
3841  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3842  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3843      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3844    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3845    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3846                                       LN0->getBasePtr(), LN0->getSrcValue(),
3847                                       LN0->getSrcValueOffset(),
3848                                       N0.getValueType(),
3849                                       LN0->isVolatile(),
3850                                       LN0->getAlignment());
3851    CombineTo(N, ExtLoad);
3852    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3853                                  DAG.getIntPtrConstant(1)),
3854              ExtLoad.getValue(1));
3855    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3856  }
3857
3858
3859  return SDOperand();
3860}
3861
3862SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3863  SDOperand N0 = N->getOperand(0);
3864
3865  if (isNegatibleForFree(N0, AfterLegalize))
3866    return GetNegatedExpression(N0, DAG, AfterLegalize);
3867
3868  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3869  // constant pool values.
3870  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3871      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3872      !MVT::isVector(N0.getOperand(0).getValueType())) {
3873    SDOperand Int = N0.getOperand(0);
3874    MVT::ValueType IntVT = Int.getValueType();
3875    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3876      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3877                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3878      AddToWorkList(Int.Val);
3879      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3880    }
3881  }
3882
3883  return SDOperand();
3884}
3885
3886SDOperand DAGCombiner::visitFABS(SDNode *N) {
3887  SDOperand N0 = N->getOperand(0);
3888  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3889  MVT::ValueType VT = N->getValueType(0);
3890
3891  // fold (fabs c1) -> fabs(c1)
3892  if (N0CFP && VT != MVT::ppcf128)
3893    return DAG.getNode(ISD::FABS, VT, N0);
3894  // fold (fabs (fabs x)) -> (fabs x)
3895  if (N0.getOpcode() == ISD::FABS)
3896    return N->getOperand(0);
3897  // fold (fabs (fneg x)) -> (fabs x)
3898  // fold (fabs (fcopysign x, y)) -> (fabs x)
3899  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3900    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3901
3902  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
3903  // constant pool values.
3904  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3905      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3906      !MVT::isVector(N0.getOperand(0).getValueType())) {
3907    SDOperand Int = N0.getOperand(0);
3908    MVT::ValueType IntVT = Int.getValueType();
3909    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3910      Int = DAG.getNode(ISD::AND, IntVT, Int,
3911                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
3912      AddToWorkList(Int.Val);
3913      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3914    }
3915  }
3916
3917  return SDOperand();
3918}
3919
3920SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3921  SDOperand Chain = N->getOperand(0);
3922  SDOperand N1 = N->getOperand(1);
3923  SDOperand N2 = N->getOperand(2);
3924  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3925
3926  // never taken branch, fold to chain
3927  if (N1C && N1C->isNullValue())
3928    return Chain;
3929  // unconditional branch
3930  if (N1C && N1C->getValue() == 1)
3931    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3932  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3933  // on the target.
3934  if (N1.getOpcode() == ISD::SETCC &&
3935      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3936    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3937                       N1.getOperand(0), N1.getOperand(1), N2);
3938  }
3939  return SDOperand();
3940}
3941
3942// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3943//
3944SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3945  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3946  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3947
3948  // Use SimplifySetCC  to simplify SETCC's.
3949  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3950  if (Simp.Val) AddToWorkList(Simp.Val);
3951
3952  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3953
3954  // fold br_cc true, dest -> br dest (unconditional branch)
3955  if (SCCC && SCCC->getValue())
3956    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3957                       N->getOperand(4));
3958  // fold br_cc false, dest -> unconditional fall through
3959  if (SCCC && SCCC->isNullValue())
3960    return N->getOperand(0);
3961
3962  // fold to a simpler setcc
3963  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3964    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3965                       Simp.getOperand(2), Simp.getOperand(0),
3966                       Simp.getOperand(1), N->getOperand(4));
3967  return SDOperand();
3968}
3969
3970
3971/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3972/// pre-indexed load / store when the base pointer is a add or subtract
3973/// and it has other uses besides the load / store. After the
3974/// transformation, the new indexed load / store has effectively folded
3975/// the add / subtract in and all of its other uses are redirected to the
3976/// new load / store.
3977bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3978  if (!AfterLegalize)
3979    return false;
3980
3981  bool isLoad = true;
3982  SDOperand Ptr;
3983  MVT::ValueType VT;
3984  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3985    if (LD->isIndexed())
3986      return false;
3987    VT = LD->getMemoryVT();
3988    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3989        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3990      return false;
3991    Ptr = LD->getBasePtr();
3992  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3993    if (ST->isIndexed())
3994      return false;
3995    VT = ST->getMemoryVT();
3996    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3997        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3998      return false;
3999    Ptr = ST->getBasePtr();
4000    isLoad = false;
4001  } else
4002    return false;
4003
4004  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4005  // out.  There is no reason to make this a preinc/predec.
4006  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4007      Ptr.Val->hasOneUse())
4008    return false;
4009
4010  // Ask the target to do addressing mode selection.
4011  SDOperand BasePtr;
4012  SDOperand Offset;
4013  ISD::MemIndexedMode AM = ISD::UNINDEXED;
4014  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4015    return false;
4016  // Don't create a indexed load / store with zero offset.
4017  if (isa<ConstantSDNode>(Offset) &&
4018      cast<ConstantSDNode>(Offset)->getValue() == 0)
4019    return false;
4020
4021  // Try turning it into a pre-indexed load / store except when:
4022  // 1) The new base ptr is a frame index.
4023  // 2) If N is a store and the new base ptr is either the same as or is a
4024  //    predecessor of the value being stored.
4025  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4026  //    that would create a cycle.
4027  // 4) All uses are load / store ops that use it as old base ptr.
4028
4029  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
4030  // (plus the implicit offset) to a register to preinc anyway.
4031  if (isa<FrameIndexSDNode>(BasePtr))
4032    return false;
4033
4034  // Check #2.
4035  if (!isLoad) {
4036    SDOperand Val = cast<StoreSDNode>(N)->getValue();
4037    if (Val == BasePtr || BasePtr.Val->isPredecessorOf(Val.Val))
4038      return false;
4039  }
4040
4041  // Now check for #3 and #4.
4042  bool RealUse = false;
4043  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4044         E = Ptr.Val->use_end(); I != E; ++I) {
4045    SDNode *Use = *I;
4046    if (Use == N)
4047      continue;
4048    if (Use->isPredecessorOf(N))
4049      return false;
4050
4051    if (!((Use->getOpcode() == ISD::LOAD &&
4052           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4053          (Use->getOpcode() == ISD::STORE &&
4054           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4055      RealUse = true;
4056  }
4057  if (!RealUse)
4058    return false;
4059
4060  SDOperand Result;
4061  if (isLoad)
4062    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4063  else
4064    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4065  ++PreIndexedNodes;
4066  ++NodesCombined;
4067  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4068  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4069  DOUT << '\n';
4070  WorkListRemover DeadNodes(*this);
4071  if (isLoad) {
4072    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4073                                  &DeadNodes);
4074    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4075                                  &DeadNodes);
4076  } else {
4077    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4078                                  &DeadNodes);
4079  }
4080
4081  // Finally, since the node is now dead, remove it from the graph.
4082  DAG.DeleteNode(N);
4083
4084  // Replace the uses of Ptr with uses of the updated base value.
4085  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4086                                &DeadNodes);
4087  removeFromWorkList(Ptr.Val);
4088  DAG.DeleteNode(Ptr.Val);
4089
4090  return true;
4091}
4092
4093/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4094/// add / sub of the base pointer node into a post-indexed load / store.
4095/// The transformation folded the add / subtract into the new indexed
4096/// load / store effectively and all of its uses are redirected to the
4097/// new load / store.
4098bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4099  if (!AfterLegalize)
4100    return false;
4101
4102  bool isLoad = true;
4103  SDOperand Ptr;
4104  MVT::ValueType VT;
4105  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4106    if (LD->isIndexed())
4107      return false;
4108    VT = LD->getMemoryVT();
4109    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4110        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4111      return false;
4112    Ptr = LD->getBasePtr();
4113  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4114    if (ST->isIndexed())
4115      return false;
4116    VT = ST->getMemoryVT();
4117    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4118        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4119      return false;
4120    Ptr = ST->getBasePtr();
4121    isLoad = false;
4122  } else
4123    return false;
4124
4125  if (Ptr.Val->hasOneUse())
4126    return false;
4127
4128  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4129         E = Ptr.Val->use_end(); I != E; ++I) {
4130    SDNode *Op = *I;
4131    if (Op == N ||
4132        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4133      continue;
4134
4135    SDOperand BasePtr;
4136    SDOperand Offset;
4137    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4138    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4139      if (Ptr == Offset)
4140        std::swap(BasePtr, Offset);
4141      if (Ptr != BasePtr)
4142        continue;
4143      // Don't create a indexed load / store with zero offset.
4144      if (isa<ConstantSDNode>(Offset) &&
4145          cast<ConstantSDNode>(Offset)->getValue() == 0)
4146        continue;
4147
4148      // Try turning it into a post-indexed load / store except when
4149      // 1) All uses are load / store ops that use it as base ptr.
4150      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4151      //    nor a successor of N. Otherwise, if Op is folded that would
4152      //    create a cycle.
4153
4154      // Check for #1.
4155      bool TryNext = false;
4156      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4157             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4158        SDNode *Use = *II;
4159        if (Use == Ptr.Val)
4160          continue;
4161
4162        // If all the uses are load / store addresses, then don't do the
4163        // transformation.
4164        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4165          bool RealUse = false;
4166          for (SDNode::use_iterator III = Use->use_begin(),
4167                 EEE = Use->use_end(); III != EEE; ++III) {
4168            SDNode *UseUse = *III;
4169            if (!((UseUse->getOpcode() == ISD::LOAD &&
4170                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4171                  (UseUse->getOpcode() == ISD::STORE &&
4172                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)))
4173              RealUse = true;
4174          }
4175
4176          if (!RealUse) {
4177            TryNext = true;
4178            break;
4179          }
4180        }
4181      }
4182      if (TryNext)
4183        continue;
4184
4185      // Check for #2
4186      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4187        SDOperand Result = isLoad
4188          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4189          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4190        ++PostIndexedNodes;
4191        ++NodesCombined;
4192        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4193        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4194        DOUT << '\n';
4195        WorkListRemover DeadNodes(*this);
4196        if (isLoad) {
4197          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4198                                        &DeadNodes);
4199          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4200                                        &DeadNodes);
4201        } else {
4202          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4203                                        &DeadNodes);
4204        }
4205
4206        // Finally, since the node is now dead, remove it from the graph.
4207        DAG.DeleteNode(N);
4208
4209        // Replace the uses of Use with uses of the updated base value.
4210        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4211                                      Result.getValue(isLoad ? 1 : 0),
4212                                      &DeadNodes);
4213        removeFromWorkList(Op);
4214        DAG.DeleteNode(Op);
4215        return true;
4216      }
4217    }
4218  }
4219  return false;
4220}
4221
4222/// InferAlignment - If we can infer some alignment information from this
4223/// pointer, return it.
4224static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4225  // If this is a direct reference to a stack slot, use information about the
4226  // stack slot's alignment.
4227  int FrameIdx = 1 << 31;
4228  int64_t FrameOffset = 0;
4229  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4230    FrameIdx = FI->getIndex();
4231  } else if (Ptr.getOpcode() == ISD::ADD &&
4232             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4233             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4234    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4235    FrameOffset = Ptr.getConstantOperandVal(1);
4236  }
4237
4238  if (FrameIdx != (1 << 31)) {
4239    // FIXME: Handle FI+CST.
4240    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4241    if (MFI.isFixedObjectIndex(FrameIdx)) {
4242      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4243
4244      // The alignment of the frame index can be determined from its offset from
4245      // the incoming frame position.  If the frame object is at offset 32 and
4246      // the stack is guaranteed to be 16-byte aligned, then we know that the
4247      // object is 16-byte aligned.
4248      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4249      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4250
4251      // Finally, the frame object itself may have a known alignment.  Factor
4252      // the alignment + offset into a new alignment.  For example, if we know
4253      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4254      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4255      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4256      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4257                                      FrameOffset);
4258      return std::max(Align, FIInfoAlign);
4259    }
4260  }
4261
4262  return 0;
4263}
4264
4265SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4266  LoadSDNode *LD  = cast<LoadSDNode>(N);
4267  SDOperand Chain = LD->getChain();
4268  SDOperand Ptr   = LD->getBasePtr();
4269
4270  // Try to infer better alignment information than the load already has.
4271  if (LD->isUnindexed()) {
4272    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4273      if (Align > LD->getAlignment())
4274        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4275                              Chain, Ptr, LD->getSrcValue(),
4276                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4277                              LD->isVolatile(), Align);
4278    }
4279  }
4280
4281
4282  // If load is not volatile and there are no uses of the loaded value (and
4283  // the updated indexed value in case of indexed loads), change uses of the
4284  // chain value into uses of the chain input (i.e. delete the dead load).
4285  if (!LD->isVolatile()) {
4286    if (N->getValueType(1) == MVT::Other) {
4287      // Unindexed loads.
4288      if (N->hasNUsesOfValue(0, 0)) {
4289        // It's not safe to use the two value CombineTo variant here. e.g.
4290        // v1, chain2 = load chain1, loc
4291        // v2, chain3 = load chain2, loc
4292        // v3         = add v2, c
4293        // Now we replace use of chain2 with chain1.  This makes the second load
4294        // isomorphic to the one we are deleting, and thus makes this load live.
4295        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4296        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4297        DOUT << "\n";
4298        WorkListRemover DeadNodes(*this);
4299        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4300        if (N->use_empty()) {
4301          removeFromWorkList(N);
4302          DAG.DeleteNode(N);
4303        }
4304        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4305      }
4306    } else {
4307      // Indexed loads.
4308      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4309      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4310        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4311        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4312        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4313        DOUT << " and 2 other values\n";
4314        WorkListRemover DeadNodes(*this);
4315        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4316        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4317                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4318                                      &DeadNodes);
4319        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4320        removeFromWorkList(N);
4321        DAG.DeleteNode(N);
4322        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4323      }
4324    }
4325  }
4326
4327  // If this load is directly stored, replace the load value with the stored
4328  // value.
4329  // TODO: Handle store large -> read small portion.
4330  // TODO: Handle TRUNCSTORE/LOADEXT
4331  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4332    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4333      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4334      if (PrevST->getBasePtr() == Ptr &&
4335          PrevST->getValue().getValueType() == N->getValueType(0))
4336      return CombineTo(N, Chain.getOperand(1), Chain);
4337    }
4338  }
4339
4340  if (CombinerAA) {
4341    // Walk up chain skipping non-aliasing memory nodes.
4342    SDOperand BetterChain = FindBetterChain(N, Chain);
4343
4344    // If there is a better chain.
4345    if (Chain != BetterChain) {
4346      SDOperand ReplLoad;
4347
4348      // Replace the chain to void dependency.
4349      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4350        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4351                               LD->getSrcValue(), LD->getSrcValueOffset(),
4352                               LD->isVolatile(), LD->getAlignment());
4353      } else {
4354        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4355                                  LD->getValueType(0),
4356                                  BetterChain, Ptr, LD->getSrcValue(),
4357                                  LD->getSrcValueOffset(),
4358                                  LD->getMemoryVT(),
4359                                  LD->isVolatile(),
4360                                  LD->getAlignment());
4361      }
4362
4363      // Create token factor to keep old chain connected.
4364      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4365                                    Chain, ReplLoad.getValue(1));
4366
4367      // Replace uses with load result and token factor. Don't add users
4368      // to work list.
4369      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4370    }
4371  }
4372
4373  // Try transforming N to an indexed load.
4374  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4375    return SDOperand(N, 0);
4376
4377  return SDOperand();
4378}
4379
4380
4381SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4382  StoreSDNode *ST  = cast<StoreSDNode>(N);
4383  SDOperand Chain = ST->getChain();
4384  SDOperand Value = ST->getValue();
4385  SDOperand Ptr   = ST->getBasePtr();
4386
4387  // Try to infer better alignment information than the store already has.
4388  if (ST->isUnindexed()) {
4389    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4390      if (Align > ST->getAlignment())
4391        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4392                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4393                                 ST->isVolatile(), Align);
4394    }
4395  }
4396
4397  // If this is a store of a bit convert, store the input value if the
4398  // resultant store does not need a higher alignment than the original.
4399  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4400      ST->isUnindexed()) {
4401    unsigned Align = ST->getAlignment();
4402    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4403    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4404      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4405    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4406      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4407                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4408  }
4409
4410  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4411  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4412    if (Value.getOpcode() != ISD::TargetConstantFP) {
4413      SDOperand Tmp;
4414      switch (CFP->getValueType(0)) {
4415      default: assert(0 && "Unknown FP type");
4416      case MVT::f80:    // We don't do this for these yet.
4417      case MVT::f128:
4418      case MVT::ppcf128:
4419        break;
4420      case MVT::f32:
4421        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4422          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4423                              convertToAPInt().getZExtValue(), MVT::i32);
4424          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4425                              ST->getSrcValueOffset(), ST->isVolatile(),
4426                              ST->getAlignment());
4427        }
4428        break;
4429      case MVT::f64:
4430        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4431          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4432                                  getZExtValue(), MVT::i64);
4433          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4434                              ST->getSrcValueOffset(), ST->isVolatile(),
4435                              ST->getAlignment());
4436        } else if (TLI.isTypeLegal(MVT::i32)) {
4437          // Many FP stores are not made apparent until after legalize, e.g. for
4438          // argument passing.  Since this is so common, custom legalize the
4439          // 64-bit integer store into two 32-bit stores.
4440          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4441          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4442          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4443          if (TLI.isBigEndian()) std::swap(Lo, Hi);
4444
4445          int SVOffset = ST->getSrcValueOffset();
4446          unsigned Alignment = ST->getAlignment();
4447          bool isVolatile = ST->isVolatile();
4448
4449          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4450                                       ST->getSrcValueOffset(),
4451                                       isVolatile, ST->getAlignment());
4452          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4453                            DAG.getConstant(4, Ptr.getValueType()));
4454          SVOffset += 4;
4455          Alignment = MinAlign(Alignment, 4U);
4456          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4457                                       SVOffset, isVolatile, Alignment);
4458          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4459        }
4460        break;
4461      }
4462    }
4463  }
4464
4465  if (CombinerAA) {
4466    // Walk up chain skipping non-aliasing memory nodes.
4467    SDOperand BetterChain = FindBetterChain(N, Chain);
4468
4469    // If there is a better chain.
4470    if (Chain != BetterChain) {
4471      // Replace the chain to avoid dependency.
4472      SDOperand ReplStore;
4473      if (ST->isTruncatingStore()) {
4474        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4475                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4476                                      ST->getMemoryVT(),
4477                                      ST->isVolatile(), ST->getAlignment());
4478      } else {
4479        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4480                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4481                                 ST->isVolatile(), ST->getAlignment());
4482      }
4483
4484      // Create token to keep both nodes around.
4485      SDOperand Token =
4486        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4487
4488      // Don't add users to work list.
4489      return CombineTo(N, Token, false);
4490    }
4491  }
4492
4493  // Try transforming N to an indexed store.
4494  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4495    return SDOperand(N, 0);
4496
4497  // FIXME: is there such a thing as a truncating indexed store?
4498  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4499      MVT::isInteger(Value.getValueType())) {
4500    // See if we can simplify the input to this truncstore with knowledge that
4501    // only the low bits are being used.  For example:
4502    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4503    SDOperand Shorter =
4504      GetDemandedBits(Value,
4505                 APInt::getLowBitsSet(Value.getValueSizeInBits(),
4506                                      MVT::getSizeInBits(ST->getMemoryVT())));
4507    AddToWorkList(Value.Val);
4508    if (Shorter.Val)
4509      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4510                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4511                               ST->isVolatile(), ST->getAlignment());
4512
4513    // Otherwise, see if we can simplify the operation with
4514    // SimplifyDemandedBits, which only works if the value has a single use.
4515    if (SimplifyDemandedBits(Value,
4516                             APInt::getLowBitsSet(
4517                               Value.getValueSizeInBits(),
4518                               MVT::getSizeInBits(ST->getMemoryVT()))))
4519      return SDOperand(N, 0);
4520  }
4521
4522  // If this is a load followed by a store to the same location, then the store
4523  // is dead/noop.
4524  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4525    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4526        ST->isUnindexed() && !ST->isVolatile() &&
4527        // There can't be any side effects between the load and store, such as
4528        // a call or store.
4529        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4530      // The store is dead, remove it.
4531      return Chain;
4532    }
4533  }
4534
4535  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4536  // truncating store.  We can do this even if this is already a truncstore.
4537  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4538      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4539      Value.Val->hasOneUse() && ST->isUnindexed() &&
4540      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4541                            ST->getMemoryVT())) {
4542    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4543                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4544                             ST->isVolatile(), ST->getAlignment());
4545  }
4546
4547  return SDOperand();
4548}
4549
4550SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4551  SDOperand InVec = N->getOperand(0);
4552  SDOperand InVal = N->getOperand(1);
4553  SDOperand EltNo = N->getOperand(2);
4554
4555  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4556  // vector with the inserted element.
4557  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4558    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4559    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4560    if (Elt < Ops.size())
4561      Ops[Elt] = InVal;
4562    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4563                       &Ops[0], Ops.size());
4564  }
4565
4566  return SDOperand();
4567}
4568
4569SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4570  SDOperand InVec = N->getOperand(0);
4571  SDOperand EltNo = N->getOperand(1);
4572
4573  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4574  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4575  if (isa<ConstantSDNode>(EltNo)) {
4576    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4577    bool NewLoad = false;
4578    if (Elt == 0) {
4579      MVT::ValueType VT = InVec.getValueType();
4580      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4581      MVT::ValueType LVT = EVT;
4582      unsigned NumElts = MVT::getVectorNumElements(VT);
4583      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4584        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4585        if (!MVT::isVector(BCVT) ||
4586            NumElts != MVT::getVectorNumElements(BCVT))
4587          return SDOperand();
4588        InVec = InVec.getOperand(0);
4589        EVT = MVT::getVectorElementType(BCVT);
4590        NewLoad = true;
4591      }
4592      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4593          InVec.getOperand(0).getValueType() == EVT &&
4594          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4595          InVec.getOperand(0).hasOneUse()) {
4596        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4597        unsigned Align = LN0->getAlignment();
4598        if (NewLoad) {
4599          // Check the resultant load doesn't need a higher alignment than the
4600          // original load.
4601          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4602            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4603          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4604            return SDOperand();
4605          Align = NewAlign;
4606        }
4607
4608        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4609                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4610                           LN0->isVolatile(), Align);
4611      }
4612    }
4613  }
4614  return SDOperand();
4615}
4616
4617
4618SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4619  unsigned NumInScalars = N->getNumOperands();
4620  MVT::ValueType VT = N->getValueType(0);
4621  unsigned NumElts = MVT::getVectorNumElements(VT);
4622  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4623
4624  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4625  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4626  // at most two distinct vectors, turn this into a shuffle node.
4627  SDOperand VecIn1, VecIn2;
4628  for (unsigned i = 0; i != NumInScalars; ++i) {
4629    // Ignore undef inputs.
4630    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4631
4632    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4633    // constant index, bail out.
4634    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4635        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4636      VecIn1 = VecIn2 = SDOperand(0, 0);
4637      break;
4638    }
4639
4640    // If the input vector type disagrees with the result of the build_vector,
4641    // we can't make a shuffle.
4642    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4643    if (ExtractedFromVec.getValueType() != VT) {
4644      VecIn1 = VecIn2 = SDOperand(0, 0);
4645      break;
4646    }
4647
4648    // Otherwise, remember this.  We allow up to two distinct input vectors.
4649    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4650      continue;
4651
4652    if (VecIn1.Val == 0) {
4653      VecIn1 = ExtractedFromVec;
4654    } else if (VecIn2.Val == 0) {
4655      VecIn2 = ExtractedFromVec;
4656    } else {
4657      // Too many inputs.
4658      VecIn1 = VecIn2 = SDOperand(0, 0);
4659      break;
4660    }
4661  }
4662
4663  // If everything is good, we can make a shuffle operation.
4664  if (VecIn1.Val) {
4665    SmallVector<SDOperand, 8> BuildVecIndices;
4666    for (unsigned i = 0; i != NumInScalars; ++i) {
4667      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4668        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4669        continue;
4670      }
4671
4672      SDOperand Extract = N->getOperand(i);
4673
4674      // If extracting from the first vector, just use the index directly.
4675      if (Extract.getOperand(0) == VecIn1) {
4676        BuildVecIndices.push_back(Extract.getOperand(1));
4677        continue;
4678      }
4679
4680      // Otherwise, use InIdx + VecSize
4681      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4682      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4683    }
4684
4685    // Add count and size info.
4686    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4687
4688    // Return the new VECTOR_SHUFFLE node.
4689    SDOperand Ops[5];
4690    Ops[0] = VecIn1;
4691    if (VecIn2.Val) {
4692      Ops[1] = VecIn2;
4693    } else {
4694      // Use an undef build_vector as input for the second operand.
4695      std::vector<SDOperand> UnOps(NumInScalars,
4696                                   DAG.getNode(ISD::UNDEF,
4697                                               EltType));
4698      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4699                           &UnOps[0], UnOps.size());
4700      AddToWorkList(Ops[1].Val);
4701    }
4702    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4703                         &BuildVecIndices[0], BuildVecIndices.size());
4704    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4705  }
4706
4707  return SDOperand();
4708}
4709
4710SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4711  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4712  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4713  // inputs come from at most two distinct vectors, turn this into a shuffle
4714  // node.
4715
4716  // If we only have one input vector, we don't need to do any concatenation.
4717  if (N->getNumOperands() == 1) {
4718    return N->getOperand(0);
4719  }
4720
4721  return SDOperand();
4722}
4723
4724SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4725  SDOperand ShufMask = N->getOperand(2);
4726  unsigned NumElts = ShufMask.getNumOperands();
4727
4728  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4729  bool isIdentity = true;
4730  for (unsigned i = 0; i != NumElts; ++i) {
4731    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4732        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4733      isIdentity = false;
4734      break;
4735    }
4736  }
4737  if (isIdentity) return N->getOperand(0);
4738
4739  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4740  isIdentity = true;
4741  for (unsigned i = 0; i != NumElts; ++i) {
4742    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4743        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4744      isIdentity = false;
4745      break;
4746    }
4747  }
4748  if (isIdentity) return N->getOperand(1);
4749
4750  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4751  // needed at all.
4752  bool isUnary = true;
4753  bool isSplat = true;
4754  int VecNum = -1;
4755  unsigned BaseIdx = 0;
4756  for (unsigned i = 0; i != NumElts; ++i)
4757    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4758      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4759      int V = (Idx < NumElts) ? 0 : 1;
4760      if (VecNum == -1) {
4761        VecNum = V;
4762        BaseIdx = Idx;
4763      } else {
4764        if (BaseIdx != Idx)
4765          isSplat = false;
4766        if (VecNum != V) {
4767          isUnary = false;
4768          break;
4769        }
4770      }
4771    }
4772
4773  SDOperand N0 = N->getOperand(0);
4774  SDOperand N1 = N->getOperand(1);
4775  // Normalize unary shuffle so the RHS is undef.
4776  if (isUnary && VecNum == 1)
4777    std::swap(N0, N1);
4778
4779  // If it is a splat, check if the argument vector is a build_vector with
4780  // all scalar elements the same.
4781  if (isSplat) {
4782    SDNode *V = N0.Val;
4783
4784    // If this is a bit convert that changes the element type of the vector but
4785    // not the number of vector elements, look through it.  Be careful not to
4786    // look though conversions that change things like v4f32 to v2f64.
4787    if (V->getOpcode() == ISD::BIT_CONVERT) {
4788      SDOperand ConvInput = V->getOperand(0);
4789      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4790        V = ConvInput.Val;
4791    }
4792
4793    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4794      unsigned NumElems = V->getNumOperands();
4795      if (NumElems > BaseIdx) {
4796        SDOperand Base;
4797        bool AllSame = true;
4798        for (unsigned i = 0; i != NumElems; ++i) {
4799          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4800            Base = V->getOperand(i);
4801            break;
4802          }
4803        }
4804        // Splat of <u, u, u, u>, return <u, u, u, u>
4805        if (!Base.Val)
4806          return N0;
4807        for (unsigned i = 0; i != NumElems; ++i) {
4808          if (V->getOperand(i) != Base) {
4809            AllSame = false;
4810            break;
4811          }
4812        }
4813        // Splat of <x, x, x, x>, return <x, x, x, x>
4814        if (AllSame)
4815          return N0;
4816      }
4817    }
4818  }
4819
4820  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4821  // into an undef.
4822  if (isUnary || N0 == N1) {
4823    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4824    // first operand.
4825    SmallVector<SDOperand, 8> MappedOps;
4826    for (unsigned i = 0; i != NumElts; ++i) {
4827      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4828          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4829        MappedOps.push_back(ShufMask.getOperand(i));
4830      } else {
4831        unsigned NewIdx =
4832          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4833        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4834      }
4835    }
4836    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4837                           &MappedOps[0], MappedOps.size());
4838    AddToWorkList(ShufMask.Val);
4839    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4840                       N0,
4841                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4842                       ShufMask);
4843  }
4844
4845  return SDOperand();
4846}
4847
4848/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4849/// an AND to a vector_shuffle with the destination vector and a zero vector.
4850/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4851///      vector_shuffle V, Zero, <0, 4, 2, 4>
4852SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4853  SDOperand LHS = N->getOperand(0);
4854  SDOperand RHS = N->getOperand(1);
4855  if (N->getOpcode() == ISD::AND) {
4856    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4857      RHS = RHS.getOperand(0);
4858    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4859      std::vector<SDOperand> IdxOps;
4860      unsigned NumOps = RHS.getNumOperands();
4861      unsigned NumElts = NumOps;
4862      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4863      for (unsigned i = 0; i != NumElts; ++i) {
4864        SDOperand Elt = RHS.getOperand(i);
4865        if (!isa<ConstantSDNode>(Elt))
4866          return SDOperand();
4867        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4868          IdxOps.push_back(DAG.getConstant(i, EVT));
4869        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4870          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4871        else
4872          return SDOperand();
4873      }
4874
4875      // Let's see if the target supports this vector_shuffle.
4876      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4877        return SDOperand();
4878
4879      // Return the new VECTOR_SHUFFLE node.
4880      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4881      std::vector<SDOperand> Ops;
4882      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4883      Ops.push_back(LHS);
4884      AddToWorkList(LHS.Val);
4885      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4886      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4887                                &ZeroOps[0], ZeroOps.size()));
4888      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4889                                &IdxOps[0], IdxOps.size()));
4890      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4891                                     &Ops[0], Ops.size());
4892      if (VT != LHS.getValueType()) {
4893        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4894      }
4895      return Result;
4896    }
4897  }
4898  return SDOperand();
4899}
4900
4901/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4902SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4903  // After legalize, the target may be depending on adds and other
4904  // binary ops to provide legal ways to construct constants or other
4905  // things. Simplifying them may result in a loss of legality.
4906  if (AfterLegalize) return SDOperand();
4907
4908  MVT::ValueType VT = N->getValueType(0);
4909  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4910
4911  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4912  SDOperand LHS = N->getOperand(0);
4913  SDOperand RHS = N->getOperand(1);
4914  SDOperand Shuffle = XformToShuffleWithZero(N);
4915  if (Shuffle.Val) return Shuffle;
4916
4917  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4918  // this operation.
4919  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4920      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4921    SmallVector<SDOperand, 8> Ops;
4922    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4923      SDOperand LHSOp = LHS.getOperand(i);
4924      SDOperand RHSOp = RHS.getOperand(i);
4925      // If these two elements can't be folded, bail out.
4926      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4927           LHSOp.getOpcode() != ISD::Constant &&
4928           LHSOp.getOpcode() != ISD::ConstantFP) ||
4929          (RHSOp.getOpcode() != ISD::UNDEF &&
4930           RHSOp.getOpcode() != ISD::Constant &&
4931           RHSOp.getOpcode() != ISD::ConstantFP))
4932        break;
4933      // Can't fold divide by zero.
4934      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4935          N->getOpcode() == ISD::FDIV) {
4936        if ((RHSOp.getOpcode() == ISD::Constant &&
4937             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4938            (RHSOp.getOpcode() == ISD::ConstantFP &&
4939             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4940          break;
4941      }
4942      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4943      AddToWorkList(Ops.back().Val);
4944      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4945              Ops.back().getOpcode() == ISD::Constant ||
4946              Ops.back().getOpcode() == ISD::ConstantFP) &&
4947             "Scalar binop didn't fold!");
4948    }
4949
4950    if (Ops.size() == LHS.getNumOperands()) {
4951      MVT::ValueType VT = LHS.getValueType();
4952      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4953    }
4954  }
4955
4956  return SDOperand();
4957}
4958
4959SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4960  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4961
4962  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4963                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4964  // If we got a simplified select_cc node back from SimplifySelectCC, then
4965  // break it down into a new SETCC node, and a new SELECT node, and then return
4966  // the SELECT node, since we were called with a SELECT node.
4967  if (SCC.Val) {
4968    // Check to see if we got a select_cc back (to turn into setcc/select).
4969    // Otherwise, just return whatever node we got back, like fabs.
4970    if (SCC.getOpcode() == ISD::SELECT_CC) {
4971      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4972                                    SCC.getOperand(0), SCC.getOperand(1),
4973                                    SCC.getOperand(4));
4974      AddToWorkList(SETCC.Val);
4975      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4976                         SCC.getOperand(3), SETCC);
4977    }
4978    return SCC;
4979  }
4980  return SDOperand();
4981}
4982
4983/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4984/// are the two values being selected between, see if we can simplify the
4985/// select.  Callers of this should assume that TheSelect is deleted if this
4986/// returns true.  As such, they should return the appropriate thing (e.g. the
4987/// node) back to the top-level of the DAG combiner loop to avoid it being
4988/// looked at.
4989///
4990bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4991                                    SDOperand RHS) {
4992
4993  // If this is a select from two identical things, try to pull the operation
4994  // through the select.
4995  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4996    // If this is a load and the token chain is identical, replace the select
4997    // of two loads with a load through a select of the address to load from.
4998    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4999    // constants have been dropped into the constant pool.
5000    if (LHS.getOpcode() == ISD::LOAD &&
5001        // Token chains must be identical.
5002        LHS.getOperand(0) == RHS.getOperand(0)) {
5003      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5004      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5005
5006      // If this is an EXTLOAD, the VT's must match.
5007      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5008        // FIXME: this conflates two src values, discarding one.  This is not
5009        // the right thing to do, but nothing uses srcvalues now.  When they do,
5010        // turn SrcValue into a list of locations.
5011        SDOperand Addr;
5012        if (TheSelect->getOpcode() == ISD::SELECT) {
5013          // Check that the condition doesn't reach either load.  If so, folding
5014          // this will induce a cycle into the DAG.
5015          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5016              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val)) {
5017            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
5018                               TheSelect->getOperand(0), LLD->getBasePtr(),
5019                               RLD->getBasePtr());
5020          }
5021        } else {
5022          // Check that the condition doesn't reach either load.  If so, folding
5023          // this will induce a cycle into the DAG.
5024          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5025              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5026              !LLD->isPredecessorOf(TheSelect->getOperand(1).Val) &&
5027              !RLD->isPredecessorOf(TheSelect->getOperand(1).Val)) {
5028            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
5029                             TheSelect->getOperand(0),
5030                             TheSelect->getOperand(1),
5031                             LLD->getBasePtr(), RLD->getBasePtr(),
5032                             TheSelect->getOperand(4));
5033          }
5034        }
5035
5036        if (Addr.Val) {
5037          SDOperand Load;
5038          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
5039            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
5040                               Addr,LLD->getSrcValue(),
5041                               LLD->getSrcValueOffset(),
5042                               LLD->isVolatile(),
5043                               LLD->getAlignment());
5044          else {
5045            Load = DAG.getExtLoad(LLD->getExtensionType(),
5046                                  TheSelect->getValueType(0),
5047                                  LLD->getChain(), Addr, LLD->getSrcValue(),
5048                                  LLD->getSrcValueOffset(),
5049                                  LLD->getMemoryVT(),
5050                                  LLD->isVolatile(),
5051                                  LLD->getAlignment());
5052          }
5053          // Users of the select now use the result of the load.
5054          CombineTo(TheSelect, Load);
5055
5056          // Users of the old loads now use the new load's chain.  We know the
5057          // old-load value is dead now.
5058          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5059          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5060          return true;
5061        }
5062      }
5063    }
5064  }
5065
5066  return false;
5067}
5068
5069SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5070                                        SDOperand N2, SDOperand N3,
5071                                        ISD::CondCode CC, bool NotExtCompare) {
5072
5073  MVT::ValueType VT = N2.getValueType();
5074  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5075  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5076  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5077
5078  // Determine if the condition we're dealing with is constant
5079  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
5080  if (SCC.Val) AddToWorkList(SCC.Val);
5081  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5082
5083  // fold select_cc true, x, y -> x
5084  if (SCCC && SCCC->getValue())
5085    return N2;
5086  // fold select_cc false, x, y -> y
5087  if (SCCC && SCCC->getValue() == 0)
5088    return N3;
5089
5090  // Check to see if we can simplify the select into an fabs node
5091  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5092    // Allow either -0.0 or 0.0
5093    if (CFP->getValueAPF().isZero()) {
5094      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5095      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5096          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5097          N2 == N3.getOperand(0))
5098        return DAG.getNode(ISD::FABS, VT, N0);
5099
5100      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5101      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5102          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5103          N2.getOperand(0) == N3)
5104        return DAG.getNode(ISD::FABS, VT, N3);
5105    }
5106  }
5107
5108  // Check to see if we can perform the "gzip trick", transforming
5109  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5110  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5111      MVT::isInteger(N0.getValueType()) &&
5112      MVT::isInteger(N2.getValueType()) &&
5113      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
5114       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5115    MVT::ValueType XType = N0.getValueType();
5116    MVT::ValueType AType = N2.getValueType();
5117    if (XType >= AType) {
5118      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5119      // single-bit constant.
5120      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
5121        unsigned ShCtV = Log2_64(N2C->getValue());
5122        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5123        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5124        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5125        AddToWorkList(Shift.Val);
5126        if (XType > AType) {
5127          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5128          AddToWorkList(Shift.Val);
5129        }
5130        return DAG.getNode(ISD::AND, AType, Shift, N2);
5131      }
5132      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5133                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5134                                                    TLI.getShiftAmountTy()));
5135      AddToWorkList(Shift.Val);
5136      if (XType > AType) {
5137        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5138        AddToWorkList(Shift.Val);
5139      }
5140      return DAG.getNode(ISD::AND, AType, Shift, N2);
5141    }
5142  }
5143
5144  // fold select C, 16, 0 -> shl C, 4
5145  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
5146      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5147
5148    // If the caller doesn't want us to simplify this into a zext of a compare,
5149    // don't do it.
5150    if (NotExtCompare && N2C->getValue() == 1)
5151      return SDOperand();
5152
5153    // Get a SetCC of the condition
5154    // FIXME: Should probably make sure that setcc is legal if we ever have a
5155    // target where it isn't.
5156    SDOperand Temp, SCC;
5157    // cast from setcc result type to select result type
5158    if (AfterLegalize) {
5159      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
5160      if (N2.getValueType() < SCC.getValueType())
5161        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5162      else
5163        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5164    } else {
5165      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5166      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5167    }
5168    AddToWorkList(SCC.Val);
5169    AddToWorkList(Temp.Val);
5170
5171    if (N2C->getValue() == 1)
5172      return Temp;
5173    // shl setcc result by log2 n2c
5174    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5175                       DAG.getConstant(Log2_64(N2C->getValue()),
5176                                       TLI.getShiftAmountTy()));
5177  }
5178
5179  // Check to see if this is the equivalent of setcc
5180  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5181  // otherwise, go ahead with the folds.
5182  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
5183    MVT::ValueType XType = N0.getValueType();
5184    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
5185      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
5186      if (Res.getValueType() != VT)
5187        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5188      return Res;
5189    }
5190
5191    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5192    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5193        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5194      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5195      return DAG.getNode(ISD::SRL, XType, Ctlz,
5196                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5197                                         TLI.getShiftAmountTy()));
5198    }
5199    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5200    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5201      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5202                                    N0);
5203      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5204                                    DAG.getConstant(~0ULL, XType));
5205      return DAG.getNode(ISD::SRL, XType,
5206                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5207                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5208                                         TLI.getShiftAmountTy()));
5209    }
5210    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5211    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5212      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5213                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5214                                                   TLI.getShiftAmountTy()));
5215      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5216    }
5217  }
5218
5219  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5220  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5221  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5222      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5223      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5224    MVT::ValueType XType = N0.getValueType();
5225    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5226                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5227                                                  TLI.getShiftAmountTy()));
5228    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5229    AddToWorkList(Shift.Val);
5230    AddToWorkList(Add.Val);
5231    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5232  }
5233  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5234  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5235  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5236      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5237    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5238      MVT::ValueType XType = N0.getValueType();
5239      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5240        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5241                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5242                                                      TLI.getShiftAmountTy()));
5243        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5244        AddToWorkList(Shift.Val);
5245        AddToWorkList(Add.Val);
5246        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5247      }
5248    }
5249  }
5250
5251  return SDOperand();
5252}
5253
5254/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5255SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5256                                     SDOperand N1, ISD::CondCode Cond,
5257                                     bool foldBooleans) {
5258  TargetLowering::DAGCombinerInfo
5259    DagCombineInfo(DAG, !AfterLegalize, false, this);
5260  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5261}
5262
5263/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5264/// return a DAG expression to select that will generate the same value by
5265/// multiplying by a magic number.  See:
5266/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5267SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5268  std::vector<SDNode*> Built;
5269  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5270
5271  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5272       ii != ee; ++ii)
5273    AddToWorkList(*ii);
5274  return S;
5275}
5276
5277/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5278/// return a DAG expression to select that will generate the same value by
5279/// multiplying by a magic number.  See:
5280/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5281SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5282  std::vector<SDNode*> Built;
5283  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5284
5285  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5286       ii != ee; ++ii)
5287    AddToWorkList(*ii);
5288  return S;
5289}
5290
5291/// FindBaseOffset - Return true if base is known not to alias with anything
5292/// but itself.  Provides base object and offset as results.
5293static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5294  // Assume it is a primitive operation.
5295  Base = Ptr; Offset = 0;
5296
5297  // If it's an adding a simple constant then integrate the offset.
5298  if (Base.getOpcode() == ISD::ADD) {
5299    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5300      Base = Base.getOperand(0);
5301      Offset += C->getValue();
5302    }
5303  }
5304
5305  // If it's any of the following then it can't alias with anything but itself.
5306  return isa<FrameIndexSDNode>(Base) ||
5307         isa<ConstantPoolSDNode>(Base) ||
5308         isa<GlobalAddressSDNode>(Base);
5309}
5310
5311/// isAlias - Return true if there is any possibility that the two addresses
5312/// overlap.
5313bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5314                          const Value *SrcValue1, int SrcValueOffset1,
5315                          SDOperand Ptr2, int64_t Size2,
5316                          const Value *SrcValue2, int SrcValueOffset2)
5317{
5318  // If they are the same then they must be aliases.
5319  if (Ptr1 == Ptr2) return true;
5320
5321  // Gather base node and offset information.
5322  SDOperand Base1, Base2;
5323  int64_t Offset1, Offset2;
5324  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5325  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5326
5327  // If they have a same base address then...
5328  if (Base1 == Base2) {
5329    // Check to see if the addresses overlap.
5330    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5331  }
5332
5333  // If we know both bases then they can't alias.
5334  if (KnownBase1 && KnownBase2) return false;
5335
5336  if (CombinerGlobalAA) {
5337    // Use alias analysis information.
5338    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5339    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5340    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5341    AliasAnalysis::AliasResult AAResult =
5342                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5343    if (AAResult == AliasAnalysis::NoAlias)
5344      return false;
5345  }
5346
5347  // Otherwise we have to assume they alias.
5348  return true;
5349}
5350
5351/// FindAliasInfo - Extracts the relevant alias information from the memory
5352/// node.  Returns true if the operand was a load.
5353bool DAGCombiner::FindAliasInfo(SDNode *N,
5354                        SDOperand &Ptr, int64_t &Size,
5355                        const Value *&SrcValue, int &SrcValueOffset) {
5356  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5357    Ptr = LD->getBasePtr();
5358    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5359    SrcValue = LD->getSrcValue();
5360    SrcValueOffset = LD->getSrcValueOffset();
5361    return true;
5362  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5363    Ptr = ST->getBasePtr();
5364    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5365    SrcValue = ST->getSrcValue();
5366    SrcValueOffset = ST->getSrcValueOffset();
5367  } else {
5368    assert(0 && "FindAliasInfo expected a memory operand");
5369  }
5370
5371  return false;
5372}
5373
5374/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5375/// looking for aliasing nodes and adding them to the Aliases vector.
5376void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5377                                   SmallVector<SDOperand, 8> &Aliases) {
5378  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5379  std::set<SDNode *> Visited;           // Visited node set.
5380
5381  // Get alias information for node.
5382  SDOperand Ptr;
5383  int64_t Size;
5384  const Value *SrcValue;
5385  int SrcValueOffset;
5386  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5387
5388  // Starting off.
5389  Chains.push_back(OriginalChain);
5390
5391  // Look at each chain and determine if it is an alias.  If so, add it to the
5392  // aliases list.  If not, then continue up the chain looking for the next
5393  // candidate.
5394  while (!Chains.empty()) {
5395    SDOperand Chain = Chains.back();
5396    Chains.pop_back();
5397
5398     // Don't bother if we've been before.
5399    if (Visited.find(Chain.Val) != Visited.end()) continue;
5400    Visited.insert(Chain.Val);
5401
5402    switch (Chain.getOpcode()) {
5403    case ISD::EntryToken:
5404      // Entry token is ideal chain operand, but handled in FindBetterChain.
5405      break;
5406
5407    case ISD::LOAD:
5408    case ISD::STORE: {
5409      // Get alias information for Chain.
5410      SDOperand OpPtr;
5411      int64_t OpSize;
5412      const Value *OpSrcValue;
5413      int OpSrcValueOffset;
5414      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5415                                    OpSrcValue, OpSrcValueOffset);
5416
5417      // If chain is alias then stop here.
5418      if (!(IsLoad && IsOpLoad) &&
5419          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5420                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5421        Aliases.push_back(Chain);
5422      } else {
5423        // Look further up the chain.
5424        Chains.push_back(Chain.getOperand(0));
5425        // Clean up old chain.
5426        AddToWorkList(Chain.Val);
5427      }
5428      break;
5429    }
5430
5431    case ISD::TokenFactor:
5432      // We have to check each of the operands of the token factor, so we queue
5433      // then up.  Adding the  operands to the queue (stack) in reverse order
5434      // maintains the original order and increases the likelihood that getNode
5435      // will find a matching token factor (CSE.)
5436      for (unsigned n = Chain.getNumOperands(); n;)
5437        Chains.push_back(Chain.getOperand(--n));
5438      // Eliminate the token factor if we can.
5439      AddToWorkList(Chain.Val);
5440      break;
5441
5442    default:
5443      // For all other instructions we will just have to take what we can get.
5444      Aliases.push_back(Chain);
5445      break;
5446    }
5447  }
5448}
5449
5450/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5451/// for a better chain (aliasing node.)
5452SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5453  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5454
5455  // Accumulate all the aliases to this node.
5456  GatherAllAliases(N, OldChain, Aliases);
5457
5458  if (Aliases.size() == 0) {
5459    // If no operands then chain to entry token.
5460    return DAG.getEntryNode();
5461  } else if (Aliases.size() == 1) {
5462    // If a single operand then chain to it.  We don't need to revisit it.
5463    return Aliases[0];
5464  }
5465
5466  // Construct a custom tailored token factor.
5467  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5468                                   &Aliases[0], Aliases.size());
5469
5470  // Make sure the old chain gets cleaned up.
5471  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5472
5473  return NewChain;
5474}
5475
5476// SelectionDAG::Combine - This is the entry point for the file.
5477//
5478void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5479  if (!RunningAfterLegalize && ViewDAGCombine1)
5480    viewGraph();
5481  if (RunningAfterLegalize && ViewDAGCombine2)
5482    viewGraph();
5483  /// run - This is the main entry point to this class.
5484  ///
5485  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5486}
5487