TargetLowering.cpp revision 211ffa13519cadfb7f9baf4c8447fa055bf38fe8
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30using namespace llvm;
31
32namespace llvm {
33TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
34  bool isLocal = GV->hasLocalLinkage();
35  bool isDeclaration = GV->isDeclaration();
36  // FIXME: what should we do for protected and internal visibility?
37  // For variables, is internal different from hidden?
38  bool isHidden = GV->hasHiddenVisibility();
39
40  if (reloc == Reloc::PIC_) {
41    if (isLocal || isHidden)
42      return TLSModel::LocalDynamic;
43    else
44      return TLSModel::GeneralDynamic;
45  } else {
46    if (!isDeclaration || isHidden)
47      return TLSModel::LocalExec;
48    else
49      return TLSModel::InitialExec;
50  }
51}
52}
53
54/// InitLibcallNames - Set default libcall names.
55///
56static void InitLibcallNames(const char **Names) {
57  Names[RTLIB::SHL_I16] = "__ashlhi3";
58  Names[RTLIB::SHL_I32] = "__ashlsi3";
59  Names[RTLIB::SHL_I64] = "__ashldi3";
60  Names[RTLIB::SHL_I128] = "__ashlti3";
61  Names[RTLIB::SRL_I16] = "__lshrhi3";
62  Names[RTLIB::SRL_I32] = "__lshrsi3";
63  Names[RTLIB::SRL_I64] = "__lshrdi3";
64  Names[RTLIB::SRL_I128] = "__lshrti3";
65  Names[RTLIB::SRA_I16] = "__ashrhi3";
66  Names[RTLIB::SRA_I32] = "__ashrsi3";
67  Names[RTLIB::SRA_I64] = "__ashrdi3";
68  Names[RTLIB::SRA_I128] = "__ashrti3";
69  Names[RTLIB::MUL_I8] = "__mulqi3";
70  Names[RTLIB::MUL_I16] = "__mulhi3";
71  Names[RTLIB::MUL_I32] = "__mulsi3";
72  Names[RTLIB::MUL_I64] = "__muldi3";
73  Names[RTLIB::MUL_I128] = "__multi3";
74  Names[RTLIB::SDIV_I8] = "__divqi3";
75  Names[RTLIB::SDIV_I16] = "__divhi3";
76  Names[RTLIB::SDIV_I32] = "__divsi3";
77  Names[RTLIB::SDIV_I64] = "__divdi3";
78  Names[RTLIB::SDIV_I128] = "__divti3";
79  Names[RTLIB::UDIV_I8] = "__udivqi3";
80  Names[RTLIB::UDIV_I16] = "__udivhi3";
81  Names[RTLIB::UDIV_I32] = "__udivsi3";
82  Names[RTLIB::UDIV_I64] = "__udivdi3";
83  Names[RTLIB::UDIV_I128] = "__udivti3";
84  Names[RTLIB::SREM_I8] = "__modqi3";
85  Names[RTLIB::SREM_I16] = "__modhi3";
86  Names[RTLIB::SREM_I32] = "__modsi3";
87  Names[RTLIB::SREM_I64] = "__moddi3";
88  Names[RTLIB::SREM_I128] = "__modti3";
89  Names[RTLIB::UREM_I8] = "__umodqi3";
90  Names[RTLIB::UREM_I16] = "__umodhi3";
91  Names[RTLIB::UREM_I32] = "__umodsi3";
92  Names[RTLIB::UREM_I64] = "__umoddi3";
93  Names[RTLIB::UREM_I128] = "__umodti3";
94  Names[RTLIB::NEG_I32] = "__negsi2";
95  Names[RTLIB::NEG_I64] = "__negdi2";
96  Names[RTLIB::ADD_F32] = "__addsf3";
97  Names[RTLIB::ADD_F64] = "__adddf3";
98  Names[RTLIB::ADD_F80] = "__addxf3";
99  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
100  Names[RTLIB::SUB_F32] = "__subsf3";
101  Names[RTLIB::SUB_F64] = "__subdf3";
102  Names[RTLIB::SUB_F80] = "__subxf3";
103  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104  Names[RTLIB::MUL_F32] = "__mulsf3";
105  Names[RTLIB::MUL_F64] = "__muldf3";
106  Names[RTLIB::MUL_F80] = "__mulxf3";
107  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
108  Names[RTLIB::DIV_F32] = "__divsf3";
109  Names[RTLIB::DIV_F64] = "__divdf3";
110  Names[RTLIB::DIV_F80] = "__divxf3";
111  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
112  Names[RTLIB::REM_F32] = "fmodf";
113  Names[RTLIB::REM_F64] = "fmod";
114  Names[RTLIB::REM_F80] = "fmodl";
115  Names[RTLIB::REM_PPCF128] = "fmodl";
116  Names[RTLIB::POWI_F32] = "__powisf2";
117  Names[RTLIB::POWI_F64] = "__powidf2";
118  Names[RTLIB::POWI_F80] = "__powixf2";
119  Names[RTLIB::POWI_PPCF128] = "__powitf2";
120  Names[RTLIB::SQRT_F32] = "sqrtf";
121  Names[RTLIB::SQRT_F64] = "sqrt";
122  Names[RTLIB::SQRT_F80] = "sqrtl";
123  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
124  Names[RTLIB::LOG_F32] = "logf";
125  Names[RTLIB::LOG_F64] = "log";
126  Names[RTLIB::LOG_F80] = "logl";
127  Names[RTLIB::LOG_PPCF128] = "logl";
128  Names[RTLIB::LOG2_F32] = "log2f";
129  Names[RTLIB::LOG2_F64] = "log2";
130  Names[RTLIB::LOG2_F80] = "log2l";
131  Names[RTLIB::LOG2_PPCF128] = "log2l";
132  Names[RTLIB::LOG10_F32] = "log10f";
133  Names[RTLIB::LOG10_F64] = "log10";
134  Names[RTLIB::LOG10_F80] = "log10l";
135  Names[RTLIB::LOG10_PPCF128] = "log10l";
136  Names[RTLIB::EXP_F32] = "expf";
137  Names[RTLIB::EXP_F64] = "exp";
138  Names[RTLIB::EXP_F80] = "expl";
139  Names[RTLIB::EXP_PPCF128] = "expl";
140  Names[RTLIB::EXP2_F32] = "exp2f";
141  Names[RTLIB::EXP2_F64] = "exp2";
142  Names[RTLIB::EXP2_F80] = "exp2l";
143  Names[RTLIB::EXP2_PPCF128] = "exp2l";
144  Names[RTLIB::SIN_F32] = "sinf";
145  Names[RTLIB::SIN_F64] = "sin";
146  Names[RTLIB::SIN_F80] = "sinl";
147  Names[RTLIB::SIN_PPCF128] = "sinl";
148  Names[RTLIB::COS_F32] = "cosf";
149  Names[RTLIB::COS_F64] = "cos";
150  Names[RTLIB::COS_F80] = "cosl";
151  Names[RTLIB::COS_PPCF128] = "cosl";
152  Names[RTLIB::POW_F32] = "powf";
153  Names[RTLIB::POW_F64] = "pow";
154  Names[RTLIB::POW_F80] = "powl";
155  Names[RTLIB::POW_PPCF128] = "powl";
156  Names[RTLIB::CEIL_F32] = "ceilf";
157  Names[RTLIB::CEIL_F64] = "ceil";
158  Names[RTLIB::CEIL_F80] = "ceill";
159  Names[RTLIB::CEIL_PPCF128] = "ceill";
160  Names[RTLIB::TRUNC_F32] = "truncf";
161  Names[RTLIB::TRUNC_F64] = "trunc";
162  Names[RTLIB::TRUNC_F80] = "truncl";
163  Names[RTLIB::TRUNC_PPCF128] = "truncl";
164  Names[RTLIB::RINT_F32] = "rintf";
165  Names[RTLIB::RINT_F64] = "rint";
166  Names[RTLIB::RINT_F80] = "rintl";
167  Names[RTLIB::RINT_PPCF128] = "rintl";
168  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
169  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
170  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
171  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
172  Names[RTLIB::FLOOR_F32] = "floorf";
173  Names[RTLIB::FLOOR_F64] = "floor";
174  Names[RTLIB::FLOOR_F80] = "floorl";
175  Names[RTLIB::FLOOR_PPCF128] = "floorl";
176  Names[RTLIB::COPYSIGN_F32] = "copysignf";
177  Names[RTLIB::COPYSIGN_F64] = "copysign";
178  Names[RTLIB::COPYSIGN_F80] = "copysignl";
179  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
180  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
181  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
182  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
183  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
184  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
185  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
186  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
187  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
188  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
189  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
190  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
191  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
192  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
193  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
194  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
195  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
196  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
197  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
198  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
199  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
200  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
201  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
202  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
203  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
204  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
205  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
206  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
207  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
208  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
209  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
210  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
211  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
212  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
213  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
214  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
215  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
216  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
217  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
218  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
219  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
220  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
221  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
222  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
223  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
224  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
225  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
226  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
227  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
228  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
229  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
230  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
231  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
232  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
233  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
234  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
235  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
236  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
237  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
238  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
239  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
240  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
241  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
242  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
243  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
244  Names[RTLIB::OEQ_F32] = "__eqsf2";
245  Names[RTLIB::OEQ_F64] = "__eqdf2";
246  Names[RTLIB::UNE_F32] = "__nesf2";
247  Names[RTLIB::UNE_F64] = "__nedf2";
248  Names[RTLIB::OGE_F32] = "__gesf2";
249  Names[RTLIB::OGE_F64] = "__gedf2";
250  Names[RTLIB::OLT_F32] = "__ltsf2";
251  Names[RTLIB::OLT_F64] = "__ltdf2";
252  Names[RTLIB::OLE_F32] = "__lesf2";
253  Names[RTLIB::OLE_F64] = "__ledf2";
254  Names[RTLIB::OGT_F32] = "__gtsf2";
255  Names[RTLIB::OGT_F64] = "__gtdf2";
256  Names[RTLIB::UO_F32] = "__unordsf2";
257  Names[RTLIB::UO_F64] = "__unorddf2";
258  Names[RTLIB::O_F32] = "__unordsf2";
259  Names[RTLIB::O_F64] = "__unorddf2";
260  Names[RTLIB::MEMCPY] = "memcpy";
261  Names[RTLIB::MEMMOVE] = "memmove";
262  Names[RTLIB::MEMSET] = "memset";
263  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
264}
265
266/// InitLibcallCallingConvs - Set default libcall CallingConvs.
267///
268static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
269  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
270    CCs[i] = CallingConv::C;
271  }
272}
273
274/// getFPEXT - Return the FPEXT_*_* value for the given types, or
275/// UNKNOWN_LIBCALL if there is none.
276RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
277  if (OpVT == MVT::f32) {
278    if (RetVT == MVT::f64)
279      return FPEXT_F32_F64;
280  }
281
282  return UNKNOWN_LIBCALL;
283}
284
285/// getFPROUND - Return the FPROUND_*_* value for the given types, or
286/// UNKNOWN_LIBCALL if there is none.
287RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
288  if (RetVT == MVT::f32) {
289    if (OpVT == MVT::f64)
290      return FPROUND_F64_F32;
291    if (OpVT == MVT::f80)
292      return FPROUND_F80_F32;
293    if (OpVT == MVT::ppcf128)
294      return FPROUND_PPCF128_F32;
295  } else if (RetVT == MVT::f64) {
296    if (OpVT == MVT::f80)
297      return FPROUND_F80_F64;
298    if (OpVT == MVT::ppcf128)
299      return FPROUND_PPCF128_F64;
300  }
301
302  return UNKNOWN_LIBCALL;
303}
304
305/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
306/// UNKNOWN_LIBCALL if there is none.
307RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
308  if (OpVT == MVT::f32) {
309    if (RetVT == MVT::i8)
310      return FPTOSINT_F32_I8;
311    if (RetVT == MVT::i16)
312      return FPTOSINT_F32_I16;
313    if (RetVT == MVT::i32)
314      return FPTOSINT_F32_I32;
315    if (RetVT == MVT::i64)
316      return FPTOSINT_F32_I64;
317    if (RetVT == MVT::i128)
318      return FPTOSINT_F32_I128;
319  } else if (OpVT == MVT::f64) {
320    if (RetVT == MVT::i8)
321      return FPTOSINT_F64_I8;
322    if (RetVT == MVT::i16)
323      return FPTOSINT_F64_I16;
324    if (RetVT == MVT::i32)
325      return FPTOSINT_F64_I32;
326    if (RetVT == MVT::i64)
327      return FPTOSINT_F64_I64;
328    if (RetVT == MVT::i128)
329      return FPTOSINT_F64_I128;
330  } else if (OpVT == MVT::f80) {
331    if (RetVT == MVT::i32)
332      return FPTOSINT_F80_I32;
333    if (RetVT == MVT::i64)
334      return FPTOSINT_F80_I64;
335    if (RetVT == MVT::i128)
336      return FPTOSINT_F80_I128;
337  } else if (OpVT == MVT::ppcf128) {
338    if (RetVT == MVT::i32)
339      return FPTOSINT_PPCF128_I32;
340    if (RetVT == MVT::i64)
341      return FPTOSINT_PPCF128_I64;
342    if (RetVT == MVT::i128)
343      return FPTOSINT_PPCF128_I128;
344  }
345  return UNKNOWN_LIBCALL;
346}
347
348/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
349/// UNKNOWN_LIBCALL if there is none.
350RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
351  if (OpVT == MVT::f32) {
352    if (RetVT == MVT::i8)
353      return FPTOUINT_F32_I8;
354    if (RetVT == MVT::i16)
355      return FPTOUINT_F32_I16;
356    if (RetVT == MVT::i32)
357      return FPTOUINT_F32_I32;
358    if (RetVT == MVT::i64)
359      return FPTOUINT_F32_I64;
360    if (RetVT == MVT::i128)
361      return FPTOUINT_F32_I128;
362  } else if (OpVT == MVT::f64) {
363    if (RetVT == MVT::i8)
364      return FPTOUINT_F64_I8;
365    if (RetVT == MVT::i16)
366      return FPTOUINT_F64_I16;
367    if (RetVT == MVT::i32)
368      return FPTOUINT_F64_I32;
369    if (RetVT == MVT::i64)
370      return FPTOUINT_F64_I64;
371    if (RetVT == MVT::i128)
372      return FPTOUINT_F64_I128;
373  } else if (OpVT == MVT::f80) {
374    if (RetVT == MVT::i32)
375      return FPTOUINT_F80_I32;
376    if (RetVT == MVT::i64)
377      return FPTOUINT_F80_I64;
378    if (RetVT == MVT::i128)
379      return FPTOUINT_F80_I128;
380  } else if (OpVT == MVT::ppcf128) {
381    if (RetVT == MVT::i32)
382      return FPTOUINT_PPCF128_I32;
383    if (RetVT == MVT::i64)
384      return FPTOUINT_PPCF128_I64;
385    if (RetVT == MVT::i128)
386      return FPTOUINT_PPCF128_I128;
387  }
388  return UNKNOWN_LIBCALL;
389}
390
391/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
392/// UNKNOWN_LIBCALL if there is none.
393RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
394  if (OpVT == MVT::i32) {
395    if (RetVT == MVT::f32)
396      return SINTTOFP_I32_F32;
397    else if (RetVT == MVT::f64)
398      return SINTTOFP_I32_F64;
399    else if (RetVT == MVT::f80)
400      return SINTTOFP_I32_F80;
401    else if (RetVT == MVT::ppcf128)
402      return SINTTOFP_I32_PPCF128;
403  } else if (OpVT == MVT::i64) {
404    if (RetVT == MVT::f32)
405      return SINTTOFP_I64_F32;
406    else if (RetVT == MVT::f64)
407      return SINTTOFP_I64_F64;
408    else if (RetVT == MVT::f80)
409      return SINTTOFP_I64_F80;
410    else if (RetVT == MVT::ppcf128)
411      return SINTTOFP_I64_PPCF128;
412  } else if (OpVT == MVT::i128) {
413    if (RetVT == MVT::f32)
414      return SINTTOFP_I128_F32;
415    else if (RetVT == MVT::f64)
416      return SINTTOFP_I128_F64;
417    else if (RetVT == MVT::f80)
418      return SINTTOFP_I128_F80;
419    else if (RetVT == MVT::ppcf128)
420      return SINTTOFP_I128_PPCF128;
421  }
422  return UNKNOWN_LIBCALL;
423}
424
425/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
426/// UNKNOWN_LIBCALL if there is none.
427RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
428  if (OpVT == MVT::i32) {
429    if (RetVT == MVT::f32)
430      return UINTTOFP_I32_F32;
431    else if (RetVT == MVT::f64)
432      return UINTTOFP_I32_F64;
433    else if (RetVT == MVT::f80)
434      return UINTTOFP_I32_F80;
435    else if (RetVT == MVT::ppcf128)
436      return UINTTOFP_I32_PPCF128;
437  } else if (OpVT == MVT::i64) {
438    if (RetVT == MVT::f32)
439      return UINTTOFP_I64_F32;
440    else if (RetVT == MVT::f64)
441      return UINTTOFP_I64_F64;
442    else if (RetVT == MVT::f80)
443      return UINTTOFP_I64_F80;
444    else if (RetVT == MVT::ppcf128)
445      return UINTTOFP_I64_PPCF128;
446  } else if (OpVT == MVT::i128) {
447    if (RetVT == MVT::f32)
448      return UINTTOFP_I128_F32;
449    else if (RetVT == MVT::f64)
450      return UINTTOFP_I128_F64;
451    else if (RetVT == MVT::f80)
452      return UINTTOFP_I128_F80;
453    else if (RetVT == MVT::ppcf128)
454      return UINTTOFP_I128_PPCF128;
455  }
456  return UNKNOWN_LIBCALL;
457}
458
459/// InitCmpLibcallCCs - Set default comparison libcall CC.
460///
461static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
462  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
463  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
464  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
465  CCs[RTLIB::UNE_F32] = ISD::SETNE;
466  CCs[RTLIB::UNE_F64] = ISD::SETNE;
467  CCs[RTLIB::OGE_F32] = ISD::SETGE;
468  CCs[RTLIB::OGE_F64] = ISD::SETGE;
469  CCs[RTLIB::OLT_F32] = ISD::SETLT;
470  CCs[RTLIB::OLT_F64] = ISD::SETLT;
471  CCs[RTLIB::OLE_F32] = ISD::SETLE;
472  CCs[RTLIB::OLE_F64] = ISD::SETLE;
473  CCs[RTLIB::OGT_F32] = ISD::SETGT;
474  CCs[RTLIB::OGT_F64] = ISD::SETGT;
475  CCs[RTLIB::UO_F32] = ISD::SETNE;
476  CCs[RTLIB::UO_F64] = ISD::SETNE;
477  CCs[RTLIB::O_F32] = ISD::SETEQ;
478  CCs[RTLIB::O_F64] = ISD::SETEQ;
479}
480
481/// NOTE: The constructor takes ownership of TLOF.
482TargetLowering::TargetLowering(const TargetMachine &tm,
483                               const TargetLoweringObjectFile *tlof)
484  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
485  // All operations default to being supported.
486  memset(OpActions, 0, sizeof(OpActions));
487  memset(LoadExtActions, 0, sizeof(LoadExtActions));
488  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
489  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
490  memset(CondCodeActions, 0, sizeof(CondCodeActions));
491
492  // Set default actions for various operations.
493  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
494    // Default all indexed load / store to expand.
495    for (unsigned IM = (unsigned)ISD::PRE_INC;
496         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
497      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
498      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
499    }
500
501    // These operations default to expand.
502    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
503    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
504  }
505
506  // Most targets ignore the @llvm.prefetch intrinsic.
507  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
508
509  // ConstantFP nodes default to expand.  Targets can either change this to
510  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
511  // to optimize expansions for certain constants.
512  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
513  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
514  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
515
516  // These library functions default to expand.
517  setOperationAction(ISD::FLOG , MVT::f64, Expand);
518  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
519  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
520  setOperationAction(ISD::FEXP , MVT::f64, Expand);
521  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
522  setOperationAction(ISD::FLOG , MVT::f32, Expand);
523  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
524  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
525  setOperationAction(ISD::FEXP , MVT::f32, Expand);
526  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
527
528  // Default ISD::TRAP to expand (which turns it into abort).
529  setOperationAction(ISD::TRAP, MVT::Other, Expand);
530
531  IsLittleEndian = TD->isLittleEndian();
532  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
533  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
534  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
535  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
536  benefitFromCodePlacementOpt = false;
537  UseUnderscoreSetJmp = false;
538  UseUnderscoreLongJmp = false;
539  SelectIsExpensive = false;
540  IntDivIsCheap = false;
541  Pow2DivIsCheap = false;
542  StackPointerRegisterToSaveRestore = 0;
543  ExceptionPointerRegister = 0;
544  ExceptionSelectorRegister = 0;
545  BooleanContents = UndefinedBooleanContent;
546  SchedPreferenceInfo = Sched::Latency;
547  JumpBufSize = 0;
548  JumpBufAlignment = 0;
549  IfCvtBlockSizeLimit = 2;
550  IfCvtDupBlockSizeLimit = 0;
551  PrefLoopAlignment = 0;
552
553  InitLibcallNames(LibcallRoutineNames);
554  InitCmpLibcallCCs(CmpLibcallCCs);
555  InitLibcallCallingConvs(LibcallCallingConvs);
556}
557
558TargetLowering::~TargetLowering() {
559  delete &TLOF;
560}
561
562/// canOpTrap - Returns true if the operation can trap for the value type.
563/// VT must be a legal type.
564bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
565  assert(isTypeLegal(VT));
566  switch (Op) {
567  default:
568    return false;
569  case ISD::FDIV:
570  case ISD::FREM:
571  case ISD::SDIV:
572  case ISD::UDIV:
573  case ISD::SREM:
574  case ISD::UREM:
575    return true;
576  }
577}
578
579
580static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
581                                       unsigned &NumIntermediates,
582                                       EVT &RegisterVT,
583                                       TargetLowering* TLI) {
584  // Figure out the right, legal destination reg to copy into.
585  unsigned NumElts = VT.getVectorNumElements();
586  MVT EltTy = VT.getVectorElementType();
587
588  unsigned NumVectorRegs = 1;
589
590  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
591  // could break down into LHS/RHS like LegalizeDAG does.
592  if (!isPowerOf2_32(NumElts)) {
593    NumVectorRegs = NumElts;
594    NumElts = 1;
595  }
596
597  // Divide the input until we get to a supported size.  This will always
598  // end with a scalar if the target doesn't support vectors.
599  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
600    NumElts >>= 1;
601    NumVectorRegs <<= 1;
602  }
603
604  NumIntermediates = NumVectorRegs;
605
606  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
607  if (!TLI->isTypeLegal(NewVT))
608    NewVT = EltTy;
609  IntermediateVT = NewVT;
610
611  EVT DestVT = TLI->getRegisterType(NewVT);
612  RegisterVT = DestVT;
613  if (EVT(DestVT).bitsLT(NewVT)) {
614    // Value is expanded, e.g. i64 -> i16.
615    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
616  } else {
617    // Otherwise, promotion or legal types use the same number of registers as
618    // the vector decimated to the appropriate level.
619    return NumVectorRegs;
620  }
621
622  return 1;
623}
624
625/// computeRegisterProperties - Once all of the register classes are added,
626/// this allows us to compute derived properties we expose.
627void TargetLowering::computeRegisterProperties() {
628  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
629         "Too many value types for ValueTypeActions to hold!");
630
631  // Everything defaults to needing one register.
632  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
633    NumRegistersForVT[i] = 1;
634    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
635  }
636  // ...except isVoid, which doesn't need any registers.
637  NumRegistersForVT[MVT::isVoid] = 0;
638
639  // Find the largest integer register class.
640  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
641  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
642    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
643
644  // Every integer value type larger than this largest register takes twice as
645  // many registers to represent as the previous ValueType.
646  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
647    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
648    if (!ExpandedVT.isInteger())
649      break;
650    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
651    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
652    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
653    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
654  }
655
656  // Inspect all of the ValueType's smaller than the largest integer
657  // register to see which ones need promotion.
658  unsigned LegalIntReg = LargestIntReg;
659  for (unsigned IntReg = LargestIntReg - 1;
660       IntReg >= (unsigned)MVT::i1; --IntReg) {
661    EVT IVT = (MVT::SimpleValueType)IntReg;
662    if (isTypeLegal(IVT)) {
663      LegalIntReg = IntReg;
664    } else {
665      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
666        (MVT::SimpleValueType)LegalIntReg;
667      ValueTypeActions.setTypeAction(IVT, Promote);
668    }
669  }
670
671  // ppcf128 type is really two f64's.
672  if (!isTypeLegal(MVT::ppcf128)) {
673    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
674    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
675    TransformToType[MVT::ppcf128] = MVT::f64;
676    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
677  }
678
679  // Decide how to handle f64. If the target does not have native f64 support,
680  // expand it to i64 and we will be generating soft float library calls.
681  if (!isTypeLegal(MVT::f64)) {
682    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
683    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
684    TransformToType[MVT::f64] = MVT::i64;
685    ValueTypeActions.setTypeAction(MVT::f64, Expand);
686  }
687
688  // Decide how to handle f32. If the target does not have native support for
689  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
690  if (!isTypeLegal(MVT::f32)) {
691    if (isTypeLegal(MVT::f64)) {
692      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
693      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
694      TransformToType[MVT::f32] = MVT::f64;
695      ValueTypeActions.setTypeAction(MVT::f32, Promote);
696    } else {
697      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
698      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
699      TransformToType[MVT::f32] = MVT::i32;
700      ValueTypeActions.setTypeAction(MVT::f32, Expand);
701    }
702  }
703
704  // Loop over all of the vector value types to see which need transformations.
705  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
706       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
707    MVT VT = (MVT::SimpleValueType)i;
708    if (!isTypeLegal(VT)) {
709      MVT IntermediateVT;
710      EVT RegisterVT;
711      unsigned NumIntermediates;
712      NumRegistersForVT[i] =
713        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
714                                  RegisterVT, this);
715      RegisterTypeForVT[i] = RegisterVT;
716
717      // Determine if there is a legal wider type.
718      bool IsLegalWiderType = false;
719      EVT EltVT = VT.getVectorElementType();
720      unsigned NElts = VT.getVectorNumElements();
721      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
722        EVT SVT = (MVT::SimpleValueType)nVT;
723        if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
724            SVT.getVectorNumElements() > NElts && NElts != 1) {
725          TransformToType[i] = SVT;
726          ValueTypeActions.setTypeAction(VT, Promote);
727          IsLegalWiderType = true;
728          break;
729        }
730      }
731      if (!IsLegalWiderType) {
732        EVT NVT = VT.getPow2VectorType();
733        if (NVT == VT) {
734          // Type is already a power of 2.  The default action is to split.
735          TransformToType[i] = MVT::Other;
736          ValueTypeActions.setTypeAction(VT, Expand);
737        } else {
738          TransformToType[i] = NVT;
739          ValueTypeActions.setTypeAction(VT, Promote);
740        }
741      }
742    }
743  }
744}
745
746const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
747  return NULL;
748}
749
750
751MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
752  return PointerTy.SimpleTy;
753}
754
755MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
756  return MVT::i32; // return the default value
757}
758
759/// getVectorTypeBreakdown - Vector types are broken down into some number of
760/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
761/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
762/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
763///
764/// This method returns the number of registers needed, and the VT for each
765/// register.  It also returns the VT and quantity of the intermediate values
766/// before they are promoted/expanded.
767///
768unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
769                                                EVT &IntermediateVT,
770                                                unsigned &NumIntermediates,
771                                                EVT &RegisterVT) const {
772  // Figure out the right, legal destination reg to copy into.
773  unsigned NumElts = VT.getVectorNumElements();
774  EVT EltTy = VT.getVectorElementType();
775
776  unsigned NumVectorRegs = 1;
777
778  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
779  // could break down into LHS/RHS like LegalizeDAG does.
780  if (!isPowerOf2_32(NumElts)) {
781    NumVectorRegs = NumElts;
782    NumElts = 1;
783  }
784
785  // Divide the input until we get to a supported size.  This will always
786  // end with a scalar if the target doesn't support vectors.
787  while (NumElts > 1 && !isTypeLegal(
788                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
789    NumElts >>= 1;
790    NumVectorRegs <<= 1;
791  }
792
793  NumIntermediates = NumVectorRegs;
794
795  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
796  if (!isTypeLegal(NewVT))
797    NewVT = EltTy;
798  IntermediateVT = NewVT;
799
800  EVT DestVT = getRegisterType(Context, NewVT);
801  RegisterVT = DestVT;
802  if (DestVT.bitsLT(NewVT)) {
803    // Value is expanded, e.g. i64 -> i16.
804    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
805  } else {
806    // Otherwise, promotion or legal types use the same number of registers as
807    // the vector decimated to the appropriate level.
808    return NumVectorRegs;
809  }
810
811  return 1;
812}
813
814/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
815/// function arguments in the caller parameter area.  This is the actual
816/// alignment, not its logarithm.
817unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
818  return TD->getCallFrameTypeAlignment(Ty);
819}
820
821/// getJumpTableEncoding - Return the entry encoding for a jump table in the
822/// current function.  The returned value is a member of the
823/// MachineJumpTableInfo::JTEntryKind enum.
824unsigned TargetLowering::getJumpTableEncoding() const {
825  // In non-pic modes, just use the address of a block.
826  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
827    return MachineJumpTableInfo::EK_BlockAddress;
828
829  // In PIC mode, if the target supports a GPRel32 directive, use it.
830  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
831    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
832
833  // Otherwise, use a label difference.
834  return MachineJumpTableInfo::EK_LabelDifference32;
835}
836
837SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
838                                                 SelectionDAG &DAG) const {
839  // If our PIC model is GP relative, use the global offset table as the base.
840  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
841    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
842  return Table;
843}
844
845/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
846/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
847/// MCExpr.
848const MCExpr *
849TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
850                                             unsigned JTI,MCContext &Ctx) const{
851  // The normal PIC reloc base is the label at the start of the jump table.
852  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
853}
854
855bool
856TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
857  // Assume that everything is safe in static mode.
858  if (getTargetMachine().getRelocationModel() == Reloc::Static)
859    return true;
860
861  // In dynamic-no-pic mode, assume that known defined values are safe.
862  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
863      GA &&
864      !GA->getGlobal()->isDeclaration() &&
865      !GA->getGlobal()->isWeakForLinker())
866    return true;
867
868  // Otherwise assume nothing is safe.
869  return false;
870}
871
872//===----------------------------------------------------------------------===//
873//  Optimization Methods
874//===----------------------------------------------------------------------===//
875
876/// ShrinkDemandedConstant - Check to see if the specified operand of the
877/// specified instruction is a constant integer.  If so, check to see if there
878/// are any bits set in the constant that are not demanded.  If so, shrink the
879/// constant and return true.
880bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
881                                                        const APInt &Demanded) {
882  DebugLoc dl = Op.getDebugLoc();
883
884  // FIXME: ISD::SELECT, ISD::SELECT_CC
885  switch (Op.getOpcode()) {
886  default: break;
887  case ISD::XOR:
888  case ISD::AND:
889  case ISD::OR: {
890    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
891    if (!C) return false;
892
893    if (Op.getOpcode() == ISD::XOR &&
894        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
895      return false;
896
897    // if we can expand it to have all bits set, do it
898    if (C->getAPIntValue().intersects(~Demanded)) {
899      EVT VT = Op.getValueType();
900      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
901                                DAG.getConstant(Demanded &
902                                                C->getAPIntValue(),
903                                                VT));
904      return CombineTo(Op, New);
905    }
906
907    break;
908  }
909  }
910
911  return false;
912}
913
914/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
915/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
916/// cast, but it could be generalized for targets with other types of
917/// implicit widening casts.
918bool
919TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
920                                                    unsigned BitWidth,
921                                                    const APInt &Demanded,
922                                                    DebugLoc dl) {
923  assert(Op.getNumOperands() == 2 &&
924         "ShrinkDemandedOp only supports binary operators!");
925  assert(Op.getNode()->getNumValues() == 1 &&
926         "ShrinkDemandedOp only supports nodes with one result!");
927
928  // Don't do this if the node has another user, which may require the
929  // full value.
930  if (!Op.getNode()->hasOneUse())
931    return false;
932
933  // Search for the smallest integer type with free casts to and from
934  // Op's type. For expedience, just check power-of-2 integer types.
935  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
937  if (!isPowerOf2_32(SmallVTBits))
938    SmallVTBits = NextPowerOf2(SmallVTBits);
939  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
940    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
941    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
942        TLI.isZExtFree(SmallVT, Op.getValueType())) {
943      // We found a type with free casts.
944      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
945                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
946                                          Op.getNode()->getOperand(0)),
947                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
948                                          Op.getNode()->getOperand(1)));
949      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
950      return CombineTo(Op, Z);
951    }
952  }
953  return false;
954}
955
956/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
957/// DemandedMask bits of the result of Op are ever used downstream.  If we can
958/// use this information to simplify Op, create a new simplified DAG node and
959/// return true, returning the original and new nodes in Old and New. Otherwise,
960/// analyze the expression and return a mask of KnownOne and KnownZero bits for
961/// the expression (used to simplify the caller).  The KnownZero/One bits may
962/// only be accurate for those bits in the DemandedMask.
963bool TargetLowering::SimplifyDemandedBits(SDValue Op,
964                                          const APInt &DemandedMask,
965                                          APInt &KnownZero,
966                                          APInt &KnownOne,
967                                          TargetLoweringOpt &TLO,
968                                          unsigned Depth) const {
969  unsigned BitWidth = DemandedMask.getBitWidth();
970  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
971         "Mask size mismatches value type size!");
972  APInt NewMask = DemandedMask;
973  DebugLoc dl = Op.getDebugLoc();
974
975  // Don't know anything.
976  KnownZero = KnownOne = APInt(BitWidth, 0);
977
978  // Other users may use these bits.
979  if (!Op.getNode()->hasOneUse()) {
980    if (Depth != 0) {
981      // If not at the root, Just compute the KnownZero/KnownOne bits to
982      // simplify things downstream.
983      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
984      return false;
985    }
986    // If this is the root being simplified, allow it to have multiple uses,
987    // just set the NewMask to all bits.
988    NewMask = APInt::getAllOnesValue(BitWidth);
989  } else if (DemandedMask == 0) {
990    // Not demanding any bits from Op.
991    if (Op.getOpcode() != ISD::UNDEF)
992      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
993    return false;
994  } else if (Depth == 6) {        // Limit search depth.
995    return false;
996  }
997
998  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
999  switch (Op.getOpcode()) {
1000  case ISD::Constant:
1001    // We know all of the bits for a constant!
1002    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1003    KnownZero = ~KnownOne & NewMask;
1004    return false;   // Don't fall through, will infinitely loop.
1005  case ISD::AND:
1006    // If the RHS is a constant, check to see if the LHS would be zero without
1007    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1008    // simplify the LHS, here we're using information from the LHS to simplify
1009    // the RHS.
1010    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1011      APInt LHSZero, LHSOne;
1012      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1013                                LHSZero, LHSOne, Depth+1);
1014      // If the LHS already has zeros where RHSC does, this and is dead.
1015      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1016        return TLO.CombineTo(Op, Op.getOperand(0));
1017      // If any of the set bits in the RHS are known zero on the LHS, shrink
1018      // the constant.
1019      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1020        return true;
1021    }
1022
1023    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1024                             KnownOne, TLO, Depth+1))
1025      return true;
1026    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1027    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1028                             KnownZero2, KnownOne2, TLO, Depth+1))
1029      return true;
1030    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1031
1032    // If all of the demanded bits are known one on one side, return the other.
1033    // These bits cannot contribute to the result of the 'and'.
1034    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1035      return TLO.CombineTo(Op, Op.getOperand(0));
1036    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1037      return TLO.CombineTo(Op, Op.getOperand(1));
1038    // If all of the demanded bits in the inputs are known zeros, return zero.
1039    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1040      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1041    // If the RHS is a constant, see if we can simplify it.
1042    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1043      return true;
1044    // If the operation can be done in a smaller type, do so.
1045    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1046      return true;
1047
1048    // Output known-1 bits are only known if set in both the LHS & RHS.
1049    KnownOne &= KnownOne2;
1050    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1051    KnownZero |= KnownZero2;
1052    break;
1053  case ISD::OR:
1054    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1055                             KnownOne, TLO, Depth+1))
1056      return true;
1057    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1058    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1059                             KnownZero2, KnownOne2, TLO, Depth+1))
1060      return true;
1061    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1062
1063    // If all of the demanded bits are known zero on one side, return the other.
1064    // These bits cannot contribute to the result of the 'or'.
1065    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1066      return TLO.CombineTo(Op, Op.getOperand(0));
1067    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1068      return TLO.CombineTo(Op, Op.getOperand(1));
1069    // If all of the potentially set bits on one side are known to be set on
1070    // the other side, just use the 'other' side.
1071    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1072      return TLO.CombineTo(Op, Op.getOperand(0));
1073    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1074      return TLO.CombineTo(Op, Op.getOperand(1));
1075    // If the RHS is a constant, see if we can simplify it.
1076    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1077      return true;
1078    // If the operation can be done in a smaller type, do so.
1079    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1080      return true;
1081
1082    // Output known-0 bits are only known if clear in both the LHS & RHS.
1083    KnownZero &= KnownZero2;
1084    // Output known-1 are known to be set if set in either the LHS | RHS.
1085    KnownOne |= KnownOne2;
1086    break;
1087  case ISD::XOR:
1088    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1089                             KnownOne, TLO, Depth+1))
1090      return true;
1091    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1092    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1093                             KnownOne2, TLO, Depth+1))
1094      return true;
1095    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1096
1097    // If all of the demanded bits are known zero on one side, return the other.
1098    // These bits cannot contribute to the result of the 'xor'.
1099    if ((KnownZero & NewMask) == NewMask)
1100      return TLO.CombineTo(Op, Op.getOperand(0));
1101    if ((KnownZero2 & NewMask) == NewMask)
1102      return TLO.CombineTo(Op, Op.getOperand(1));
1103    // If the operation can be done in a smaller type, do so.
1104    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1105      return true;
1106
1107    // If all of the unknown bits are known to be zero on one side or the other
1108    // (but not both) turn this into an *inclusive* or.
1109    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1110    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1111      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1112                                               Op.getOperand(0),
1113                                               Op.getOperand(1)));
1114
1115    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1116    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1117    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1118    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1119
1120    // If all of the demanded bits on one side are known, and all of the set
1121    // bits on that side are also known to be set on the other side, turn this
1122    // into an AND, as we know the bits will be cleared.
1123    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1124    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1125      if ((KnownOne & KnownOne2) == KnownOne) {
1126        EVT VT = Op.getValueType();
1127        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1128        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1129                                                 Op.getOperand(0), ANDC));
1130      }
1131    }
1132
1133    // If the RHS is a constant, see if we can simplify it.
1134    // for XOR, we prefer to force bits to 1 if they will make a -1.
1135    // if we can't force bits, try to shrink constant
1136    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1137      APInt Expanded = C->getAPIntValue() | (~NewMask);
1138      // if we can expand it to have all bits set, do it
1139      if (Expanded.isAllOnesValue()) {
1140        if (Expanded != C->getAPIntValue()) {
1141          EVT VT = Op.getValueType();
1142          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1143                                          TLO.DAG.getConstant(Expanded, VT));
1144          return TLO.CombineTo(Op, New);
1145        }
1146        // if it already has all the bits set, nothing to change
1147        // but don't shrink either!
1148      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1149        return true;
1150      }
1151    }
1152
1153    KnownZero = KnownZeroOut;
1154    KnownOne  = KnownOneOut;
1155    break;
1156  case ISD::SELECT:
1157    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1158                             KnownOne, TLO, Depth+1))
1159      return true;
1160    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1161                             KnownOne2, TLO, Depth+1))
1162      return true;
1163    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1164    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1165
1166    // If the operands are constants, see if we can simplify them.
1167    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1168      return true;
1169
1170    // Only known if known in both the LHS and RHS.
1171    KnownOne &= KnownOne2;
1172    KnownZero &= KnownZero2;
1173    break;
1174  case ISD::SELECT_CC:
1175    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1176                             KnownOne, TLO, Depth+1))
1177      return true;
1178    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1179                             KnownOne2, TLO, Depth+1))
1180      return true;
1181    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1182    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1183
1184    // If the operands are constants, see if we can simplify them.
1185    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1186      return true;
1187
1188    // Only known if known in both the LHS and RHS.
1189    KnownOne &= KnownOne2;
1190    KnownZero &= KnownZero2;
1191    break;
1192  case ISD::SHL:
1193    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1194      unsigned ShAmt = SA->getZExtValue();
1195      SDValue InOp = Op.getOperand(0);
1196
1197      // If the shift count is an invalid immediate, don't do anything.
1198      if (ShAmt >= BitWidth)
1199        break;
1200
1201      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1202      // single shift.  We can do this if the bottom bits (which are shifted
1203      // out) are never demanded.
1204      if (InOp.getOpcode() == ISD::SRL &&
1205          isa<ConstantSDNode>(InOp.getOperand(1))) {
1206        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1207          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1208          unsigned Opc = ISD::SHL;
1209          int Diff = ShAmt-C1;
1210          if (Diff < 0) {
1211            Diff = -Diff;
1212            Opc = ISD::SRL;
1213          }
1214
1215          SDValue NewSA =
1216            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1217          EVT VT = Op.getValueType();
1218          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1219                                                   InOp.getOperand(0), NewSA));
1220        }
1221      }
1222
1223      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1224                               KnownZero, KnownOne, TLO, Depth+1))
1225        return true;
1226      KnownZero <<= SA->getZExtValue();
1227      KnownOne  <<= SA->getZExtValue();
1228      // low bits known zero.
1229      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1230    }
1231    break;
1232  case ISD::SRL:
1233    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1234      EVT VT = Op.getValueType();
1235      unsigned ShAmt = SA->getZExtValue();
1236      unsigned VTSize = VT.getSizeInBits();
1237      SDValue InOp = Op.getOperand(0);
1238
1239      // If the shift count is an invalid immediate, don't do anything.
1240      if (ShAmt >= BitWidth)
1241        break;
1242
1243      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1244      // single shift.  We can do this if the top bits (which are shifted out)
1245      // are never demanded.
1246      if (InOp.getOpcode() == ISD::SHL &&
1247          isa<ConstantSDNode>(InOp.getOperand(1))) {
1248        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1249          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1250          unsigned Opc = ISD::SRL;
1251          int Diff = ShAmt-C1;
1252          if (Diff < 0) {
1253            Diff = -Diff;
1254            Opc = ISD::SHL;
1255          }
1256
1257          SDValue NewSA =
1258            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1259          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1260                                                   InOp.getOperand(0), NewSA));
1261        }
1262      }
1263
1264      // Compute the new bits that are at the top now.
1265      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1266                               KnownZero, KnownOne, TLO, Depth+1))
1267        return true;
1268      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1269      KnownZero = KnownZero.lshr(ShAmt);
1270      KnownOne  = KnownOne.lshr(ShAmt);
1271
1272      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1273      KnownZero |= HighBits;  // High bits known zero.
1274    }
1275    break;
1276  case ISD::SRA:
1277    // If this is an arithmetic shift right and only the low-bit is set, we can
1278    // always convert this into a logical shr, even if the shift amount is
1279    // variable.  The low bit of the shift cannot be an input sign bit unless
1280    // the shift amount is >= the size of the datatype, which is undefined.
1281    if (DemandedMask == 1)
1282      return TLO.CombineTo(Op,
1283                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1284                                           Op.getOperand(0), Op.getOperand(1)));
1285
1286    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1287      EVT VT = Op.getValueType();
1288      unsigned ShAmt = SA->getZExtValue();
1289
1290      // If the shift count is an invalid immediate, don't do anything.
1291      if (ShAmt >= BitWidth)
1292        break;
1293
1294      APInt InDemandedMask = (NewMask << ShAmt);
1295
1296      // If any of the demanded bits are produced by the sign extension, we also
1297      // demand the input sign bit.
1298      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1299      if (HighBits.intersects(NewMask))
1300        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1301
1302      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1303                               KnownZero, KnownOne, TLO, Depth+1))
1304        return true;
1305      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1306      KnownZero = KnownZero.lshr(ShAmt);
1307      KnownOne  = KnownOne.lshr(ShAmt);
1308
1309      // Handle the sign bit, adjusted to where it is now in the mask.
1310      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1311
1312      // If the input sign bit is known to be zero, or if none of the top bits
1313      // are demanded, turn this into an unsigned shift right.
1314      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1315        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1316                                                 Op.getOperand(0),
1317                                                 Op.getOperand(1)));
1318      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1319        KnownOne |= HighBits;
1320      }
1321    }
1322    break;
1323  case ISD::SIGN_EXTEND_INREG: {
1324    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1325
1326    // Sign extension.  Compute the demanded bits in the result that are not
1327    // present in the input.
1328    APInt NewBits =
1329      APInt::getHighBitsSet(BitWidth,
1330                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1331      NewMask;
1332
1333    // If none of the extended bits are demanded, eliminate the sextinreg.
1334    if (NewBits == 0)
1335      return TLO.CombineTo(Op, Op.getOperand(0));
1336
1337    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1338    InSignBit.zext(BitWidth);
1339    APInt InputDemandedBits =
1340      APInt::getLowBitsSet(BitWidth,
1341                           EVT.getScalarType().getSizeInBits()) &
1342      NewMask;
1343
1344    // Since the sign extended bits are demanded, we know that the sign
1345    // bit is demanded.
1346    InputDemandedBits |= InSignBit;
1347
1348    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1349                             KnownZero, KnownOne, TLO, Depth+1))
1350      return true;
1351    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1352
1353    // If the sign bit of the input is known set or clear, then we know the
1354    // top bits of the result.
1355
1356    // If the input sign bit is known zero, convert this into a zero extension.
1357    if (KnownZero.intersects(InSignBit))
1358      return TLO.CombineTo(Op,
1359                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1360
1361    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1362      KnownOne |= NewBits;
1363      KnownZero &= ~NewBits;
1364    } else {                       // Input sign bit unknown
1365      KnownZero &= ~NewBits;
1366      KnownOne &= ~NewBits;
1367    }
1368    break;
1369  }
1370  case ISD::ZERO_EXTEND: {
1371    unsigned OperandBitWidth =
1372      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1373    APInt InMask = NewMask;
1374    InMask.trunc(OperandBitWidth);
1375
1376    // If none of the top bits are demanded, convert this into an any_extend.
1377    APInt NewBits =
1378      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1379    if (!NewBits.intersects(NewMask))
1380      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1381                                               Op.getValueType(),
1382                                               Op.getOperand(0)));
1383
1384    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1385                             KnownZero, KnownOne, TLO, Depth+1))
1386      return true;
1387    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1388    KnownZero.zext(BitWidth);
1389    KnownOne.zext(BitWidth);
1390    KnownZero |= NewBits;
1391    break;
1392  }
1393  case ISD::SIGN_EXTEND: {
1394    EVT InVT = Op.getOperand(0).getValueType();
1395    unsigned InBits = InVT.getScalarType().getSizeInBits();
1396    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1397    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1398    APInt NewBits   = ~InMask & NewMask;
1399
1400    // If none of the top bits are demanded, convert this into an any_extend.
1401    if (NewBits == 0)
1402      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1403                                              Op.getValueType(),
1404                                              Op.getOperand(0)));
1405
1406    // Since some of the sign extended bits are demanded, we know that the sign
1407    // bit is demanded.
1408    APInt InDemandedBits = InMask & NewMask;
1409    InDemandedBits |= InSignBit;
1410    InDemandedBits.trunc(InBits);
1411
1412    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1413                             KnownOne, TLO, Depth+1))
1414      return true;
1415    KnownZero.zext(BitWidth);
1416    KnownOne.zext(BitWidth);
1417
1418    // If the sign bit is known zero, convert this to a zero extend.
1419    if (KnownZero.intersects(InSignBit))
1420      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1421                                               Op.getValueType(),
1422                                               Op.getOperand(0)));
1423
1424    // If the sign bit is known one, the top bits match.
1425    if (KnownOne.intersects(InSignBit)) {
1426      KnownOne  |= NewBits;
1427      KnownZero &= ~NewBits;
1428    } else {   // Otherwise, top bits aren't known.
1429      KnownOne  &= ~NewBits;
1430      KnownZero &= ~NewBits;
1431    }
1432    break;
1433  }
1434  case ISD::ANY_EXTEND: {
1435    unsigned OperandBitWidth =
1436      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1437    APInt InMask = NewMask;
1438    InMask.trunc(OperandBitWidth);
1439    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1440                             KnownZero, KnownOne, TLO, Depth+1))
1441      return true;
1442    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1443    KnownZero.zext(BitWidth);
1444    KnownOne.zext(BitWidth);
1445    break;
1446  }
1447  case ISD::TRUNCATE: {
1448    // Simplify the input, using demanded bit information, and compute the known
1449    // zero/one bits live out.
1450    unsigned OperandBitWidth =
1451      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1452    APInt TruncMask = NewMask;
1453    TruncMask.zext(OperandBitWidth);
1454    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1455                             KnownZero, KnownOne, TLO, Depth+1))
1456      return true;
1457    KnownZero.trunc(BitWidth);
1458    KnownOne.trunc(BitWidth);
1459
1460    // If the input is only used by this truncate, see if we can shrink it based
1461    // on the known demanded bits.
1462    if (Op.getOperand(0).getNode()->hasOneUse()) {
1463      SDValue In = Op.getOperand(0);
1464      switch (In.getOpcode()) {
1465      default: break;
1466      case ISD::SRL:
1467        // Shrink SRL by a constant if none of the high bits shifted in are
1468        // demanded.
1469        if (TLO.LegalTypes() &&
1470            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1471          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1472          // undesirable.
1473          break;
1474        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1475        if (!ShAmt)
1476          break;
1477        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1478                                               OperandBitWidth - BitWidth);
1479        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1480        HighBits.trunc(BitWidth);
1481
1482        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1483          // None of the shifted in bits are needed.  Add a truncate of the
1484          // shift input, then shift it.
1485          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1486                                             Op.getValueType(),
1487                                             In.getOperand(0));
1488          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1489                                                   Op.getValueType(),
1490                                                   NewTrunc,
1491                                                   In.getOperand(1)));
1492        }
1493        break;
1494      }
1495    }
1496
1497    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1498    break;
1499  }
1500  case ISD::AssertZext: {
1501    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1502    APInt InMask = APInt::getLowBitsSet(BitWidth,
1503                                        VT.getSizeInBits());
1504    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1505                             KnownZero, KnownOne, TLO, Depth+1))
1506      return true;
1507    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1508    KnownZero |= ~InMask & NewMask;
1509    break;
1510  }
1511  case ISD::BIT_CONVERT:
1512#if 0
1513    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1514    // is demanded, turn this into a FGETSIGN.
1515    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1516        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1517        !MVT::isVector(Op.getOperand(0).getValueType())) {
1518      // Only do this xform if FGETSIGN is valid or if before legalize.
1519      if (!TLO.AfterLegalize ||
1520          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1521        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1522        // place.  We expect the SHL to be eliminated by other optimizations.
1523        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1524                                         Op.getOperand(0));
1525        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1526        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1527        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1528                                                 Sign, ShAmt));
1529      }
1530    }
1531#endif
1532    break;
1533  case ISD::ADD:
1534  case ISD::MUL:
1535  case ISD::SUB: {
1536    // Add, Sub, and Mul don't demand any bits in positions beyond that
1537    // of the highest bit demanded of them.
1538    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1539                                        BitWidth - NewMask.countLeadingZeros());
1540    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1541                             KnownOne2, TLO, Depth+1))
1542      return true;
1543    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1544                             KnownOne2, TLO, Depth+1))
1545      return true;
1546    // See if the operation should be performed at a smaller bit width.
1547    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1548      return true;
1549  }
1550  // FALL THROUGH
1551  default:
1552    // Just use ComputeMaskedBits to compute output bits.
1553    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1554    break;
1555  }
1556
1557  // If we know the value of all of the demanded bits, return this as a
1558  // constant.
1559  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1560    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1561
1562  return false;
1563}
1564
1565/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1566/// in Mask are known to be either zero or one and return them in the
1567/// KnownZero/KnownOne bitsets.
1568void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1569                                                    const APInt &Mask,
1570                                                    APInt &KnownZero,
1571                                                    APInt &KnownOne,
1572                                                    const SelectionDAG &DAG,
1573                                                    unsigned Depth) const {
1574  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1575          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1576          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1577          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1578         "Should use MaskedValueIsZero if you don't know whether Op"
1579         " is a target node!");
1580  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1581}
1582
1583/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1584/// targets that want to expose additional information about sign bits to the
1585/// DAG Combiner.
1586unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1587                                                         unsigned Depth) const {
1588  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1589          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1590          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1591          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1592         "Should use ComputeNumSignBits if you don't know whether Op"
1593         " is a target node!");
1594  return 1;
1595}
1596
1597/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1598/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1599/// determine which bit is set.
1600///
1601static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1602  // A left-shift of a constant one will have exactly one bit set, because
1603  // shifting the bit off the end is undefined.
1604  if (Val.getOpcode() == ISD::SHL)
1605    if (ConstantSDNode *C =
1606         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1607      if (C->getAPIntValue() == 1)
1608        return true;
1609
1610  // Similarly, a right-shift of a constant sign-bit will have exactly
1611  // one bit set.
1612  if (Val.getOpcode() == ISD::SRL)
1613    if (ConstantSDNode *C =
1614         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1615      if (C->getAPIntValue().isSignBit())
1616        return true;
1617
1618  // More could be done here, though the above checks are enough
1619  // to handle some common cases.
1620
1621  // Fall back to ComputeMaskedBits to catch other known cases.
1622  EVT OpVT = Val.getValueType();
1623  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1624  APInt Mask = APInt::getAllOnesValue(BitWidth);
1625  APInt KnownZero, KnownOne;
1626  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1627  return (KnownZero.countPopulation() == BitWidth - 1) &&
1628         (KnownOne.countPopulation() == 1);
1629}
1630
1631/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1632/// and cc. If it is unable to simplify it, return a null SDValue.
1633SDValue
1634TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1635                              ISD::CondCode Cond, bool foldBooleans,
1636                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1637  SelectionDAG &DAG = DCI.DAG;
1638  LLVMContext &Context = *DAG.getContext();
1639
1640  // These setcc operations always fold.
1641  switch (Cond) {
1642  default: break;
1643  case ISD::SETFALSE:
1644  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1645  case ISD::SETTRUE:
1646  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1647  }
1648
1649  if (isa<ConstantSDNode>(N0.getNode())) {
1650    // Ensure that the constant occurs on the RHS, and fold constant
1651    // comparisons.
1652    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1653  }
1654
1655  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1656    const APInt &C1 = N1C->getAPIntValue();
1657
1658    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1659    // equality comparison, then we're just comparing whether X itself is
1660    // zero.
1661    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1662        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1663        N0.getOperand(1).getOpcode() == ISD::Constant) {
1664      const APInt &ShAmt
1665        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1666      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1667          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1668        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1669          // (srl (ctlz x), 5) == 0  -> X != 0
1670          // (srl (ctlz x), 5) != 1  -> X != 0
1671          Cond = ISD::SETNE;
1672        } else {
1673          // (srl (ctlz x), 5) != 0  -> X == 0
1674          // (srl (ctlz x), 5) == 1  -> X == 0
1675          Cond = ISD::SETEQ;
1676        }
1677        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1678        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1679                            Zero, Cond);
1680      }
1681    }
1682
1683    // If the LHS is '(and load, const)', the RHS is 0,
1684    // the test is for equality or unsigned, and all 1 bits of the const are
1685    // in the same partial word, see if we can shorten the load.
1686    if (DCI.isBeforeLegalize() &&
1687        N0.getOpcode() == ISD::AND && C1 == 0 &&
1688        N0.getNode()->hasOneUse() &&
1689        isa<LoadSDNode>(N0.getOperand(0)) &&
1690        N0.getOperand(0).getNode()->hasOneUse() &&
1691        isa<ConstantSDNode>(N0.getOperand(1))) {
1692      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1693      APInt bestMask;
1694      unsigned bestWidth = 0, bestOffset = 0;
1695      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1696        unsigned origWidth = N0.getValueType().getSizeInBits();
1697        unsigned maskWidth = origWidth;
1698        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1699        // 8 bits, but have to be careful...
1700        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1701          origWidth = Lod->getMemoryVT().getSizeInBits();
1702        const APInt &Mask =
1703          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1704        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1705          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1706          for (unsigned offset=0; offset<origWidth/width; offset++) {
1707            if ((newMask & Mask) == Mask) {
1708              if (!TD->isLittleEndian())
1709                bestOffset = (origWidth/width - offset - 1) * (width/8);
1710              else
1711                bestOffset = (uint64_t)offset * (width/8);
1712              bestMask = Mask.lshr(offset * (width/8) * 8);
1713              bestWidth = width;
1714              break;
1715            }
1716            newMask = newMask << width;
1717          }
1718        }
1719      }
1720      if (bestWidth) {
1721        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1722        if (newVT.isRound()) {
1723          EVT PtrType = Lod->getOperand(1).getValueType();
1724          SDValue Ptr = Lod->getBasePtr();
1725          if (bestOffset != 0)
1726            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1727                              DAG.getConstant(bestOffset, PtrType));
1728          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1729          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1730                                        Lod->getSrcValue(),
1731                                        Lod->getSrcValueOffset() + bestOffset,
1732                                        false, false, NewAlign);
1733          return DAG.getSetCC(dl, VT,
1734                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1735                                      DAG.getConstant(bestMask.trunc(bestWidth),
1736                                                      newVT)),
1737                              DAG.getConstant(0LL, newVT), Cond);
1738        }
1739      }
1740    }
1741
1742    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1743    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1744      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1745
1746      // If the comparison constant has bits in the upper part, the
1747      // zero-extended value could never match.
1748      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1749                                              C1.getBitWidth() - InSize))) {
1750        switch (Cond) {
1751        case ISD::SETUGT:
1752        case ISD::SETUGE:
1753        case ISD::SETEQ: return DAG.getConstant(0, VT);
1754        case ISD::SETULT:
1755        case ISD::SETULE:
1756        case ISD::SETNE: return DAG.getConstant(1, VT);
1757        case ISD::SETGT:
1758        case ISD::SETGE:
1759          // True if the sign bit of C1 is set.
1760          return DAG.getConstant(C1.isNegative(), VT);
1761        case ISD::SETLT:
1762        case ISD::SETLE:
1763          // True if the sign bit of C1 isn't set.
1764          return DAG.getConstant(C1.isNonNegative(), VT);
1765        default:
1766          break;
1767        }
1768      }
1769
1770      // Otherwise, we can perform the comparison with the low bits.
1771      switch (Cond) {
1772      case ISD::SETEQ:
1773      case ISD::SETNE:
1774      case ISD::SETUGT:
1775      case ISD::SETUGE:
1776      case ISD::SETULT:
1777      case ISD::SETULE: {
1778        EVT newVT = N0.getOperand(0).getValueType();
1779        if (DCI.isBeforeLegalizeOps() ||
1780            (isOperationLegal(ISD::SETCC, newVT) &&
1781              getCondCodeAction(Cond, newVT)==Legal))
1782          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1783                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1784                              Cond);
1785        break;
1786      }
1787      default:
1788        break;   // todo, be more careful with signed comparisons
1789      }
1790    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1791               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1792      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1793      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1794      EVT ExtDstTy = N0.getValueType();
1795      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1796
1797      // If the extended part has any inconsistent bits, it cannot ever
1798      // compare equal.  In other words, they have to be all ones or all
1799      // zeros.
1800      APInt ExtBits =
1801        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1802      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1803        return DAG.getConstant(Cond == ISD::SETNE, VT);
1804
1805      SDValue ZextOp;
1806      EVT Op0Ty = N0.getOperand(0).getValueType();
1807      if (Op0Ty == ExtSrcTy) {
1808        ZextOp = N0.getOperand(0);
1809      } else {
1810        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1811        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1812                              DAG.getConstant(Imm, Op0Ty));
1813      }
1814      if (!DCI.isCalledByLegalizer())
1815        DCI.AddToWorklist(ZextOp.getNode());
1816      // Otherwise, make this a use of a zext.
1817      return DAG.getSetCC(dl, VT, ZextOp,
1818                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1819                                                              ExtDstTyBits,
1820                                                              ExtSrcTyBits),
1821                                          ExtDstTy),
1822                          Cond);
1823    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1824                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1825      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1826      if (N0.getOpcode() == ISD::SETCC &&
1827          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1828        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1829        if (TrueWhenTrue)
1830          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1831        // Invert the condition.
1832        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1833        CC = ISD::getSetCCInverse(CC,
1834                                  N0.getOperand(0).getValueType().isInteger());
1835        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1836      }
1837
1838      if ((N0.getOpcode() == ISD::XOR ||
1839           (N0.getOpcode() == ISD::AND &&
1840            N0.getOperand(0).getOpcode() == ISD::XOR &&
1841            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1842          isa<ConstantSDNode>(N0.getOperand(1)) &&
1843          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1844        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1845        // can only do this if the top bits are known zero.
1846        unsigned BitWidth = N0.getValueSizeInBits();
1847        if (DAG.MaskedValueIsZero(N0,
1848                                  APInt::getHighBitsSet(BitWidth,
1849                                                        BitWidth-1))) {
1850          // Okay, get the un-inverted input value.
1851          SDValue Val;
1852          if (N0.getOpcode() == ISD::XOR)
1853            Val = N0.getOperand(0);
1854          else {
1855            assert(N0.getOpcode() == ISD::AND &&
1856                    N0.getOperand(0).getOpcode() == ISD::XOR);
1857            // ((X^1)&1)^1 -> X & 1
1858            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1859                              N0.getOperand(0).getOperand(0),
1860                              N0.getOperand(1));
1861          }
1862
1863          return DAG.getSetCC(dl, VT, Val, N1,
1864                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1865        }
1866      } else if (N1C->getAPIntValue() == 1 &&
1867                 (VT == MVT::i1 ||
1868                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1869        SDValue Op0 = N0;
1870        if (Op0.getOpcode() == ISD::TRUNCATE)
1871          Op0 = Op0.getOperand(0);
1872
1873        if ((Op0.getOpcode() == ISD::XOR) &&
1874            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1875            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1876          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1877          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1878          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1879                              Cond);
1880        } else if (Op0.getOpcode() == ISD::AND &&
1881                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1882                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1883          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1884          if (Op0.getValueType().bitsGT(VT))
1885            Op0 = DAG.getNode(ISD::AND, dl, VT,
1886                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1887                          DAG.getConstant(1, VT));
1888          else if (Op0.getValueType().bitsLT(VT))
1889            Op0 = DAG.getNode(ISD::AND, dl, VT,
1890                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1891                        DAG.getConstant(1, VT));
1892
1893          return DAG.getSetCC(dl, VT, Op0,
1894                              DAG.getConstant(0, Op0.getValueType()),
1895                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1896        }
1897      }
1898    }
1899
1900    APInt MinVal, MaxVal;
1901    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1902    if (ISD::isSignedIntSetCC(Cond)) {
1903      MinVal = APInt::getSignedMinValue(OperandBitSize);
1904      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1905    } else {
1906      MinVal = APInt::getMinValue(OperandBitSize);
1907      MaxVal = APInt::getMaxValue(OperandBitSize);
1908    }
1909
1910    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1911    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1912      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1913      // X >= C0 --> X > (C0-1)
1914      return DAG.getSetCC(dl, VT, N0,
1915                          DAG.getConstant(C1-1, N1.getValueType()),
1916                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1917    }
1918
1919    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1920      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1921      // X <= C0 --> X < (C0+1)
1922      return DAG.getSetCC(dl, VT, N0,
1923                          DAG.getConstant(C1+1, N1.getValueType()),
1924                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1925    }
1926
1927    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1928      return DAG.getConstant(0, VT);      // X < MIN --> false
1929    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1930      return DAG.getConstant(1, VT);      // X >= MIN --> true
1931    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1932      return DAG.getConstant(0, VT);      // X > MAX --> false
1933    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1934      return DAG.getConstant(1, VT);      // X <= MAX --> true
1935
1936    // Canonicalize setgt X, Min --> setne X, Min
1937    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1938      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1939    // Canonicalize setlt X, Max --> setne X, Max
1940    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1941      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1942
1943    // If we have setult X, 1, turn it into seteq X, 0
1944    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1945      return DAG.getSetCC(dl, VT, N0,
1946                          DAG.getConstant(MinVal, N0.getValueType()),
1947                          ISD::SETEQ);
1948    // If we have setugt X, Max-1, turn it into seteq X, Max
1949    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1950      return DAG.getSetCC(dl, VT, N0,
1951                          DAG.getConstant(MaxVal, N0.getValueType()),
1952                          ISD::SETEQ);
1953
1954    // If we have "setcc X, C0", check to see if we can shrink the immediate
1955    // by changing cc.
1956
1957    // SETUGT X, SINTMAX  -> SETLT X, 0
1958    if (Cond == ISD::SETUGT &&
1959        C1 == APInt::getSignedMaxValue(OperandBitSize))
1960      return DAG.getSetCC(dl, VT, N0,
1961                          DAG.getConstant(0, N1.getValueType()),
1962                          ISD::SETLT);
1963
1964    // SETULT X, SINTMIN  -> SETGT X, -1
1965    if (Cond == ISD::SETULT &&
1966        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1967      SDValue ConstMinusOne =
1968          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1969                          N1.getValueType());
1970      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1971    }
1972
1973    // Fold bit comparisons when we can.
1974    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1975        (VT == N0.getValueType() ||
1976         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1977        N0.getOpcode() == ISD::AND)
1978      if (ConstantSDNode *AndRHS =
1979                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1980        EVT ShiftTy = DCI.isBeforeLegalize() ?
1981          getPointerTy() : getShiftAmountTy();
1982        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1983          // Perform the xform if the AND RHS is a single bit.
1984          if (AndRHS->getAPIntValue().isPowerOf2()) {
1985            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1986                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1987                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1988          }
1989        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1990          // (X & 8) == 8  -->  (X & 8) >> 3
1991          // Perform the xform if C1 is a single bit.
1992          if (C1.isPowerOf2()) {
1993            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1994                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1995                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1996          }
1997        }
1998      }
1999  }
2000
2001  if (isa<ConstantFPSDNode>(N0.getNode())) {
2002    // Constant fold or commute setcc.
2003    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2004    if (O.getNode()) return O;
2005  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2006    // If the RHS of an FP comparison is a constant, simplify it away in
2007    // some cases.
2008    if (CFP->getValueAPF().isNaN()) {
2009      // If an operand is known to be a nan, we can fold it.
2010      switch (ISD::getUnorderedFlavor(Cond)) {
2011      default: llvm_unreachable("Unknown flavor!");
2012      case 0:  // Known false.
2013        return DAG.getConstant(0, VT);
2014      case 1:  // Known true.
2015        return DAG.getConstant(1, VT);
2016      case 2:  // Undefined.
2017        return DAG.getUNDEF(VT);
2018      }
2019    }
2020
2021    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2022    // constant if knowing that the operand is non-nan is enough.  We prefer to
2023    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2024    // materialize 0.0.
2025    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2026      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2027
2028    // If the condition is not legal, see if we can find an equivalent one
2029    // which is legal.
2030    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2031      // If the comparison was an awkward floating-point == or != and one of
2032      // the comparison operands is infinity or negative infinity, convert the
2033      // condition to a less-awkward <= or >=.
2034      if (CFP->getValueAPF().isInfinity()) {
2035        if (CFP->getValueAPF().isNegative()) {
2036          if (Cond == ISD::SETOEQ &&
2037              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2038            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2039          if (Cond == ISD::SETUEQ &&
2040              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2041            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2042          if (Cond == ISD::SETUNE &&
2043              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2044            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2045          if (Cond == ISD::SETONE &&
2046              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2047            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2048        } else {
2049          if (Cond == ISD::SETOEQ &&
2050              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2051            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2052          if (Cond == ISD::SETUEQ &&
2053              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2054            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2055          if (Cond == ISD::SETUNE &&
2056              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2057            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2058          if (Cond == ISD::SETONE &&
2059              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2060            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2061        }
2062      }
2063    }
2064  }
2065
2066  if (N0 == N1) {
2067    // We can always fold X == X for integer setcc's.
2068    if (N0.getValueType().isInteger())
2069      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2070    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2071    if (UOF == 2)   // FP operators that are undefined on NaNs.
2072      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2073    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2074      return DAG.getConstant(UOF, VT);
2075    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2076    // if it is not already.
2077    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2078    if (NewCond != Cond)
2079      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2080  }
2081
2082  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2083      N0.getValueType().isInteger()) {
2084    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2085        N0.getOpcode() == ISD::XOR) {
2086      // Simplify (X+Y) == (X+Z) -->  Y == Z
2087      if (N0.getOpcode() == N1.getOpcode()) {
2088        if (N0.getOperand(0) == N1.getOperand(0))
2089          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2090        if (N0.getOperand(1) == N1.getOperand(1))
2091          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2092        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2093          // If X op Y == Y op X, try other combinations.
2094          if (N0.getOperand(0) == N1.getOperand(1))
2095            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2096                                Cond);
2097          if (N0.getOperand(1) == N1.getOperand(0))
2098            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2099                                Cond);
2100        }
2101      }
2102
2103      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2104        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2105          // Turn (X+C1) == C2 --> X == C2-C1
2106          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2107            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2108                                DAG.getConstant(RHSC->getAPIntValue()-
2109                                                LHSR->getAPIntValue(),
2110                                N0.getValueType()), Cond);
2111          }
2112
2113          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2114          if (N0.getOpcode() == ISD::XOR)
2115            // If we know that all of the inverted bits are zero, don't bother
2116            // performing the inversion.
2117            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2118              return
2119                DAG.getSetCC(dl, VT, N0.getOperand(0),
2120                             DAG.getConstant(LHSR->getAPIntValue() ^
2121                                               RHSC->getAPIntValue(),
2122                                             N0.getValueType()),
2123                             Cond);
2124        }
2125
2126        // Turn (C1-X) == C2 --> X == C1-C2
2127        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2128          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2129            return
2130              DAG.getSetCC(dl, VT, N0.getOperand(1),
2131                           DAG.getConstant(SUBC->getAPIntValue() -
2132                                             RHSC->getAPIntValue(),
2133                                           N0.getValueType()),
2134                           Cond);
2135          }
2136        }
2137      }
2138
2139      // Simplify (X+Z) == X -->  Z == 0
2140      if (N0.getOperand(0) == N1)
2141        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2142                        DAG.getConstant(0, N0.getValueType()), Cond);
2143      if (N0.getOperand(1) == N1) {
2144        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2145          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2146                          DAG.getConstant(0, N0.getValueType()), Cond);
2147        else if (N0.getNode()->hasOneUse()) {
2148          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2149          // (Z-X) == X  --> Z == X<<1
2150          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2151                                     N1,
2152                                     DAG.getConstant(1, getShiftAmountTy()));
2153          if (!DCI.isCalledByLegalizer())
2154            DCI.AddToWorklist(SH.getNode());
2155          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2156        }
2157      }
2158    }
2159
2160    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2161        N1.getOpcode() == ISD::XOR) {
2162      // Simplify  X == (X+Z) -->  Z == 0
2163      if (N1.getOperand(0) == N0) {
2164        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2165                        DAG.getConstant(0, N1.getValueType()), Cond);
2166      } else if (N1.getOperand(1) == N0) {
2167        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2168          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2169                          DAG.getConstant(0, N1.getValueType()), Cond);
2170        } else if (N1.getNode()->hasOneUse()) {
2171          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2172          // X == (Z-X)  --> X<<1 == Z
2173          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2174                                     DAG.getConstant(1, getShiftAmountTy()));
2175          if (!DCI.isCalledByLegalizer())
2176            DCI.AddToWorklist(SH.getNode());
2177          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2178        }
2179      }
2180    }
2181
2182    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2183    // Note that where y is variable and is known to have at most
2184    // one bit set (for example, if it is z&1) we cannot do this;
2185    // the expressions are not equivalent when y==0.
2186    if (N0.getOpcode() == ISD::AND)
2187      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2188        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2189          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2190          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2191          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2192        }
2193      }
2194    if (N1.getOpcode() == ISD::AND)
2195      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2196        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2197          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2198          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2199          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2200        }
2201      }
2202  }
2203
2204  // Fold away ALL boolean setcc's.
2205  SDValue Temp;
2206  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2207    switch (Cond) {
2208    default: llvm_unreachable("Unknown integer setcc!");
2209    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2210      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2211      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2212      if (!DCI.isCalledByLegalizer())
2213        DCI.AddToWorklist(Temp.getNode());
2214      break;
2215    case ISD::SETNE:  // X != Y   -->  (X^Y)
2216      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2217      break;
2218    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2219    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2220      Temp = DAG.getNOT(dl, N0, MVT::i1);
2221      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2222      if (!DCI.isCalledByLegalizer())
2223        DCI.AddToWorklist(Temp.getNode());
2224      break;
2225    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2226    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2227      Temp = DAG.getNOT(dl, N1, MVT::i1);
2228      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2229      if (!DCI.isCalledByLegalizer())
2230        DCI.AddToWorklist(Temp.getNode());
2231      break;
2232    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2233    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2234      Temp = DAG.getNOT(dl, N0, MVT::i1);
2235      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2236      if (!DCI.isCalledByLegalizer())
2237        DCI.AddToWorklist(Temp.getNode());
2238      break;
2239    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2240    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2241      Temp = DAG.getNOT(dl, N1, MVT::i1);
2242      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2243      break;
2244    }
2245    if (VT != MVT::i1) {
2246      if (!DCI.isCalledByLegalizer())
2247        DCI.AddToWorklist(N0.getNode());
2248      // FIXME: If running after legalize, we probably can't do this.
2249      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2250    }
2251    return N0;
2252  }
2253
2254  // Could not fold it.
2255  return SDValue();
2256}
2257
2258/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2259/// node is a GlobalAddress + offset.
2260bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2261                                    int64_t &Offset) const {
2262  if (isa<GlobalAddressSDNode>(N)) {
2263    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2264    GA = GASD->getGlobal();
2265    Offset += GASD->getOffset();
2266    return true;
2267  }
2268
2269  if (N->getOpcode() == ISD::ADD) {
2270    SDValue N1 = N->getOperand(0);
2271    SDValue N2 = N->getOperand(1);
2272    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2273      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2274      if (V) {
2275        Offset += V->getSExtValue();
2276        return true;
2277      }
2278    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2279      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2280      if (V) {
2281        Offset += V->getSExtValue();
2282        return true;
2283      }
2284    }
2285  }
2286  return false;
2287}
2288
2289
2290SDValue TargetLowering::
2291PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2292  // Default implementation: no optimization.
2293  return SDValue();
2294}
2295
2296//===----------------------------------------------------------------------===//
2297//  Inline Assembler Implementation Methods
2298//===----------------------------------------------------------------------===//
2299
2300
2301TargetLowering::ConstraintType
2302TargetLowering::getConstraintType(const std::string &Constraint) const {
2303  // FIXME: lots more standard ones to handle.
2304  if (Constraint.size() == 1) {
2305    switch (Constraint[0]) {
2306    default: break;
2307    case 'r': return C_RegisterClass;
2308    case 'm':    // memory
2309    case 'o':    // offsetable
2310    case 'V':    // not offsetable
2311      return C_Memory;
2312    case 'i':    // Simple Integer or Relocatable Constant
2313    case 'n':    // Simple Integer
2314    case 's':    // Relocatable Constant
2315    case 'X':    // Allow ANY value.
2316    case 'I':    // Target registers.
2317    case 'J':
2318    case 'K':
2319    case 'L':
2320    case 'M':
2321    case 'N':
2322    case 'O':
2323    case 'P':
2324      return C_Other;
2325    }
2326  }
2327
2328  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2329      Constraint[Constraint.size()-1] == '}')
2330    return C_Register;
2331  return C_Unknown;
2332}
2333
2334/// LowerXConstraint - try to replace an X constraint, which matches anything,
2335/// with another that has more specific requirements based on the type of the
2336/// corresponding operand.
2337const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2338  if (ConstraintVT.isInteger())
2339    return "r";
2340  if (ConstraintVT.isFloatingPoint())
2341    return "f";      // works for many targets
2342  return 0;
2343}
2344
2345/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2346/// vector.  If it is invalid, don't add anything to Ops.
2347void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2348                                                  char ConstraintLetter,
2349                                                  bool hasMemory,
2350                                                  std::vector<SDValue> &Ops,
2351                                                  SelectionDAG &DAG) const {
2352  switch (ConstraintLetter) {
2353  default: break;
2354  case 'X':     // Allows any operand; labels (basic block) use this.
2355    if (Op.getOpcode() == ISD::BasicBlock) {
2356      Ops.push_back(Op);
2357      return;
2358    }
2359    // fall through
2360  case 'i':    // Simple Integer or Relocatable Constant
2361  case 'n':    // Simple Integer
2362  case 's': {  // Relocatable Constant
2363    // These operands are interested in values of the form (GV+C), where C may
2364    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2365    // is possible and fine if either GV or C are missing.
2366    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2367    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2368
2369    // If we have "(add GV, C)", pull out GV/C
2370    if (Op.getOpcode() == ISD::ADD) {
2371      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2372      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2373      if (C == 0 || GA == 0) {
2374        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2375        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2376      }
2377      if (C == 0 || GA == 0)
2378        C = 0, GA = 0;
2379    }
2380
2381    // If we find a valid operand, map to the TargetXXX version so that the
2382    // value itself doesn't get selected.
2383    if (GA) {   // Either &GV   or   &GV+C
2384      if (ConstraintLetter != 'n') {
2385        int64_t Offs = GA->getOffset();
2386        if (C) Offs += C->getZExtValue();
2387        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2388                                                 Op.getValueType(), Offs));
2389        return;
2390      }
2391    }
2392    if (C) {   // just C, no GV.
2393      // Simple constants are not allowed for 's'.
2394      if (ConstraintLetter != 's') {
2395        // gcc prints these as sign extended.  Sign extend value to 64 bits
2396        // now; without this it would get ZExt'd later in
2397        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2398        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2399                                            MVT::i64));
2400        return;
2401      }
2402    }
2403    break;
2404  }
2405  }
2406}
2407
2408std::vector<unsigned> TargetLowering::
2409getRegClassForInlineAsmConstraint(const std::string &Constraint,
2410                                  EVT VT) const {
2411  return std::vector<unsigned>();
2412}
2413
2414
2415std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2416getRegForInlineAsmConstraint(const std::string &Constraint,
2417                             EVT VT) const {
2418  if (Constraint[0] != '{')
2419    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2420  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2421
2422  // Remove the braces from around the name.
2423  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2424
2425  // Figure out which register class contains this reg.
2426  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2427  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2428       E = RI->regclass_end(); RCI != E; ++RCI) {
2429    const TargetRegisterClass *RC = *RCI;
2430
2431    // If none of the value types for this register class are valid, we
2432    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2433    bool isLegal = false;
2434    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2435         I != E; ++I) {
2436      if (isTypeLegal(*I)) {
2437        isLegal = true;
2438        break;
2439      }
2440    }
2441
2442    if (!isLegal) continue;
2443
2444    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2445         I != E; ++I) {
2446      if (RegName.equals_lower(RI->getName(*I)))
2447        return std::make_pair(*I, RC);
2448    }
2449  }
2450
2451  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2452}
2453
2454//===----------------------------------------------------------------------===//
2455// Constraint Selection.
2456
2457/// isMatchingInputConstraint - Return true of this is an input operand that is
2458/// a matching constraint like "4".
2459bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2460  assert(!ConstraintCode.empty() && "No known constraint!");
2461  return isdigit(ConstraintCode[0]);
2462}
2463
2464/// getMatchedOperand - If this is an input matching constraint, this method
2465/// returns the output operand it matches.
2466unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2467  assert(!ConstraintCode.empty() && "No known constraint!");
2468  return atoi(ConstraintCode.c_str());
2469}
2470
2471
2472/// getConstraintGenerality - Return an integer indicating how general CT
2473/// is.
2474static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2475  switch (CT) {
2476  default: llvm_unreachable("Unknown constraint type!");
2477  case TargetLowering::C_Other:
2478  case TargetLowering::C_Unknown:
2479    return 0;
2480  case TargetLowering::C_Register:
2481    return 1;
2482  case TargetLowering::C_RegisterClass:
2483    return 2;
2484  case TargetLowering::C_Memory:
2485    return 3;
2486  }
2487}
2488
2489/// ChooseConstraint - If there are multiple different constraints that we
2490/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2491/// This is somewhat tricky: constraints fall into four classes:
2492///    Other         -> immediates and magic values
2493///    Register      -> one specific register
2494///    RegisterClass -> a group of regs
2495///    Memory        -> memory
2496/// Ideally, we would pick the most specific constraint possible: if we have
2497/// something that fits into a register, we would pick it.  The problem here
2498/// is that if we have something that could either be in a register or in
2499/// memory that use of the register could cause selection of *other*
2500/// operands to fail: they might only succeed if we pick memory.  Because of
2501/// this the heuristic we use is:
2502///
2503///  1) If there is an 'other' constraint, and if the operand is valid for
2504///     that constraint, use it.  This makes us take advantage of 'i'
2505///     constraints when available.
2506///  2) Otherwise, pick the most general constraint present.  This prefers
2507///     'm' over 'r', for example.
2508///
2509static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2510                             bool hasMemory,  const TargetLowering &TLI,
2511                             SDValue Op, SelectionDAG *DAG) {
2512  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2513  unsigned BestIdx = 0;
2514  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2515  int BestGenerality = -1;
2516
2517  // Loop over the options, keeping track of the most general one.
2518  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2519    TargetLowering::ConstraintType CType =
2520      TLI.getConstraintType(OpInfo.Codes[i]);
2521
2522    // If this is an 'other' constraint, see if the operand is valid for it.
2523    // For example, on X86 we might have an 'rI' constraint.  If the operand
2524    // is an integer in the range [0..31] we want to use I (saving a load
2525    // of a register), otherwise we must use 'r'.
2526    if (CType == TargetLowering::C_Other && Op.getNode()) {
2527      assert(OpInfo.Codes[i].size() == 1 &&
2528             "Unhandled multi-letter 'other' constraint");
2529      std::vector<SDValue> ResultOps;
2530      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2531                                       ResultOps, *DAG);
2532      if (!ResultOps.empty()) {
2533        BestType = CType;
2534        BestIdx = i;
2535        break;
2536      }
2537    }
2538
2539    // This constraint letter is more general than the previous one, use it.
2540    int Generality = getConstraintGenerality(CType);
2541    if (Generality > BestGenerality) {
2542      BestType = CType;
2543      BestIdx = i;
2544      BestGenerality = Generality;
2545    }
2546  }
2547
2548  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2549  OpInfo.ConstraintType = BestType;
2550}
2551
2552/// ComputeConstraintToUse - Determines the constraint code and constraint
2553/// type to use for the specific AsmOperandInfo, setting
2554/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2555void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2556                                            SDValue Op,
2557                                            bool hasMemory,
2558                                            SelectionDAG *DAG) const {
2559  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2560
2561  // Single-letter constraints ('r') are very common.
2562  if (OpInfo.Codes.size() == 1) {
2563    OpInfo.ConstraintCode = OpInfo.Codes[0];
2564    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2565  } else {
2566    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2567  }
2568
2569  // 'X' matches anything.
2570  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2571    // Labels and constants are handled elsewhere ('X' is the only thing
2572    // that matches labels).  For Functions, the type here is the type of
2573    // the result, which is not what we want to look at; leave them alone.
2574    Value *v = OpInfo.CallOperandVal;
2575    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2576      OpInfo.CallOperandVal = v;
2577      return;
2578    }
2579
2580    // Otherwise, try to resolve it to something we know about by looking at
2581    // the actual operand type.
2582    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2583      OpInfo.ConstraintCode = Repl;
2584      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2585    }
2586  }
2587}
2588
2589//===----------------------------------------------------------------------===//
2590//  Loop Strength Reduction hooks
2591//===----------------------------------------------------------------------===//
2592
2593/// isLegalAddressingMode - Return true if the addressing mode represented
2594/// by AM is legal for this target, for a load/store of the specified type.
2595bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2596                                           const Type *Ty) const {
2597  // The default implementation of this implements a conservative RISCy, r+r and
2598  // r+i addr mode.
2599
2600  // Allows a sign-extended 16-bit immediate field.
2601  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2602    return false;
2603
2604  // No global is ever allowed as a base.
2605  if (AM.BaseGV)
2606    return false;
2607
2608  // Only support r+r,
2609  switch (AM.Scale) {
2610  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2611    break;
2612  case 1:
2613    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2614      return false;
2615    // Otherwise we have r+r or r+i.
2616    break;
2617  case 2:
2618    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2619      return false;
2620    // Allow 2*r as r+r.
2621    break;
2622  }
2623
2624  return true;
2625}
2626
2627/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2628/// return a DAG expression to select that will generate the same value by
2629/// multiplying by a magic number.  See:
2630/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2631SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2632                                  std::vector<SDNode*>* Created) const {
2633  EVT VT = N->getValueType(0);
2634  DebugLoc dl= N->getDebugLoc();
2635
2636  // Check to see if we can do this.
2637  // FIXME: We should be more aggressive here.
2638  if (!isTypeLegal(VT))
2639    return SDValue();
2640
2641  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2642  APInt::ms magics = d.magic();
2643
2644  // Multiply the numerator (operand 0) by the magic value
2645  // FIXME: We should support doing a MUL in a wider type
2646  SDValue Q;
2647  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2648    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2649                    DAG.getConstant(magics.m, VT));
2650  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2651    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2652                              N->getOperand(0),
2653                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2654  else
2655    return SDValue();       // No mulhs or equvialent
2656  // If d > 0 and m < 0, add the numerator
2657  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2658    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2659    if (Created)
2660      Created->push_back(Q.getNode());
2661  }
2662  // If d < 0 and m > 0, subtract the numerator.
2663  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2664    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2665    if (Created)
2666      Created->push_back(Q.getNode());
2667  }
2668  // Shift right algebraic if shift value is nonzero
2669  if (magics.s > 0) {
2670    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2671                    DAG.getConstant(magics.s, getShiftAmountTy()));
2672    if (Created)
2673      Created->push_back(Q.getNode());
2674  }
2675  // Extract the sign bit and add it to the quotient
2676  SDValue T =
2677    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2678                                                 getShiftAmountTy()));
2679  if (Created)
2680    Created->push_back(T.getNode());
2681  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2682}
2683
2684/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2685/// return a DAG expression to select that will generate the same value by
2686/// multiplying by a magic number.  See:
2687/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2688SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2689                                  std::vector<SDNode*>* Created) const {
2690  EVT VT = N->getValueType(0);
2691  DebugLoc dl = N->getDebugLoc();
2692
2693  // Check to see if we can do this.
2694  // FIXME: We should be more aggressive here.
2695  if (!isTypeLegal(VT))
2696    return SDValue();
2697
2698  // FIXME: We should use a narrower constant when the upper
2699  // bits are known to be zero.
2700  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2701  APInt::mu magics = N1C->getAPIntValue().magicu();
2702
2703  // Multiply the numerator (operand 0) by the magic value
2704  // FIXME: We should support doing a MUL in a wider type
2705  SDValue Q;
2706  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2707    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2708                    DAG.getConstant(magics.m, VT));
2709  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2710    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2711                              N->getOperand(0),
2712                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2713  else
2714    return SDValue();       // No mulhu or equvialent
2715  if (Created)
2716    Created->push_back(Q.getNode());
2717
2718  if (magics.a == 0) {
2719    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2720           "We shouldn't generate an undefined shift!");
2721    return DAG.getNode(ISD::SRL, dl, VT, Q,
2722                       DAG.getConstant(magics.s, getShiftAmountTy()));
2723  } else {
2724    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2725    if (Created)
2726      Created->push_back(NPQ.getNode());
2727    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2728                      DAG.getConstant(1, getShiftAmountTy()));
2729    if (Created)
2730      Created->push_back(NPQ.getNode());
2731    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2732    if (Created)
2733      Created->push_back(NPQ.getNode());
2734    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2735                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2736  }
2737}
2738