TargetLowering.cpp revision 7adf862eb24f7c6cbf12fbc9e3e8229f6f863b8a
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include <cctype>
32using namespace llvm;
33
34namespace llvm {
35TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
36  bool isLocal = GV->hasLocalLinkage();
37  bool isDeclaration = GV->isDeclaration();
38  // FIXME: what should we do for protected and internal visibility?
39  // For variables, is internal different from hidden?
40  bool isHidden = GV->hasHiddenVisibility();
41
42  if (reloc == Reloc::PIC_) {
43    if (isLocal || isHidden)
44      return TLSModel::LocalDynamic;
45    else
46      return TLSModel::GeneralDynamic;
47  } else {
48    if (!isDeclaration || isHidden)
49      return TLSModel::LocalExec;
50    else
51      return TLSModel::InitialExec;
52  }
53}
54}
55
56/// InitLibcallNames - Set default libcall names.
57///
58static void InitLibcallNames(const char **Names) {
59  Names[RTLIB::SHL_I16] = "__ashlhi3";
60  Names[RTLIB::SHL_I32] = "__ashlsi3";
61  Names[RTLIB::SHL_I64] = "__ashldi3";
62  Names[RTLIB::SHL_I128] = "__ashlti3";
63  Names[RTLIB::SRL_I16] = "__lshrhi3";
64  Names[RTLIB::SRL_I32] = "__lshrsi3";
65  Names[RTLIB::SRL_I64] = "__lshrdi3";
66  Names[RTLIB::SRL_I128] = "__lshrti3";
67  Names[RTLIB::SRA_I16] = "__ashrhi3";
68  Names[RTLIB::SRA_I32] = "__ashrsi3";
69  Names[RTLIB::SRA_I64] = "__ashrdi3";
70  Names[RTLIB::SRA_I128] = "__ashrti3";
71  Names[RTLIB::MUL_I8] = "__mulqi3";
72  Names[RTLIB::MUL_I16] = "__mulhi3";
73  Names[RTLIB::MUL_I32] = "__mulsi3";
74  Names[RTLIB::MUL_I64] = "__muldi3";
75  Names[RTLIB::MUL_I128] = "__multi3";
76  Names[RTLIB::SDIV_I8] = "__divqi3";
77  Names[RTLIB::SDIV_I16] = "__divhi3";
78  Names[RTLIB::SDIV_I32] = "__divsi3";
79  Names[RTLIB::SDIV_I64] = "__divdi3";
80  Names[RTLIB::SDIV_I128] = "__divti3";
81  Names[RTLIB::UDIV_I8] = "__udivqi3";
82  Names[RTLIB::UDIV_I16] = "__udivhi3";
83  Names[RTLIB::UDIV_I32] = "__udivsi3";
84  Names[RTLIB::UDIV_I64] = "__udivdi3";
85  Names[RTLIB::UDIV_I128] = "__udivti3";
86  Names[RTLIB::SREM_I8] = "__modqi3";
87  Names[RTLIB::SREM_I16] = "__modhi3";
88  Names[RTLIB::SREM_I32] = "__modsi3";
89  Names[RTLIB::SREM_I64] = "__moddi3";
90  Names[RTLIB::SREM_I128] = "__modti3";
91  Names[RTLIB::UREM_I8] = "__umodqi3";
92  Names[RTLIB::UREM_I16] = "__umodhi3";
93  Names[RTLIB::UREM_I32] = "__umodsi3";
94  Names[RTLIB::UREM_I64] = "__umoddi3";
95  Names[RTLIB::UREM_I128] = "__umodti3";
96
97  // These are generally not available.
98  Names[RTLIB::SDIVREM_I8] = 0;
99  Names[RTLIB::SDIVREM_I16] = 0;
100  Names[RTLIB::SDIVREM_I32] = 0;
101  Names[RTLIB::SDIVREM_I64] = 0;
102  Names[RTLIB::SDIVREM_I128] = 0;
103  Names[RTLIB::UDIVREM_I8] = 0;
104  Names[RTLIB::UDIVREM_I16] = 0;
105  Names[RTLIB::UDIVREM_I32] = 0;
106  Names[RTLIB::UDIVREM_I64] = 0;
107  Names[RTLIB::UDIVREM_I128] = 0;
108
109  Names[RTLIB::NEG_I32] = "__negsi2";
110  Names[RTLIB::NEG_I64] = "__negdi2";
111  Names[RTLIB::ADD_F32] = "__addsf3";
112  Names[RTLIB::ADD_F64] = "__adddf3";
113  Names[RTLIB::ADD_F80] = "__addxf3";
114  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
115  Names[RTLIB::SUB_F32] = "__subsf3";
116  Names[RTLIB::SUB_F64] = "__subdf3";
117  Names[RTLIB::SUB_F80] = "__subxf3";
118  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
119  Names[RTLIB::MUL_F32] = "__mulsf3";
120  Names[RTLIB::MUL_F64] = "__muldf3";
121  Names[RTLIB::MUL_F80] = "__mulxf3";
122  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
123  Names[RTLIB::DIV_F32] = "__divsf3";
124  Names[RTLIB::DIV_F64] = "__divdf3";
125  Names[RTLIB::DIV_F80] = "__divxf3";
126  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
127  Names[RTLIB::REM_F32] = "fmodf";
128  Names[RTLIB::REM_F64] = "fmod";
129  Names[RTLIB::REM_F80] = "fmodl";
130  Names[RTLIB::REM_PPCF128] = "fmodl";
131  Names[RTLIB::POWI_F32] = "__powisf2";
132  Names[RTLIB::POWI_F64] = "__powidf2";
133  Names[RTLIB::POWI_F80] = "__powixf2";
134  Names[RTLIB::POWI_PPCF128] = "__powitf2";
135  Names[RTLIB::SQRT_F32] = "sqrtf";
136  Names[RTLIB::SQRT_F64] = "sqrt";
137  Names[RTLIB::SQRT_F80] = "sqrtl";
138  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
139  Names[RTLIB::LOG_F32] = "logf";
140  Names[RTLIB::LOG_F64] = "log";
141  Names[RTLIB::LOG_F80] = "logl";
142  Names[RTLIB::LOG_PPCF128] = "logl";
143  Names[RTLIB::LOG2_F32] = "log2f";
144  Names[RTLIB::LOG2_F64] = "log2";
145  Names[RTLIB::LOG2_F80] = "log2l";
146  Names[RTLIB::LOG2_PPCF128] = "log2l";
147  Names[RTLIB::LOG10_F32] = "log10f";
148  Names[RTLIB::LOG10_F64] = "log10";
149  Names[RTLIB::LOG10_F80] = "log10l";
150  Names[RTLIB::LOG10_PPCF128] = "log10l";
151  Names[RTLIB::EXP_F32] = "expf";
152  Names[RTLIB::EXP_F64] = "exp";
153  Names[RTLIB::EXP_F80] = "expl";
154  Names[RTLIB::EXP_PPCF128] = "expl";
155  Names[RTLIB::EXP2_F32] = "exp2f";
156  Names[RTLIB::EXP2_F64] = "exp2";
157  Names[RTLIB::EXP2_F80] = "exp2l";
158  Names[RTLIB::EXP2_PPCF128] = "exp2l";
159  Names[RTLIB::SIN_F32] = "sinf";
160  Names[RTLIB::SIN_F64] = "sin";
161  Names[RTLIB::SIN_F80] = "sinl";
162  Names[RTLIB::SIN_PPCF128] = "sinl";
163  Names[RTLIB::COS_F32] = "cosf";
164  Names[RTLIB::COS_F64] = "cos";
165  Names[RTLIB::COS_F80] = "cosl";
166  Names[RTLIB::COS_PPCF128] = "cosl";
167  Names[RTLIB::POW_F32] = "powf";
168  Names[RTLIB::POW_F64] = "pow";
169  Names[RTLIB::POW_F80] = "powl";
170  Names[RTLIB::POW_PPCF128] = "powl";
171  Names[RTLIB::CEIL_F32] = "ceilf";
172  Names[RTLIB::CEIL_F64] = "ceil";
173  Names[RTLIB::CEIL_F80] = "ceill";
174  Names[RTLIB::CEIL_PPCF128] = "ceill";
175  Names[RTLIB::TRUNC_F32] = "truncf";
176  Names[RTLIB::TRUNC_F64] = "trunc";
177  Names[RTLIB::TRUNC_F80] = "truncl";
178  Names[RTLIB::TRUNC_PPCF128] = "truncl";
179  Names[RTLIB::RINT_F32] = "rintf";
180  Names[RTLIB::RINT_F64] = "rint";
181  Names[RTLIB::RINT_F80] = "rintl";
182  Names[RTLIB::RINT_PPCF128] = "rintl";
183  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
184  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
185  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
186  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
187  Names[RTLIB::FLOOR_F32] = "floorf";
188  Names[RTLIB::FLOOR_F64] = "floor";
189  Names[RTLIB::FLOOR_F80] = "floorl";
190  Names[RTLIB::FLOOR_PPCF128] = "floorl";
191  Names[RTLIB::COPYSIGN_F32] = "copysignf";
192  Names[RTLIB::COPYSIGN_F64] = "copysign";
193  Names[RTLIB::COPYSIGN_F80] = "copysignl";
194  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
195  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
196  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
197  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
198  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
199  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
200  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
201  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
202  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
203  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
204  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
205  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
206  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
207  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
208  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
209  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
210  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
211  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
212  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
213  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
214  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
215  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
216  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
217  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
218  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
219  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
220  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
221  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
222  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
223  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
224  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
225  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
226  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
227  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
228  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
229  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
230  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
231  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
232  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
233  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
234  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
235  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
236  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
237  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
238  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
239  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
240  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
241  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
242  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
243  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
244  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
245  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
246  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
247  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
248  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
249  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
250  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
251  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
252  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
253  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
254  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
255  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
256  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
257  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
258  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
259  Names[RTLIB::OEQ_F32] = "__eqsf2";
260  Names[RTLIB::OEQ_F64] = "__eqdf2";
261  Names[RTLIB::UNE_F32] = "__nesf2";
262  Names[RTLIB::UNE_F64] = "__nedf2";
263  Names[RTLIB::OGE_F32] = "__gesf2";
264  Names[RTLIB::OGE_F64] = "__gedf2";
265  Names[RTLIB::OLT_F32] = "__ltsf2";
266  Names[RTLIB::OLT_F64] = "__ltdf2";
267  Names[RTLIB::OLE_F32] = "__lesf2";
268  Names[RTLIB::OLE_F64] = "__ledf2";
269  Names[RTLIB::OGT_F32] = "__gtsf2";
270  Names[RTLIB::OGT_F64] = "__gtdf2";
271  Names[RTLIB::UO_F32] = "__unordsf2";
272  Names[RTLIB::UO_F64] = "__unorddf2";
273  Names[RTLIB::O_F32] = "__unordsf2";
274  Names[RTLIB::O_F64] = "__unorddf2";
275  Names[RTLIB::MEMCPY] = "memcpy";
276  Names[RTLIB::MEMMOVE] = "memmove";
277  Names[RTLIB::MEMSET] = "memset";
278  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
279  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
280  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
281  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
282  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
283  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
284  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
285  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
286  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
287  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
288  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
289  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
290  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
291  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
292  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
293  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
294  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
295  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
296  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
297  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
298  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
299  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
300  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
301  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
302  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
303  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
304  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
305  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
306  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
307  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
308  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
309  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
310  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
311}
312
313/// InitLibcallCallingConvs - Set default libcall CallingConvs.
314///
315static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
316  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
317    CCs[i] = CallingConv::C;
318  }
319}
320
321/// getFPEXT - Return the FPEXT_*_* value for the given types, or
322/// UNKNOWN_LIBCALL if there is none.
323RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
324  if (OpVT == MVT::f32) {
325    if (RetVT == MVT::f64)
326      return FPEXT_F32_F64;
327  }
328
329  return UNKNOWN_LIBCALL;
330}
331
332/// getFPROUND - Return the FPROUND_*_* value for the given types, or
333/// UNKNOWN_LIBCALL if there is none.
334RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
335  if (RetVT == MVT::f32) {
336    if (OpVT == MVT::f64)
337      return FPROUND_F64_F32;
338    if (OpVT == MVT::f80)
339      return FPROUND_F80_F32;
340    if (OpVT == MVT::ppcf128)
341      return FPROUND_PPCF128_F32;
342  } else if (RetVT == MVT::f64) {
343    if (OpVT == MVT::f80)
344      return FPROUND_F80_F64;
345    if (OpVT == MVT::ppcf128)
346      return FPROUND_PPCF128_F64;
347  }
348
349  return UNKNOWN_LIBCALL;
350}
351
352/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
353/// UNKNOWN_LIBCALL if there is none.
354RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
355  if (OpVT == MVT::f32) {
356    if (RetVT == MVT::i8)
357      return FPTOSINT_F32_I8;
358    if (RetVT == MVT::i16)
359      return FPTOSINT_F32_I16;
360    if (RetVT == MVT::i32)
361      return FPTOSINT_F32_I32;
362    if (RetVT == MVT::i64)
363      return FPTOSINT_F32_I64;
364    if (RetVT == MVT::i128)
365      return FPTOSINT_F32_I128;
366  } else if (OpVT == MVT::f64) {
367    if (RetVT == MVT::i8)
368      return FPTOSINT_F64_I8;
369    if (RetVT == MVT::i16)
370      return FPTOSINT_F64_I16;
371    if (RetVT == MVT::i32)
372      return FPTOSINT_F64_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_F64_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_F64_I128;
377  } else if (OpVT == MVT::f80) {
378    if (RetVT == MVT::i32)
379      return FPTOSINT_F80_I32;
380    if (RetVT == MVT::i64)
381      return FPTOSINT_F80_I64;
382    if (RetVT == MVT::i128)
383      return FPTOSINT_F80_I128;
384  } else if (OpVT == MVT::ppcf128) {
385    if (RetVT == MVT::i32)
386      return FPTOSINT_PPCF128_I32;
387    if (RetVT == MVT::i64)
388      return FPTOSINT_PPCF128_I64;
389    if (RetVT == MVT::i128)
390      return FPTOSINT_PPCF128_I128;
391  }
392  return UNKNOWN_LIBCALL;
393}
394
395/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
396/// UNKNOWN_LIBCALL if there is none.
397RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
398  if (OpVT == MVT::f32) {
399    if (RetVT == MVT::i8)
400      return FPTOUINT_F32_I8;
401    if (RetVT == MVT::i16)
402      return FPTOUINT_F32_I16;
403    if (RetVT == MVT::i32)
404      return FPTOUINT_F32_I32;
405    if (RetVT == MVT::i64)
406      return FPTOUINT_F32_I64;
407    if (RetVT == MVT::i128)
408      return FPTOUINT_F32_I128;
409  } else if (OpVT == MVT::f64) {
410    if (RetVT == MVT::i8)
411      return FPTOUINT_F64_I8;
412    if (RetVT == MVT::i16)
413      return FPTOUINT_F64_I16;
414    if (RetVT == MVT::i32)
415      return FPTOUINT_F64_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_F64_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_F64_I128;
420  } else if (OpVT == MVT::f80) {
421    if (RetVT == MVT::i32)
422      return FPTOUINT_F80_I32;
423    if (RetVT == MVT::i64)
424      return FPTOUINT_F80_I64;
425    if (RetVT == MVT::i128)
426      return FPTOUINT_F80_I128;
427  } else if (OpVT == MVT::ppcf128) {
428    if (RetVT == MVT::i32)
429      return FPTOUINT_PPCF128_I32;
430    if (RetVT == MVT::i64)
431      return FPTOUINT_PPCF128_I64;
432    if (RetVT == MVT::i128)
433      return FPTOUINT_PPCF128_I128;
434  }
435  return UNKNOWN_LIBCALL;
436}
437
438/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
439/// UNKNOWN_LIBCALL if there is none.
440RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
441  if (OpVT == MVT::i32) {
442    if (RetVT == MVT::f32)
443      return SINTTOFP_I32_F32;
444    else if (RetVT == MVT::f64)
445      return SINTTOFP_I32_F64;
446    else if (RetVT == MVT::f80)
447      return SINTTOFP_I32_F80;
448    else if (RetVT == MVT::ppcf128)
449      return SINTTOFP_I32_PPCF128;
450  } else if (OpVT == MVT::i64) {
451    if (RetVT == MVT::f32)
452      return SINTTOFP_I64_F32;
453    else if (RetVT == MVT::f64)
454      return SINTTOFP_I64_F64;
455    else if (RetVT == MVT::f80)
456      return SINTTOFP_I64_F80;
457    else if (RetVT == MVT::ppcf128)
458      return SINTTOFP_I64_PPCF128;
459  } else if (OpVT == MVT::i128) {
460    if (RetVT == MVT::f32)
461      return SINTTOFP_I128_F32;
462    else if (RetVT == MVT::f64)
463      return SINTTOFP_I128_F64;
464    else if (RetVT == MVT::f80)
465      return SINTTOFP_I128_F80;
466    else if (RetVT == MVT::ppcf128)
467      return SINTTOFP_I128_PPCF128;
468  }
469  return UNKNOWN_LIBCALL;
470}
471
472/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
473/// UNKNOWN_LIBCALL if there is none.
474RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
475  if (OpVT == MVT::i32) {
476    if (RetVT == MVT::f32)
477      return UINTTOFP_I32_F32;
478    else if (RetVT == MVT::f64)
479      return UINTTOFP_I32_F64;
480    else if (RetVT == MVT::f80)
481      return UINTTOFP_I32_F80;
482    else if (RetVT == MVT::ppcf128)
483      return UINTTOFP_I32_PPCF128;
484  } else if (OpVT == MVT::i64) {
485    if (RetVT == MVT::f32)
486      return UINTTOFP_I64_F32;
487    else if (RetVT == MVT::f64)
488      return UINTTOFP_I64_F64;
489    else if (RetVT == MVT::f80)
490      return UINTTOFP_I64_F80;
491    else if (RetVT == MVT::ppcf128)
492      return UINTTOFP_I64_PPCF128;
493  } else if (OpVT == MVT::i128) {
494    if (RetVT == MVT::f32)
495      return UINTTOFP_I128_F32;
496    else if (RetVT == MVT::f64)
497      return UINTTOFP_I128_F64;
498    else if (RetVT == MVT::f80)
499      return UINTTOFP_I128_F80;
500    else if (RetVT == MVT::ppcf128)
501      return UINTTOFP_I128_PPCF128;
502  }
503  return UNKNOWN_LIBCALL;
504}
505
506/// InitCmpLibcallCCs - Set default comparison libcall CC.
507///
508static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
509  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
510  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
511  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
512  CCs[RTLIB::UNE_F32] = ISD::SETNE;
513  CCs[RTLIB::UNE_F64] = ISD::SETNE;
514  CCs[RTLIB::OGE_F32] = ISD::SETGE;
515  CCs[RTLIB::OGE_F64] = ISD::SETGE;
516  CCs[RTLIB::OLT_F32] = ISD::SETLT;
517  CCs[RTLIB::OLT_F64] = ISD::SETLT;
518  CCs[RTLIB::OLE_F32] = ISD::SETLE;
519  CCs[RTLIB::OLE_F64] = ISD::SETLE;
520  CCs[RTLIB::OGT_F32] = ISD::SETGT;
521  CCs[RTLIB::OGT_F64] = ISD::SETGT;
522  CCs[RTLIB::UO_F32] = ISD::SETNE;
523  CCs[RTLIB::UO_F64] = ISD::SETNE;
524  CCs[RTLIB::O_F32] = ISD::SETEQ;
525  CCs[RTLIB::O_F64] = ISD::SETEQ;
526}
527
528/// NOTE: The constructor takes ownership of TLOF.
529TargetLowering::TargetLowering(const TargetMachine &tm,
530                               const TargetLoweringObjectFile *tlof)
531  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
532  // All operations default to being supported.
533  memset(OpActions, 0, sizeof(OpActions));
534  memset(LoadExtActions, 0, sizeof(LoadExtActions));
535  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
536  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
537  memset(CondCodeActions, 0, sizeof(CondCodeActions));
538
539  // Set default actions for various operations.
540  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
541    // Default all indexed load / store to expand.
542    for (unsigned IM = (unsigned)ISD::PRE_INC;
543         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
544      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
545      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
546    }
547
548    // These operations default to expand.
549    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
551  }
552
553  // Most targets ignore the @llvm.prefetch intrinsic.
554  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
555
556  // ConstantFP nodes default to expand.  Targets can either change this to
557  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
558  // to optimize expansions for certain constants.
559  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
560  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
561  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
562
563  // These library functions default to expand.
564  setOperationAction(ISD::FLOG , MVT::f64, Expand);
565  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
566  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
567  setOperationAction(ISD::FEXP , MVT::f64, Expand);
568  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
569  setOperationAction(ISD::FLOG , MVT::f32, Expand);
570  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
571  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
572  setOperationAction(ISD::FEXP , MVT::f32, Expand);
573  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
574
575  // Default ISD::TRAP to expand (which turns it into abort).
576  setOperationAction(ISD::TRAP, MVT::Other, Expand);
577
578  IsLittleEndian = TD->isLittleEndian();
579  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
580  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
581  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
582  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
583  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
584    = maxStoresPerMemmoveOptSize = 4;
585  benefitFromCodePlacementOpt = false;
586  UseUnderscoreSetJmp = false;
587  UseUnderscoreLongJmp = false;
588  SelectIsExpensive = false;
589  IntDivIsCheap = false;
590  Pow2DivIsCheap = false;
591  JumpIsExpensive = false;
592  StackPointerRegisterToSaveRestore = 0;
593  ExceptionPointerRegister = 0;
594  ExceptionSelectorRegister = 0;
595  BooleanContents = UndefinedBooleanContent;
596  SchedPreferenceInfo = Sched::Latency;
597  JumpBufSize = 0;
598  JumpBufAlignment = 0;
599  PrefLoopAlignment = 0;
600  MinStackArgumentAlignment = 1;
601  ShouldFoldAtomicFences = false;
602
603  InitLibcallNames(LibcallRoutineNames);
604  InitCmpLibcallCCs(CmpLibcallCCs);
605  InitLibcallCallingConvs(LibcallCallingConvs);
606}
607
608TargetLowering::~TargetLowering() {
609  delete &TLOF;
610}
611
612MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
613  return MVT::getIntegerVT(8*TD->getPointerSize());
614}
615
616/// canOpTrap - Returns true if the operation can trap for the value type.
617/// VT must be a legal type.
618bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
619  assert(isTypeLegal(VT));
620  switch (Op) {
621  default:
622    return false;
623  case ISD::FDIV:
624  case ISD::FREM:
625  case ISD::SDIV:
626  case ISD::UDIV:
627  case ISD::SREM:
628  case ISD::UREM:
629    return true;
630  }
631}
632
633
634static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
635                                          unsigned &NumIntermediates,
636                                          EVT &RegisterVT,
637                                          TargetLowering *TLI) {
638  // Figure out the right, legal destination reg to copy into.
639  unsigned NumElts = VT.getVectorNumElements();
640  MVT EltTy = VT.getVectorElementType();
641
642  unsigned NumVectorRegs = 1;
643
644  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
645  // could break down into LHS/RHS like LegalizeDAG does.
646  if (!isPowerOf2_32(NumElts)) {
647    NumVectorRegs = NumElts;
648    NumElts = 1;
649  }
650
651  // Divide the input until we get to a supported size.  This will always
652  // end with a scalar if the target doesn't support vectors.
653  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
654    NumElts >>= 1;
655    NumVectorRegs <<= 1;
656  }
657
658  NumIntermediates = NumVectorRegs;
659
660  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
661  if (!TLI->isTypeLegal(NewVT))
662    NewVT = EltTy;
663  IntermediateVT = NewVT;
664
665  EVT DestVT = TLI->getRegisterType(NewVT);
666  RegisterVT = DestVT;
667  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
668    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
669
670  // Otherwise, promotion or legal types use the same number of registers as
671  // the vector decimated to the appropriate level.
672  return NumVectorRegs;
673}
674
675/// isLegalRC - Return true if the value types that can be represented by the
676/// specified register class are all legal.
677bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
678  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
679       I != E; ++I) {
680    if (isTypeLegal(*I))
681      return true;
682  }
683  return false;
684}
685
686/// hasLegalSuperRegRegClasses - Return true if the specified register class
687/// has one or more super-reg register classes that are legal.
688bool
689TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
690  if (*RC->superregclasses_begin() == 0)
691    return false;
692  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
693         E = RC->superregclasses_end(); I != E; ++I) {
694    const TargetRegisterClass *RRC = *I;
695    if (isLegalRC(RRC))
696      return true;
697  }
698  return false;
699}
700
701/// findRepresentativeClass - Return the largest legal super-reg register class
702/// of the register class for the specified type and its associated "cost".
703std::pair<const TargetRegisterClass*, uint8_t>
704TargetLowering::findRepresentativeClass(EVT VT) const {
705  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
706  if (!RC)
707    return std::make_pair(RC, 0);
708  const TargetRegisterClass *BestRC = RC;
709  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
710         E = RC->superregclasses_end(); I != E; ++I) {
711    const TargetRegisterClass *RRC = *I;
712    if (RRC->isASubClass() || !isLegalRC(RRC))
713      continue;
714    if (!hasLegalSuperRegRegClasses(RRC))
715      return std::make_pair(RRC, 1);
716    BestRC = RRC;
717  }
718  return std::make_pair(BestRC, 1);
719}
720
721
722/// computeRegisterProperties - Once all of the register classes are added,
723/// this allows us to compute derived properties we expose.
724void TargetLowering::computeRegisterProperties() {
725  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
726         "Too many value types for ValueTypeActions to hold!");
727
728  // Everything defaults to needing one register.
729  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
730    NumRegistersForVT[i] = 1;
731    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
732  }
733  // ...except isVoid, which doesn't need any registers.
734  NumRegistersForVT[MVT::isVoid] = 0;
735
736  // Find the largest integer register class.
737  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
738  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
739    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
740
741  // Every integer value type larger than this largest register takes twice as
742  // many registers to represent as the previous ValueType.
743  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
744    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
745    if (!ExpandedVT.isInteger())
746      break;
747    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
748    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
749    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
750    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
751  }
752
753  // Inspect all of the ValueType's smaller than the largest integer
754  // register to see which ones need promotion.
755  unsigned LegalIntReg = LargestIntReg;
756  for (unsigned IntReg = LargestIntReg - 1;
757       IntReg >= (unsigned)MVT::i1; --IntReg) {
758    EVT IVT = (MVT::SimpleValueType)IntReg;
759    if (isTypeLegal(IVT)) {
760      LegalIntReg = IntReg;
761    } else {
762      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
763        (MVT::SimpleValueType)LegalIntReg;
764      ValueTypeActions.setTypeAction(IVT, Promote);
765    }
766  }
767
768  // ppcf128 type is really two f64's.
769  if (!isTypeLegal(MVT::ppcf128)) {
770    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
771    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
772    TransformToType[MVT::ppcf128] = MVT::f64;
773    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
774  }
775
776  // Decide how to handle f64. If the target does not have native f64 support,
777  // expand it to i64 and we will be generating soft float library calls.
778  if (!isTypeLegal(MVT::f64)) {
779    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
780    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
781    TransformToType[MVT::f64] = MVT::i64;
782    ValueTypeActions.setTypeAction(MVT::f64, Expand);
783  }
784
785  // Decide how to handle f32. If the target does not have native support for
786  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
787  if (!isTypeLegal(MVT::f32)) {
788    if (isTypeLegal(MVT::f64)) {
789      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
790      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
791      TransformToType[MVT::f32] = MVT::f64;
792      ValueTypeActions.setTypeAction(MVT::f32, Promote);
793    } else {
794      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
795      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
796      TransformToType[MVT::f32] = MVT::i32;
797      ValueTypeActions.setTypeAction(MVT::f32, Expand);
798    }
799  }
800
801  // Loop over all of the vector value types to see which need transformations.
802  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
803       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
804    MVT VT = (MVT::SimpleValueType)i;
805    if (isTypeLegal(VT)) continue;
806
807    // Determine if there is a legal wider type.  If so, we should promote to
808    // that wider vector type.
809    EVT EltVT = VT.getVectorElementType();
810    unsigned NElts = VT.getVectorNumElements();
811    if (NElts != 1) {
812      bool IsLegalWiderType = false;
813      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
814        EVT SVT = (MVT::SimpleValueType)nVT;
815        if (SVT.getVectorElementType() == EltVT &&
816            SVT.getVectorNumElements() > NElts &&
817            isTypeLegal(SVT)) {
818          TransformToType[i] = SVT;
819          RegisterTypeForVT[i] = SVT;
820          NumRegistersForVT[i] = 1;
821          ValueTypeActions.setTypeAction(VT, Promote);
822          IsLegalWiderType = true;
823          break;
824        }
825      }
826      if (IsLegalWiderType) continue;
827    }
828
829    MVT IntermediateVT;
830    EVT RegisterVT;
831    unsigned NumIntermediates;
832    NumRegistersForVT[i] =
833      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
834                                RegisterVT, this);
835    RegisterTypeForVT[i] = RegisterVT;
836
837    EVT NVT = VT.getPow2VectorType();
838    if (NVT == VT) {
839      // Type is already a power of 2.  The default action is to split.
840      TransformToType[i] = MVT::Other;
841      ValueTypeActions.setTypeAction(VT, Expand);
842    } else {
843      TransformToType[i] = NVT;
844      ValueTypeActions.setTypeAction(VT, Promote);
845    }
846  }
847
848  // Determine the 'representative' register class for each value type.
849  // An representative register class is the largest (meaning one which is
850  // not a sub-register class / subreg register class) legal register class for
851  // a group of value types. For example, on i386, i8, i16, and i32
852  // representative would be GR32; while on x86_64 it's GR64.
853  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
854    const TargetRegisterClass* RRC;
855    uint8_t Cost;
856    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
857    RepRegClassForVT[i] = RRC;
858    RepRegClassCostForVT[i] = Cost;
859  }
860}
861
862const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
863  return NULL;
864}
865
866
867MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
868  return PointerTy.SimpleTy;
869}
870
871MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
872  return MVT::i32; // return the default value
873}
874
875/// getVectorTypeBreakdown - Vector types are broken down into some number of
876/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
877/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
878/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
879///
880/// This method returns the number of registers needed, and the VT for each
881/// register.  It also returns the VT and quantity of the intermediate values
882/// before they are promoted/expanded.
883///
884unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
885                                                EVT &IntermediateVT,
886                                                unsigned &NumIntermediates,
887                                                EVT &RegisterVT) const {
888  unsigned NumElts = VT.getVectorNumElements();
889
890  // If there is a wider vector type with the same element type as this one,
891  // we should widen to that legal vector type.  This handles things like
892  // <2 x float> -> <4 x float>.
893  if (NumElts != 1 && getTypeAction(VT) == Promote) {
894    RegisterVT = getTypeToTransformTo(Context, VT);
895    if (isTypeLegal(RegisterVT)) {
896      IntermediateVT = RegisterVT;
897      NumIntermediates = 1;
898      return 1;
899    }
900  }
901
902  // Figure out the right, legal destination reg to copy into.
903  EVT EltTy = VT.getVectorElementType();
904
905  unsigned NumVectorRegs = 1;
906
907  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
908  // could break down into LHS/RHS like LegalizeDAG does.
909  if (!isPowerOf2_32(NumElts)) {
910    NumVectorRegs = NumElts;
911    NumElts = 1;
912  }
913
914  // Divide the input until we get to a supported size.  This will always
915  // end with a scalar if the target doesn't support vectors.
916  while (NumElts > 1 && !isTypeLegal(
917                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
918    NumElts >>= 1;
919    NumVectorRegs <<= 1;
920  }
921
922  NumIntermediates = NumVectorRegs;
923
924  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
925  if (!isTypeLegal(NewVT))
926    NewVT = EltTy;
927  IntermediateVT = NewVT;
928
929  EVT DestVT = getRegisterType(Context, NewVT);
930  RegisterVT = DestVT;
931  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
932    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
933
934  // Otherwise, promotion or legal types use the same number of registers as
935  // the vector decimated to the appropriate level.
936  return NumVectorRegs;
937}
938
939/// Get the EVTs and ArgFlags collections that represent the legalized return
940/// type of the given function.  This does not require a DAG or a return value,
941/// and is suitable for use before any DAGs for the function are constructed.
942/// TODO: Move this out of TargetLowering.cpp.
943void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
944                         SmallVectorImpl<ISD::OutputArg> &Outs,
945                         const TargetLowering &TLI,
946                         SmallVectorImpl<uint64_t> *Offsets) {
947  SmallVector<EVT, 4> ValueVTs;
948  ComputeValueVTs(TLI, ReturnType, ValueVTs);
949  unsigned NumValues = ValueVTs.size();
950  if (NumValues == 0) return;
951  unsigned Offset = 0;
952
953  for (unsigned j = 0, f = NumValues; j != f; ++j) {
954    EVT VT = ValueVTs[j];
955    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
956
957    if (attr & Attribute::SExt)
958      ExtendKind = ISD::SIGN_EXTEND;
959    else if (attr & Attribute::ZExt)
960      ExtendKind = ISD::ZERO_EXTEND;
961
962    // FIXME: C calling convention requires the return type to be promoted to
963    // at least 32-bit. But this is not necessary for non-C calling
964    // conventions. The frontend should mark functions whose return values
965    // require promoting with signext or zeroext attributes.
966    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
967      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
968      if (VT.bitsLT(MinVT))
969        VT = MinVT;
970    }
971
972    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
973    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
974    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
975                        PartVT.getTypeForEVT(ReturnType->getContext()));
976
977    // 'inreg' on function refers to return value
978    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
979    if (attr & Attribute::InReg)
980      Flags.setInReg();
981
982    // Propagate extension type if any
983    if (attr & Attribute::SExt)
984      Flags.setSExt();
985    else if (attr & Attribute::ZExt)
986      Flags.setZExt();
987
988    for (unsigned i = 0; i < NumParts; ++i) {
989      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
990      if (Offsets) {
991        Offsets->push_back(Offset);
992        Offset += PartSize;
993      }
994    }
995  }
996}
997
998/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
999/// function arguments in the caller parameter area.  This is the actual
1000/// alignment, not its logarithm.
1001unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1002  return TD->getCallFrameTypeAlignment(Ty);
1003}
1004
1005/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1006/// current function.  The returned value is a member of the
1007/// MachineJumpTableInfo::JTEntryKind enum.
1008unsigned TargetLowering::getJumpTableEncoding() const {
1009  // In non-pic modes, just use the address of a block.
1010  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1011    return MachineJumpTableInfo::EK_BlockAddress;
1012
1013  // In PIC mode, if the target supports a GPRel32 directive, use it.
1014  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1015    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1016
1017  // Otherwise, use a label difference.
1018  return MachineJumpTableInfo::EK_LabelDifference32;
1019}
1020
1021SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1022                                                 SelectionDAG &DAG) const {
1023  // If our PIC model is GP relative, use the global offset table as the base.
1024  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1025    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1026  return Table;
1027}
1028
1029/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1030/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1031/// MCExpr.
1032const MCExpr *
1033TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1034                                             unsigned JTI,MCContext &Ctx) const{
1035  // The normal PIC reloc base is the label at the start of the jump table.
1036  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1037}
1038
1039bool
1040TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1041  // Assume that everything is safe in static mode.
1042  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1043    return true;
1044
1045  // In dynamic-no-pic mode, assume that known defined values are safe.
1046  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1047      GA &&
1048      !GA->getGlobal()->isDeclaration() &&
1049      !GA->getGlobal()->isWeakForLinker())
1050    return true;
1051
1052  // Otherwise assume nothing is safe.
1053  return false;
1054}
1055
1056//===----------------------------------------------------------------------===//
1057//  Optimization Methods
1058//===----------------------------------------------------------------------===//
1059
1060/// ShrinkDemandedConstant - Check to see if the specified operand of the
1061/// specified instruction is a constant integer.  If so, check to see if there
1062/// are any bits set in the constant that are not demanded.  If so, shrink the
1063/// constant and return true.
1064bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1065                                                        const APInt &Demanded) {
1066  DebugLoc dl = Op.getDebugLoc();
1067
1068  // FIXME: ISD::SELECT, ISD::SELECT_CC
1069  switch (Op.getOpcode()) {
1070  default: break;
1071  case ISD::XOR:
1072  case ISD::AND:
1073  case ISD::OR: {
1074    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1075    if (!C) return false;
1076
1077    if (Op.getOpcode() == ISD::XOR &&
1078        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1079      return false;
1080
1081    // if we can expand it to have all bits set, do it
1082    if (C->getAPIntValue().intersects(~Demanded)) {
1083      EVT VT = Op.getValueType();
1084      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1085                                DAG.getConstant(Demanded &
1086                                                C->getAPIntValue(),
1087                                                VT));
1088      return CombineTo(Op, New);
1089    }
1090
1091    break;
1092  }
1093  }
1094
1095  return false;
1096}
1097
1098/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1099/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1100/// cast, but it could be generalized for targets with other types of
1101/// implicit widening casts.
1102bool
1103TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1104                                                    unsigned BitWidth,
1105                                                    const APInt &Demanded,
1106                                                    DebugLoc dl) {
1107  assert(Op.getNumOperands() == 2 &&
1108         "ShrinkDemandedOp only supports binary operators!");
1109  assert(Op.getNode()->getNumValues() == 1 &&
1110         "ShrinkDemandedOp only supports nodes with one result!");
1111
1112  // Don't do this if the node has another user, which may require the
1113  // full value.
1114  if (!Op.getNode()->hasOneUse())
1115    return false;
1116
1117  // Search for the smallest integer type with free casts to and from
1118  // Op's type. For expedience, just check power-of-2 integer types.
1119  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1120  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1121  if (!isPowerOf2_32(SmallVTBits))
1122    SmallVTBits = NextPowerOf2(SmallVTBits);
1123  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1124    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1125    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1126        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1127      // We found a type with free casts.
1128      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1129                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1130                                          Op.getNode()->getOperand(0)),
1131                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1132                                          Op.getNode()->getOperand(1)));
1133      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1134      return CombineTo(Op, Z);
1135    }
1136  }
1137  return false;
1138}
1139
1140/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1141/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1142/// use this information to simplify Op, create a new simplified DAG node and
1143/// return true, returning the original and new nodes in Old and New. Otherwise,
1144/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1145/// the expression (used to simplify the caller).  The KnownZero/One bits may
1146/// only be accurate for those bits in the DemandedMask.
1147bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1148                                          const APInt &DemandedMask,
1149                                          APInt &KnownZero,
1150                                          APInt &KnownOne,
1151                                          TargetLoweringOpt &TLO,
1152                                          unsigned Depth) const {
1153  unsigned BitWidth = DemandedMask.getBitWidth();
1154  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1155         "Mask size mismatches value type size!");
1156  APInt NewMask = DemandedMask;
1157  DebugLoc dl = Op.getDebugLoc();
1158
1159  // Don't know anything.
1160  KnownZero = KnownOne = APInt(BitWidth, 0);
1161
1162  // Other users may use these bits.
1163  if (!Op.getNode()->hasOneUse()) {
1164    if (Depth != 0) {
1165      // If not at the root, Just compute the KnownZero/KnownOne bits to
1166      // simplify things downstream.
1167      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1168      return false;
1169    }
1170    // If this is the root being simplified, allow it to have multiple uses,
1171    // just set the NewMask to all bits.
1172    NewMask = APInt::getAllOnesValue(BitWidth);
1173  } else if (DemandedMask == 0) {
1174    // Not demanding any bits from Op.
1175    if (Op.getOpcode() != ISD::UNDEF)
1176      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1177    return false;
1178  } else if (Depth == 6) {        // Limit search depth.
1179    return false;
1180  }
1181
1182  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1183  switch (Op.getOpcode()) {
1184  case ISD::Constant:
1185    // We know all of the bits for a constant!
1186    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1187    KnownZero = ~KnownOne & NewMask;
1188    return false;   // Don't fall through, will infinitely loop.
1189  case ISD::AND:
1190    // If the RHS is a constant, check to see if the LHS would be zero without
1191    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1192    // simplify the LHS, here we're using information from the LHS to simplify
1193    // the RHS.
1194    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1195      APInt LHSZero, LHSOne;
1196      // Do not increment Depth here; that can cause an infinite loop.
1197      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1198                                LHSZero, LHSOne, Depth);
1199      // If the LHS already has zeros where RHSC does, this and is dead.
1200      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1201        return TLO.CombineTo(Op, Op.getOperand(0));
1202      // If any of the set bits in the RHS are known zero on the LHS, shrink
1203      // the constant.
1204      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1205        return true;
1206    }
1207
1208    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1209                             KnownOne, TLO, Depth+1))
1210      return true;
1211    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1212    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1213                             KnownZero2, KnownOne2, TLO, Depth+1))
1214      return true;
1215    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1216
1217    // If all of the demanded bits are known one on one side, return the other.
1218    // These bits cannot contribute to the result of the 'and'.
1219    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1220      return TLO.CombineTo(Op, Op.getOperand(0));
1221    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1222      return TLO.CombineTo(Op, Op.getOperand(1));
1223    // If all of the demanded bits in the inputs are known zeros, return zero.
1224    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1225      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1226    // If the RHS is a constant, see if we can simplify it.
1227    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1228      return true;
1229    // If the operation can be done in a smaller type, do so.
1230    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1231      return true;
1232
1233    // Output known-1 bits are only known if set in both the LHS & RHS.
1234    KnownOne &= KnownOne2;
1235    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1236    KnownZero |= KnownZero2;
1237    break;
1238  case ISD::OR:
1239    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1240                             KnownOne, TLO, Depth+1))
1241      return true;
1242    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1244                             KnownZero2, KnownOne2, TLO, Depth+1))
1245      return true;
1246    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1247
1248    // If all of the demanded bits are known zero on one side, return the other.
1249    // These bits cannot contribute to the result of the 'or'.
1250    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1251      return TLO.CombineTo(Op, Op.getOperand(0));
1252    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1253      return TLO.CombineTo(Op, Op.getOperand(1));
1254    // If all of the potentially set bits on one side are known to be set on
1255    // the other side, just use the 'other' side.
1256    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1257      return TLO.CombineTo(Op, Op.getOperand(0));
1258    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1259      return TLO.CombineTo(Op, Op.getOperand(1));
1260    // If the RHS is a constant, see if we can simplify it.
1261    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1262      return true;
1263    // If the operation can be done in a smaller type, do so.
1264    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1265      return true;
1266
1267    // Output known-0 bits are only known if clear in both the LHS & RHS.
1268    KnownZero &= KnownZero2;
1269    // Output known-1 are known to be set if set in either the LHS | RHS.
1270    KnownOne |= KnownOne2;
1271    break;
1272  case ISD::XOR:
1273    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1274                             KnownOne, TLO, Depth+1))
1275      return true;
1276    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1277    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1278                             KnownOne2, TLO, Depth+1))
1279      return true;
1280    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1281
1282    // If all of the demanded bits are known zero on one side, return the other.
1283    // These bits cannot contribute to the result of the 'xor'.
1284    if ((KnownZero & NewMask) == NewMask)
1285      return TLO.CombineTo(Op, Op.getOperand(0));
1286    if ((KnownZero2 & NewMask) == NewMask)
1287      return TLO.CombineTo(Op, Op.getOperand(1));
1288    // If the operation can be done in a smaller type, do so.
1289    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1290      return true;
1291
1292    // If all of the unknown bits are known to be zero on one side or the other
1293    // (but not both) turn this into an *inclusive* or.
1294    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1295    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1296      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1297                                               Op.getOperand(0),
1298                                               Op.getOperand(1)));
1299
1300    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1301    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1302    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1303    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1304
1305    // If all of the demanded bits on one side are known, and all of the set
1306    // bits on that side are also known to be set on the other side, turn this
1307    // into an AND, as we know the bits will be cleared.
1308    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1309    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1310      if ((KnownOne & KnownOne2) == KnownOne) {
1311        EVT VT = Op.getValueType();
1312        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1313        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1314                                                 Op.getOperand(0), ANDC));
1315      }
1316    }
1317
1318    // If the RHS is a constant, see if we can simplify it.
1319    // for XOR, we prefer to force bits to 1 if they will make a -1.
1320    // if we can't force bits, try to shrink constant
1321    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1322      APInt Expanded = C->getAPIntValue() | (~NewMask);
1323      // if we can expand it to have all bits set, do it
1324      if (Expanded.isAllOnesValue()) {
1325        if (Expanded != C->getAPIntValue()) {
1326          EVT VT = Op.getValueType();
1327          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1328                                          TLO.DAG.getConstant(Expanded, VT));
1329          return TLO.CombineTo(Op, New);
1330        }
1331        // if it already has all the bits set, nothing to change
1332        // but don't shrink either!
1333      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1334        return true;
1335      }
1336    }
1337
1338    KnownZero = KnownZeroOut;
1339    KnownOne  = KnownOneOut;
1340    break;
1341  case ISD::SELECT:
1342    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1343                             KnownOne, TLO, Depth+1))
1344      return true;
1345    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1346                             KnownOne2, TLO, Depth+1))
1347      return true;
1348    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1349    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1350
1351    // If the operands are constants, see if we can simplify them.
1352    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1353      return true;
1354
1355    // Only known if known in both the LHS and RHS.
1356    KnownOne &= KnownOne2;
1357    KnownZero &= KnownZero2;
1358    break;
1359  case ISD::SELECT_CC:
1360    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1361                             KnownOne, TLO, Depth+1))
1362      return true;
1363    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1364                             KnownOne2, TLO, Depth+1))
1365      return true;
1366    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1367    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1368
1369    // If the operands are constants, see if we can simplify them.
1370    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1371      return true;
1372
1373    // Only known if known in both the LHS and RHS.
1374    KnownOne &= KnownOne2;
1375    KnownZero &= KnownZero2;
1376    break;
1377  case ISD::SHL:
1378    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1379      unsigned ShAmt = SA->getZExtValue();
1380      SDValue InOp = Op.getOperand(0);
1381
1382      // If the shift count is an invalid immediate, don't do anything.
1383      if (ShAmt >= BitWidth)
1384        break;
1385
1386      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1387      // single shift.  We can do this if the bottom bits (which are shifted
1388      // out) are never demanded.
1389      if (InOp.getOpcode() == ISD::SRL &&
1390          isa<ConstantSDNode>(InOp.getOperand(1))) {
1391        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1392          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1393          unsigned Opc = ISD::SHL;
1394          int Diff = ShAmt-C1;
1395          if (Diff < 0) {
1396            Diff = -Diff;
1397            Opc = ISD::SRL;
1398          }
1399
1400          SDValue NewSA =
1401            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1402          EVT VT = Op.getValueType();
1403          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1404                                                   InOp.getOperand(0), NewSA));
1405        }
1406      }
1407
1408      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1409                               KnownZero, KnownOne, TLO, Depth+1))
1410        return true;
1411
1412      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1413      // are not demanded. This will likely allow the anyext to be folded away.
1414      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1415        SDValue InnerOp = InOp.getNode()->getOperand(0);
1416        EVT InnerVT = InnerOp.getValueType();
1417        if ((APInt::getHighBitsSet(BitWidth,
1418                                   BitWidth - InnerVT.getSizeInBits()) &
1419               DemandedMask) == 0 &&
1420            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1421          EVT ShTy = getShiftAmountTy(InnerVT);
1422          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1423            ShTy = InnerVT;
1424          SDValue NarrowShl =
1425            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1426                            TLO.DAG.getConstant(ShAmt, ShTy));
1427          return
1428            TLO.CombineTo(Op,
1429                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1430                                          NarrowShl));
1431        }
1432      }
1433
1434      KnownZero <<= SA->getZExtValue();
1435      KnownOne  <<= SA->getZExtValue();
1436      // low bits known zero.
1437      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1438    }
1439    break;
1440  case ISD::SRL:
1441    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1442      EVT VT = Op.getValueType();
1443      unsigned ShAmt = SA->getZExtValue();
1444      unsigned VTSize = VT.getSizeInBits();
1445      SDValue InOp = Op.getOperand(0);
1446
1447      // If the shift count is an invalid immediate, don't do anything.
1448      if (ShAmt >= BitWidth)
1449        break;
1450
1451      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1452      // single shift.  We can do this if the top bits (which are shifted out)
1453      // are never demanded.
1454      if (InOp.getOpcode() == ISD::SHL &&
1455          isa<ConstantSDNode>(InOp.getOperand(1))) {
1456        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1457          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1458          unsigned Opc = ISD::SRL;
1459          int Diff = ShAmt-C1;
1460          if (Diff < 0) {
1461            Diff = -Diff;
1462            Opc = ISD::SHL;
1463          }
1464
1465          SDValue NewSA =
1466            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1467          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1468                                                   InOp.getOperand(0), NewSA));
1469        }
1470      }
1471
1472      // Compute the new bits that are at the top now.
1473      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1474                               KnownZero, KnownOne, TLO, Depth+1))
1475        return true;
1476      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1477      KnownZero = KnownZero.lshr(ShAmt);
1478      KnownOne  = KnownOne.lshr(ShAmt);
1479
1480      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1481      KnownZero |= HighBits;  // High bits known zero.
1482    }
1483    break;
1484  case ISD::SRA:
1485    // If this is an arithmetic shift right and only the low-bit is set, we can
1486    // always convert this into a logical shr, even if the shift amount is
1487    // variable.  The low bit of the shift cannot be an input sign bit unless
1488    // the shift amount is >= the size of the datatype, which is undefined.
1489    if (DemandedMask == 1)
1490      return TLO.CombineTo(Op,
1491                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1492                                           Op.getOperand(0), Op.getOperand(1)));
1493
1494    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1495      EVT VT = Op.getValueType();
1496      unsigned ShAmt = SA->getZExtValue();
1497
1498      // If the shift count is an invalid immediate, don't do anything.
1499      if (ShAmt >= BitWidth)
1500        break;
1501
1502      APInt InDemandedMask = (NewMask << ShAmt);
1503
1504      // If any of the demanded bits are produced by the sign extension, we also
1505      // demand the input sign bit.
1506      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1507      if (HighBits.intersects(NewMask))
1508        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1509
1510      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1511                               KnownZero, KnownOne, TLO, Depth+1))
1512        return true;
1513      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514      KnownZero = KnownZero.lshr(ShAmt);
1515      KnownOne  = KnownOne.lshr(ShAmt);
1516
1517      // Handle the sign bit, adjusted to where it is now in the mask.
1518      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1519
1520      // If the input sign bit is known to be zero, or if none of the top bits
1521      // are demanded, turn this into an unsigned shift right.
1522      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1523        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1524                                                 Op.getOperand(0),
1525                                                 Op.getOperand(1)));
1526      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1527        KnownOne |= HighBits;
1528      }
1529    }
1530    break;
1531  case ISD::SIGN_EXTEND_INREG: {
1532    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1533
1534    // Sign extension.  Compute the demanded bits in the result that are not
1535    // present in the input.
1536    APInt NewBits =
1537      APInt::getHighBitsSet(BitWidth,
1538                            BitWidth - EVT.getScalarType().getSizeInBits());
1539
1540    // If none of the extended bits are demanded, eliminate the sextinreg.
1541    if ((NewBits & NewMask) == 0)
1542      return TLO.CombineTo(Op, Op.getOperand(0));
1543
1544    APInt InSignBit =
1545      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1546    APInt InputDemandedBits =
1547      APInt::getLowBitsSet(BitWidth,
1548                           EVT.getScalarType().getSizeInBits()) &
1549      NewMask;
1550
1551    // Since the sign extended bits are demanded, we know that the sign
1552    // bit is demanded.
1553    InputDemandedBits |= InSignBit;
1554
1555    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1556                             KnownZero, KnownOne, TLO, Depth+1))
1557      return true;
1558    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1559
1560    // If the sign bit of the input is known set or clear, then we know the
1561    // top bits of the result.
1562
1563    // If the input sign bit is known zero, convert this into a zero extension.
1564    if (KnownZero.intersects(InSignBit))
1565      return TLO.CombineTo(Op,
1566                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1567
1568    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1569      KnownOne |= NewBits;
1570      KnownZero &= ~NewBits;
1571    } else {                       // Input sign bit unknown
1572      KnownZero &= ~NewBits;
1573      KnownOne &= ~NewBits;
1574    }
1575    break;
1576  }
1577  case ISD::ZERO_EXTEND: {
1578    unsigned OperandBitWidth =
1579      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1580    APInt InMask = NewMask.trunc(OperandBitWidth);
1581
1582    // If none of the top bits are demanded, convert this into an any_extend.
1583    APInt NewBits =
1584      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1585    if (!NewBits.intersects(NewMask))
1586      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1587                                               Op.getValueType(),
1588                                               Op.getOperand(0)));
1589
1590    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1591                             KnownZero, KnownOne, TLO, Depth+1))
1592      return true;
1593    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1594    KnownZero = KnownZero.zext(BitWidth);
1595    KnownOne = KnownOne.zext(BitWidth);
1596    KnownZero |= NewBits;
1597    break;
1598  }
1599  case ISD::SIGN_EXTEND: {
1600    EVT InVT = Op.getOperand(0).getValueType();
1601    unsigned InBits = InVT.getScalarType().getSizeInBits();
1602    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1603    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1604    APInt NewBits   = ~InMask & NewMask;
1605
1606    // If none of the top bits are demanded, convert this into an any_extend.
1607    if (NewBits == 0)
1608      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1609                                              Op.getValueType(),
1610                                              Op.getOperand(0)));
1611
1612    // Since some of the sign extended bits are demanded, we know that the sign
1613    // bit is demanded.
1614    APInt InDemandedBits = InMask & NewMask;
1615    InDemandedBits |= InSignBit;
1616    InDemandedBits = InDemandedBits.trunc(InBits);
1617
1618    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1619                             KnownOne, TLO, Depth+1))
1620      return true;
1621    KnownZero = KnownZero.zext(BitWidth);
1622    KnownOne = KnownOne.zext(BitWidth);
1623
1624    // If the sign bit is known zero, convert this to a zero extend.
1625    if (KnownZero.intersects(InSignBit))
1626      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1627                                               Op.getValueType(),
1628                                               Op.getOperand(0)));
1629
1630    // If the sign bit is known one, the top bits match.
1631    if (KnownOne.intersects(InSignBit)) {
1632      KnownOne  |= NewBits;
1633      KnownZero &= ~NewBits;
1634    } else {   // Otherwise, top bits aren't known.
1635      KnownOne  &= ~NewBits;
1636      KnownZero &= ~NewBits;
1637    }
1638    break;
1639  }
1640  case ISD::ANY_EXTEND: {
1641    unsigned OperandBitWidth =
1642      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1643    APInt InMask = NewMask.trunc(OperandBitWidth);
1644    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1645                             KnownZero, KnownOne, TLO, Depth+1))
1646      return true;
1647    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1648    KnownZero = KnownZero.zext(BitWidth);
1649    KnownOne = KnownOne.zext(BitWidth);
1650    break;
1651  }
1652  case ISD::TRUNCATE: {
1653    // Simplify the input, using demanded bit information, and compute the known
1654    // zero/one bits live out.
1655    unsigned OperandBitWidth =
1656      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1657    APInt TruncMask = NewMask.zext(OperandBitWidth);
1658    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1659                             KnownZero, KnownOne, TLO, Depth+1))
1660      return true;
1661    KnownZero = KnownZero.trunc(BitWidth);
1662    KnownOne = KnownOne.trunc(BitWidth);
1663
1664    // If the input is only used by this truncate, see if we can shrink it based
1665    // on the known demanded bits.
1666    if (Op.getOperand(0).getNode()->hasOneUse()) {
1667      SDValue In = Op.getOperand(0);
1668      switch (In.getOpcode()) {
1669      default: break;
1670      case ISD::SRL:
1671        // Shrink SRL by a constant if none of the high bits shifted in are
1672        // demanded.
1673        if (TLO.LegalTypes() &&
1674            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1675          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1676          // undesirable.
1677          break;
1678        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1679        if (!ShAmt)
1680          break;
1681        SDValue Shift = In.getOperand(1);
1682        if (TLO.LegalTypes()) {
1683          uint64_t ShVal = ShAmt->getZExtValue();
1684          Shift =
1685            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1686        }
1687
1688        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1689                                               OperandBitWidth - BitWidth);
1690        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1691
1692        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1693          // None of the shifted in bits are needed.  Add a truncate of the
1694          // shift input, then shift it.
1695          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1696                                             Op.getValueType(),
1697                                             In.getOperand(0));
1698          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1699                                                   Op.getValueType(),
1700                                                   NewTrunc,
1701                                                   Shift));
1702        }
1703        break;
1704      }
1705    }
1706
1707    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1708    break;
1709  }
1710  case ISD::AssertZext: {
1711    // Demand all the bits of the input that are demanded in the output.
1712    // The low bits are obvious; the high bits are demanded because we're
1713    // asserting that they're zero here.
1714    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1715                             KnownZero, KnownOne, TLO, Depth+1))
1716      return true;
1717    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1718
1719    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1720    APInt InMask = APInt::getLowBitsSet(BitWidth,
1721                                        VT.getSizeInBits());
1722    KnownZero |= ~InMask & NewMask;
1723    break;
1724  }
1725  case ISD::BITCAST:
1726#if 0
1727    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1728    // is demanded, turn this into a FGETSIGN.
1729    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1730        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1731        !MVT::isVector(Op.getOperand(0).getValueType())) {
1732      // Only do this xform if FGETSIGN is valid or if before legalize.
1733      if (!TLO.AfterLegalize ||
1734          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1735        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1736        // place.  We expect the SHL to be eliminated by other optimizations.
1737        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1738                                         Op.getOperand(0));
1739        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1740        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1741        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1742                                                 Sign, ShAmt));
1743      }
1744    }
1745#endif
1746    break;
1747  case ISD::ADD:
1748  case ISD::MUL:
1749  case ISD::SUB: {
1750    // Add, Sub, and Mul don't demand any bits in positions beyond that
1751    // of the highest bit demanded of them.
1752    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1753                                        BitWidth - NewMask.countLeadingZeros());
1754    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1755                             KnownOne2, TLO, Depth+1))
1756      return true;
1757    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1758                             KnownOne2, TLO, Depth+1))
1759      return true;
1760    // See if the operation should be performed at a smaller bit width.
1761    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1762      return true;
1763  }
1764  // FALL THROUGH
1765  default:
1766    // Just use ComputeMaskedBits to compute output bits.
1767    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1768    break;
1769  }
1770
1771  // If we know the value of all of the demanded bits, return this as a
1772  // constant.
1773  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1774    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1775
1776  return false;
1777}
1778
1779/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1780/// in Mask are known to be either zero or one and return them in the
1781/// KnownZero/KnownOne bitsets.
1782void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1783                                                    const APInt &Mask,
1784                                                    APInt &KnownZero,
1785                                                    APInt &KnownOne,
1786                                                    const SelectionDAG &DAG,
1787                                                    unsigned Depth) const {
1788  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1789          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1790          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1791          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1792         "Should use MaskedValueIsZero if you don't know whether Op"
1793         " is a target node!");
1794  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1795}
1796
1797/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1798/// targets that want to expose additional information about sign bits to the
1799/// DAG Combiner.
1800unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1801                                                         unsigned Depth) const {
1802  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1803          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1804          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1805          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1806         "Should use ComputeNumSignBits if you don't know whether Op"
1807         " is a target node!");
1808  return 1;
1809}
1810
1811/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1812/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1813/// determine which bit is set.
1814///
1815static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1816  // A left-shift of a constant one will have exactly one bit set, because
1817  // shifting the bit off the end is undefined.
1818  if (Val.getOpcode() == ISD::SHL)
1819    if (ConstantSDNode *C =
1820         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1821      if (C->getAPIntValue() == 1)
1822        return true;
1823
1824  // Similarly, a right-shift of a constant sign-bit will have exactly
1825  // one bit set.
1826  if (Val.getOpcode() == ISD::SRL)
1827    if (ConstantSDNode *C =
1828         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1829      if (C->getAPIntValue().isSignBit())
1830        return true;
1831
1832  // More could be done here, though the above checks are enough
1833  // to handle some common cases.
1834
1835  // Fall back to ComputeMaskedBits to catch other known cases.
1836  EVT OpVT = Val.getValueType();
1837  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1838  APInt Mask = APInt::getAllOnesValue(BitWidth);
1839  APInt KnownZero, KnownOne;
1840  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1841  return (KnownZero.countPopulation() == BitWidth - 1) &&
1842         (KnownOne.countPopulation() == 1);
1843}
1844
1845/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1846/// and cc. If it is unable to simplify it, return a null SDValue.
1847SDValue
1848TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1849                              ISD::CondCode Cond, bool foldBooleans,
1850                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1851  SelectionDAG &DAG = DCI.DAG;
1852  LLVMContext &Context = *DAG.getContext();
1853
1854  // These setcc operations always fold.
1855  switch (Cond) {
1856  default: break;
1857  case ISD::SETFALSE:
1858  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1859  case ISD::SETTRUE:
1860  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1861  }
1862
1863  if (isa<ConstantSDNode>(N0.getNode())) {
1864    // Ensure that the constant occurs on the RHS, and fold constant
1865    // comparisons.
1866    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1867  }
1868
1869  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1870    const APInt &C1 = N1C->getAPIntValue();
1871
1872    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1873    // equality comparison, then we're just comparing whether X itself is
1874    // zero.
1875    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1876        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1877        N0.getOperand(1).getOpcode() == ISD::Constant) {
1878      const APInt &ShAmt
1879        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1880      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1881          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1882        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1883          // (srl (ctlz x), 5) == 0  -> X != 0
1884          // (srl (ctlz x), 5) != 1  -> X != 0
1885          Cond = ISD::SETNE;
1886        } else {
1887          // (srl (ctlz x), 5) != 0  -> X == 0
1888          // (srl (ctlz x), 5) == 1  -> X == 0
1889          Cond = ISD::SETEQ;
1890        }
1891        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1892        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1893                            Zero, Cond);
1894      }
1895    }
1896
1897    SDValue CTPOP = N0;
1898    // Look through truncs that don't change the value of a ctpop.
1899    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1900      CTPOP = N0.getOperand(0);
1901
1902    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1903        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1904                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1905      EVT CTVT = CTPOP.getValueType();
1906      SDValue CTOp = CTPOP.getOperand(0);
1907
1908      // (ctpop x) u< 2 -> (x & x-1) == 0
1909      // (ctpop x) u> 1 -> (x & x-1) != 0
1910      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1911        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1912                                  DAG.getConstant(1, CTVT));
1913        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1914        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1915        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1916      }
1917
1918      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1919    }
1920
1921    // If the LHS is '(and load, const)', the RHS is 0,
1922    // the test is for equality or unsigned, and all 1 bits of the const are
1923    // in the same partial word, see if we can shorten the load.
1924    if (DCI.isBeforeLegalize() &&
1925        N0.getOpcode() == ISD::AND && C1 == 0 &&
1926        N0.getNode()->hasOneUse() &&
1927        isa<LoadSDNode>(N0.getOperand(0)) &&
1928        N0.getOperand(0).getNode()->hasOneUse() &&
1929        isa<ConstantSDNode>(N0.getOperand(1))) {
1930      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1931      APInt bestMask;
1932      unsigned bestWidth = 0, bestOffset = 0;
1933      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1934        unsigned origWidth = N0.getValueType().getSizeInBits();
1935        unsigned maskWidth = origWidth;
1936        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1937        // 8 bits, but have to be careful...
1938        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1939          origWidth = Lod->getMemoryVT().getSizeInBits();
1940        const APInt &Mask =
1941          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1942        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1943          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1944          for (unsigned offset=0; offset<origWidth/width; offset++) {
1945            if ((newMask & Mask) == Mask) {
1946              if (!TD->isLittleEndian())
1947                bestOffset = (origWidth/width - offset - 1) * (width/8);
1948              else
1949                bestOffset = (uint64_t)offset * (width/8);
1950              bestMask = Mask.lshr(offset * (width/8) * 8);
1951              bestWidth = width;
1952              break;
1953            }
1954            newMask = newMask << width;
1955          }
1956        }
1957      }
1958      if (bestWidth) {
1959        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1960        if (newVT.isRound()) {
1961          EVT PtrType = Lod->getOperand(1).getValueType();
1962          SDValue Ptr = Lod->getBasePtr();
1963          if (bestOffset != 0)
1964            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1965                              DAG.getConstant(bestOffset, PtrType));
1966          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1967          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1968                                Lod->getPointerInfo().getWithOffset(bestOffset),
1969                                        false, false, NewAlign);
1970          return DAG.getSetCC(dl, VT,
1971                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1972                                      DAG.getConstant(bestMask.trunc(bestWidth),
1973                                                      newVT)),
1974                              DAG.getConstant(0LL, newVT), Cond);
1975        }
1976      }
1977    }
1978
1979    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1980    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1981      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1982
1983      // If the comparison constant has bits in the upper part, the
1984      // zero-extended value could never match.
1985      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1986                                              C1.getBitWidth() - InSize))) {
1987        switch (Cond) {
1988        case ISD::SETUGT:
1989        case ISD::SETUGE:
1990        case ISD::SETEQ: return DAG.getConstant(0, VT);
1991        case ISD::SETULT:
1992        case ISD::SETULE:
1993        case ISD::SETNE: return DAG.getConstant(1, VT);
1994        case ISD::SETGT:
1995        case ISD::SETGE:
1996          // True if the sign bit of C1 is set.
1997          return DAG.getConstant(C1.isNegative(), VT);
1998        case ISD::SETLT:
1999        case ISD::SETLE:
2000          // True if the sign bit of C1 isn't set.
2001          return DAG.getConstant(C1.isNonNegative(), VT);
2002        default:
2003          break;
2004        }
2005      }
2006
2007      // Otherwise, we can perform the comparison with the low bits.
2008      switch (Cond) {
2009      case ISD::SETEQ:
2010      case ISD::SETNE:
2011      case ISD::SETUGT:
2012      case ISD::SETUGE:
2013      case ISD::SETULT:
2014      case ISD::SETULE: {
2015        EVT newVT = N0.getOperand(0).getValueType();
2016        if (DCI.isBeforeLegalizeOps() ||
2017            (isOperationLegal(ISD::SETCC, newVT) &&
2018              getCondCodeAction(Cond, newVT)==Legal))
2019          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2020                              DAG.getConstant(C1.trunc(InSize), newVT),
2021                              Cond);
2022        break;
2023      }
2024      default:
2025        break;   // todo, be more careful with signed comparisons
2026      }
2027    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2028               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2029      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2030      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2031      EVT ExtDstTy = N0.getValueType();
2032      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2033
2034      // If the constant doesn't fit into the number of bits for the source of
2035      // the sign extension, it is impossible for both sides to be equal.
2036      if (C1.getMinSignedBits() > ExtSrcTyBits)
2037        return DAG.getConstant(Cond == ISD::SETNE, VT);
2038
2039      SDValue ZextOp;
2040      EVT Op0Ty = N0.getOperand(0).getValueType();
2041      if (Op0Ty == ExtSrcTy) {
2042        ZextOp = N0.getOperand(0);
2043      } else {
2044        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2045        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2046                              DAG.getConstant(Imm, Op0Ty));
2047      }
2048      if (!DCI.isCalledByLegalizer())
2049        DCI.AddToWorklist(ZextOp.getNode());
2050      // Otherwise, make this a use of a zext.
2051      return DAG.getSetCC(dl, VT, ZextOp,
2052                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2053                                                              ExtDstTyBits,
2054                                                              ExtSrcTyBits),
2055                                          ExtDstTy),
2056                          Cond);
2057    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2058                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2059      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2060      if (N0.getOpcode() == ISD::SETCC &&
2061          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2062        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2063        if (TrueWhenTrue)
2064          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2065        // Invert the condition.
2066        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2067        CC = ISD::getSetCCInverse(CC,
2068                                  N0.getOperand(0).getValueType().isInteger());
2069        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2070      }
2071
2072      if ((N0.getOpcode() == ISD::XOR ||
2073           (N0.getOpcode() == ISD::AND &&
2074            N0.getOperand(0).getOpcode() == ISD::XOR &&
2075            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2076          isa<ConstantSDNode>(N0.getOperand(1)) &&
2077          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2078        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2079        // can only do this if the top bits are known zero.
2080        unsigned BitWidth = N0.getValueSizeInBits();
2081        if (DAG.MaskedValueIsZero(N0,
2082                                  APInt::getHighBitsSet(BitWidth,
2083                                                        BitWidth-1))) {
2084          // Okay, get the un-inverted input value.
2085          SDValue Val;
2086          if (N0.getOpcode() == ISD::XOR)
2087            Val = N0.getOperand(0);
2088          else {
2089            assert(N0.getOpcode() == ISD::AND &&
2090                    N0.getOperand(0).getOpcode() == ISD::XOR);
2091            // ((X^1)&1)^1 -> X & 1
2092            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2093                              N0.getOperand(0).getOperand(0),
2094                              N0.getOperand(1));
2095          }
2096
2097          return DAG.getSetCC(dl, VT, Val, N1,
2098                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2099        }
2100      } else if (N1C->getAPIntValue() == 1 &&
2101                 (VT == MVT::i1 ||
2102                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2103        SDValue Op0 = N0;
2104        if (Op0.getOpcode() == ISD::TRUNCATE)
2105          Op0 = Op0.getOperand(0);
2106
2107        if ((Op0.getOpcode() == ISD::XOR) &&
2108            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2109            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2110          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2111          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2112          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2113                              Cond);
2114        } else if (Op0.getOpcode() == ISD::AND &&
2115                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2116                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2117          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2118          if (Op0.getValueType().bitsGT(VT))
2119            Op0 = DAG.getNode(ISD::AND, dl, VT,
2120                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2121                          DAG.getConstant(1, VT));
2122          else if (Op0.getValueType().bitsLT(VT))
2123            Op0 = DAG.getNode(ISD::AND, dl, VT,
2124                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2125                        DAG.getConstant(1, VT));
2126
2127          return DAG.getSetCC(dl, VT, Op0,
2128                              DAG.getConstant(0, Op0.getValueType()),
2129                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2130        }
2131      }
2132    }
2133
2134    APInt MinVal, MaxVal;
2135    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2136    if (ISD::isSignedIntSetCC(Cond)) {
2137      MinVal = APInt::getSignedMinValue(OperandBitSize);
2138      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2139    } else {
2140      MinVal = APInt::getMinValue(OperandBitSize);
2141      MaxVal = APInt::getMaxValue(OperandBitSize);
2142    }
2143
2144    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2145    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2146      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2147      // X >= C0 --> X > (C0-1)
2148      return DAG.getSetCC(dl, VT, N0,
2149                          DAG.getConstant(C1-1, N1.getValueType()),
2150                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2151    }
2152
2153    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2154      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2155      // X <= C0 --> X < (C0+1)
2156      return DAG.getSetCC(dl, VT, N0,
2157                          DAG.getConstant(C1+1, N1.getValueType()),
2158                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2159    }
2160
2161    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2162      return DAG.getConstant(0, VT);      // X < MIN --> false
2163    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2164      return DAG.getConstant(1, VT);      // X >= MIN --> true
2165    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2166      return DAG.getConstant(0, VT);      // X > MAX --> false
2167    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2168      return DAG.getConstant(1, VT);      // X <= MAX --> true
2169
2170    // Canonicalize setgt X, Min --> setne X, Min
2171    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2172      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2173    // Canonicalize setlt X, Max --> setne X, Max
2174    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2175      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2176
2177    // If we have setult X, 1, turn it into seteq X, 0
2178    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2179      return DAG.getSetCC(dl, VT, N0,
2180                          DAG.getConstant(MinVal, N0.getValueType()),
2181                          ISD::SETEQ);
2182    // If we have setugt X, Max-1, turn it into seteq X, Max
2183    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2184      return DAG.getSetCC(dl, VT, N0,
2185                          DAG.getConstant(MaxVal, N0.getValueType()),
2186                          ISD::SETEQ);
2187
2188    // If we have "setcc X, C0", check to see if we can shrink the immediate
2189    // by changing cc.
2190
2191    // SETUGT X, SINTMAX  -> SETLT X, 0
2192    if (Cond == ISD::SETUGT &&
2193        C1 == APInt::getSignedMaxValue(OperandBitSize))
2194      return DAG.getSetCC(dl, VT, N0,
2195                          DAG.getConstant(0, N1.getValueType()),
2196                          ISD::SETLT);
2197
2198    // SETULT X, SINTMIN  -> SETGT X, -1
2199    if (Cond == ISD::SETULT &&
2200        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2201      SDValue ConstMinusOne =
2202          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2203                          N1.getValueType());
2204      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2205    }
2206
2207    // Fold bit comparisons when we can.
2208    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2209        (VT == N0.getValueType() ||
2210         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2211        N0.getOpcode() == ISD::AND)
2212      if (ConstantSDNode *AndRHS =
2213                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2214        EVT ShiftTy = DCI.isBeforeLegalize() ?
2215          getPointerTy() : getShiftAmountTy(N0.getValueType());
2216        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2217          // Perform the xform if the AND RHS is a single bit.
2218          if (AndRHS->getAPIntValue().isPowerOf2()) {
2219            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2220                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2221                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2222          }
2223        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2224          // (X & 8) == 8  -->  (X & 8) >> 3
2225          // Perform the xform if C1 is a single bit.
2226          if (C1.isPowerOf2()) {
2227            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2228                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2229                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2230          }
2231        }
2232      }
2233  }
2234
2235  if (isa<ConstantFPSDNode>(N0.getNode())) {
2236    // Constant fold or commute setcc.
2237    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2238    if (O.getNode()) return O;
2239  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2240    // If the RHS of an FP comparison is a constant, simplify it away in
2241    // some cases.
2242    if (CFP->getValueAPF().isNaN()) {
2243      // If an operand is known to be a nan, we can fold it.
2244      switch (ISD::getUnorderedFlavor(Cond)) {
2245      default: llvm_unreachable("Unknown flavor!");
2246      case 0:  // Known false.
2247        return DAG.getConstant(0, VT);
2248      case 1:  // Known true.
2249        return DAG.getConstant(1, VT);
2250      case 2:  // Undefined.
2251        return DAG.getUNDEF(VT);
2252      }
2253    }
2254
2255    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2256    // constant if knowing that the operand is non-nan is enough.  We prefer to
2257    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2258    // materialize 0.0.
2259    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2260      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2261
2262    // If the condition is not legal, see if we can find an equivalent one
2263    // which is legal.
2264    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2265      // If the comparison was an awkward floating-point == or != and one of
2266      // the comparison operands is infinity or negative infinity, convert the
2267      // condition to a less-awkward <= or >=.
2268      if (CFP->getValueAPF().isInfinity()) {
2269        if (CFP->getValueAPF().isNegative()) {
2270          if (Cond == ISD::SETOEQ &&
2271              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2272            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2273          if (Cond == ISD::SETUEQ &&
2274              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2275            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2276          if (Cond == ISD::SETUNE &&
2277              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2278            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2279          if (Cond == ISD::SETONE &&
2280              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2281            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2282        } else {
2283          if (Cond == ISD::SETOEQ &&
2284              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2285            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2286          if (Cond == ISD::SETUEQ &&
2287              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2288            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2289          if (Cond == ISD::SETUNE &&
2290              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2291            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2292          if (Cond == ISD::SETONE &&
2293              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2294            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2295        }
2296      }
2297    }
2298  }
2299
2300  if (N0 == N1) {
2301    // We can always fold X == X for integer setcc's.
2302    if (N0.getValueType().isInteger())
2303      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2304    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2305    if (UOF == 2)   // FP operators that are undefined on NaNs.
2306      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2307    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2308      return DAG.getConstant(UOF, VT);
2309    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2310    // if it is not already.
2311    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2312    if (NewCond != Cond)
2313      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2314  }
2315
2316  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2317      N0.getValueType().isInteger()) {
2318    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2319        N0.getOpcode() == ISD::XOR) {
2320      // Simplify (X+Y) == (X+Z) -->  Y == Z
2321      if (N0.getOpcode() == N1.getOpcode()) {
2322        if (N0.getOperand(0) == N1.getOperand(0))
2323          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2324        if (N0.getOperand(1) == N1.getOperand(1))
2325          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2326        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2327          // If X op Y == Y op X, try other combinations.
2328          if (N0.getOperand(0) == N1.getOperand(1))
2329            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2330                                Cond);
2331          if (N0.getOperand(1) == N1.getOperand(0))
2332            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2333                                Cond);
2334        }
2335      }
2336
2337      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2338        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2339          // Turn (X+C1) == C2 --> X == C2-C1
2340          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2341            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2342                                DAG.getConstant(RHSC->getAPIntValue()-
2343                                                LHSR->getAPIntValue(),
2344                                N0.getValueType()), Cond);
2345          }
2346
2347          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2348          if (N0.getOpcode() == ISD::XOR)
2349            // If we know that all of the inverted bits are zero, don't bother
2350            // performing the inversion.
2351            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2352              return
2353                DAG.getSetCC(dl, VT, N0.getOperand(0),
2354                             DAG.getConstant(LHSR->getAPIntValue() ^
2355                                               RHSC->getAPIntValue(),
2356                                             N0.getValueType()),
2357                             Cond);
2358        }
2359
2360        // Turn (C1-X) == C2 --> X == C1-C2
2361        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2362          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2363            return
2364              DAG.getSetCC(dl, VT, N0.getOperand(1),
2365                           DAG.getConstant(SUBC->getAPIntValue() -
2366                                             RHSC->getAPIntValue(),
2367                                           N0.getValueType()),
2368                           Cond);
2369          }
2370        }
2371      }
2372
2373      // Simplify (X+Z) == X -->  Z == 0
2374      if (N0.getOperand(0) == N1)
2375        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2376                        DAG.getConstant(0, N0.getValueType()), Cond);
2377      if (N0.getOperand(1) == N1) {
2378        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2379          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2380                          DAG.getConstant(0, N0.getValueType()), Cond);
2381        else if (N0.getNode()->hasOneUse()) {
2382          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2383          // (Z-X) == X  --> Z == X<<1
2384          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2385                                     N1,
2386                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2387          if (!DCI.isCalledByLegalizer())
2388            DCI.AddToWorklist(SH.getNode());
2389          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2390        }
2391      }
2392    }
2393
2394    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2395        N1.getOpcode() == ISD::XOR) {
2396      // Simplify  X == (X+Z) -->  Z == 0
2397      if (N1.getOperand(0) == N0) {
2398        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2399                        DAG.getConstant(0, N1.getValueType()), Cond);
2400      } else if (N1.getOperand(1) == N0) {
2401        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2402          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2403                          DAG.getConstant(0, N1.getValueType()), Cond);
2404        } else if (N1.getNode()->hasOneUse()) {
2405          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2406          // X == (Z-X)  --> X<<1 == Z
2407          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2408                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2409          if (!DCI.isCalledByLegalizer())
2410            DCI.AddToWorklist(SH.getNode());
2411          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2412        }
2413      }
2414    }
2415
2416    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2417    // Note that where y is variable and is known to have at most
2418    // one bit set (for example, if it is z&1) we cannot do this;
2419    // the expressions are not equivalent when y==0.
2420    if (N0.getOpcode() == ISD::AND)
2421      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2422        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2423          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2424          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2425          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2426        }
2427      }
2428    if (N1.getOpcode() == ISD::AND)
2429      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2430        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2431          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2432          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2433          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2434        }
2435      }
2436  }
2437
2438  // Fold away ALL boolean setcc's.
2439  SDValue Temp;
2440  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2441    switch (Cond) {
2442    default: llvm_unreachable("Unknown integer setcc!");
2443    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2444      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2445      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2446      if (!DCI.isCalledByLegalizer())
2447        DCI.AddToWorklist(Temp.getNode());
2448      break;
2449    case ISD::SETNE:  // X != Y   -->  (X^Y)
2450      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2451      break;
2452    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2453    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2454      Temp = DAG.getNOT(dl, N0, MVT::i1);
2455      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2456      if (!DCI.isCalledByLegalizer())
2457        DCI.AddToWorklist(Temp.getNode());
2458      break;
2459    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2460    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2461      Temp = DAG.getNOT(dl, N1, MVT::i1);
2462      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2463      if (!DCI.isCalledByLegalizer())
2464        DCI.AddToWorklist(Temp.getNode());
2465      break;
2466    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2467    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2468      Temp = DAG.getNOT(dl, N0, MVT::i1);
2469      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2470      if (!DCI.isCalledByLegalizer())
2471        DCI.AddToWorklist(Temp.getNode());
2472      break;
2473    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2474    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2475      Temp = DAG.getNOT(dl, N1, MVT::i1);
2476      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2477      break;
2478    }
2479    if (VT != MVT::i1) {
2480      if (!DCI.isCalledByLegalizer())
2481        DCI.AddToWorklist(N0.getNode());
2482      // FIXME: If running after legalize, we probably can't do this.
2483      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2484    }
2485    return N0;
2486  }
2487
2488  // Could not fold it.
2489  return SDValue();
2490}
2491
2492/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2493/// node is a GlobalAddress + offset.
2494bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2495                                    int64_t &Offset) const {
2496  if (isa<GlobalAddressSDNode>(N)) {
2497    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2498    GA = GASD->getGlobal();
2499    Offset += GASD->getOffset();
2500    return true;
2501  }
2502
2503  if (N->getOpcode() == ISD::ADD) {
2504    SDValue N1 = N->getOperand(0);
2505    SDValue N2 = N->getOperand(1);
2506    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2507      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2508      if (V) {
2509        Offset += V->getSExtValue();
2510        return true;
2511      }
2512    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2513      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2514      if (V) {
2515        Offset += V->getSExtValue();
2516        return true;
2517      }
2518    }
2519  }
2520
2521  return false;
2522}
2523
2524
2525SDValue TargetLowering::
2526PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2527  // Default implementation: no optimization.
2528  return SDValue();
2529}
2530
2531//===----------------------------------------------------------------------===//
2532//  Inline Assembler Implementation Methods
2533//===----------------------------------------------------------------------===//
2534
2535
2536TargetLowering::ConstraintType
2537TargetLowering::getConstraintType(const std::string &Constraint) const {
2538  // FIXME: lots more standard ones to handle.
2539  if (Constraint.size() == 1) {
2540    switch (Constraint[0]) {
2541    default: break;
2542    case 'r': return C_RegisterClass;
2543    case 'm':    // memory
2544    case 'o':    // offsetable
2545    case 'V':    // not offsetable
2546      return C_Memory;
2547    case 'i':    // Simple Integer or Relocatable Constant
2548    case 'n':    // Simple Integer
2549    case 'E':    // Floating Point Constant
2550    case 'F':    // Floating Point Constant
2551    case 's':    // Relocatable Constant
2552    case 'p':    // Address.
2553    case 'X':    // Allow ANY value.
2554    case 'I':    // Target registers.
2555    case 'J':
2556    case 'K':
2557    case 'L':
2558    case 'M':
2559    case 'N':
2560    case 'O':
2561    case 'P':
2562    case '<':
2563    case '>':
2564      return C_Other;
2565    }
2566  }
2567
2568  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2569      Constraint[Constraint.size()-1] == '}')
2570    return C_Register;
2571  return C_Unknown;
2572}
2573
2574/// LowerXConstraint - try to replace an X constraint, which matches anything,
2575/// with another that has more specific requirements based on the type of the
2576/// corresponding operand.
2577const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2578  if (ConstraintVT.isInteger())
2579    return "r";
2580  if (ConstraintVT.isFloatingPoint())
2581    return "f";      // works for many targets
2582  return 0;
2583}
2584
2585/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2586/// vector.  If it is invalid, don't add anything to Ops.
2587void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2588                                                  char ConstraintLetter,
2589                                                  std::vector<SDValue> &Ops,
2590                                                  SelectionDAG &DAG) const {
2591  switch (ConstraintLetter) {
2592  default: break;
2593  case 'X':     // Allows any operand; labels (basic block) use this.
2594    if (Op.getOpcode() == ISD::BasicBlock) {
2595      Ops.push_back(Op);
2596      return;
2597    }
2598    // fall through
2599  case 'i':    // Simple Integer or Relocatable Constant
2600  case 'n':    // Simple Integer
2601  case 's': {  // Relocatable Constant
2602    // These operands are interested in values of the form (GV+C), where C may
2603    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2604    // is possible and fine if either GV or C are missing.
2605    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2606    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2607
2608    // If we have "(add GV, C)", pull out GV/C
2609    if (Op.getOpcode() == ISD::ADD) {
2610      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2611      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2612      if (C == 0 || GA == 0) {
2613        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2614        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2615      }
2616      if (C == 0 || GA == 0)
2617        C = 0, GA = 0;
2618    }
2619
2620    // If we find a valid operand, map to the TargetXXX version so that the
2621    // value itself doesn't get selected.
2622    if (GA) {   // Either &GV   or   &GV+C
2623      if (ConstraintLetter != 'n') {
2624        int64_t Offs = GA->getOffset();
2625        if (C) Offs += C->getZExtValue();
2626        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2627                                                 C ? C->getDebugLoc() : DebugLoc(),
2628                                                 Op.getValueType(), Offs));
2629        return;
2630      }
2631    }
2632    if (C) {   // just C, no GV.
2633      // Simple constants are not allowed for 's'.
2634      if (ConstraintLetter != 's') {
2635        // gcc prints these as sign extended.  Sign extend value to 64 bits
2636        // now; without this it would get ZExt'd later in
2637        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2638        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2639                                            MVT::i64));
2640        return;
2641      }
2642    }
2643    break;
2644  }
2645  }
2646}
2647
2648std::vector<unsigned> TargetLowering::
2649getRegClassForInlineAsmConstraint(const std::string &Constraint,
2650                                  EVT VT) const {
2651  return std::vector<unsigned>();
2652}
2653
2654
2655std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2656getRegForInlineAsmConstraint(const std::string &Constraint,
2657                             EVT VT) const {
2658  if (Constraint[0] != '{')
2659    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2660  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2661
2662  // Remove the braces from around the name.
2663  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2664
2665  // Figure out which register class contains this reg.
2666  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2667  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2668       E = RI->regclass_end(); RCI != E; ++RCI) {
2669    const TargetRegisterClass *RC = *RCI;
2670
2671    // If none of the value types for this register class are valid, we
2672    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2673    bool isLegal = false;
2674    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2675         I != E; ++I) {
2676      if (isTypeLegal(*I)) {
2677        isLegal = true;
2678        break;
2679      }
2680    }
2681
2682    if (!isLegal) continue;
2683
2684    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2685         I != E; ++I) {
2686      if (RegName.equals_lower(RI->getName(*I)))
2687        return std::make_pair(*I, RC);
2688    }
2689  }
2690
2691  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2692}
2693
2694//===----------------------------------------------------------------------===//
2695// Constraint Selection.
2696
2697/// isMatchingInputConstraint - Return true of this is an input operand that is
2698/// a matching constraint like "4".
2699bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2700  assert(!ConstraintCode.empty() && "No known constraint!");
2701  return isdigit(ConstraintCode[0]);
2702}
2703
2704/// getMatchedOperand - If this is an input matching constraint, this method
2705/// returns the output operand it matches.
2706unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2707  assert(!ConstraintCode.empty() && "No known constraint!");
2708  return atoi(ConstraintCode.c_str());
2709}
2710
2711
2712/// ParseConstraints - Split up the constraint string from the inline
2713/// assembly value into the specific constraints and their prefixes,
2714/// and also tie in the associated operand values.
2715/// If this returns an empty vector, and if the constraint string itself
2716/// isn't empty, there was an error parsing.
2717TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2718    ImmutableCallSite CS) const {
2719  /// ConstraintOperands - Information about all of the constraints.
2720  AsmOperandInfoVector ConstraintOperands;
2721  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2722  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2723
2724  // Do a prepass over the constraints, canonicalizing them, and building up the
2725  // ConstraintOperands list.
2726  InlineAsm::ConstraintInfoVector
2727    ConstraintInfos = IA->ParseConstraints();
2728
2729  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2730  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2731
2732  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2733    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2734    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2735
2736    // Update multiple alternative constraint count.
2737    if (OpInfo.multipleAlternatives.size() > maCount)
2738      maCount = OpInfo.multipleAlternatives.size();
2739
2740    OpInfo.ConstraintVT = MVT::Other;
2741
2742    // Compute the value type for each operand.
2743    switch (OpInfo.Type) {
2744    case InlineAsm::isOutput:
2745      // Indirect outputs just consume an argument.
2746      if (OpInfo.isIndirect) {
2747        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2748        break;
2749      }
2750
2751      // The return value of the call is this value.  As such, there is no
2752      // corresponding argument.
2753      assert(!CS.getType()->isVoidTy() &&
2754             "Bad inline asm!");
2755      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2756        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2757      } else {
2758        assert(ResNo == 0 && "Asm only has one result!");
2759        OpInfo.ConstraintVT = getValueType(CS.getType());
2760      }
2761      ++ResNo;
2762      break;
2763    case InlineAsm::isInput:
2764      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2765      break;
2766    case InlineAsm::isClobber:
2767      // Nothing to do.
2768      break;
2769    }
2770
2771    if (OpInfo.CallOperandVal) {
2772      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2773      if (OpInfo.isIndirect) {
2774        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2775        if (!PtrTy)
2776          report_fatal_error("Indirect operand for inline asm not a pointer!");
2777        OpTy = PtrTy->getElementType();
2778      }
2779      // If OpTy is not a single value, it may be a struct/union that we
2780      // can tile with integers.
2781      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2782        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2783        switch (BitSize) {
2784        default: break;
2785        case 1:
2786        case 8:
2787        case 16:
2788        case 32:
2789        case 64:
2790        case 128:
2791          OpInfo.ConstraintVT =
2792              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2793          break;
2794        }
2795      } else if (dyn_cast<PointerType>(OpTy)) {
2796        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2797      } else {
2798        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2799      }
2800    }
2801  }
2802
2803  // If we have multiple alternative constraints, select the best alternative.
2804  if (ConstraintInfos.size()) {
2805    if (maCount) {
2806      unsigned bestMAIndex = 0;
2807      int bestWeight = -1;
2808      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2809      int weight = -1;
2810      unsigned maIndex;
2811      // Compute the sums of the weights for each alternative, keeping track
2812      // of the best (highest weight) one so far.
2813      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2814        int weightSum = 0;
2815        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2816            cIndex != eIndex; ++cIndex) {
2817          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2818          if (OpInfo.Type == InlineAsm::isClobber)
2819            continue;
2820
2821          // If this is an output operand with a matching input operand,
2822          // look up the matching input. If their types mismatch, e.g. one
2823          // is an integer, the other is floating point, or their sizes are
2824          // different, flag it as an maCantMatch.
2825          if (OpInfo.hasMatchingInput()) {
2826            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2827            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2828              if ((OpInfo.ConstraintVT.isInteger() !=
2829                   Input.ConstraintVT.isInteger()) ||
2830                  (OpInfo.ConstraintVT.getSizeInBits() !=
2831                   Input.ConstraintVT.getSizeInBits())) {
2832                weightSum = -1;  // Can't match.
2833                break;
2834              }
2835            }
2836          }
2837          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2838          if (weight == -1) {
2839            weightSum = -1;
2840            break;
2841          }
2842          weightSum += weight;
2843        }
2844        // Update best.
2845        if (weightSum > bestWeight) {
2846          bestWeight = weightSum;
2847          bestMAIndex = maIndex;
2848        }
2849      }
2850
2851      // Now select chosen alternative in each constraint.
2852      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2853          cIndex != eIndex; ++cIndex) {
2854        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2855        if (cInfo.Type == InlineAsm::isClobber)
2856          continue;
2857        cInfo.selectAlternative(bestMAIndex);
2858      }
2859    }
2860  }
2861
2862  // Check and hook up tied operands, choose constraint code to use.
2863  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2864      cIndex != eIndex; ++cIndex) {
2865    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2866
2867    // If this is an output operand with a matching input operand, look up the
2868    // matching input. If their types mismatch, e.g. one is an integer, the
2869    // other is floating point, or their sizes are different, flag it as an
2870    // error.
2871    if (OpInfo.hasMatchingInput()) {
2872      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2873
2874      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2875        if ((OpInfo.ConstraintVT.isInteger() !=
2876             Input.ConstraintVT.isInteger()) ||
2877            (OpInfo.ConstraintVT.getSizeInBits() !=
2878             Input.ConstraintVT.getSizeInBits())) {
2879          report_fatal_error("Unsupported asm: input constraint"
2880                             " with a matching output constraint of"
2881                             " incompatible type!");
2882        }
2883      }
2884
2885    }
2886  }
2887
2888  return ConstraintOperands;
2889}
2890
2891
2892/// getConstraintGenerality - Return an integer indicating how general CT
2893/// is.
2894static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2895  switch (CT) {
2896  default: llvm_unreachable("Unknown constraint type!");
2897  case TargetLowering::C_Other:
2898  case TargetLowering::C_Unknown:
2899    return 0;
2900  case TargetLowering::C_Register:
2901    return 1;
2902  case TargetLowering::C_RegisterClass:
2903    return 2;
2904  case TargetLowering::C_Memory:
2905    return 3;
2906  }
2907}
2908
2909/// Examine constraint type and operand type and determine a weight value.
2910/// This object must already have been set up with the operand type
2911/// and the current alternative constraint selected.
2912TargetLowering::ConstraintWeight
2913  TargetLowering::getMultipleConstraintMatchWeight(
2914    AsmOperandInfo &info, int maIndex) const {
2915  InlineAsm::ConstraintCodeVector *rCodes;
2916  if (maIndex >= (int)info.multipleAlternatives.size())
2917    rCodes = &info.Codes;
2918  else
2919    rCodes = &info.multipleAlternatives[maIndex].Codes;
2920  ConstraintWeight BestWeight = CW_Invalid;
2921
2922  // Loop over the options, keeping track of the most general one.
2923  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2924    ConstraintWeight weight =
2925      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2926    if (weight > BestWeight)
2927      BestWeight = weight;
2928  }
2929
2930  return BestWeight;
2931}
2932
2933/// Examine constraint type and operand type and determine a weight value.
2934/// This object must already have been set up with the operand type
2935/// and the current alternative constraint selected.
2936TargetLowering::ConstraintWeight
2937  TargetLowering::getSingleConstraintMatchWeight(
2938    AsmOperandInfo &info, const char *constraint) const {
2939  ConstraintWeight weight = CW_Invalid;
2940  Value *CallOperandVal = info.CallOperandVal;
2941    // If we don't have a value, we can't do a match,
2942    // but allow it at the lowest weight.
2943  if (CallOperandVal == NULL)
2944    return CW_Default;
2945  // Look at the constraint type.
2946  switch (*constraint) {
2947    case 'i': // immediate integer.
2948    case 'n': // immediate integer with a known value.
2949      if (isa<ConstantInt>(CallOperandVal))
2950        weight = CW_Constant;
2951      break;
2952    case 's': // non-explicit intregal immediate.
2953      if (isa<GlobalValue>(CallOperandVal))
2954        weight = CW_Constant;
2955      break;
2956    case 'E': // immediate float if host format.
2957    case 'F': // immediate float.
2958      if (isa<ConstantFP>(CallOperandVal))
2959        weight = CW_Constant;
2960      break;
2961    case '<': // memory operand with autodecrement.
2962    case '>': // memory operand with autoincrement.
2963    case 'm': // memory operand.
2964    case 'o': // offsettable memory operand
2965    case 'V': // non-offsettable memory operand
2966      weight = CW_Memory;
2967      break;
2968    case 'r': // general register.
2969    case 'g': // general register, memory operand or immediate integer.
2970              // note: Clang converts "g" to "imr".
2971      if (CallOperandVal->getType()->isIntegerTy())
2972        weight = CW_Register;
2973      break;
2974    case 'X': // any operand.
2975    default:
2976      weight = CW_Default;
2977      break;
2978  }
2979  return weight;
2980}
2981
2982/// ChooseConstraint - If there are multiple different constraints that we
2983/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2984/// This is somewhat tricky: constraints fall into four classes:
2985///    Other         -> immediates and magic values
2986///    Register      -> one specific register
2987///    RegisterClass -> a group of regs
2988///    Memory        -> memory
2989/// Ideally, we would pick the most specific constraint possible: if we have
2990/// something that fits into a register, we would pick it.  The problem here
2991/// is that if we have something that could either be in a register or in
2992/// memory that use of the register could cause selection of *other*
2993/// operands to fail: they might only succeed if we pick memory.  Because of
2994/// this the heuristic we use is:
2995///
2996///  1) If there is an 'other' constraint, and if the operand is valid for
2997///     that constraint, use it.  This makes us take advantage of 'i'
2998///     constraints when available.
2999///  2) Otherwise, pick the most general constraint present.  This prefers
3000///     'm' over 'r', for example.
3001///
3002static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3003                             const TargetLowering &TLI,
3004                             SDValue Op, SelectionDAG *DAG) {
3005  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3006  unsigned BestIdx = 0;
3007  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3008  int BestGenerality = -1;
3009
3010  // Loop over the options, keeping track of the most general one.
3011  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3012    TargetLowering::ConstraintType CType =
3013      TLI.getConstraintType(OpInfo.Codes[i]);
3014
3015    // If this is an 'other' constraint, see if the operand is valid for it.
3016    // For example, on X86 we might have an 'rI' constraint.  If the operand
3017    // is an integer in the range [0..31] we want to use I (saving a load
3018    // of a register), otherwise we must use 'r'.
3019    if (CType == TargetLowering::C_Other && Op.getNode()) {
3020      assert(OpInfo.Codes[i].size() == 1 &&
3021             "Unhandled multi-letter 'other' constraint");
3022      std::vector<SDValue> ResultOps;
3023      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
3024                                       ResultOps, *DAG);
3025      if (!ResultOps.empty()) {
3026        BestType = CType;
3027        BestIdx = i;
3028        break;
3029      }
3030    }
3031
3032    // Things with matching constraints can only be registers, per gcc
3033    // documentation.  This mainly affects "g" constraints.
3034    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3035      continue;
3036
3037    // This constraint letter is more general than the previous one, use it.
3038    int Generality = getConstraintGenerality(CType);
3039    if (Generality > BestGenerality) {
3040      BestType = CType;
3041      BestIdx = i;
3042      BestGenerality = Generality;
3043    }
3044  }
3045
3046  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3047  OpInfo.ConstraintType = BestType;
3048}
3049
3050/// ComputeConstraintToUse - Determines the constraint code and constraint
3051/// type to use for the specific AsmOperandInfo, setting
3052/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3053void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3054                                            SDValue Op,
3055                                            SelectionDAG *DAG) const {
3056  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3057
3058  // Single-letter constraints ('r') are very common.
3059  if (OpInfo.Codes.size() == 1) {
3060    OpInfo.ConstraintCode = OpInfo.Codes[0];
3061    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3062  } else {
3063    ChooseConstraint(OpInfo, *this, Op, DAG);
3064  }
3065
3066  // 'X' matches anything.
3067  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3068    // Labels and constants are handled elsewhere ('X' is the only thing
3069    // that matches labels).  For Functions, the type here is the type of
3070    // the result, which is not what we want to look at; leave them alone.
3071    Value *v = OpInfo.CallOperandVal;
3072    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3073      OpInfo.CallOperandVal = v;
3074      return;
3075    }
3076
3077    // Otherwise, try to resolve it to something we know about by looking at
3078    // the actual operand type.
3079    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3080      OpInfo.ConstraintCode = Repl;
3081      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3082    }
3083  }
3084}
3085
3086//===----------------------------------------------------------------------===//
3087//  Loop Strength Reduction hooks
3088//===----------------------------------------------------------------------===//
3089
3090/// isLegalAddressingMode - Return true if the addressing mode represented
3091/// by AM is legal for this target, for a load/store of the specified type.
3092bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3093                                           const Type *Ty) const {
3094  // The default implementation of this implements a conservative RISCy, r+r and
3095  // r+i addr mode.
3096
3097  // Allows a sign-extended 16-bit immediate field.
3098  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3099    return false;
3100
3101  // No global is ever allowed as a base.
3102  if (AM.BaseGV)
3103    return false;
3104
3105  // Only support r+r,
3106  switch (AM.Scale) {
3107  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3108    break;
3109  case 1:
3110    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3111      return false;
3112    // Otherwise we have r+r or r+i.
3113    break;
3114  case 2:
3115    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3116      return false;
3117    // Allow 2*r as r+r.
3118    break;
3119  }
3120
3121  return true;
3122}
3123
3124/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3125/// return a DAG expression to select that will generate the same value by
3126/// multiplying by a magic number.  See:
3127/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3128SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3129                                  std::vector<SDNode*>* Created) const {
3130  EVT VT = N->getValueType(0);
3131  DebugLoc dl= N->getDebugLoc();
3132
3133  // Check to see if we can do this.
3134  // FIXME: We should be more aggressive here.
3135  if (!isTypeLegal(VT))
3136    return SDValue();
3137
3138  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3139  APInt::ms magics = d.magic();
3140
3141  // Multiply the numerator (operand 0) by the magic value
3142  // FIXME: We should support doing a MUL in a wider type
3143  SDValue Q;
3144  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3145    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3146                    DAG.getConstant(magics.m, VT));
3147  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3148    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3149                              N->getOperand(0),
3150                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3151  else
3152    return SDValue();       // No mulhs or equvialent
3153  // If d > 0 and m < 0, add the numerator
3154  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3155    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3156    if (Created)
3157      Created->push_back(Q.getNode());
3158  }
3159  // If d < 0 and m > 0, subtract the numerator.
3160  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3161    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3162    if (Created)
3163      Created->push_back(Q.getNode());
3164  }
3165  // Shift right algebraic if shift value is nonzero
3166  if (magics.s > 0) {
3167    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3168                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3169    if (Created)
3170      Created->push_back(Q.getNode());
3171  }
3172  // Extract the sign bit and add it to the quotient
3173  SDValue T =
3174    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3175                                           getShiftAmountTy(Q.getValueType())));
3176  if (Created)
3177    Created->push_back(T.getNode());
3178  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3179}
3180
3181/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3182/// return a DAG expression to select that will generate the same value by
3183/// multiplying by a magic number.  See:
3184/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3185SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3186                                  std::vector<SDNode*>* Created) const {
3187  EVT VT = N->getValueType(0);
3188  DebugLoc dl = N->getDebugLoc();
3189
3190  // Check to see if we can do this.
3191  // FIXME: We should be more aggressive here.
3192  if (!isTypeLegal(VT))
3193    return SDValue();
3194
3195  // FIXME: We should use a narrower constant when the upper
3196  // bits are known to be zero.
3197  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3198  APInt::mu magics = N1C.magicu();
3199
3200  SDValue Q = N->getOperand(0);
3201
3202  // If the divisor is even, we can avoid using the expensive fixup by shifting
3203  // the divided value upfront.
3204  if (magics.a != 0 && !N1C[0]) {
3205    unsigned Shift = N1C.countTrailingZeros();
3206    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3207                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3208    if (Created)
3209      Created->push_back(Q.getNode());
3210
3211    // Get magic number for the shifted divisor.
3212    magics = N1C.lshr(Shift).magicu(Shift);
3213    assert(magics.a == 0 && "Should use cheap fixup now");
3214  }
3215
3216  // Multiply the numerator (operand 0) by the magic value
3217  // FIXME: We should support doing a MUL in a wider type
3218  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3219    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3220  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3221    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3222                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3223  else
3224    return SDValue();       // No mulhu or equvialent
3225  if (Created)
3226    Created->push_back(Q.getNode());
3227
3228  if (magics.a == 0) {
3229    assert(magics.s < N1C.getBitWidth() &&
3230           "We shouldn't generate an undefined shift!");
3231    return DAG.getNode(ISD::SRL, dl, VT, Q,
3232                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3233  } else {
3234    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3235    if (Created)
3236      Created->push_back(NPQ.getNode());
3237    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3238                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3239    if (Created)
3240      Created->push_back(NPQ.getNode());
3241    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3242    if (Created)
3243      Created->push_back(NPQ.getNode());
3244    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3245             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3246  }
3247}
3248