TargetLowering.cpp revision 6ebf7bc7405ee79d27d50b70f0c1a474cbea820d
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29namespace llvm {
30TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
31  bool isLocal = GV->hasLocalLinkage();
32  bool isDeclaration = GV->isDeclaration();
33  // FIXME: what should we do for protected and internal visibility?
34  // For variables, is internal different from hidden?
35  bool isHidden = GV->hasHiddenVisibility();
36
37  if (reloc == Reloc::PIC_) {
38    if (isLocal || isHidden)
39      return TLSModel::LocalDynamic;
40    else
41      return TLSModel::GeneralDynamic;
42  } else {
43    if (!isDeclaration || isHidden)
44      return TLSModel::LocalExec;
45    else
46      return TLSModel::InitialExec;
47  }
48}
49}
50
51/// InitLibcallNames - Set default libcall names.
52///
53static void InitLibcallNames(const char **Names) {
54  Names[RTLIB::SHL_I16] = "__ashlhi3";
55  Names[RTLIB::SHL_I32] = "__ashlsi3";
56  Names[RTLIB::SHL_I64] = "__ashldi3";
57  Names[RTLIB::SHL_I128] = "__ashlti3";
58  Names[RTLIB::SRL_I16] = "__lshrhi3";
59  Names[RTLIB::SRL_I32] = "__lshrsi3";
60  Names[RTLIB::SRL_I64] = "__lshrdi3";
61  Names[RTLIB::SRL_I128] = "__lshrti3";
62  Names[RTLIB::SRA_I16] = "__ashrhi3";
63  Names[RTLIB::SRA_I32] = "__ashrsi3";
64  Names[RTLIB::SRA_I64] = "__ashrdi3";
65  Names[RTLIB::SRA_I128] = "__ashrti3";
66  Names[RTLIB::MUL_I16] = "__mulhi3";
67  Names[RTLIB::MUL_I32] = "__mulsi3";
68  Names[RTLIB::MUL_I64] = "__muldi3";
69  Names[RTLIB::MUL_I128] = "__multi3";
70  Names[RTLIB::SDIV_I16] = "__divhi3";
71  Names[RTLIB::SDIV_I32] = "__divsi3";
72  Names[RTLIB::SDIV_I64] = "__divdi3";
73  Names[RTLIB::SDIV_I128] = "__divti3";
74  Names[RTLIB::UDIV_I16] = "__udivhi3";
75  Names[RTLIB::UDIV_I32] = "__udivsi3";
76  Names[RTLIB::UDIV_I64] = "__udivdi3";
77  Names[RTLIB::UDIV_I128] = "__udivti3";
78  Names[RTLIB::SREM_I16] = "__modhi3";
79  Names[RTLIB::SREM_I32] = "__modsi3";
80  Names[RTLIB::SREM_I64] = "__moddi3";
81  Names[RTLIB::SREM_I128] = "__modti3";
82  Names[RTLIB::UREM_I16] = "__umodhi3";
83  Names[RTLIB::UREM_I32] = "__umodsi3";
84  Names[RTLIB::UREM_I64] = "__umoddi3";
85  Names[RTLIB::UREM_I128] = "__umodti3";
86  Names[RTLIB::NEG_I32] = "__negsi2";
87  Names[RTLIB::NEG_I64] = "__negdi2";
88  Names[RTLIB::ADD_F32] = "__addsf3";
89  Names[RTLIB::ADD_F64] = "__adddf3";
90  Names[RTLIB::ADD_F80] = "__addxf3";
91  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
92  Names[RTLIB::SUB_F32] = "__subsf3";
93  Names[RTLIB::SUB_F64] = "__subdf3";
94  Names[RTLIB::SUB_F80] = "__subxf3";
95  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
96  Names[RTLIB::MUL_F32] = "__mulsf3";
97  Names[RTLIB::MUL_F64] = "__muldf3";
98  Names[RTLIB::MUL_F80] = "__mulxf3";
99  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
100  Names[RTLIB::DIV_F32] = "__divsf3";
101  Names[RTLIB::DIV_F64] = "__divdf3";
102  Names[RTLIB::DIV_F80] = "__divxf3";
103  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
104  Names[RTLIB::REM_F32] = "fmodf";
105  Names[RTLIB::REM_F64] = "fmod";
106  Names[RTLIB::REM_F80] = "fmodl";
107  Names[RTLIB::REM_PPCF128] = "fmodl";
108  Names[RTLIB::POWI_F32] = "__powisf2";
109  Names[RTLIB::POWI_F64] = "__powidf2";
110  Names[RTLIB::POWI_F80] = "__powixf2";
111  Names[RTLIB::POWI_PPCF128] = "__powitf2";
112  Names[RTLIB::SQRT_F32] = "sqrtf";
113  Names[RTLIB::SQRT_F64] = "sqrt";
114  Names[RTLIB::SQRT_F80] = "sqrtl";
115  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
116  Names[RTLIB::LOG_F32] = "logf";
117  Names[RTLIB::LOG_F64] = "log";
118  Names[RTLIB::LOG_F80] = "logl";
119  Names[RTLIB::LOG_PPCF128] = "logl";
120  Names[RTLIB::LOG2_F32] = "log2f";
121  Names[RTLIB::LOG2_F64] = "log2";
122  Names[RTLIB::LOG2_F80] = "log2l";
123  Names[RTLIB::LOG2_PPCF128] = "log2l";
124  Names[RTLIB::LOG10_F32] = "log10f";
125  Names[RTLIB::LOG10_F64] = "log10";
126  Names[RTLIB::LOG10_F80] = "log10l";
127  Names[RTLIB::LOG10_PPCF128] = "log10l";
128  Names[RTLIB::EXP_F32] = "expf";
129  Names[RTLIB::EXP_F64] = "exp";
130  Names[RTLIB::EXP_F80] = "expl";
131  Names[RTLIB::EXP_PPCF128] = "expl";
132  Names[RTLIB::EXP2_F32] = "exp2f";
133  Names[RTLIB::EXP2_F64] = "exp2";
134  Names[RTLIB::EXP2_F80] = "exp2l";
135  Names[RTLIB::EXP2_PPCF128] = "exp2l";
136  Names[RTLIB::SIN_F32] = "sinf";
137  Names[RTLIB::SIN_F64] = "sin";
138  Names[RTLIB::SIN_F80] = "sinl";
139  Names[RTLIB::SIN_PPCF128] = "sinl";
140  Names[RTLIB::COS_F32] = "cosf";
141  Names[RTLIB::COS_F64] = "cos";
142  Names[RTLIB::COS_F80] = "cosl";
143  Names[RTLIB::COS_PPCF128] = "cosl";
144  Names[RTLIB::POW_F32] = "powf";
145  Names[RTLIB::POW_F64] = "pow";
146  Names[RTLIB::POW_F80] = "powl";
147  Names[RTLIB::POW_PPCF128] = "powl";
148  Names[RTLIB::CEIL_F32] = "ceilf";
149  Names[RTLIB::CEIL_F64] = "ceil";
150  Names[RTLIB::CEIL_F80] = "ceill";
151  Names[RTLIB::CEIL_PPCF128] = "ceill";
152  Names[RTLIB::TRUNC_F32] = "truncf";
153  Names[RTLIB::TRUNC_F64] = "trunc";
154  Names[RTLIB::TRUNC_F80] = "truncl";
155  Names[RTLIB::TRUNC_PPCF128] = "truncl";
156  Names[RTLIB::RINT_F32] = "rintf";
157  Names[RTLIB::RINT_F64] = "rint";
158  Names[RTLIB::RINT_F80] = "rintl";
159  Names[RTLIB::RINT_PPCF128] = "rintl";
160  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
161  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
162  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
163  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
164  Names[RTLIB::FLOOR_F32] = "floorf";
165  Names[RTLIB::FLOOR_F64] = "floor";
166  Names[RTLIB::FLOOR_F80] = "floorl";
167  Names[RTLIB::FLOOR_PPCF128] = "floorl";
168  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
169  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
170  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
171  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
172  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
173  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
174  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
175  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
176  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
177  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
178  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
179  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
180  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
181  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
182  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
183  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
184  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
185  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
186  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
187  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
188  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
189  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
190  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
191  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
192  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
193  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
194  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
195  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
196  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
197  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
198  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
199  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
200  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
201  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
202  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
203  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
204  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
205  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
206  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
207  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
208  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
209  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
210  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
211  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
212  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
213  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
214  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
215  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
216  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
217  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
218  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
219  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
220  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
221  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
222  Names[RTLIB::OEQ_F32] = "__eqsf2";
223  Names[RTLIB::OEQ_F64] = "__eqdf2";
224  Names[RTLIB::UNE_F32] = "__nesf2";
225  Names[RTLIB::UNE_F64] = "__nedf2";
226  Names[RTLIB::OGE_F32] = "__gesf2";
227  Names[RTLIB::OGE_F64] = "__gedf2";
228  Names[RTLIB::OLT_F32] = "__ltsf2";
229  Names[RTLIB::OLT_F64] = "__ltdf2";
230  Names[RTLIB::OLE_F32] = "__lesf2";
231  Names[RTLIB::OLE_F64] = "__ledf2";
232  Names[RTLIB::OGT_F32] = "__gtsf2";
233  Names[RTLIB::OGT_F64] = "__gtdf2";
234  Names[RTLIB::UO_F32] = "__unordsf2";
235  Names[RTLIB::UO_F64] = "__unorddf2";
236  Names[RTLIB::O_F32] = "__unordsf2";
237  Names[RTLIB::O_F64] = "__unorddf2";
238}
239
240/// getFPEXT - Return the FPEXT_*_* value for the given types, or
241/// UNKNOWN_LIBCALL if there is none.
242RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
243  if (OpVT == MVT::f32) {
244    if (RetVT == MVT::f64)
245      return FPEXT_F32_F64;
246  }
247  return UNKNOWN_LIBCALL;
248}
249
250/// getFPROUND - Return the FPROUND_*_* value for the given types, or
251/// UNKNOWN_LIBCALL if there is none.
252RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
253  if (RetVT == MVT::f32) {
254    if (OpVT == MVT::f64)
255      return FPROUND_F64_F32;
256    if (OpVT == MVT::f80)
257      return FPROUND_F80_F32;
258    if (OpVT == MVT::ppcf128)
259      return FPROUND_PPCF128_F32;
260  } else if (RetVT == MVT::f64) {
261    if (OpVT == MVT::f80)
262      return FPROUND_F80_F64;
263    if (OpVT == MVT::ppcf128)
264      return FPROUND_PPCF128_F64;
265  }
266  return UNKNOWN_LIBCALL;
267}
268
269/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
270/// UNKNOWN_LIBCALL if there is none.
271RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
272  if (OpVT == MVT::f32) {
273    if (RetVT == MVT::i32)
274      return FPTOSINT_F32_I32;
275    if (RetVT == MVT::i64)
276      return FPTOSINT_F32_I64;
277    if (RetVT == MVT::i128)
278      return FPTOSINT_F32_I128;
279  } else if (OpVT == MVT::f64) {
280    if (RetVT == MVT::i32)
281      return FPTOSINT_F64_I32;
282    if (RetVT == MVT::i64)
283      return FPTOSINT_F64_I64;
284    if (RetVT == MVT::i128)
285      return FPTOSINT_F64_I128;
286  } else if (OpVT == MVT::f80) {
287    if (RetVT == MVT::i32)
288      return FPTOSINT_F80_I32;
289    if (RetVT == MVT::i64)
290      return FPTOSINT_F80_I64;
291    if (RetVT == MVT::i128)
292      return FPTOSINT_F80_I128;
293  } else if (OpVT == MVT::ppcf128) {
294    if (RetVT == MVT::i32)
295      return FPTOSINT_PPCF128_I32;
296    if (RetVT == MVT::i64)
297      return FPTOSINT_PPCF128_I64;
298    if (RetVT == MVT::i128)
299      return FPTOSINT_PPCF128_I128;
300  }
301  return UNKNOWN_LIBCALL;
302}
303
304/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
305/// UNKNOWN_LIBCALL if there is none.
306RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
307  if (OpVT == MVT::f32) {
308    if (RetVT == MVT::i32)
309      return FPTOUINT_F32_I32;
310    if (RetVT == MVT::i64)
311      return FPTOUINT_F32_I64;
312    if (RetVT == MVT::i128)
313      return FPTOUINT_F32_I128;
314  } else if (OpVT == MVT::f64) {
315    if (RetVT == MVT::i32)
316      return FPTOUINT_F64_I32;
317    if (RetVT == MVT::i64)
318      return FPTOUINT_F64_I64;
319    if (RetVT == MVT::i128)
320      return FPTOUINT_F64_I128;
321  } else if (OpVT == MVT::f80) {
322    if (RetVT == MVT::i32)
323      return FPTOUINT_F80_I32;
324    if (RetVT == MVT::i64)
325      return FPTOUINT_F80_I64;
326    if (RetVT == MVT::i128)
327      return FPTOUINT_F80_I128;
328  } else if (OpVT == MVT::ppcf128) {
329    if (RetVT == MVT::i32)
330      return FPTOUINT_PPCF128_I32;
331    if (RetVT == MVT::i64)
332      return FPTOUINT_PPCF128_I64;
333    if (RetVT == MVT::i128)
334      return FPTOUINT_PPCF128_I128;
335  }
336  return UNKNOWN_LIBCALL;
337}
338
339/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
340/// UNKNOWN_LIBCALL if there is none.
341RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
342  if (OpVT == MVT::i32) {
343    if (RetVT == MVT::f32)
344      return SINTTOFP_I32_F32;
345    else if (RetVT == MVT::f64)
346      return SINTTOFP_I32_F64;
347    else if (RetVT == MVT::f80)
348      return SINTTOFP_I32_F80;
349    else if (RetVT == MVT::ppcf128)
350      return SINTTOFP_I32_PPCF128;
351  } else if (OpVT == MVT::i64) {
352    if (RetVT == MVT::f32)
353      return SINTTOFP_I64_F32;
354    else if (RetVT == MVT::f64)
355      return SINTTOFP_I64_F64;
356    else if (RetVT == MVT::f80)
357      return SINTTOFP_I64_F80;
358    else if (RetVT == MVT::ppcf128)
359      return SINTTOFP_I64_PPCF128;
360  } else if (OpVT == MVT::i128) {
361    if (RetVT == MVT::f32)
362      return SINTTOFP_I128_F32;
363    else if (RetVT == MVT::f64)
364      return SINTTOFP_I128_F64;
365    else if (RetVT == MVT::f80)
366      return SINTTOFP_I128_F80;
367    else if (RetVT == MVT::ppcf128)
368      return SINTTOFP_I128_PPCF128;
369  }
370  return UNKNOWN_LIBCALL;
371}
372
373/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
374/// UNKNOWN_LIBCALL if there is none.
375RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
376  if (OpVT == MVT::i32) {
377    if (RetVT == MVT::f32)
378      return UINTTOFP_I32_F32;
379    else if (RetVT == MVT::f64)
380      return UINTTOFP_I32_F64;
381    else if (RetVT == MVT::f80)
382      return UINTTOFP_I32_F80;
383    else if (RetVT == MVT::ppcf128)
384      return UINTTOFP_I32_PPCF128;
385  } else if (OpVT == MVT::i64) {
386    if (RetVT == MVT::f32)
387      return UINTTOFP_I64_F32;
388    else if (RetVT == MVT::f64)
389      return UINTTOFP_I64_F64;
390    else if (RetVT == MVT::f80)
391      return UINTTOFP_I64_F80;
392    else if (RetVT == MVT::ppcf128)
393      return UINTTOFP_I64_PPCF128;
394  } else if (OpVT == MVT::i128) {
395    if (RetVT == MVT::f32)
396      return UINTTOFP_I128_F32;
397    else if (RetVT == MVT::f64)
398      return UINTTOFP_I128_F64;
399    else if (RetVT == MVT::f80)
400      return UINTTOFP_I128_F80;
401    else if (RetVT == MVT::ppcf128)
402      return UINTTOFP_I128_PPCF128;
403  }
404  return UNKNOWN_LIBCALL;
405}
406
407/// InitCmpLibcallCCs - Set default comparison libcall CC.
408///
409static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
410  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
411  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
412  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
413  CCs[RTLIB::UNE_F32] = ISD::SETNE;
414  CCs[RTLIB::UNE_F64] = ISD::SETNE;
415  CCs[RTLIB::OGE_F32] = ISD::SETGE;
416  CCs[RTLIB::OGE_F64] = ISD::SETGE;
417  CCs[RTLIB::OLT_F32] = ISD::SETLT;
418  CCs[RTLIB::OLT_F64] = ISD::SETLT;
419  CCs[RTLIB::OLE_F32] = ISD::SETLE;
420  CCs[RTLIB::OLE_F64] = ISD::SETLE;
421  CCs[RTLIB::OGT_F32] = ISD::SETGT;
422  CCs[RTLIB::OGT_F64] = ISD::SETGT;
423  CCs[RTLIB::UO_F32] = ISD::SETNE;
424  CCs[RTLIB::UO_F64] = ISD::SETNE;
425  CCs[RTLIB::O_F32] = ISD::SETEQ;
426  CCs[RTLIB::O_F64] = ISD::SETEQ;
427}
428
429TargetLowering::TargetLowering(TargetMachine &tm)
430  : TM(tm), TD(TM.getTargetData()) {
431  // All operations default to being supported.
432  memset(OpActions, 0, sizeof(OpActions));
433  memset(LoadExtActions, 0, sizeof(LoadExtActions));
434  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
435  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
436  memset(ConvertActions, 0, sizeof(ConvertActions));
437  memset(CondCodeActions, 0, sizeof(CondCodeActions));
438
439  // Set default actions for various operations.
440  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
441    // Default all indexed load / store to expand.
442    for (unsigned IM = (unsigned)ISD::PRE_INC;
443         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
444      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
445      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
446    }
447
448    // These operations default to expand.
449    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
450    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
451  }
452
453  // Most targets ignore the @llvm.prefetch intrinsic.
454  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
455
456  // ConstantFP nodes default to expand.  Targets can either change this to
457  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
458  // to optimize expansions for certain constants.
459  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
460  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
461  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
462
463  // These library functions default to expand.
464  setOperationAction(ISD::FLOG , MVT::f64, Expand);
465  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
466  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
467  setOperationAction(ISD::FEXP , MVT::f64, Expand);
468  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
469  setOperationAction(ISD::FLOG , MVT::f32, Expand);
470  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
471  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
472  setOperationAction(ISD::FEXP , MVT::f32, Expand);
473  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
474
475  // Default ISD::TRAP to expand (which turns it into abort).
476  setOperationAction(ISD::TRAP, MVT::Other, Expand);
477
478  IsLittleEndian = TD->isLittleEndian();
479  UsesGlobalOffsetTable = false;
480  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
481  ShiftAmtHandling = Undefined;
482  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
483  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
484  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
485  allowUnalignedMemoryAccesses = false;
486  benefitFromCodePlacementOpt = false;
487  UseUnderscoreSetJmp = false;
488  UseUnderscoreLongJmp = false;
489  SelectIsExpensive = false;
490  IntDivIsCheap = false;
491  Pow2DivIsCheap = false;
492  StackPointerRegisterToSaveRestore = 0;
493  ExceptionPointerRegister = 0;
494  ExceptionSelectorRegister = 0;
495  BooleanContents = UndefinedBooleanContent;
496  SchedPreferenceInfo = SchedulingForLatency;
497  JumpBufSize = 0;
498  JumpBufAlignment = 0;
499  IfCvtBlockSizeLimit = 2;
500  IfCvtDupBlockSizeLimit = 0;
501  PrefLoopAlignment = 0;
502
503  InitLibcallNames(LibcallRoutineNames);
504  InitCmpLibcallCCs(CmpLibcallCCs);
505
506  // Tell Legalize whether the assembler supports DEBUG_LOC.
507  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
508  if (!TASM || !TASM->hasDotLocAndDotFile())
509    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
510}
511
512TargetLowering::~TargetLowering() {}
513
514/// computeRegisterProperties - Once all of the register classes are added,
515/// this allows us to compute derived properties we expose.
516void TargetLowering::computeRegisterProperties() {
517  assert(MVT::LAST_VALUETYPE <= 32 &&
518         "Too many value types for ValueTypeActions to hold!");
519
520  // Everything defaults to needing one register.
521  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
522    NumRegistersForVT[i] = 1;
523    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
524  }
525  // ...except isVoid, which doesn't need any registers.
526  NumRegistersForVT[MVT::isVoid] = 0;
527
528  // Find the largest integer register class.
529  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
530  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
531    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
532
533  // Every integer value type larger than this largest register takes twice as
534  // many registers to represent as the previous ValueType.
535  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
536    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
537    if (!EVT.isInteger())
538      break;
539    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
540    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
541    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
542    ValueTypeActions.setTypeAction(EVT, Expand);
543  }
544
545  // Inspect all of the ValueType's smaller than the largest integer
546  // register to see which ones need promotion.
547  unsigned LegalIntReg = LargestIntReg;
548  for (unsigned IntReg = LargestIntReg - 1;
549       IntReg >= (unsigned)MVT::i1; --IntReg) {
550    MVT IVT = (MVT::SimpleValueType)IntReg;
551    if (isTypeLegal(IVT)) {
552      LegalIntReg = IntReg;
553    } else {
554      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
555        (MVT::SimpleValueType)LegalIntReg;
556      ValueTypeActions.setTypeAction(IVT, Promote);
557    }
558  }
559
560  // ppcf128 type is really two f64's.
561  if (!isTypeLegal(MVT::ppcf128)) {
562    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
563    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
564    TransformToType[MVT::ppcf128] = MVT::f64;
565    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
566  }
567
568  // Decide how to handle f64. If the target does not have native f64 support,
569  // expand it to i64 and we will be generating soft float library calls.
570  if (!isTypeLegal(MVT::f64)) {
571    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
572    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
573    TransformToType[MVT::f64] = MVT::i64;
574    ValueTypeActions.setTypeAction(MVT::f64, Expand);
575  }
576
577  // Decide how to handle f32. If the target does not have native support for
578  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
579  if (!isTypeLegal(MVT::f32)) {
580    if (isTypeLegal(MVT::f64)) {
581      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
582      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
583      TransformToType[MVT::f32] = MVT::f64;
584      ValueTypeActions.setTypeAction(MVT::f32, Promote);
585    } else {
586      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
587      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
588      TransformToType[MVT::f32] = MVT::i32;
589      ValueTypeActions.setTypeAction(MVT::f32, Expand);
590    }
591  }
592
593  // Loop over all of the vector value types to see which need transformations.
594  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
595       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
596    MVT VT = (MVT::SimpleValueType)i;
597    if (!isTypeLegal(VT)) {
598      MVT IntermediateVT, RegisterVT;
599      unsigned NumIntermediates;
600      NumRegistersForVT[i] =
601        getVectorTypeBreakdown(VT,
602                               IntermediateVT, NumIntermediates,
603                               RegisterVT);
604      RegisterTypeForVT[i] = RegisterVT;
605
606      // Determine if there is a legal wider type.
607      bool IsLegalWiderType = false;
608      MVT EltVT = VT.getVectorElementType();
609      unsigned NElts = VT.getVectorNumElements();
610      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
611        MVT SVT = (MVT::SimpleValueType)nVT;
612        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
613            SVT.getVectorNumElements() > NElts) {
614          TransformToType[i] = SVT;
615          ValueTypeActions.setTypeAction(VT, Promote);
616          IsLegalWiderType = true;
617          break;
618        }
619      }
620      if (!IsLegalWiderType) {
621        MVT NVT = VT.getPow2VectorType();
622        if (NVT == VT) {
623          // Type is already a power of 2.  The default action is to split.
624          TransformToType[i] = MVT::Other;
625          ValueTypeActions.setTypeAction(VT, Expand);
626        } else {
627          TransformToType[i] = NVT;
628          ValueTypeActions.setTypeAction(VT, Promote);
629        }
630      }
631    }
632  }
633}
634
635const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
636  return NULL;
637}
638
639
640MVT TargetLowering::getSetCCResultType(MVT VT) const {
641  return getValueType(TD->getIntPtrType());
642}
643
644
645/// getVectorTypeBreakdown - Vector types are broken down into some number of
646/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
647/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
648/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
649///
650/// This method returns the number of registers needed, and the VT for each
651/// register.  It also returns the VT and quantity of the intermediate values
652/// before they are promoted/expanded.
653///
654unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
655                                                MVT &IntermediateVT,
656                                                unsigned &NumIntermediates,
657                                      MVT &RegisterVT) const {
658  // Figure out the right, legal destination reg to copy into.
659  unsigned NumElts = VT.getVectorNumElements();
660  MVT EltTy = VT.getVectorElementType();
661
662  unsigned NumVectorRegs = 1;
663
664  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
665  // could break down into LHS/RHS like LegalizeDAG does.
666  if (!isPowerOf2_32(NumElts)) {
667    NumVectorRegs = NumElts;
668    NumElts = 1;
669  }
670
671  // Divide the input until we get to a supported size.  This will always
672  // end with a scalar if the target doesn't support vectors.
673  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
674    NumElts >>= 1;
675    NumVectorRegs <<= 1;
676  }
677
678  NumIntermediates = NumVectorRegs;
679
680  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
681  if (!isTypeLegal(NewVT))
682    NewVT = EltTy;
683  IntermediateVT = NewVT;
684
685  MVT DestVT = getRegisterType(NewVT);
686  RegisterVT = DestVT;
687  if (DestVT.bitsLT(NewVT)) {
688    // Value is expanded, e.g. i64 -> i16.
689    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
690  } else {
691    // Otherwise, promotion or legal types use the same number of registers as
692    // the vector decimated to the appropriate level.
693    return NumVectorRegs;
694  }
695
696  return 1;
697}
698
699/// getWidenVectorType: given a vector type, returns the type to widen to
700/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
701/// If there is no vector type that we want to widen to, returns MVT::Other
702/// When and where to widen is target dependent based on the cost of
703/// scalarizing vs using the wider vector type.
704MVT TargetLowering::getWidenVectorType(MVT VT) const {
705  assert(VT.isVector());
706  if (isTypeLegal(VT))
707    return VT;
708
709  // Default is not to widen until moved to LegalizeTypes
710  return MVT::Other;
711}
712
713/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
714/// function arguments in the caller parameter area.  This is the actual
715/// alignment, not its logarithm.
716unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
717  return TD->getCallFrameTypeAlignment(Ty);
718}
719
720SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
721                                                 SelectionDAG &DAG) const {
722  if (usesGlobalOffsetTable())
723    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
724  return Table;
725}
726
727bool
728TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
729  // Assume that everything is safe in static mode.
730  if (getTargetMachine().getRelocationModel() == Reloc::Static)
731    return true;
732
733  // In dynamic-no-pic mode, assume that known defined values are safe.
734  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
735      GA &&
736      !GA->getGlobal()->isDeclaration() &&
737      !GA->getGlobal()->isWeakForLinker())
738    return true;
739
740  // Otherwise assume nothing is safe.
741  return false;
742}
743
744//===----------------------------------------------------------------------===//
745//  Optimization Methods
746//===----------------------------------------------------------------------===//
747
748/// ShrinkDemandedConstant - Check to see if the specified operand of the
749/// specified instruction is a constant integer.  If so, check to see if there
750/// are any bits set in the constant that are not demanded.  If so, shrink the
751/// constant and return true.
752bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
753                                                        const APInt &Demanded) {
754  DebugLoc dl = Op.getDebugLoc();
755
756  // FIXME: ISD::SELECT, ISD::SELECT_CC
757  switch (Op.getOpcode()) {
758  default: break;
759  case ISD::XOR:
760  case ISD::AND:
761  case ISD::OR: {
762    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
763    if (!C) return false;
764
765    if (Op.getOpcode() == ISD::XOR &&
766        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
767      return false;
768
769    // if we can expand it to have all bits set, do it
770    if (C->getAPIntValue().intersects(~Demanded)) {
771      MVT VT = Op.getValueType();
772      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
773                                DAG.getConstant(Demanded &
774                                                C->getAPIntValue(),
775                                                VT));
776      return CombineTo(Op, New);
777    }
778
779    break;
780  }
781  }
782
783  return false;
784}
785
786/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
787/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
788/// cast, but it could be generalized for targets with other types of
789/// implicit widening casts.
790bool
791TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
792                                                    unsigned BitWidth,
793                                                    const APInt &Demanded,
794                                                    DebugLoc dl) {
795  assert(Op.getNumOperands() == 2 &&
796         "ShrinkDemandedOp only supports binary operators!");
797  assert(Op.getNode()->getNumValues() == 1 &&
798         "ShrinkDemandedOp only supports nodes with one result!");
799
800  // Don't do this if the node has another user, which may require the
801  // full value.
802  if (!Op.getNode()->hasOneUse())
803    return false;
804
805  // Search for the smallest integer type with free casts to and from
806  // Op's type. For expedience, just check power-of-2 integer types.
807  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
808  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
809  if (!isPowerOf2_32(SmallVTBits))
810    SmallVTBits = NextPowerOf2(SmallVTBits);
811  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
812    MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
813    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
814        TLI.isZExtFree(SmallVT, Op.getValueType())) {
815      // We found a type with free casts.
816      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
817                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
818                                          Op.getNode()->getOperand(0)),
819                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
820                                          Op.getNode()->getOperand(1)));
821      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
822      return CombineTo(Op, Z);
823    }
824  }
825  return false;
826}
827
828/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
829/// DemandedMask bits of the result of Op are ever used downstream.  If we can
830/// use this information to simplify Op, create a new simplified DAG node and
831/// return true, returning the original and new nodes in Old and New. Otherwise,
832/// analyze the expression and return a mask of KnownOne and KnownZero bits for
833/// the expression (used to simplify the caller).  The KnownZero/One bits may
834/// only be accurate for those bits in the DemandedMask.
835bool TargetLowering::SimplifyDemandedBits(SDValue Op,
836                                          const APInt &DemandedMask,
837                                          APInt &KnownZero,
838                                          APInt &KnownOne,
839                                          TargetLoweringOpt &TLO,
840                                          unsigned Depth) const {
841  unsigned BitWidth = DemandedMask.getBitWidth();
842  assert(Op.getValueSizeInBits() == BitWidth &&
843         "Mask size mismatches value type size!");
844  APInt NewMask = DemandedMask;
845  DebugLoc dl = Op.getDebugLoc();
846
847  // Don't know anything.
848  KnownZero = KnownOne = APInt(BitWidth, 0);
849
850  // Other users may use these bits.
851  if (!Op.getNode()->hasOneUse()) {
852    if (Depth != 0) {
853      // If not at the root, Just compute the KnownZero/KnownOne bits to
854      // simplify things downstream.
855      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
856      return false;
857    }
858    // If this is the root being simplified, allow it to have multiple uses,
859    // just set the NewMask to all bits.
860    NewMask = APInt::getAllOnesValue(BitWidth);
861  } else if (DemandedMask == 0) {
862    // Not demanding any bits from Op.
863    if (Op.getOpcode() != ISD::UNDEF)
864      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
865    return false;
866  } else if (Depth == 6) {        // Limit search depth.
867    return false;
868  }
869
870  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
871  switch (Op.getOpcode()) {
872  case ISD::Constant:
873    // We know all of the bits for a constant!
874    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
875    KnownZero = ~KnownOne & NewMask;
876    return false;   // Don't fall through, will infinitely loop.
877  case ISD::AND:
878    // If the RHS is a constant, check to see if the LHS would be zero without
879    // using the bits from the RHS.  Below, we use knowledge about the RHS to
880    // simplify the LHS, here we're using information from the LHS to simplify
881    // the RHS.
882    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
883      APInt LHSZero, LHSOne;
884      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
885                                LHSZero, LHSOne, Depth+1);
886      // If the LHS already has zeros where RHSC does, this and is dead.
887      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
888        return TLO.CombineTo(Op, Op.getOperand(0));
889      // If any of the set bits in the RHS are known zero on the LHS, shrink
890      // the constant.
891      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
892        return true;
893    }
894
895    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
896                             KnownOne, TLO, Depth+1))
897      return true;
898    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
899    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
900                             KnownZero2, KnownOne2, TLO, Depth+1))
901      return true;
902    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
903
904    // If all of the demanded bits are known one on one side, return the other.
905    // These bits cannot contribute to the result of the 'and'.
906    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
907      return TLO.CombineTo(Op, Op.getOperand(0));
908    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
909      return TLO.CombineTo(Op, Op.getOperand(1));
910    // If all of the demanded bits in the inputs are known zeros, return zero.
911    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
912      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
913    // If the RHS is a constant, see if we can simplify it.
914    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
915      return true;
916    // If the operation can be done in a smaller type, do so.
917    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
918      return true;
919
920    // Output known-1 bits are only known if set in both the LHS & RHS.
921    KnownOne &= KnownOne2;
922    // Output known-0 are known to be clear if zero in either the LHS | RHS.
923    KnownZero |= KnownZero2;
924    break;
925  case ISD::OR:
926    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
927                             KnownOne, TLO, Depth+1))
928      return true;
929    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
930    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
931                             KnownZero2, KnownOne2, TLO, Depth+1))
932      return true;
933    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
934
935    // If all of the demanded bits are known zero on one side, return the other.
936    // These bits cannot contribute to the result of the 'or'.
937    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
938      return TLO.CombineTo(Op, Op.getOperand(0));
939    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
940      return TLO.CombineTo(Op, Op.getOperand(1));
941    // If all of the potentially set bits on one side are known to be set on
942    // the other side, just use the 'other' side.
943    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
944      return TLO.CombineTo(Op, Op.getOperand(0));
945    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
946      return TLO.CombineTo(Op, Op.getOperand(1));
947    // If the RHS is a constant, see if we can simplify it.
948    if (TLO.ShrinkDemandedConstant(Op, NewMask))
949      return true;
950    // If the operation can be done in a smaller type, do so.
951    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
952      return true;
953
954    // Output known-0 bits are only known if clear in both the LHS & RHS.
955    KnownZero &= KnownZero2;
956    // Output known-1 are known to be set if set in either the LHS | RHS.
957    KnownOne |= KnownOne2;
958    break;
959  case ISD::XOR:
960    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
961                             KnownOne, TLO, Depth+1))
962      return true;
963    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
964    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
965                             KnownOne2, TLO, Depth+1))
966      return true;
967    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
968
969    // If all of the demanded bits are known zero on one side, return the other.
970    // These bits cannot contribute to the result of the 'xor'.
971    if ((KnownZero & NewMask) == NewMask)
972      return TLO.CombineTo(Op, Op.getOperand(0));
973    if ((KnownZero2 & NewMask) == NewMask)
974      return TLO.CombineTo(Op, Op.getOperand(1));
975    // If the operation can be done in a smaller type, do so.
976    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
977      return true;
978
979    // If all of the unknown bits are known to be zero on one side or the other
980    // (but not both) turn this into an *inclusive* or.
981    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
982    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
983      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
984                                               Op.getOperand(0),
985                                               Op.getOperand(1)));
986
987    // Output known-0 bits are known if clear or set in both the LHS & RHS.
988    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
989    // Output known-1 are known to be set if set in only one of the LHS, RHS.
990    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
991
992    // If all of the demanded bits on one side are known, and all of the set
993    // bits on that side are also known to be set on the other side, turn this
994    // into an AND, as we know the bits will be cleared.
995    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
996    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
997      if ((KnownOne & KnownOne2) == KnownOne) {
998        MVT VT = Op.getValueType();
999        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1000        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1001                                                 Op.getOperand(0), ANDC));
1002      }
1003    }
1004
1005    // If the RHS is a constant, see if we can simplify it.
1006    // for XOR, we prefer to force bits to 1 if they will make a -1.
1007    // if we can't force bits, try to shrink constant
1008    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1009      APInt Expanded = C->getAPIntValue() | (~NewMask);
1010      // if we can expand it to have all bits set, do it
1011      if (Expanded.isAllOnesValue()) {
1012        if (Expanded != C->getAPIntValue()) {
1013          MVT VT = Op.getValueType();
1014          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1015                                          TLO.DAG.getConstant(Expanded, VT));
1016          return TLO.CombineTo(Op, New);
1017        }
1018        // if it already has all the bits set, nothing to change
1019        // but don't shrink either!
1020      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1021        return true;
1022      }
1023    }
1024
1025    KnownZero = KnownZeroOut;
1026    KnownOne  = KnownOneOut;
1027    break;
1028  case ISD::SELECT:
1029    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1030                             KnownOne, TLO, Depth+1))
1031      return true;
1032    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1033                             KnownOne2, TLO, Depth+1))
1034      return true;
1035    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1036    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1037
1038    // If the operands are constants, see if we can simplify them.
1039    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1040      return true;
1041
1042    // Only known if known in both the LHS and RHS.
1043    KnownOne &= KnownOne2;
1044    KnownZero &= KnownZero2;
1045    break;
1046  case ISD::SELECT_CC:
1047    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1048                             KnownOne, TLO, Depth+1))
1049      return true;
1050    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1051                             KnownOne2, TLO, Depth+1))
1052      return true;
1053    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1054    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1055
1056    // If the operands are constants, see if we can simplify them.
1057    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1058      return true;
1059
1060    // Only known if known in both the LHS and RHS.
1061    KnownOne &= KnownOne2;
1062    KnownZero &= KnownZero2;
1063    break;
1064  case ISD::SHL:
1065    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1066      unsigned ShAmt = SA->getZExtValue();
1067      SDValue InOp = Op.getOperand(0);
1068
1069      // If the shift count is an invalid immediate, don't do anything.
1070      if (ShAmt >= BitWidth)
1071        break;
1072
1073      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1074      // single shift.  We can do this if the bottom bits (which are shifted
1075      // out) are never demanded.
1076      if (InOp.getOpcode() == ISD::SRL &&
1077          isa<ConstantSDNode>(InOp.getOperand(1))) {
1078        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1079          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1080          unsigned Opc = ISD::SHL;
1081          int Diff = ShAmt-C1;
1082          if (Diff < 0) {
1083            Diff = -Diff;
1084            Opc = ISD::SRL;
1085          }
1086
1087          SDValue NewSA =
1088            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1089          MVT VT = Op.getValueType();
1090          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1091                                                   InOp.getOperand(0), NewSA));
1092        }
1093      }
1094
1095      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1096                               KnownZero, KnownOne, TLO, Depth+1))
1097        return true;
1098      KnownZero <<= SA->getZExtValue();
1099      KnownOne  <<= SA->getZExtValue();
1100      // low bits known zero.
1101      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1102    }
1103    break;
1104  case ISD::SRL:
1105    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1106      MVT VT = Op.getValueType();
1107      unsigned ShAmt = SA->getZExtValue();
1108      unsigned VTSize = VT.getSizeInBits();
1109      SDValue InOp = Op.getOperand(0);
1110
1111      // If the shift count is an invalid immediate, don't do anything.
1112      if (ShAmt >= BitWidth)
1113        break;
1114
1115      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1116      // single shift.  We can do this if the top bits (which are shifted out)
1117      // are never demanded.
1118      if (InOp.getOpcode() == ISD::SHL &&
1119          isa<ConstantSDNode>(InOp.getOperand(1))) {
1120        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1121          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1122          unsigned Opc = ISD::SRL;
1123          int Diff = ShAmt-C1;
1124          if (Diff < 0) {
1125            Diff = -Diff;
1126            Opc = ISD::SHL;
1127          }
1128
1129          SDValue NewSA =
1130            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1131          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1132                                                   InOp.getOperand(0), NewSA));
1133        }
1134      }
1135
1136      // Compute the new bits that are at the top now.
1137      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1138                               KnownZero, KnownOne, TLO, Depth+1))
1139        return true;
1140      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1141      KnownZero = KnownZero.lshr(ShAmt);
1142      KnownOne  = KnownOne.lshr(ShAmt);
1143
1144      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1145      KnownZero |= HighBits;  // High bits known zero.
1146    }
1147    break;
1148  case ISD::SRA:
1149    // If this is an arithmetic shift right and only the low-bit is set, we can
1150    // always convert this into a logical shr, even if the shift amount is
1151    // variable.  The low bit of the shift cannot be an input sign bit unless
1152    // the shift amount is >= the size of the datatype, which is undefined.
1153    if (DemandedMask == 1)
1154      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1155                                               Op.getOperand(0), Op.getOperand(1)));
1156
1157    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1158      MVT VT = Op.getValueType();
1159      unsigned ShAmt = SA->getZExtValue();
1160
1161      // If the shift count is an invalid immediate, don't do anything.
1162      if (ShAmt >= BitWidth)
1163        break;
1164
1165      APInt InDemandedMask = (NewMask << ShAmt);
1166
1167      // If any of the demanded bits are produced by the sign extension, we also
1168      // demand the input sign bit.
1169      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1170      if (HighBits.intersects(NewMask))
1171        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1172
1173      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1174                               KnownZero, KnownOne, TLO, Depth+1))
1175        return true;
1176      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1177      KnownZero = KnownZero.lshr(ShAmt);
1178      KnownOne  = KnownOne.lshr(ShAmt);
1179
1180      // Handle the sign bit, adjusted to where it is now in the mask.
1181      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1182
1183      // If the input sign bit is known to be zero, or if none of the top bits
1184      // are demanded, turn this into an unsigned shift right.
1185      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1186        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1187                                                 Op.getOperand(0),
1188                                                 Op.getOperand(1)));
1189      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1190        KnownOne |= HighBits;
1191      }
1192    }
1193    break;
1194  case ISD::SIGN_EXTEND_INREG: {
1195    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1196
1197    // Sign extension.  Compute the demanded bits in the result that are not
1198    // present in the input.
1199    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1200                                          BitWidth - EVT.getSizeInBits()) &
1201                    NewMask;
1202
1203    // If none of the extended bits are demanded, eliminate the sextinreg.
1204    if (NewBits == 0)
1205      return TLO.CombineTo(Op, Op.getOperand(0));
1206
1207    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1208    InSignBit.zext(BitWidth);
1209    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1210                                                   EVT.getSizeInBits()) &
1211                              NewMask;
1212
1213    // Since the sign extended bits are demanded, we know that the sign
1214    // bit is demanded.
1215    InputDemandedBits |= InSignBit;
1216
1217    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1218                             KnownZero, KnownOne, TLO, Depth+1))
1219      return true;
1220    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1221
1222    // If the sign bit of the input is known set or clear, then we know the
1223    // top bits of the result.
1224
1225    // If the input sign bit is known zero, convert this into a zero extension.
1226    if (KnownZero.intersects(InSignBit))
1227      return TLO.CombineTo(Op,
1228                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1229
1230    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1231      KnownOne |= NewBits;
1232      KnownZero &= ~NewBits;
1233    } else {                       // Input sign bit unknown
1234      KnownZero &= ~NewBits;
1235      KnownOne &= ~NewBits;
1236    }
1237    break;
1238  }
1239  case ISD::ZERO_EXTEND: {
1240    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1241    APInt InMask = NewMask;
1242    InMask.trunc(OperandBitWidth);
1243
1244    // If none of the top bits are demanded, convert this into an any_extend.
1245    APInt NewBits =
1246      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1247    if (!NewBits.intersects(NewMask))
1248      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1249                                               Op.getValueType(),
1250                                               Op.getOperand(0)));
1251
1252    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1253                             KnownZero, KnownOne, TLO, Depth+1))
1254      return true;
1255    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1256    KnownZero.zext(BitWidth);
1257    KnownOne.zext(BitWidth);
1258    KnownZero |= NewBits;
1259    break;
1260  }
1261  case ISD::SIGN_EXTEND: {
1262    MVT InVT = Op.getOperand(0).getValueType();
1263    unsigned InBits = InVT.getSizeInBits();
1264    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1265    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1266    APInt NewBits   = ~InMask & NewMask;
1267
1268    // If none of the top bits are demanded, convert this into an any_extend.
1269    if (NewBits == 0)
1270      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1271                                              Op.getValueType(),
1272                                              Op.getOperand(0)));
1273
1274    // Since some of the sign extended bits are demanded, we know that the sign
1275    // bit is demanded.
1276    APInt InDemandedBits = InMask & NewMask;
1277    InDemandedBits |= InSignBit;
1278    InDemandedBits.trunc(InBits);
1279
1280    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1281                             KnownOne, TLO, Depth+1))
1282      return true;
1283    KnownZero.zext(BitWidth);
1284    KnownOne.zext(BitWidth);
1285
1286    // If the sign bit is known zero, convert this to a zero extend.
1287    if (KnownZero.intersects(InSignBit))
1288      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1289                                               Op.getValueType(),
1290                                               Op.getOperand(0)));
1291
1292    // If the sign bit is known one, the top bits match.
1293    if (KnownOne.intersects(InSignBit)) {
1294      KnownOne  |= NewBits;
1295      KnownZero &= ~NewBits;
1296    } else {   // Otherwise, top bits aren't known.
1297      KnownOne  &= ~NewBits;
1298      KnownZero &= ~NewBits;
1299    }
1300    break;
1301  }
1302  case ISD::ANY_EXTEND: {
1303    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1304    APInt InMask = NewMask;
1305    InMask.trunc(OperandBitWidth);
1306    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1307                             KnownZero, KnownOne, TLO, Depth+1))
1308      return true;
1309    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1310    KnownZero.zext(BitWidth);
1311    KnownOne.zext(BitWidth);
1312    break;
1313  }
1314  case ISD::TRUNCATE: {
1315    // Simplify the input, using demanded bit information, and compute the known
1316    // zero/one bits live out.
1317    APInt TruncMask = NewMask;
1318    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1319    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1320                             KnownZero, KnownOne, TLO, Depth+1))
1321      return true;
1322    KnownZero.trunc(BitWidth);
1323    KnownOne.trunc(BitWidth);
1324
1325    // If the input is only used by this truncate, see if we can shrink it based
1326    // on the known demanded bits.
1327    if (Op.getOperand(0).getNode()->hasOneUse()) {
1328      SDValue In = Op.getOperand(0);
1329      unsigned InBitWidth = In.getValueSizeInBits();
1330      switch (In.getOpcode()) {
1331      default: break;
1332      case ISD::SRL:
1333        // Shrink SRL by a constant if none of the high bits shifted in are
1334        // demanded.
1335        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1336          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1337                                                 InBitWidth - BitWidth);
1338          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1339          HighBits.trunc(BitWidth);
1340
1341          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1342            // None of the shifted in bits are needed.  Add a truncate of the
1343            // shift input, then shift it.
1344            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1345                                                 Op.getValueType(),
1346                                                 In.getOperand(0));
1347            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1348                                                     Op.getValueType(),
1349                                                     NewTrunc,
1350                                                     In.getOperand(1)));
1351          }
1352        }
1353        break;
1354      }
1355    }
1356
1357    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1358    break;
1359  }
1360  case ISD::AssertZext: {
1361    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1362    APInt InMask = APInt::getLowBitsSet(BitWidth,
1363                                        VT.getSizeInBits());
1364    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1365                             KnownZero, KnownOne, TLO, Depth+1))
1366      return true;
1367    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1368    KnownZero |= ~InMask & NewMask;
1369    break;
1370  }
1371  case ISD::BIT_CONVERT:
1372#if 0
1373    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1374    // is demanded, turn this into a FGETSIGN.
1375    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1376        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1377        !MVT::isVector(Op.getOperand(0).getValueType())) {
1378      // Only do this xform if FGETSIGN is valid or if before legalize.
1379      if (!TLO.AfterLegalize ||
1380          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1381        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1382        // place.  We expect the SHL to be eliminated by other optimizations.
1383        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1384                                         Op.getOperand(0));
1385        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1386        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1387        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1388                                                 Sign, ShAmt));
1389      }
1390    }
1391#endif
1392    break;
1393  case ISD::ADD:
1394  case ISD::MUL:
1395  case ISD::SUB: {
1396    // Add, Sub, and Mul don't demand any bits in positions beyond that
1397    // of the highest bit demanded of them.
1398    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1399                                        BitWidth - NewMask.countLeadingZeros());
1400    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1401                             KnownOne2, TLO, Depth+1))
1402      return true;
1403    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1404                             KnownOne2, TLO, Depth+1))
1405      return true;
1406    // See if the operation should be performed at a smaller bit width.
1407    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1408      return true;
1409  }
1410  // FALL THROUGH
1411  default:
1412    // Just use ComputeMaskedBits to compute output bits.
1413    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1414    break;
1415  }
1416
1417  // If we know the value of all of the demanded bits, return this as a
1418  // constant.
1419  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1420    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1421
1422  return false;
1423}
1424
1425/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1426/// in Mask are known to be either zero or one and return them in the
1427/// KnownZero/KnownOne bitsets.
1428void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1429                                                    const APInt &Mask,
1430                                                    APInt &KnownZero,
1431                                                    APInt &KnownOne,
1432                                                    const SelectionDAG &DAG,
1433                                                    unsigned Depth) const {
1434  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1435          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1436          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1437          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1438         "Should use MaskedValueIsZero if you don't know whether Op"
1439         " is a target node!");
1440  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1441}
1442
1443/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1444/// targets that want to expose additional information about sign bits to the
1445/// DAG Combiner.
1446unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1447                                                         unsigned Depth) const {
1448  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1449          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1450          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1451          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1452         "Should use ComputeNumSignBits if you don't know whether Op"
1453         " is a target node!");
1454  return 1;
1455}
1456
1457/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1458/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1459/// determine which bit is set.
1460///
1461static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1462  // A left-shift of a constant one will have exactly one bit set, because
1463  // shifting the bit off the end is undefined.
1464  if (Val.getOpcode() == ISD::SHL)
1465    if (ConstantSDNode *C =
1466         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1467      if (C->getAPIntValue() == 1)
1468        return true;
1469
1470  // Similarly, a right-shift of a constant sign-bit will have exactly
1471  // one bit set.
1472  if (Val.getOpcode() == ISD::SRL)
1473    if (ConstantSDNode *C =
1474         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1475      if (C->getAPIntValue().isSignBit())
1476        return true;
1477
1478  // More could be done here, though the above checks are enough
1479  // to handle some common cases.
1480
1481  // Fall back to ComputeMaskedBits to catch other known cases.
1482  MVT OpVT = Val.getValueType();
1483  unsigned BitWidth = OpVT.getSizeInBits();
1484  APInt Mask = APInt::getAllOnesValue(BitWidth);
1485  APInt KnownZero, KnownOne;
1486  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1487  return (KnownZero.countPopulation() == BitWidth - 1) &&
1488         (KnownOne.countPopulation() == 1);
1489}
1490
1491/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1492/// and cc. If it is unable to simplify it, return a null SDValue.
1493SDValue
1494TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1495                              ISD::CondCode Cond, bool foldBooleans,
1496                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1497  SelectionDAG &DAG = DCI.DAG;
1498
1499  // These setcc operations always fold.
1500  switch (Cond) {
1501  default: break;
1502  case ISD::SETFALSE:
1503  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1504  case ISD::SETTRUE:
1505  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1506  }
1507
1508  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1509    const APInt &C1 = N1C->getAPIntValue();
1510    if (isa<ConstantSDNode>(N0.getNode())) {
1511      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1512    } else {
1513      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1514      // equality comparison, then we're just comparing whether X itself is
1515      // zero.
1516      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1517          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1518          N0.getOperand(1).getOpcode() == ISD::Constant) {
1519        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1520        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1521            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1522          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1523            // (srl (ctlz x), 5) == 0  -> X != 0
1524            // (srl (ctlz x), 5) != 1  -> X != 0
1525            Cond = ISD::SETNE;
1526          } else {
1527            // (srl (ctlz x), 5) != 0  -> X == 0
1528            // (srl (ctlz x), 5) == 1  -> X == 0
1529            Cond = ISD::SETEQ;
1530          }
1531          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1532          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1533                              Zero, Cond);
1534        }
1535      }
1536
1537      // If the LHS is '(and load, const)', the RHS is 0,
1538      // the test is for equality or unsigned, and all 1 bits of the const are
1539      // in the same partial word, see if we can shorten the load.
1540      if (DCI.isBeforeLegalize() &&
1541          N0.getOpcode() == ISD::AND && C1 == 0 &&
1542          N0.getNode()->hasOneUse() &&
1543          isa<LoadSDNode>(N0.getOperand(0)) &&
1544          N0.getOperand(0).getNode()->hasOneUse() &&
1545          isa<ConstantSDNode>(N0.getOperand(1))) {
1546        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1547        uint64_t bestMask = 0;
1548        unsigned bestWidth = 0, bestOffset = 0;
1549        if (!Lod->isVolatile() && Lod->isUnindexed() &&
1550            // FIXME: This uses getZExtValue() below so it only works on i64 and
1551            // below.
1552            N0.getValueType().getSizeInBits() <= 64) {
1553          unsigned origWidth = N0.getValueType().getSizeInBits();
1554          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1555          // 8 bits, but have to be careful...
1556          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1557            origWidth = Lod->getMemoryVT().getSizeInBits();
1558          uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1559          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1560            uint64_t newMask = (1ULL << width) - 1;
1561            for (unsigned offset=0; offset<origWidth/width; offset++) {
1562              if ((newMask & Mask) == Mask) {
1563                if (!TD->isLittleEndian())
1564                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1565                else
1566                  bestOffset = (uint64_t)offset * (width/8);
1567                bestMask = Mask >> (offset * (width/8) * 8);
1568                bestWidth = width;
1569                break;
1570              }
1571              newMask = newMask << width;
1572            }
1573          }
1574        }
1575        if (bestWidth) {
1576          MVT newVT = MVT::getIntegerVT(bestWidth);
1577          if (newVT.isRound()) {
1578            MVT PtrType = Lod->getOperand(1).getValueType();
1579            SDValue Ptr = Lod->getBasePtr();
1580            if (bestOffset != 0)
1581              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1582                                DAG.getConstant(bestOffset, PtrType));
1583            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1584            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1585                                          Lod->getSrcValue(),
1586                                          Lod->getSrcValueOffset() + bestOffset,
1587                                          false, NewAlign);
1588            return DAG.getSetCC(dl, VT,
1589                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1590                                            DAG.getConstant(bestMask, newVT)),
1591                                DAG.getConstant(0LL, newVT), Cond);
1592          }
1593        }
1594      }
1595
1596      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1597      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1598        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1599
1600        // If the comparison constant has bits in the upper part, the
1601        // zero-extended value could never match.
1602        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1603                                                C1.getBitWidth() - InSize))) {
1604          switch (Cond) {
1605          case ISD::SETUGT:
1606          case ISD::SETUGE:
1607          case ISD::SETEQ: return DAG.getConstant(0, VT);
1608          case ISD::SETULT:
1609          case ISD::SETULE:
1610          case ISD::SETNE: return DAG.getConstant(1, VT);
1611          case ISD::SETGT:
1612          case ISD::SETGE:
1613            // True if the sign bit of C1 is set.
1614            return DAG.getConstant(C1.isNegative(), VT);
1615          case ISD::SETLT:
1616          case ISD::SETLE:
1617            // True if the sign bit of C1 isn't set.
1618            return DAG.getConstant(C1.isNonNegative(), VT);
1619          default:
1620            break;
1621          }
1622        }
1623
1624        // Otherwise, we can perform the comparison with the low bits.
1625        switch (Cond) {
1626        case ISD::SETEQ:
1627        case ISD::SETNE:
1628        case ISD::SETUGT:
1629        case ISD::SETUGE:
1630        case ISD::SETULT:
1631        case ISD::SETULE:
1632          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1633                          DAG.getConstant(APInt(C1).trunc(InSize),
1634                                          N0.getOperand(0).getValueType()),
1635                          Cond);
1636        default:
1637          break;   // todo, be more careful with signed comparisons
1638        }
1639      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1640                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1641        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1642        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1643        MVT ExtDstTy = N0.getValueType();
1644        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1645
1646        // If the extended part has any inconsistent bits, it cannot ever
1647        // compare equal.  In other words, they have to be all ones or all
1648        // zeros.
1649        APInt ExtBits =
1650          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1651        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1652          return DAG.getConstant(Cond == ISD::SETNE, VT);
1653
1654        SDValue ZextOp;
1655        MVT Op0Ty = N0.getOperand(0).getValueType();
1656        if (Op0Ty == ExtSrcTy) {
1657          ZextOp = N0.getOperand(0);
1658        } else {
1659          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1660          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1661                               DAG.getConstant(Imm, Op0Ty));
1662        }
1663        if (!DCI.isCalledByLegalizer())
1664          DCI.AddToWorklist(ZextOp.getNode());
1665        // Otherwise, make this a use of a zext.
1666        return DAG.getSetCC(dl, VT, ZextOp,
1667                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1668                                                               ExtDstTyBits,
1669                                                               ExtSrcTyBits),
1670                                            ExtDstTy),
1671                            Cond);
1672      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1673                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1674
1675        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1676        if (N0.getOpcode() == ISD::SETCC) {
1677          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1678          if (TrueWhenTrue)
1679            return N0;
1680
1681          // Invert the condition.
1682          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1683          CC = ISD::getSetCCInverse(CC,
1684                                   N0.getOperand(0).getValueType().isInteger());
1685          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1686        }
1687
1688        if ((N0.getOpcode() == ISD::XOR ||
1689             (N0.getOpcode() == ISD::AND &&
1690              N0.getOperand(0).getOpcode() == ISD::XOR &&
1691              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1692            isa<ConstantSDNode>(N0.getOperand(1)) &&
1693            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1694          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1695          // can only do this if the top bits are known zero.
1696          unsigned BitWidth = N0.getValueSizeInBits();
1697          if (DAG.MaskedValueIsZero(N0,
1698                                    APInt::getHighBitsSet(BitWidth,
1699                                                          BitWidth-1))) {
1700            // Okay, get the un-inverted input value.
1701            SDValue Val;
1702            if (N0.getOpcode() == ISD::XOR)
1703              Val = N0.getOperand(0);
1704            else {
1705              assert(N0.getOpcode() == ISD::AND &&
1706                     N0.getOperand(0).getOpcode() == ISD::XOR);
1707              // ((X^1)&1)^1 -> X & 1
1708              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1709                                N0.getOperand(0).getOperand(0),
1710                                N0.getOperand(1));
1711            }
1712            return DAG.getSetCC(dl, VT, Val, N1,
1713                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1714          }
1715        }
1716      }
1717
1718      APInt MinVal, MaxVal;
1719      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1720      if (ISD::isSignedIntSetCC(Cond)) {
1721        MinVal = APInt::getSignedMinValue(OperandBitSize);
1722        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1723      } else {
1724        MinVal = APInt::getMinValue(OperandBitSize);
1725        MaxVal = APInt::getMaxValue(OperandBitSize);
1726      }
1727
1728      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1729      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1730        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1731        // X >= C0 --> X > (C0-1)
1732        return DAG.getSetCC(dl, VT, N0,
1733                            DAG.getConstant(C1-1, N1.getValueType()),
1734                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1735      }
1736
1737      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1738        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1739        // X <= C0 --> X < (C0+1)
1740        return DAG.getSetCC(dl, VT, N0,
1741                            DAG.getConstant(C1+1, N1.getValueType()),
1742                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1743      }
1744
1745      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1746        return DAG.getConstant(0, VT);      // X < MIN --> false
1747      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1748        return DAG.getConstant(1, VT);      // X >= MIN --> true
1749      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1750        return DAG.getConstant(0, VT);      // X > MAX --> false
1751      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1752        return DAG.getConstant(1, VT);      // X <= MAX --> true
1753
1754      // Canonicalize setgt X, Min --> setne X, Min
1755      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1756        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1757      // Canonicalize setlt X, Max --> setne X, Max
1758      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1759        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1760
1761      // If we have setult X, 1, turn it into seteq X, 0
1762      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1763        return DAG.getSetCC(dl, VT, N0,
1764                            DAG.getConstant(MinVal, N0.getValueType()),
1765                            ISD::SETEQ);
1766      // If we have setugt X, Max-1, turn it into seteq X, Max
1767      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1768        return DAG.getSetCC(dl, VT, N0,
1769                            DAG.getConstant(MaxVal, N0.getValueType()),
1770                            ISD::SETEQ);
1771
1772      // If we have "setcc X, C0", check to see if we can shrink the immediate
1773      // by changing cc.
1774
1775      // SETUGT X, SINTMAX  -> SETLT X, 0
1776      if (Cond == ISD::SETUGT &&
1777          C1 == APInt::getSignedMaxValue(OperandBitSize))
1778        return DAG.getSetCC(dl, VT, N0,
1779                            DAG.getConstant(0, N1.getValueType()),
1780                            ISD::SETLT);
1781
1782      // SETULT X, SINTMIN  -> SETGT X, -1
1783      if (Cond == ISD::SETULT &&
1784          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1785        SDValue ConstMinusOne =
1786            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1787                            N1.getValueType());
1788        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1789      }
1790
1791      // Fold bit comparisons when we can.
1792      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1793          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1794        if (ConstantSDNode *AndRHS =
1795                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1796          MVT ShiftTy = DCI.isBeforeLegalize() ?
1797            getPointerTy() : getShiftAmountTy();
1798          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1799            // Perform the xform if the AND RHS is a single bit.
1800            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1801              return DAG.getNode(ISD::SRL, dl, VT, N0,
1802                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1803                                                 ShiftTy));
1804            }
1805          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1806            // (X & 8) == 8  -->  (X & 8) >> 3
1807            // Perform the xform if C1 is a single bit.
1808            if (C1.isPowerOf2()) {
1809              return DAG.getNode(ISD::SRL, dl, VT, N0,
1810                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1811            }
1812          }
1813        }
1814    }
1815  } else if (isa<ConstantSDNode>(N0.getNode())) {
1816      // Ensure that the constant occurs on the RHS.
1817    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1818  }
1819
1820  if (isa<ConstantFPSDNode>(N0.getNode())) {
1821    // Constant fold or commute setcc.
1822    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1823    if (O.getNode()) return O;
1824  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1825    // If the RHS of an FP comparison is a constant, simplify it away in
1826    // some cases.
1827    if (CFP->getValueAPF().isNaN()) {
1828      // If an operand is known to be a nan, we can fold it.
1829      switch (ISD::getUnorderedFlavor(Cond)) {
1830      default: assert(0 && "Unknown flavor!");
1831      case 0:  // Known false.
1832        return DAG.getConstant(0, VT);
1833      case 1:  // Known true.
1834        return DAG.getConstant(1, VT);
1835      case 2:  // Undefined.
1836        return DAG.getUNDEF(VT);
1837      }
1838    }
1839
1840    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1841    // constant if knowing that the operand is non-nan is enough.  We prefer to
1842    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1843    // materialize 0.0.
1844    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1845      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1846  }
1847
1848  if (N0 == N1) {
1849    // We can always fold X == X for integer setcc's.
1850    if (N0.getValueType().isInteger())
1851      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1852    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1853    if (UOF == 2)   // FP operators that are undefined on NaNs.
1854      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1855    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1856      return DAG.getConstant(UOF, VT);
1857    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1858    // if it is not already.
1859    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1860    if (NewCond != Cond)
1861      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1862  }
1863
1864  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1865      N0.getValueType().isInteger()) {
1866    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1867        N0.getOpcode() == ISD::XOR) {
1868      // Simplify (X+Y) == (X+Z) -->  Y == Z
1869      if (N0.getOpcode() == N1.getOpcode()) {
1870        if (N0.getOperand(0) == N1.getOperand(0))
1871          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1872        if (N0.getOperand(1) == N1.getOperand(1))
1873          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1874        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1875          // If X op Y == Y op X, try other combinations.
1876          if (N0.getOperand(0) == N1.getOperand(1))
1877            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1878                                Cond);
1879          if (N0.getOperand(1) == N1.getOperand(0))
1880            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1881                                Cond);
1882        }
1883      }
1884
1885      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1886        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1887          // Turn (X+C1) == C2 --> X == C2-C1
1888          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1889            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1890                                DAG.getConstant(RHSC->getAPIntValue()-
1891                                                LHSR->getAPIntValue(),
1892                                N0.getValueType()), Cond);
1893          }
1894
1895          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1896          if (N0.getOpcode() == ISD::XOR)
1897            // If we know that all of the inverted bits are zero, don't bother
1898            // performing the inversion.
1899            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1900              return
1901                DAG.getSetCC(dl, VT, N0.getOperand(0),
1902                             DAG.getConstant(LHSR->getAPIntValue() ^
1903                                               RHSC->getAPIntValue(),
1904                                             N0.getValueType()),
1905                             Cond);
1906        }
1907
1908        // Turn (C1-X) == C2 --> X == C1-C2
1909        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1910          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1911            return
1912              DAG.getSetCC(dl, VT, N0.getOperand(1),
1913                           DAG.getConstant(SUBC->getAPIntValue() -
1914                                             RHSC->getAPIntValue(),
1915                                           N0.getValueType()),
1916                           Cond);
1917          }
1918        }
1919      }
1920
1921      // Simplify (X+Z) == X -->  Z == 0
1922      if (N0.getOperand(0) == N1)
1923        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1924                        DAG.getConstant(0, N0.getValueType()), Cond);
1925      if (N0.getOperand(1) == N1) {
1926        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1927          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1928                          DAG.getConstant(0, N0.getValueType()), Cond);
1929        else if (N0.getNode()->hasOneUse()) {
1930          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1931          // (Z-X) == X  --> Z == X<<1
1932          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1933                                     N1,
1934                                     DAG.getConstant(1, getShiftAmountTy()));
1935          if (!DCI.isCalledByLegalizer())
1936            DCI.AddToWorklist(SH.getNode());
1937          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1938        }
1939      }
1940    }
1941
1942    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1943        N1.getOpcode() == ISD::XOR) {
1944      // Simplify  X == (X+Z) -->  Z == 0
1945      if (N1.getOperand(0) == N0) {
1946        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1947                        DAG.getConstant(0, N1.getValueType()), Cond);
1948      } else if (N1.getOperand(1) == N0) {
1949        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1950          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1951                          DAG.getConstant(0, N1.getValueType()), Cond);
1952        } else if (N1.getNode()->hasOneUse()) {
1953          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1954          // X == (Z-X)  --> X<<1 == Z
1955          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1956                                     DAG.getConstant(1, getShiftAmountTy()));
1957          if (!DCI.isCalledByLegalizer())
1958            DCI.AddToWorklist(SH.getNode());
1959          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1960        }
1961      }
1962    }
1963
1964    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1965    // Note that where y is variable and is known to have at most
1966    // one bit set (for example, if it is z&1) we cannot do this;
1967    // the expressions are not equivalent when y==0.
1968    if (N0.getOpcode() == ISD::AND)
1969      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1970        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1971          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1972          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1973          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1974        }
1975      }
1976    if (N1.getOpcode() == ISD::AND)
1977      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1978        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1979          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1980          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1981          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1982        }
1983      }
1984  }
1985
1986  // Fold away ALL boolean setcc's.
1987  SDValue Temp;
1988  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1989    switch (Cond) {
1990    default: assert(0 && "Unknown integer setcc!");
1991    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1992      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1993      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1994      if (!DCI.isCalledByLegalizer())
1995        DCI.AddToWorklist(Temp.getNode());
1996      break;
1997    case ISD::SETNE:  // X != Y   -->  (X^Y)
1998      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1999      break;
2000    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2001    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2002      Temp = DAG.getNOT(dl, N0, MVT::i1);
2003      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2004      if (!DCI.isCalledByLegalizer())
2005        DCI.AddToWorklist(Temp.getNode());
2006      break;
2007    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2008    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2009      Temp = DAG.getNOT(dl, N1, MVT::i1);
2010      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2011      if (!DCI.isCalledByLegalizer())
2012        DCI.AddToWorklist(Temp.getNode());
2013      break;
2014    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2015    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2016      Temp = DAG.getNOT(dl, N0, MVT::i1);
2017      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2018      if (!DCI.isCalledByLegalizer())
2019        DCI.AddToWorklist(Temp.getNode());
2020      break;
2021    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2022    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2023      Temp = DAG.getNOT(dl, N1, MVT::i1);
2024      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2025      break;
2026    }
2027    if (VT != MVT::i1) {
2028      if (!DCI.isCalledByLegalizer())
2029        DCI.AddToWorklist(N0.getNode());
2030      // FIXME: If running after legalize, we probably can't do this.
2031      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2032    }
2033    return N0;
2034  }
2035
2036  // Could not fold it.
2037  return SDValue();
2038}
2039
2040/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2041/// node is a GlobalAddress + offset.
2042bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2043                                    int64_t &Offset) const {
2044  if (isa<GlobalAddressSDNode>(N)) {
2045    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2046    GA = GASD->getGlobal();
2047    Offset += GASD->getOffset();
2048    return true;
2049  }
2050
2051  if (N->getOpcode() == ISD::ADD) {
2052    SDValue N1 = N->getOperand(0);
2053    SDValue N2 = N->getOperand(1);
2054    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2055      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2056      if (V) {
2057        Offset += V->getSExtValue();
2058        return true;
2059      }
2060    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2061      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2062      if (V) {
2063        Offset += V->getSExtValue();
2064        return true;
2065      }
2066    }
2067  }
2068  return false;
2069}
2070
2071
2072/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
2073/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
2074/// location that the 'Base' load is loading from.
2075bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
2076                                       unsigned Bytes, int Dist,
2077                                       const MachineFrameInfo *MFI) const {
2078  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
2079    return false;
2080  MVT VT = LD->getValueType(0);
2081  if (VT.getSizeInBits() / 8 != Bytes)
2082    return false;
2083
2084  SDValue Loc = LD->getOperand(1);
2085  SDValue BaseLoc = Base->getOperand(1);
2086  if (Loc.getOpcode() == ISD::FrameIndex) {
2087    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2088      return false;
2089    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2090    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2091    int FS  = MFI->getObjectSize(FI);
2092    int BFS = MFI->getObjectSize(BFI);
2093    if (FS != BFS || FS != (int)Bytes) return false;
2094    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2095  }
2096
2097  GlobalValue *GV1 = NULL;
2098  GlobalValue *GV2 = NULL;
2099  int64_t Offset1 = 0;
2100  int64_t Offset2 = 0;
2101  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2102  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2103  if (isGA1 && isGA2 && GV1 == GV2)
2104    return Offset1 == (Offset2 + Dist*Bytes);
2105  return false;
2106}
2107
2108
2109SDValue TargetLowering::
2110PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2111  // Default implementation: no optimization.
2112  return SDValue();
2113}
2114
2115//===----------------------------------------------------------------------===//
2116//  Inline Assembler Implementation Methods
2117//===----------------------------------------------------------------------===//
2118
2119
2120TargetLowering::ConstraintType
2121TargetLowering::getConstraintType(const std::string &Constraint) const {
2122  // FIXME: lots more standard ones to handle.
2123  if (Constraint.size() == 1) {
2124    switch (Constraint[0]) {
2125    default: break;
2126    case 'r': return C_RegisterClass;
2127    case 'm':    // memory
2128    case 'o':    // offsetable
2129    case 'V':    // not offsetable
2130      return C_Memory;
2131    case 'i':    // Simple Integer or Relocatable Constant
2132    case 'n':    // Simple Integer
2133    case 's':    // Relocatable Constant
2134    case 'X':    // Allow ANY value.
2135    case 'I':    // Target registers.
2136    case 'J':
2137    case 'K':
2138    case 'L':
2139    case 'M':
2140    case 'N':
2141    case 'O':
2142    case 'P':
2143      return C_Other;
2144    }
2145  }
2146
2147  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2148      Constraint[Constraint.size()-1] == '}')
2149    return C_Register;
2150  return C_Unknown;
2151}
2152
2153/// LowerXConstraint - try to replace an X constraint, which matches anything,
2154/// with another that has more specific requirements based on the type of the
2155/// corresponding operand.
2156const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2157  if (ConstraintVT.isInteger())
2158    return "r";
2159  if (ConstraintVT.isFloatingPoint())
2160    return "f";      // works for many targets
2161  return 0;
2162}
2163
2164/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2165/// vector.  If it is invalid, don't add anything to Ops.
2166void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2167                                                  char ConstraintLetter,
2168                                                  bool hasMemory,
2169                                                  std::vector<SDValue> &Ops,
2170                                                  SelectionDAG &DAG) const {
2171  switch (ConstraintLetter) {
2172  default: break;
2173  case 'X':     // Allows any operand; labels (basic block) use this.
2174    if (Op.getOpcode() == ISD::BasicBlock) {
2175      Ops.push_back(Op);
2176      return;
2177    }
2178    // fall through
2179  case 'i':    // Simple Integer or Relocatable Constant
2180  case 'n':    // Simple Integer
2181  case 's': {  // Relocatable Constant
2182    // These operands are interested in values of the form (GV+C), where C may
2183    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2184    // is possible and fine if either GV or C are missing.
2185    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2186    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2187
2188    // If we have "(add GV, C)", pull out GV/C
2189    if (Op.getOpcode() == ISD::ADD) {
2190      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2191      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2192      if (C == 0 || GA == 0) {
2193        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2194        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2195      }
2196      if (C == 0 || GA == 0)
2197        C = 0, GA = 0;
2198    }
2199
2200    // If we find a valid operand, map to the TargetXXX version so that the
2201    // value itself doesn't get selected.
2202    if (GA) {   // Either &GV   or   &GV+C
2203      if (ConstraintLetter != 'n') {
2204        int64_t Offs = GA->getOffset();
2205        if (C) Offs += C->getZExtValue();
2206        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2207                                                 Op.getValueType(), Offs));
2208        return;
2209      }
2210    }
2211    if (C) {   // just C, no GV.
2212      // Simple constants are not allowed for 's'.
2213      if (ConstraintLetter != 's') {
2214        // gcc prints these as sign extended.  Sign extend value to 64 bits
2215        // now; without this it would get ZExt'd later in
2216        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2217        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2218                                            MVT::i64));
2219        return;
2220      }
2221    }
2222    break;
2223  }
2224  }
2225}
2226
2227std::vector<unsigned> TargetLowering::
2228getRegClassForInlineAsmConstraint(const std::string &Constraint,
2229                                  MVT VT) const {
2230  return std::vector<unsigned>();
2231}
2232
2233
2234std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2235getRegForInlineAsmConstraint(const std::string &Constraint,
2236                             MVT VT) const {
2237  if (Constraint[0] != '{')
2238    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2239  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2240
2241  // Remove the braces from around the name.
2242  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2243
2244  // Figure out which register class contains this reg.
2245  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2246  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2247       E = RI->regclass_end(); RCI != E; ++RCI) {
2248    const TargetRegisterClass *RC = *RCI;
2249
2250    // If none of the the value types for this register class are valid, we
2251    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2252    bool isLegal = false;
2253    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2254         I != E; ++I) {
2255      if (isTypeLegal(*I)) {
2256        isLegal = true;
2257        break;
2258      }
2259    }
2260
2261    if (!isLegal) continue;
2262
2263    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2264         I != E; ++I) {
2265      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2266        return std::make_pair(*I, RC);
2267    }
2268  }
2269
2270  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2271}
2272
2273//===----------------------------------------------------------------------===//
2274// Constraint Selection.
2275
2276/// isMatchingInputConstraint - Return true of this is an input operand that is
2277/// a matching constraint like "4".
2278bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2279  assert(!ConstraintCode.empty() && "No known constraint!");
2280  return isdigit(ConstraintCode[0]);
2281}
2282
2283/// getMatchedOperand - If this is an input matching constraint, this method
2284/// returns the output operand it matches.
2285unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2286  assert(!ConstraintCode.empty() && "No known constraint!");
2287  return atoi(ConstraintCode.c_str());
2288}
2289
2290
2291/// getConstraintGenerality - Return an integer indicating how general CT
2292/// is.
2293static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2294  switch (CT) {
2295  default: assert(0 && "Unknown constraint type!");
2296  case TargetLowering::C_Other:
2297  case TargetLowering::C_Unknown:
2298    return 0;
2299  case TargetLowering::C_Register:
2300    return 1;
2301  case TargetLowering::C_RegisterClass:
2302    return 2;
2303  case TargetLowering::C_Memory:
2304    return 3;
2305  }
2306}
2307
2308/// ChooseConstraint - If there are multiple different constraints that we
2309/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2310/// This is somewhat tricky: constraints fall into four classes:
2311///    Other         -> immediates and magic values
2312///    Register      -> one specific register
2313///    RegisterClass -> a group of regs
2314///    Memory        -> memory
2315/// Ideally, we would pick the most specific constraint possible: if we have
2316/// something that fits into a register, we would pick it.  The problem here
2317/// is that if we have something that could either be in a register or in
2318/// memory that use of the register could cause selection of *other*
2319/// operands to fail: they might only succeed if we pick memory.  Because of
2320/// this the heuristic we use is:
2321///
2322///  1) If there is an 'other' constraint, and if the operand is valid for
2323///     that constraint, use it.  This makes us take advantage of 'i'
2324///     constraints when available.
2325///  2) Otherwise, pick the most general constraint present.  This prefers
2326///     'm' over 'r', for example.
2327///
2328static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2329                             bool hasMemory,  const TargetLowering &TLI,
2330                             SDValue Op, SelectionDAG *DAG) {
2331  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2332  unsigned BestIdx = 0;
2333  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2334  int BestGenerality = -1;
2335
2336  // Loop over the options, keeping track of the most general one.
2337  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2338    TargetLowering::ConstraintType CType =
2339      TLI.getConstraintType(OpInfo.Codes[i]);
2340
2341    // If this is an 'other' constraint, see if the operand is valid for it.
2342    // For example, on X86 we might have an 'rI' constraint.  If the operand
2343    // is an integer in the range [0..31] we want to use I (saving a load
2344    // of a register), otherwise we must use 'r'.
2345    if (CType == TargetLowering::C_Other && Op.getNode()) {
2346      assert(OpInfo.Codes[i].size() == 1 &&
2347             "Unhandled multi-letter 'other' constraint");
2348      std::vector<SDValue> ResultOps;
2349      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2350                                       ResultOps, *DAG);
2351      if (!ResultOps.empty()) {
2352        BestType = CType;
2353        BestIdx = i;
2354        break;
2355      }
2356    }
2357
2358    // This constraint letter is more general than the previous one, use it.
2359    int Generality = getConstraintGenerality(CType);
2360    if (Generality > BestGenerality) {
2361      BestType = CType;
2362      BestIdx = i;
2363      BestGenerality = Generality;
2364    }
2365  }
2366
2367  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2368  OpInfo.ConstraintType = BestType;
2369}
2370
2371/// ComputeConstraintToUse - Determines the constraint code and constraint
2372/// type to use for the specific AsmOperandInfo, setting
2373/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2374void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2375                                            SDValue Op,
2376                                            bool hasMemory,
2377                                            SelectionDAG *DAG) const {
2378  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2379
2380  // Single-letter constraints ('r') are very common.
2381  if (OpInfo.Codes.size() == 1) {
2382    OpInfo.ConstraintCode = OpInfo.Codes[0];
2383    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2384  } else {
2385    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2386  }
2387
2388  // 'X' matches anything.
2389  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2390    // Labels and constants are handled elsewhere ('X' is the only thing
2391    // that matches labels).
2392    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2393        isa<ConstantInt>(OpInfo.CallOperandVal))
2394      return;
2395
2396    // Otherwise, try to resolve it to something we know about by looking at
2397    // the actual operand type.
2398    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2399      OpInfo.ConstraintCode = Repl;
2400      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2401    }
2402  }
2403}
2404
2405//===----------------------------------------------------------------------===//
2406//  Loop Strength Reduction hooks
2407//===----------------------------------------------------------------------===//
2408
2409/// isLegalAddressingMode - Return true if the addressing mode represented
2410/// by AM is legal for this target, for a load/store of the specified type.
2411bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2412                                           const Type *Ty) const {
2413  // The default implementation of this implements a conservative RISCy, r+r and
2414  // r+i addr mode.
2415
2416  // Allows a sign-extended 16-bit immediate field.
2417  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2418    return false;
2419
2420  // No global is ever allowed as a base.
2421  if (AM.BaseGV)
2422    return false;
2423
2424  // Only support r+r,
2425  switch (AM.Scale) {
2426  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2427    break;
2428  case 1:
2429    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2430      return false;
2431    // Otherwise we have r+r or r+i.
2432    break;
2433  case 2:
2434    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2435      return false;
2436    // Allow 2*r as r+r.
2437    break;
2438  }
2439
2440  return true;
2441}
2442
2443/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2444/// return a DAG expression to select that will generate the same value by
2445/// multiplying by a magic number.  See:
2446/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2447SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2448                                  std::vector<SDNode*>* Created) const {
2449  MVT VT = N->getValueType(0);
2450  DebugLoc dl= N->getDebugLoc();
2451
2452  // Check to see if we can do this.
2453  // FIXME: We should be more aggressive here.
2454  if (!isTypeLegal(VT))
2455    return SDValue();
2456
2457  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2458  APInt::ms magics = d.magic();
2459
2460  // Multiply the numerator (operand 0) by the magic value
2461  // FIXME: We should support doing a MUL in a wider type
2462  SDValue Q;
2463  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2464    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2465                    DAG.getConstant(magics.m, VT));
2466  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2467    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2468                              N->getOperand(0),
2469                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2470  else
2471    return SDValue();       // No mulhs or equvialent
2472  // If d > 0 and m < 0, add the numerator
2473  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2474    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2475    if (Created)
2476      Created->push_back(Q.getNode());
2477  }
2478  // If d < 0 and m > 0, subtract the numerator.
2479  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2480    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2481    if (Created)
2482      Created->push_back(Q.getNode());
2483  }
2484  // Shift right algebraic if shift value is nonzero
2485  if (magics.s > 0) {
2486    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2487                    DAG.getConstant(magics.s, getShiftAmountTy()));
2488    if (Created)
2489      Created->push_back(Q.getNode());
2490  }
2491  // Extract the sign bit and add it to the quotient
2492  SDValue T =
2493    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2494                                                 getShiftAmountTy()));
2495  if (Created)
2496    Created->push_back(T.getNode());
2497  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2498}
2499
2500/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2501/// return a DAG expression to select that will generate the same value by
2502/// multiplying by a magic number.  See:
2503/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2504SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2505                                  std::vector<SDNode*>* Created) const {
2506  MVT VT = N->getValueType(0);
2507  DebugLoc dl = N->getDebugLoc();
2508
2509  // Check to see if we can do this.
2510  // FIXME: We should be more aggressive here.
2511  if (!isTypeLegal(VT))
2512    return SDValue();
2513
2514  // FIXME: We should use a narrower constant when the upper
2515  // bits are known to be zero.
2516  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2517  APInt::mu magics = N1C->getAPIntValue().magicu();
2518
2519  // Multiply the numerator (operand 0) by the magic value
2520  // FIXME: We should support doing a MUL in a wider type
2521  SDValue Q;
2522  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2523    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2524                    DAG.getConstant(magics.m, VT));
2525  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2526    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2527                              N->getOperand(0),
2528                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2529  else
2530    return SDValue();       // No mulhu or equvialent
2531  if (Created)
2532    Created->push_back(Q.getNode());
2533
2534  if (magics.a == 0) {
2535    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2536           "We shouldn't generate an undefined shift!");
2537    return DAG.getNode(ISD::SRL, dl, VT, Q,
2538                       DAG.getConstant(magics.s, getShiftAmountTy()));
2539  } else {
2540    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2541    if (Created)
2542      Created->push_back(NPQ.getNode());
2543    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2544                      DAG.getConstant(1, getShiftAmountTy()));
2545    if (Created)
2546      Created->push_back(NPQ.getNode());
2547    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2548    if (Created)
2549      Created->push_back(NPQ.getNode());
2550    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2551                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2552  }
2553}
2554
2555/// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2556/// node that don't prevent tail call optimization.
2557static SDValue IgnoreHarmlessInstructions(SDValue node) {
2558  // Found call return.
2559  if (node.getOpcode() == ISD::CALL) return node;
2560  // Ignore MERGE_VALUES. Will have at least one operand.
2561  if (node.getOpcode() == ISD::MERGE_VALUES)
2562    return IgnoreHarmlessInstructions(node.getOperand(0));
2563  // Ignore ANY_EXTEND node.
2564  if (node.getOpcode() == ISD::ANY_EXTEND)
2565    return IgnoreHarmlessInstructions(node.getOperand(0));
2566  if (node.getOpcode() == ISD::TRUNCATE)
2567    return IgnoreHarmlessInstructions(node.getOperand(0));
2568  // Any other node type.
2569  return node;
2570}
2571
2572bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2573                                                    SDValue Ret) {
2574  unsigned NumOps = Ret.getNumOperands();
2575  // ISD::CALL results:(value0, ..., valuen, chain)
2576  // ISD::RET  operands:(chain, value0, flag0, ..., valuen, flagn)
2577  // Value return:
2578  // Check that operand of the RET node sources from the CALL node. The RET node
2579  // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2580  // value.
2581  if (NumOps > 1 &&
2582      IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0))
2583    return true;
2584  // void return: The RET node  has the chain result value of the CALL node as
2585  // input.
2586  if (NumOps == 1 &&
2587      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2588    return true;
2589
2590  return false;
2591}
2592