TargetLowering.cpp revision 813090cf891325c715b9f6fb1546e6ce67fa8c8b
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29namespace llvm {
30TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
31  bool isLocal = GV->hasLocalLinkage();
32  bool isDeclaration = GV->isDeclaration();
33  // FIXME: what should we do for protected and internal visibility?
34  // For variables, is internal different from hidden?
35  bool isHidden = GV->hasHiddenVisibility();
36
37  if (reloc == Reloc::PIC_) {
38    if (isLocal || isHidden)
39      return TLSModel::LocalDynamic;
40    else
41      return TLSModel::GeneralDynamic;
42  } else {
43    if (!isDeclaration || isHidden)
44      return TLSModel::LocalExec;
45    else
46      return TLSModel::InitialExec;
47  }
48}
49}
50
51/// InitLibcallNames - Set default libcall names.
52///
53static void InitLibcallNames(const char **Names) {
54  Names[RTLIB::SHL_I16] = "__ashlhi3";
55  Names[RTLIB::SHL_I32] = "__ashlsi3";
56  Names[RTLIB::SHL_I64] = "__ashldi3";
57  Names[RTLIB::SHL_I128] = "__ashlti3";
58  Names[RTLIB::SRL_I16] = "__lshrhi3";
59  Names[RTLIB::SRL_I32] = "__lshrsi3";
60  Names[RTLIB::SRL_I64] = "__lshrdi3";
61  Names[RTLIB::SRL_I128] = "__lshrti3";
62  Names[RTLIB::SRA_I16] = "__ashrhi3";
63  Names[RTLIB::SRA_I32] = "__ashrsi3";
64  Names[RTLIB::SRA_I64] = "__ashrdi3";
65  Names[RTLIB::SRA_I128] = "__ashrti3";
66  Names[RTLIB::MUL_I16] = "__mulhi3";
67  Names[RTLIB::MUL_I32] = "__mulsi3";
68  Names[RTLIB::MUL_I64] = "__muldi3";
69  Names[RTLIB::MUL_I128] = "__multi3";
70  Names[RTLIB::SDIV_I16] = "__divhi3";
71  Names[RTLIB::SDIV_I32] = "__divsi3";
72  Names[RTLIB::SDIV_I64] = "__divdi3";
73  Names[RTLIB::SDIV_I128] = "__divti3";
74  Names[RTLIB::UDIV_I32] = "__udivhi3";
75  Names[RTLIB::UDIV_I32] = "__udivsi3";
76  Names[RTLIB::UDIV_I64] = "__udivdi3";
77  Names[RTLIB::UDIV_I128] = "__udivti3";
78  Names[RTLIB::SREM_I16] = "__modhi3";
79  Names[RTLIB::SREM_I32] = "__modsi3";
80  Names[RTLIB::SREM_I64] = "__moddi3";
81  Names[RTLIB::SREM_I128] = "__modti3";
82  Names[RTLIB::UREM_I16] = "__umodsi3";
83  Names[RTLIB::UREM_I32] = "__umodsi3";
84  Names[RTLIB::UREM_I64] = "__umoddi3";
85  Names[RTLIB::UREM_I128] = "__umodti3";
86  Names[RTLIB::NEG_I32] = "__negsi2";
87  Names[RTLIB::NEG_I64] = "__negdi2";
88  Names[RTLIB::ADD_F32] = "__addsf3";
89  Names[RTLIB::ADD_F64] = "__adddf3";
90  Names[RTLIB::ADD_F80] = "__addxf3";
91  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
92  Names[RTLIB::SUB_F32] = "__subsf3";
93  Names[RTLIB::SUB_F64] = "__subdf3";
94  Names[RTLIB::SUB_F80] = "__subxf3";
95  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
96  Names[RTLIB::MUL_F32] = "__mulsf3";
97  Names[RTLIB::MUL_F64] = "__muldf3";
98  Names[RTLIB::MUL_F80] = "__mulxf3";
99  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
100  Names[RTLIB::DIV_F32] = "__divsf3";
101  Names[RTLIB::DIV_F64] = "__divdf3";
102  Names[RTLIB::DIV_F80] = "__divxf3";
103  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
104  Names[RTLIB::REM_F32] = "fmodf";
105  Names[RTLIB::REM_F64] = "fmod";
106  Names[RTLIB::REM_F80] = "fmodl";
107  Names[RTLIB::REM_PPCF128] = "fmodl";
108  Names[RTLIB::POWI_F32] = "__powisf2";
109  Names[RTLIB::POWI_F64] = "__powidf2";
110  Names[RTLIB::POWI_F80] = "__powixf2";
111  Names[RTLIB::POWI_PPCF128] = "__powitf2";
112  Names[RTLIB::SQRT_F32] = "sqrtf";
113  Names[RTLIB::SQRT_F64] = "sqrt";
114  Names[RTLIB::SQRT_F80] = "sqrtl";
115  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
116  Names[RTLIB::LOG_F32] = "logf";
117  Names[RTLIB::LOG_F64] = "log";
118  Names[RTLIB::LOG_F80] = "logl";
119  Names[RTLIB::LOG_PPCF128] = "logl";
120  Names[RTLIB::LOG2_F32] = "log2f";
121  Names[RTLIB::LOG2_F64] = "log2";
122  Names[RTLIB::LOG2_F80] = "log2l";
123  Names[RTLIB::LOG2_PPCF128] = "log2l";
124  Names[RTLIB::LOG10_F32] = "log10f";
125  Names[RTLIB::LOG10_F64] = "log10";
126  Names[RTLIB::LOG10_F80] = "log10l";
127  Names[RTLIB::LOG10_PPCF128] = "log10l";
128  Names[RTLIB::EXP_F32] = "expf";
129  Names[RTLIB::EXP_F64] = "exp";
130  Names[RTLIB::EXP_F80] = "expl";
131  Names[RTLIB::EXP_PPCF128] = "expl";
132  Names[RTLIB::EXP2_F32] = "exp2f";
133  Names[RTLIB::EXP2_F64] = "exp2";
134  Names[RTLIB::EXP2_F80] = "exp2l";
135  Names[RTLIB::EXP2_PPCF128] = "exp2l";
136  Names[RTLIB::SIN_F32] = "sinf";
137  Names[RTLIB::SIN_F64] = "sin";
138  Names[RTLIB::SIN_F80] = "sinl";
139  Names[RTLIB::SIN_PPCF128] = "sinl";
140  Names[RTLIB::COS_F32] = "cosf";
141  Names[RTLIB::COS_F64] = "cos";
142  Names[RTLIB::COS_F80] = "cosl";
143  Names[RTLIB::COS_PPCF128] = "cosl";
144  Names[RTLIB::POW_F32] = "powf";
145  Names[RTLIB::POW_F64] = "pow";
146  Names[RTLIB::POW_F80] = "powl";
147  Names[RTLIB::POW_PPCF128] = "powl";
148  Names[RTLIB::CEIL_F32] = "ceilf";
149  Names[RTLIB::CEIL_F64] = "ceil";
150  Names[RTLIB::CEIL_F80] = "ceill";
151  Names[RTLIB::CEIL_PPCF128] = "ceill";
152  Names[RTLIB::TRUNC_F32] = "truncf";
153  Names[RTLIB::TRUNC_F64] = "trunc";
154  Names[RTLIB::TRUNC_F80] = "truncl";
155  Names[RTLIB::TRUNC_PPCF128] = "truncl";
156  Names[RTLIB::RINT_F32] = "rintf";
157  Names[RTLIB::RINT_F64] = "rint";
158  Names[RTLIB::RINT_F80] = "rintl";
159  Names[RTLIB::RINT_PPCF128] = "rintl";
160  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
161  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
162  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
163  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
164  Names[RTLIB::FLOOR_F32] = "floorf";
165  Names[RTLIB::FLOOR_F64] = "floor";
166  Names[RTLIB::FLOOR_F80] = "floorl";
167  Names[RTLIB::FLOOR_PPCF128] = "floorl";
168  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
169  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
170  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
171  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
172  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
173  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
174  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
175  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
176  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
177  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
178  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
179  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
180  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
181  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
182  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
183  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
184  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
185  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
186  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
187  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
188  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
189  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
190  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
191  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
192  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
193  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
194  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
195  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
196  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
197  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
198  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
199  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
200  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
201  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
202  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
203  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
204  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
205  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
206  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
207  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
208  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
209  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
210  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
211  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
212  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
213  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
214  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
215  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
216  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
217  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
218  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
219  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
220  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
221  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
222  Names[RTLIB::OEQ_F32] = "__eqsf2";
223  Names[RTLIB::OEQ_F64] = "__eqdf2";
224  Names[RTLIB::UNE_F32] = "__nesf2";
225  Names[RTLIB::UNE_F64] = "__nedf2";
226  Names[RTLIB::OGE_F32] = "__gesf2";
227  Names[RTLIB::OGE_F64] = "__gedf2";
228  Names[RTLIB::OLT_F32] = "__ltsf2";
229  Names[RTLIB::OLT_F64] = "__ltdf2";
230  Names[RTLIB::OLE_F32] = "__lesf2";
231  Names[RTLIB::OLE_F64] = "__ledf2";
232  Names[RTLIB::OGT_F32] = "__gtsf2";
233  Names[RTLIB::OGT_F64] = "__gtdf2";
234  Names[RTLIB::UO_F32] = "__unordsf2";
235  Names[RTLIB::UO_F64] = "__unorddf2";
236  Names[RTLIB::O_F32] = "__unordsf2";
237  Names[RTLIB::O_F64] = "__unorddf2";
238}
239
240/// getFPEXT - Return the FPEXT_*_* value for the given types, or
241/// UNKNOWN_LIBCALL if there is none.
242RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
243  if (OpVT == MVT::f32) {
244    if (RetVT == MVT::f64)
245      return FPEXT_F32_F64;
246  }
247  return UNKNOWN_LIBCALL;
248}
249
250/// getFPROUND - Return the FPROUND_*_* value for the given types, or
251/// UNKNOWN_LIBCALL if there is none.
252RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
253  if (RetVT == MVT::f32) {
254    if (OpVT == MVT::f64)
255      return FPROUND_F64_F32;
256    if (OpVT == MVT::f80)
257      return FPROUND_F80_F32;
258    if (OpVT == MVT::ppcf128)
259      return FPROUND_PPCF128_F32;
260  } else if (RetVT == MVT::f64) {
261    if (OpVT == MVT::f80)
262      return FPROUND_F80_F64;
263    if (OpVT == MVT::ppcf128)
264      return FPROUND_PPCF128_F64;
265  }
266  return UNKNOWN_LIBCALL;
267}
268
269/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
270/// UNKNOWN_LIBCALL if there is none.
271RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
272  if (OpVT == MVT::f32) {
273    if (RetVT == MVT::i32)
274      return FPTOSINT_F32_I32;
275    if (RetVT == MVT::i64)
276      return FPTOSINT_F32_I64;
277    if (RetVT == MVT::i128)
278      return FPTOSINT_F32_I128;
279  } else if (OpVT == MVT::f64) {
280    if (RetVT == MVT::i32)
281      return FPTOSINT_F64_I32;
282    if (RetVT == MVT::i64)
283      return FPTOSINT_F64_I64;
284    if (RetVT == MVT::i128)
285      return FPTOSINT_F64_I128;
286  } else if (OpVT == MVT::f80) {
287    if (RetVT == MVT::i32)
288      return FPTOSINT_F80_I32;
289    if (RetVT == MVT::i64)
290      return FPTOSINT_F80_I64;
291    if (RetVT == MVT::i128)
292      return FPTOSINT_F80_I128;
293  } else if (OpVT == MVT::ppcf128) {
294    if (RetVT == MVT::i32)
295      return FPTOSINT_PPCF128_I32;
296    if (RetVT == MVT::i64)
297      return FPTOSINT_PPCF128_I64;
298    if (RetVT == MVT::i128)
299      return FPTOSINT_PPCF128_I128;
300  }
301  return UNKNOWN_LIBCALL;
302}
303
304/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
305/// UNKNOWN_LIBCALL if there is none.
306RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
307  if (OpVT == MVT::f32) {
308    if (RetVT == MVT::i32)
309      return FPTOUINT_F32_I32;
310    if (RetVT == MVT::i64)
311      return FPTOUINT_F32_I64;
312    if (RetVT == MVT::i128)
313      return FPTOUINT_F32_I128;
314  } else if (OpVT == MVT::f64) {
315    if (RetVT == MVT::i32)
316      return FPTOUINT_F64_I32;
317    if (RetVT == MVT::i64)
318      return FPTOUINT_F64_I64;
319    if (RetVT == MVT::i128)
320      return FPTOUINT_F64_I128;
321  } else if (OpVT == MVT::f80) {
322    if (RetVT == MVT::i32)
323      return FPTOUINT_F80_I32;
324    if (RetVT == MVT::i64)
325      return FPTOUINT_F80_I64;
326    if (RetVT == MVT::i128)
327      return FPTOUINT_F80_I128;
328  } else if (OpVT == MVT::ppcf128) {
329    if (RetVT == MVT::i32)
330      return FPTOUINT_PPCF128_I32;
331    if (RetVT == MVT::i64)
332      return FPTOUINT_PPCF128_I64;
333    if (RetVT == MVT::i128)
334      return FPTOUINT_PPCF128_I128;
335  }
336  return UNKNOWN_LIBCALL;
337}
338
339/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
340/// UNKNOWN_LIBCALL if there is none.
341RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
342  if (OpVT == MVT::i32) {
343    if (RetVT == MVT::f32)
344      return SINTTOFP_I32_F32;
345    else if (RetVT == MVT::f64)
346      return SINTTOFP_I32_F64;
347    else if (RetVT == MVT::f80)
348      return SINTTOFP_I32_F80;
349    else if (RetVT == MVT::ppcf128)
350      return SINTTOFP_I32_PPCF128;
351  } else if (OpVT == MVT::i64) {
352    if (RetVT == MVT::f32)
353      return SINTTOFP_I64_F32;
354    else if (RetVT == MVT::f64)
355      return SINTTOFP_I64_F64;
356    else if (RetVT == MVT::f80)
357      return SINTTOFP_I64_F80;
358    else if (RetVT == MVT::ppcf128)
359      return SINTTOFP_I64_PPCF128;
360  } else if (OpVT == MVT::i128) {
361    if (RetVT == MVT::f32)
362      return SINTTOFP_I128_F32;
363    else if (RetVT == MVT::f64)
364      return SINTTOFP_I128_F64;
365    else if (RetVT == MVT::f80)
366      return SINTTOFP_I128_F80;
367    else if (RetVT == MVT::ppcf128)
368      return SINTTOFP_I128_PPCF128;
369  }
370  return UNKNOWN_LIBCALL;
371}
372
373/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
374/// UNKNOWN_LIBCALL if there is none.
375RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
376  if (OpVT == MVT::i32) {
377    if (RetVT == MVT::f32)
378      return UINTTOFP_I32_F32;
379    else if (RetVT == MVT::f64)
380      return UINTTOFP_I32_F64;
381    else if (RetVT == MVT::f80)
382      return UINTTOFP_I32_F80;
383    else if (RetVT == MVT::ppcf128)
384      return UINTTOFP_I32_PPCF128;
385  } else if (OpVT == MVT::i64) {
386    if (RetVT == MVT::f32)
387      return UINTTOFP_I64_F32;
388    else if (RetVT == MVT::f64)
389      return UINTTOFP_I64_F64;
390    else if (RetVT == MVT::f80)
391      return UINTTOFP_I64_F80;
392    else if (RetVT == MVT::ppcf128)
393      return UINTTOFP_I64_PPCF128;
394  } else if (OpVT == MVT::i128) {
395    if (RetVT == MVT::f32)
396      return UINTTOFP_I128_F32;
397    else if (RetVT == MVT::f64)
398      return UINTTOFP_I128_F64;
399    else if (RetVT == MVT::f80)
400      return UINTTOFP_I128_F80;
401    else if (RetVT == MVT::ppcf128)
402      return UINTTOFP_I128_PPCF128;
403  }
404  return UNKNOWN_LIBCALL;
405}
406
407/// InitCmpLibcallCCs - Set default comparison libcall CC.
408///
409static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
410  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
411  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
412  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
413  CCs[RTLIB::UNE_F32] = ISD::SETNE;
414  CCs[RTLIB::UNE_F64] = ISD::SETNE;
415  CCs[RTLIB::OGE_F32] = ISD::SETGE;
416  CCs[RTLIB::OGE_F64] = ISD::SETGE;
417  CCs[RTLIB::OLT_F32] = ISD::SETLT;
418  CCs[RTLIB::OLT_F64] = ISD::SETLT;
419  CCs[RTLIB::OLE_F32] = ISD::SETLE;
420  CCs[RTLIB::OLE_F64] = ISD::SETLE;
421  CCs[RTLIB::OGT_F32] = ISD::SETGT;
422  CCs[RTLIB::OGT_F64] = ISD::SETGT;
423  CCs[RTLIB::UO_F32] = ISD::SETNE;
424  CCs[RTLIB::UO_F64] = ISD::SETNE;
425  CCs[RTLIB::O_F32] = ISD::SETEQ;
426  CCs[RTLIB::O_F64] = ISD::SETEQ;
427}
428
429TargetLowering::TargetLowering(TargetMachine &tm)
430  : TM(tm), TD(TM.getTargetData()) {
431  // All operations default to being supported.
432  memset(OpActions, 0, sizeof(OpActions));
433  memset(LoadExtActions, 0, sizeof(LoadExtActions));
434  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
435  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
436  memset(ConvertActions, 0, sizeof(ConvertActions));
437  memset(CondCodeActions, 0, sizeof(CondCodeActions));
438
439  // Set default actions for various operations.
440  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
441    // Default all indexed load / store to expand.
442    for (unsigned IM = (unsigned)ISD::PRE_INC;
443         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
444      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
445      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
446    }
447
448    // These operations default to expand.
449    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
450    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
451  }
452
453  // Most targets ignore the @llvm.prefetch intrinsic.
454  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
455
456  // ConstantFP nodes default to expand.  Targets can either change this to
457  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
458  // to optimize expansions for certain constants.
459  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
460  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
461  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
462
463  // These library functions default to expand.
464  setOperationAction(ISD::FLOG , MVT::f64, Expand);
465  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
466  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
467  setOperationAction(ISD::FEXP , MVT::f64, Expand);
468  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
469  setOperationAction(ISD::FLOG , MVT::f32, Expand);
470  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
471  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
472  setOperationAction(ISD::FEXP , MVT::f32, Expand);
473  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
474
475  // Default ISD::TRAP to expand (which turns it into abort).
476  setOperationAction(ISD::TRAP, MVT::Other, Expand);
477
478  IsLittleEndian = TD->isLittleEndian();
479  UsesGlobalOffsetTable = false;
480  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
481  ShiftAmtHandling = Undefined;
482  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
483  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
484  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
485  allowUnalignedMemoryAccesses = false;
486  UseUnderscoreSetJmp = false;
487  UseUnderscoreLongJmp = false;
488  SelectIsExpensive = false;
489  IntDivIsCheap = false;
490  Pow2DivIsCheap = false;
491  StackPointerRegisterToSaveRestore = 0;
492  ExceptionPointerRegister = 0;
493  ExceptionSelectorRegister = 0;
494  BooleanContents = UndefinedBooleanContent;
495  SchedPreferenceInfo = SchedulingForLatency;
496  JumpBufSize = 0;
497  JumpBufAlignment = 0;
498  IfCvtBlockSizeLimit = 2;
499  IfCvtDupBlockSizeLimit = 0;
500  PrefLoopAlignment = 0;
501
502  InitLibcallNames(LibcallRoutineNames);
503  InitCmpLibcallCCs(CmpLibcallCCs);
504
505  // Tell Legalize whether the assembler supports DEBUG_LOC.
506  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
507  if (!TASM || !TASM->hasDotLocAndDotFile())
508    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
509}
510
511TargetLowering::~TargetLowering() {}
512
513/// computeRegisterProperties - Once all of the register classes are added,
514/// this allows us to compute derived properties we expose.
515void TargetLowering::computeRegisterProperties() {
516  assert(MVT::LAST_VALUETYPE <= 32 &&
517         "Too many value types for ValueTypeActions to hold!");
518
519  // Everything defaults to needing one register.
520  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
521    NumRegistersForVT[i] = 1;
522    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
523  }
524  // ...except isVoid, which doesn't need any registers.
525  NumRegistersForVT[MVT::isVoid] = 0;
526
527  // Find the largest integer register class.
528  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
529  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
530    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
531
532  // Every integer value type larger than this largest register takes twice as
533  // many registers to represent as the previous ValueType.
534  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
535    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
536    if (!EVT.isInteger())
537      break;
538    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
539    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
540    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
541    ValueTypeActions.setTypeAction(EVT, Expand);
542  }
543
544  // Inspect all of the ValueType's smaller than the largest integer
545  // register to see which ones need promotion.
546  unsigned LegalIntReg = LargestIntReg;
547  for (unsigned IntReg = LargestIntReg - 1;
548       IntReg >= (unsigned)MVT::i1; --IntReg) {
549    MVT IVT = (MVT::SimpleValueType)IntReg;
550    if (isTypeLegal(IVT)) {
551      LegalIntReg = IntReg;
552    } else {
553      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
554        (MVT::SimpleValueType)LegalIntReg;
555      ValueTypeActions.setTypeAction(IVT, Promote);
556    }
557  }
558
559  // ppcf128 type is really two f64's.
560  if (!isTypeLegal(MVT::ppcf128)) {
561    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
562    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
563    TransformToType[MVT::ppcf128] = MVT::f64;
564    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
565  }
566
567  // Decide how to handle f64. If the target does not have native f64 support,
568  // expand it to i64 and we will be generating soft float library calls.
569  if (!isTypeLegal(MVT::f64)) {
570    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
571    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
572    TransformToType[MVT::f64] = MVT::i64;
573    ValueTypeActions.setTypeAction(MVT::f64, Expand);
574  }
575
576  // Decide how to handle f32. If the target does not have native support for
577  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
578  if (!isTypeLegal(MVT::f32)) {
579    if (isTypeLegal(MVT::f64)) {
580      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
581      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
582      TransformToType[MVT::f32] = MVT::f64;
583      ValueTypeActions.setTypeAction(MVT::f32, Promote);
584    } else {
585      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
586      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
587      TransformToType[MVT::f32] = MVT::i32;
588      ValueTypeActions.setTypeAction(MVT::f32, Expand);
589    }
590  }
591
592  // Loop over all of the vector value types to see which need transformations.
593  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
594       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
595    MVT VT = (MVT::SimpleValueType)i;
596    if (!isTypeLegal(VT)) {
597      MVT IntermediateVT, RegisterVT;
598      unsigned NumIntermediates;
599      NumRegistersForVT[i] =
600        getVectorTypeBreakdown(VT,
601                               IntermediateVT, NumIntermediates,
602                               RegisterVT);
603      RegisterTypeForVT[i] = RegisterVT;
604
605      // Determine if there is a legal wider type.
606      bool IsLegalWiderType = false;
607      MVT EltVT = VT.getVectorElementType();
608      unsigned NElts = VT.getVectorNumElements();
609      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
610        MVT SVT = (MVT::SimpleValueType)nVT;
611        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
612            SVT.getVectorNumElements() > NElts) {
613          TransformToType[i] = SVT;
614          ValueTypeActions.setTypeAction(VT, Promote);
615          IsLegalWiderType = true;
616          break;
617        }
618      }
619      if (!IsLegalWiderType) {
620        MVT NVT = VT.getPow2VectorType();
621        if (NVT == VT) {
622          // Type is already a power of 2.  The default action is to split.
623          TransformToType[i] = MVT::Other;
624          ValueTypeActions.setTypeAction(VT, Expand);
625        } else {
626          TransformToType[i] = NVT;
627          ValueTypeActions.setTypeAction(VT, Promote);
628        }
629      }
630    }
631  }
632}
633
634const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
635  return NULL;
636}
637
638
639MVT TargetLowering::getSetCCResultType(MVT VT) const {
640  return getValueType(TD->getIntPtrType());
641}
642
643
644/// getVectorTypeBreakdown - Vector types are broken down into some number of
645/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
646/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
647/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
648///
649/// This method returns the number of registers needed, and the VT for each
650/// register.  It also returns the VT and quantity of the intermediate values
651/// before they are promoted/expanded.
652///
653unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
654                                                MVT &IntermediateVT,
655                                                unsigned &NumIntermediates,
656                                      MVT &RegisterVT) const {
657  // Figure out the right, legal destination reg to copy into.
658  unsigned NumElts = VT.getVectorNumElements();
659  MVT EltTy = VT.getVectorElementType();
660
661  unsigned NumVectorRegs = 1;
662
663  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
664  // could break down into LHS/RHS like LegalizeDAG does.
665  if (!isPowerOf2_32(NumElts)) {
666    NumVectorRegs = NumElts;
667    NumElts = 1;
668  }
669
670  // Divide the input until we get to a supported size.  This will always
671  // end with a scalar if the target doesn't support vectors.
672  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
673    NumElts >>= 1;
674    NumVectorRegs <<= 1;
675  }
676
677  NumIntermediates = NumVectorRegs;
678
679  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
680  if (!isTypeLegal(NewVT))
681    NewVT = EltTy;
682  IntermediateVT = NewVT;
683
684  MVT DestVT = getRegisterType(NewVT);
685  RegisterVT = DestVT;
686  if (DestVT.bitsLT(NewVT)) {
687    // Value is expanded, e.g. i64 -> i16.
688    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
689  } else {
690    // Otherwise, promotion or legal types use the same number of registers as
691    // the vector decimated to the appropriate level.
692    return NumVectorRegs;
693  }
694
695  return 1;
696}
697
698/// getWidenVectorType: given a vector type, returns the type to widen to
699/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
700/// If there is no vector type that we want to widen to, returns MVT::Other
701/// When and where to widen is target dependent based on the cost of
702/// scalarizing vs using the wider vector type.
703MVT TargetLowering::getWidenVectorType(MVT VT) const {
704  assert(VT.isVector());
705  if (isTypeLegal(VT))
706    return VT;
707
708  // Default is not to widen until moved to LegalizeTypes
709  return MVT::Other;
710}
711
712/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
713/// function arguments in the caller parameter area.  This is the actual
714/// alignment, not its logarithm.
715unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
716  return TD->getCallFrameTypeAlignment(Ty);
717}
718
719SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
720                                                 SelectionDAG &DAG) const {
721  if (usesGlobalOffsetTable())
722    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
723  return Table;
724}
725
726bool
727TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
728  // Assume that everything is safe in static mode.
729  if (getTargetMachine().getRelocationModel() == Reloc::Static)
730    return true;
731
732  // In dynamic-no-pic mode, assume that known defined values are safe.
733  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
734      GA &&
735      !GA->getGlobal()->isDeclaration() &&
736      !GA->getGlobal()->isWeakForLinker())
737    return true;
738
739  // Otherwise assume nothing is safe.
740  return false;
741}
742
743//===----------------------------------------------------------------------===//
744//  Optimization Methods
745//===----------------------------------------------------------------------===//
746
747/// ShrinkDemandedConstant - Check to see if the specified operand of the
748/// specified instruction is a constant integer.  If so, check to see if there
749/// are any bits set in the constant that are not demanded.  If so, shrink the
750/// constant and return true.
751bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
752                                                        const APInt &Demanded) {
753  DebugLoc dl = Op.getDebugLoc();
754
755  // FIXME: ISD::SELECT, ISD::SELECT_CC
756  switch (Op.getOpcode()) {
757  default: break;
758  case ISD::XOR:
759  case ISD::AND:
760  case ISD::OR: {
761    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
762    if (!C) return false;
763
764    if (Op.getOpcode() == ISD::XOR &&
765        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
766      return false;
767
768    // if we can expand it to have all bits set, do it
769    if (C->getAPIntValue().intersects(~Demanded)) {
770      MVT VT = Op.getValueType();
771      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
772                                DAG.getConstant(Demanded &
773                                                C->getAPIntValue(),
774                                                VT));
775      return CombineTo(Op, New);
776    }
777
778    break;
779  }
780  }
781
782  return false;
783}
784
785/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
786/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
787/// cast, but it could be generalized for targets with other types of
788/// implicit widening casts.
789bool
790TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
791                                                    unsigned BitWidth,
792                                                    const APInt &Demanded,
793                                                    DebugLoc dl) {
794  assert(Op.getNumOperands() == 2 &&
795         "ShrinkDemandedOp only supports binary operators!");
796  assert(Op.getNode()->getNumValues() == 1 &&
797         "ShrinkDemandedOp only supports nodes with one result!");
798
799  // Don't do this if the node has another user, which may require the
800  // full value.
801  if (!Op.getNode()->hasOneUse())
802    return false;
803
804  // Search for the smallest integer type with free casts to and from
805  // Op's type. For expedience, just check power-of-2 integer types.
806  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
807  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
808  if (!isPowerOf2_32(SmallVTBits))
809    SmallVTBits = NextPowerOf2(SmallVTBits);
810  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
811    MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
812    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
813        TLI.isZExtFree(SmallVT, Op.getValueType())) {
814      // We found a type with free casts.
815      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
816                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
817                                          Op.getNode()->getOperand(0)),
818                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
819                                          Op.getNode()->getOperand(1)));
820      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
821      return CombineTo(Op, Z);
822    }
823  }
824  return false;
825}
826
827/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
828/// DemandedMask bits of the result of Op are ever used downstream.  If we can
829/// use this information to simplify Op, create a new simplified DAG node and
830/// return true, returning the original and new nodes in Old and New. Otherwise,
831/// analyze the expression and return a mask of KnownOne and KnownZero bits for
832/// the expression (used to simplify the caller).  The KnownZero/One bits may
833/// only be accurate for those bits in the DemandedMask.
834bool TargetLowering::SimplifyDemandedBits(SDValue Op,
835                                          const APInt &DemandedMask,
836                                          APInt &KnownZero,
837                                          APInt &KnownOne,
838                                          TargetLoweringOpt &TLO,
839                                          unsigned Depth) const {
840  unsigned BitWidth = DemandedMask.getBitWidth();
841  assert(Op.getValueSizeInBits() == BitWidth &&
842         "Mask size mismatches value type size!");
843  APInt NewMask = DemandedMask;
844  DebugLoc dl = Op.getDebugLoc();
845
846  // Don't know anything.
847  KnownZero = KnownOne = APInt(BitWidth, 0);
848
849  // Other users may use these bits.
850  if (!Op.getNode()->hasOneUse()) {
851    if (Depth != 0) {
852      // If not at the root, Just compute the KnownZero/KnownOne bits to
853      // simplify things downstream.
854      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
855      return false;
856    }
857    // If this is the root being simplified, allow it to have multiple uses,
858    // just set the NewMask to all bits.
859    NewMask = APInt::getAllOnesValue(BitWidth);
860  } else if (DemandedMask == 0) {
861    // Not demanding any bits from Op.
862    if (Op.getOpcode() != ISD::UNDEF)
863      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
864    return false;
865  } else if (Depth == 6) {        // Limit search depth.
866    return false;
867  }
868
869  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
870  switch (Op.getOpcode()) {
871  case ISD::Constant:
872    // We know all of the bits for a constant!
873    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
874    KnownZero = ~KnownOne & NewMask;
875    return false;   // Don't fall through, will infinitely loop.
876  case ISD::AND:
877    // If the RHS is a constant, check to see if the LHS would be zero without
878    // using the bits from the RHS.  Below, we use knowledge about the RHS to
879    // simplify the LHS, here we're using information from the LHS to simplify
880    // the RHS.
881    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
882      APInt LHSZero, LHSOne;
883      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
884                                LHSZero, LHSOne, Depth+1);
885      // If the LHS already has zeros where RHSC does, this and is dead.
886      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
887        return TLO.CombineTo(Op, Op.getOperand(0));
888      // If any of the set bits in the RHS are known zero on the LHS, shrink
889      // the constant.
890      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
891        return true;
892    }
893
894    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
895                             KnownOne, TLO, Depth+1))
896      return true;
897    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
898    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
899                             KnownZero2, KnownOne2, TLO, Depth+1))
900      return true;
901    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
902
903    // If all of the demanded bits are known one on one side, return the other.
904    // These bits cannot contribute to the result of the 'and'.
905    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
906      return TLO.CombineTo(Op, Op.getOperand(0));
907    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
908      return TLO.CombineTo(Op, Op.getOperand(1));
909    // If all of the demanded bits in the inputs are known zeros, return zero.
910    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
911      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
912    // If the RHS is a constant, see if we can simplify it.
913    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
914      return true;
915    // If the operation can be done in a smaller type, do so.
916    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
917      return true;
918
919    // Output known-1 bits are only known if set in both the LHS & RHS.
920    KnownOne &= KnownOne2;
921    // Output known-0 are known to be clear if zero in either the LHS | RHS.
922    KnownZero |= KnownZero2;
923    break;
924  case ISD::OR:
925    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
926                             KnownOne, TLO, Depth+1))
927      return true;
928    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
929    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
930                             KnownZero2, KnownOne2, TLO, Depth+1))
931      return true;
932    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
933
934    // If all of the demanded bits are known zero on one side, return the other.
935    // These bits cannot contribute to the result of the 'or'.
936    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
937      return TLO.CombineTo(Op, Op.getOperand(0));
938    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
939      return TLO.CombineTo(Op, Op.getOperand(1));
940    // If all of the potentially set bits on one side are known to be set on
941    // the other side, just use the 'other' side.
942    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
943      return TLO.CombineTo(Op, Op.getOperand(0));
944    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
945      return TLO.CombineTo(Op, Op.getOperand(1));
946    // If the RHS is a constant, see if we can simplify it.
947    if (TLO.ShrinkDemandedConstant(Op, NewMask))
948      return true;
949    // If the operation can be done in a smaller type, do so.
950    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
951      return true;
952
953    // Output known-0 bits are only known if clear in both the LHS & RHS.
954    KnownZero &= KnownZero2;
955    // Output known-1 are known to be set if set in either the LHS | RHS.
956    KnownOne |= KnownOne2;
957    break;
958  case ISD::XOR:
959    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
960                             KnownOne, TLO, Depth+1))
961      return true;
962    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
963    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
964                             KnownOne2, TLO, Depth+1))
965      return true;
966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
967
968    // If all of the demanded bits are known zero on one side, return the other.
969    // These bits cannot contribute to the result of the 'xor'.
970    if ((KnownZero & NewMask) == NewMask)
971      return TLO.CombineTo(Op, Op.getOperand(0));
972    if ((KnownZero2 & NewMask) == NewMask)
973      return TLO.CombineTo(Op, Op.getOperand(1));
974    // If the operation can be done in a smaller type, do so.
975    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
976      return true;
977
978    // If all of the unknown bits are known to be zero on one side or the other
979    // (but not both) turn this into an *inclusive* or.
980    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
981    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
982      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
983                                               Op.getOperand(0),
984                                               Op.getOperand(1)));
985
986    // Output known-0 bits are known if clear or set in both the LHS & RHS.
987    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
988    // Output known-1 are known to be set if set in only one of the LHS, RHS.
989    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
990
991    // If all of the demanded bits on one side are known, and all of the set
992    // bits on that side are also known to be set on the other side, turn this
993    // into an AND, as we know the bits will be cleared.
994    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
995    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
996      if ((KnownOne & KnownOne2) == KnownOne) {
997        MVT VT = Op.getValueType();
998        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
999        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1000                                                 Op.getOperand(0), ANDC));
1001      }
1002    }
1003
1004    // If the RHS is a constant, see if we can simplify it.
1005    // for XOR, we prefer to force bits to 1 if they will make a -1.
1006    // if we can't force bits, try to shrink constant
1007    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1008      APInt Expanded = C->getAPIntValue() | (~NewMask);
1009      // if we can expand it to have all bits set, do it
1010      if (Expanded.isAllOnesValue()) {
1011        if (Expanded != C->getAPIntValue()) {
1012          MVT VT = Op.getValueType();
1013          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1014                                          TLO.DAG.getConstant(Expanded, VT));
1015          return TLO.CombineTo(Op, New);
1016        }
1017        // if it already has all the bits set, nothing to change
1018        // but don't shrink either!
1019      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1020        return true;
1021      }
1022    }
1023
1024    KnownZero = KnownZeroOut;
1025    KnownOne  = KnownOneOut;
1026    break;
1027  case ISD::SELECT:
1028    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1029                             KnownOne, TLO, Depth+1))
1030      return true;
1031    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1032                             KnownOne2, TLO, Depth+1))
1033      return true;
1034    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1035    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1036
1037    // If the operands are constants, see if we can simplify them.
1038    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1039      return true;
1040
1041    // Only known if known in both the LHS and RHS.
1042    KnownOne &= KnownOne2;
1043    KnownZero &= KnownZero2;
1044    break;
1045  case ISD::SELECT_CC:
1046    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1047                             KnownOne, TLO, Depth+1))
1048      return true;
1049    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1050                             KnownOne2, TLO, Depth+1))
1051      return true;
1052    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1053    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1054
1055    // If the operands are constants, see if we can simplify them.
1056    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1057      return true;
1058
1059    // Only known if known in both the LHS and RHS.
1060    KnownOne &= KnownOne2;
1061    KnownZero &= KnownZero2;
1062    break;
1063  case ISD::SHL:
1064    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1065      unsigned ShAmt = SA->getZExtValue();
1066      SDValue InOp = Op.getOperand(0);
1067
1068      // If the shift count is an invalid immediate, don't do anything.
1069      if (ShAmt >= BitWidth)
1070        break;
1071
1072      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1073      // single shift.  We can do this if the bottom bits (which are shifted
1074      // out) are never demanded.
1075      if (InOp.getOpcode() == ISD::SRL &&
1076          isa<ConstantSDNode>(InOp.getOperand(1))) {
1077        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1078          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1079          unsigned Opc = ISD::SHL;
1080          int Diff = ShAmt-C1;
1081          if (Diff < 0) {
1082            Diff = -Diff;
1083            Opc = ISD::SRL;
1084          }
1085
1086          SDValue NewSA =
1087            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1088          MVT VT = Op.getValueType();
1089          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1090                                                   InOp.getOperand(0), NewSA));
1091        }
1092      }
1093
1094      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1095                               KnownZero, KnownOne, TLO, Depth+1))
1096        return true;
1097      KnownZero <<= SA->getZExtValue();
1098      KnownOne  <<= SA->getZExtValue();
1099      // low bits known zero.
1100      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1101    }
1102    break;
1103  case ISD::SRL:
1104    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1105      MVT VT = Op.getValueType();
1106      unsigned ShAmt = SA->getZExtValue();
1107      unsigned VTSize = VT.getSizeInBits();
1108      SDValue InOp = Op.getOperand(0);
1109
1110      // If the shift count is an invalid immediate, don't do anything.
1111      if (ShAmt >= BitWidth)
1112        break;
1113
1114      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1115      // single shift.  We can do this if the top bits (which are shifted out)
1116      // are never demanded.
1117      if (InOp.getOpcode() == ISD::SHL &&
1118          isa<ConstantSDNode>(InOp.getOperand(1))) {
1119        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1120          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1121          unsigned Opc = ISD::SRL;
1122          int Diff = ShAmt-C1;
1123          if (Diff < 0) {
1124            Diff = -Diff;
1125            Opc = ISD::SHL;
1126          }
1127
1128          SDValue NewSA =
1129            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1130          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1131                                                   InOp.getOperand(0), NewSA));
1132        }
1133      }
1134
1135      // Compute the new bits that are at the top now.
1136      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1137                               KnownZero, KnownOne, TLO, Depth+1))
1138        return true;
1139      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1140      KnownZero = KnownZero.lshr(ShAmt);
1141      KnownOne  = KnownOne.lshr(ShAmt);
1142
1143      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1144      KnownZero |= HighBits;  // High bits known zero.
1145    }
1146    break;
1147  case ISD::SRA:
1148    // If this is an arithmetic shift right and only the low-bit is set, we can
1149    // always convert this into a logical shr, even if the shift amount is
1150    // variable.  The low bit of the shift cannot be an input sign bit unless
1151    // the shift amount is >= the size of the datatype, which is undefined.
1152    if (DemandedMask == 1)
1153      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1154                                               Op.getOperand(0), Op.getOperand(1)));
1155
1156    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1157      MVT VT = Op.getValueType();
1158      unsigned ShAmt = SA->getZExtValue();
1159
1160      // If the shift count is an invalid immediate, don't do anything.
1161      if (ShAmt >= BitWidth)
1162        break;
1163
1164      APInt InDemandedMask = (NewMask << ShAmt);
1165
1166      // If any of the demanded bits are produced by the sign extension, we also
1167      // demand the input sign bit.
1168      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1169      if (HighBits.intersects(NewMask))
1170        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1171
1172      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1173                               KnownZero, KnownOne, TLO, Depth+1))
1174        return true;
1175      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1176      KnownZero = KnownZero.lshr(ShAmt);
1177      KnownOne  = KnownOne.lshr(ShAmt);
1178
1179      // Handle the sign bit, adjusted to where it is now in the mask.
1180      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1181
1182      // If the input sign bit is known to be zero, or if none of the top bits
1183      // are demanded, turn this into an unsigned shift right.
1184      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1185        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1186                                                 Op.getOperand(0),
1187                                                 Op.getOperand(1)));
1188      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1189        KnownOne |= HighBits;
1190      }
1191    }
1192    break;
1193  case ISD::SIGN_EXTEND_INREG: {
1194    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1195
1196    // Sign extension.  Compute the demanded bits in the result that are not
1197    // present in the input.
1198    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1199                                          BitWidth - EVT.getSizeInBits()) &
1200                    NewMask;
1201
1202    // If none of the extended bits are demanded, eliminate the sextinreg.
1203    if (NewBits == 0)
1204      return TLO.CombineTo(Op, Op.getOperand(0));
1205
1206    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1207    InSignBit.zext(BitWidth);
1208    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1209                                                   EVT.getSizeInBits()) &
1210                              NewMask;
1211
1212    // Since the sign extended bits are demanded, we know that the sign
1213    // bit is demanded.
1214    InputDemandedBits |= InSignBit;
1215
1216    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1217                             KnownZero, KnownOne, TLO, Depth+1))
1218      return true;
1219    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1220
1221    // If the sign bit of the input is known set or clear, then we know the
1222    // top bits of the result.
1223
1224    // If the input sign bit is known zero, convert this into a zero extension.
1225    if (KnownZero.intersects(InSignBit))
1226      return TLO.CombineTo(Op,
1227                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1228
1229    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1230      KnownOne |= NewBits;
1231      KnownZero &= ~NewBits;
1232    } else {                       // Input sign bit unknown
1233      KnownZero &= ~NewBits;
1234      KnownOne &= ~NewBits;
1235    }
1236    break;
1237  }
1238  case ISD::ZERO_EXTEND: {
1239    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1240    APInt InMask = NewMask;
1241    InMask.trunc(OperandBitWidth);
1242
1243    // If none of the top bits are demanded, convert this into an any_extend.
1244    APInt NewBits =
1245      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1246    if (!NewBits.intersects(NewMask))
1247      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1248                                               Op.getValueType(),
1249                                               Op.getOperand(0)));
1250
1251    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1252                             KnownZero, KnownOne, TLO, Depth+1))
1253      return true;
1254    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1255    KnownZero.zext(BitWidth);
1256    KnownOne.zext(BitWidth);
1257    KnownZero |= NewBits;
1258    break;
1259  }
1260  case ISD::SIGN_EXTEND: {
1261    MVT InVT = Op.getOperand(0).getValueType();
1262    unsigned InBits = InVT.getSizeInBits();
1263    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1264    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1265    APInt NewBits   = ~InMask & NewMask;
1266
1267    // If none of the top bits are demanded, convert this into an any_extend.
1268    if (NewBits == 0)
1269      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1270                                              Op.getValueType(),
1271                                              Op.getOperand(0)));
1272
1273    // Since some of the sign extended bits are demanded, we know that the sign
1274    // bit is demanded.
1275    APInt InDemandedBits = InMask & NewMask;
1276    InDemandedBits |= InSignBit;
1277    InDemandedBits.trunc(InBits);
1278
1279    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1280                             KnownOne, TLO, Depth+1))
1281      return true;
1282    KnownZero.zext(BitWidth);
1283    KnownOne.zext(BitWidth);
1284
1285    // If the sign bit is known zero, convert this to a zero extend.
1286    if (KnownZero.intersects(InSignBit))
1287      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1288                                               Op.getValueType(),
1289                                               Op.getOperand(0)));
1290
1291    // If the sign bit is known one, the top bits match.
1292    if (KnownOne.intersects(InSignBit)) {
1293      KnownOne  |= NewBits;
1294      KnownZero &= ~NewBits;
1295    } else {   // Otherwise, top bits aren't known.
1296      KnownOne  &= ~NewBits;
1297      KnownZero &= ~NewBits;
1298    }
1299    break;
1300  }
1301  case ISD::ANY_EXTEND: {
1302    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1303    APInt InMask = NewMask;
1304    InMask.trunc(OperandBitWidth);
1305    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1306                             KnownZero, KnownOne, TLO, Depth+1))
1307      return true;
1308    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1309    KnownZero.zext(BitWidth);
1310    KnownOne.zext(BitWidth);
1311    break;
1312  }
1313  case ISD::TRUNCATE: {
1314    // Simplify the input, using demanded bit information, and compute the known
1315    // zero/one bits live out.
1316    APInt TruncMask = NewMask;
1317    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1318    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1319                             KnownZero, KnownOne, TLO, Depth+1))
1320      return true;
1321    KnownZero.trunc(BitWidth);
1322    KnownOne.trunc(BitWidth);
1323
1324    // If the input is only used by this truncate, see if we can shrink it based
1325    // on the known demanded bits.
1326    if (Op.getOperand(0).getNode()->hasOneUse()) {
1327      SDValue In = Op.getOperand(0);
1328      unsigned InBitWidth = In.getValueSizeInBits();
1329      switch (In.getOpcode()) {
1330      default: break;
1331      case ISD::SRL:
1332        // Shrink SRL by a constant if none of the high bits shifted in are
1333        // demanded.
1334        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1335          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1336                                                 InBitWidth - BitWidth);
1337          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1338          HighBits.trunc(BitWidth);
1339
1340          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1341            // None of the shifted in bits are needed.  Add a truncate of the
1342            // shift input, then shift it.
1343            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1344                                                 Op.getValueType(),
1345                                                 In.getOperand(0));
1346            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1347                                                     Op.getValueType(),
1348                                                     NewTrunc,
1349                                                     In.getOperand(1)));
1350          }
1351        }
1352        break;
1353      }
1354    }
1355
1356    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1357    break;
1358  }
1359  case ISD::AssertZext: {
1360    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1361    APInt InMask = APInt::getLowBitsSet(BitWidth,
1362                                        VT.getSizeInBits());
1363    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1364                             KnownZero, KnownOne, TLO, Depth+1))
1365      return true;
1366    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1367    KnownZero |= ~InMask & NewMask;
1368    break;
1369  }
1370  case ISD::BIT_CONVERT:
1371#if 0
1372    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1373    // is demanded, turn this into a FGETSIGN.
1374    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1375        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1376        !MVT::isVector(Op.getOperand(0).getValueType())) {
1377      // Only do this xform if FGETSIGN is valid or if before legalize.
1378      if (!TLO.AfterLegalize ||
1379          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1380        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1381        // place.  We expect the SHL to be eliminated by other optimizations.
1382        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1383                                         Op.getOperand(0));
1384        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1385        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1386        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1387                                                 Sign, ShAmt));
1388      }
1389    }
1390#endif
1391    break;
1392  case ISD::ADD:
1393  case ISD::MUL:
1394  case ISD::SUB: {
1395    // Add, Sub, and Mul don't demand any bits in positions beyond that
1396    // of the highest bit demanded of them.
1397    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1398                                        BitWidth - NewMask.countLeadingZeros());
1399    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1400                             KnownOne2, TLO, Depth+1))
1401      return true;
1402    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1403                             KnownOne2, TLO, Depth+1))
1404      return true;
1405    // See if the operation should be performed at a smaller bit width.
1406    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1407      return true;
1408  }
1409  // FALL THROUGH
1410  default:
1411    // Just use ComputeMaskedBits to compute output bits.
1412    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1413    break;
1414  }
1415
1416  // If we know the value of all of the demanded bits, return this as a
1417  // constant.
1418  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1419    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1420
1421  return false;
1422}
1423
1424/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1425/// in Mask are known to be either zero or one and return them in the
1426/// KnownZero/KnownOne bitsets.
1427void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1428                                                    const APInt &Mask,
1429                                                    APInt &KnownZero,
1430                                                    APInt &KnownOne,
1431                                                    const SelectionDAG &DAG,
1432                                                    unsigned Depth) const {
1433  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1434          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1435          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1436          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1437         "Should use MaskedValueIsZero if you don't know whether Op"
1438         " is a target node!");
1439  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1440}
1441
1442/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1443/// targets that want to expose additional information about sign bits to the
1444/// DAG Combiner.
1445unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1446                                                         unsigned Depth) const {
1447  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1448          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1449          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1450          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1451         "Should use ComputeNumSignBits if you don't know whether Op"
1452         " is a target node!");
1453  return 1;
1454}
1455
1456/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1457/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1458/// determine which bit is set.
1459///
1460static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1461  // A left-shift of a constant one will have exactly one bit set, because
1462  // shifting the bit off the end is undefined.
1463  if (Val.getOpcode() == ISD::SHL)
1464    if (ConstantSDNode *C =
1465         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1466      if (C->getAPIntValue() == 1)
1467        return true;
1468
1469  // Similarly, a right-shift of a constant sign-bit will have exactly
1470  // one bit set.
1471  if (Val.getOpcode() == ISD::SRL)
1472    if (ConstantSDNode *C =
1473         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1474      if (C->getAPIntValue().isSignBit())
1475        return true;
1476
1477  // More could be done here, though the above checks are enough
1478  // to handle some common cases.
1479
1480  // Fall back to ComputeMaskedBits to catch other known cases.
1481  MVT OpVT = Val.getValueType();
1482  unsigned BitWidth = OpVT.getSizeInBits();
1483  APInt Mask = APInt::getAllOnesValue(BitWidth);
1484  APInt KnownZero, KnownOne;
1485  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1486  return (KnownZero.countPopulation() == BitWidth - 1) &&
1487         (KnownOne.countPopulation() == 1);
1488}
1489
1490/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1491/// and cc. If it is unable to simplify it, return a null SDValue.
1492SDValue
1493TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1494                              ISD::CondCode Cond, bool foldBooleans,
1495                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1496  SelectionDAG &DAG = DCI.DAG;
1497
1498  // These setcc operations always fold.
1499  switch (Cond) {
1500  default: break;
1501  case ISD::SETFALSE:
1502  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1503  case ISD::SETTRUE:
1504  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1505  }
1506
1507  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1508    const APInt &C1 = N1C->getAPIntValue();
1509    if (isa<ConstantSDNode>(N0.getNode())) {
1510      return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1511    } else {
1512      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1513      // equality comparison, then we're just comparing whether X itself is
1514      // zero.
1515      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1516          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1517          N0.getOperand(1).getOpcode() == ISD::Constant) {
1518        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1519        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1520            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1521          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1522            // (srl (ctlz x), 5) == 0  -> X != 0
1523            // (srl (ctlz x), 5) != 1  -> X != 0
1524            Cond = ISD::SETNE;
1525          } else {
1526            // (srl (ctlz x), 5) != 0  -> X == 0
1527            // (srl (ctlz x), 5) == 1  -> X == 0
1528            Cond = ISD::SETEQ;
1529          }
1530          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1531          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1532                              Zero, Cond);
1533        }
1534      }
1535
1536      // If the LHS is '(and load, const)', the RHS is 0,
1537      // the test is for equality or unsigned, and all 1 bits of the const are
1538      // in the same partial word, see if we can shorten the load.
1539      if (DCI.isBeforeLegalize() &&
1540          N0.getOpcode() == ISD::AND && C1 == 0 &&
1541          N0.getNode()->hasOneUse() &&
1542          isa<LoadSDNode>(N0.getOperand(0)) &&
1543          N0.getOperand(0).getNode()->hasOneUse() &&
1544          isa<ConstantSDNode>(N0.getOperand(1))) {
1545        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1546        uint64_t bestMask = 0;
1547        unsigned bestWidth = 0, bestOffset = 0;
1548        if (!Lod->isVolatile() && Lod->isUnindexed() &&
1549            // FIXME: This uses getZExtValue() below so it only works on i64 and
1550            // below.
1551            N0.getValueType().getSizeInBits() <= 64) {
1552          unsigned origWidth = N0.getValueType().getSizeInBits();
1553          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1554          // 8 bits, but have to be careful...
1555          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1556            origWidth = Lod->getMemoryVT().getSizeInBits();
1557          uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1558          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1559            uint64_t newMask = (1ULL << width) - 1;
1560            for (unsigned offset=0; offset<origWidth/width; offset++) {
1561              if ((newMask & Mask) == Mask) {
1562                if (!TD->isLittleEndian())
1563                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1564                else
1565                  bestOffset = (uint64_t)offset * (width/8);
1566                bestMask = Mask >> (offset * (width/8) * 8);
1567                bestWidth = width;
1568                break;
1569              }
1570              newMask = newMask << width;
1571            }
1572          }
1573        }
1574        if (bestWidth) {
1575          MVT newVT = MVT::getIntegerVT(bestWidth);
1576          if (newVT.isRound()) {
1577            MVT PtrType = Lod->getOperand(1).getValueType();
1578            SDValue Ptr = Lod->getBasePtr();
1579            if (bestOffset != 0)
1580              Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1581                                DAG.getConstant(bestOffset, PtrType));
1582            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1583            SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1584                                          Lod->getSrcValue(),
1585                                          Lod->getSrcValueOffset() + bestOffset,
1586                                          false, NewAlign);
1587            return DAG.getSetCC(dl, VT,
1588                                DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1589                                            DAG.getConstant(bestMask, newVT)),
1590                                DAG.getConstant(0LL, newVT), Cond);
1591          }
1592        }
1593      }
1594
1595      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1596      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1597        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1598
1599        // If the comparison constant has bits in the upper part, the
1600        // zero-extended value could never match.
1601        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1602                                                C1.getBitWidth() - InSize))) {
1603          switch (Cond) {
1604          case ISD::SETUGT:
1605          case ISD::SETUGE:
1606          case ISD::SETEQ: return DAG.getConstant(0, VT);
1607          case ISD::SETULT:
1608          case ISD::SETULE:
1609          case ISD::SETNE: return DAG.getConstant(1, VT);
1610          case ISD::SETGT:
1611          case ISD::SETGE:
1612            // True if the sign bit of C1 is set.
1613            return DAG.getConstant(C1.isNegative(), VT);
1614          case ISD::SETLT:
1615          case ISD::SETLE:
1616            // True if the sign bit of C1 isn't set.
1617            return DAG.getConstant(C1.isNonNegative(), VT);
1618          default:
1619            break;
1620          }
1621        }
1622
1623        // Otherwise, we can perform the comparison with the low bits.
1624        switch (Cond) {
1625        case ISD::SETEQ:
1626        case ISD::SETNE:
1627        case ISD::SETUGT:
1628        case ISD::SETUGE:
1629        case ISD::SETULT:
1630        case ISD::SETULE:
1631          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1632                          DAG.getConstant(APInt(C1).trunc(InSize),
1633                                          N0.getOperand(0).getValueType()),
1634                          Cond);
1635        default:
1636          break;   // todo, be more careful with signed comparisons
1637        }
1638      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1639                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1640        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1641        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1642        MVT ExtDstTy = N0.getValueType();
1643        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1644
1645        // If the extended part has any inconsistent bits, it cannot ever
1646        // compare equal.  In other words, they have to be all ones or all
1647        // zeros.
1648        APInt ExtBits =
1649          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1650        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1651          return DAG.getConstant(Cond == ISD::SETNE, VT);
1652
1653        SDValue ZextOp;
1654        MVT Op0Ty = N0.getOperand(0).getValueType();
1655        if (Op0Ty == ExtSrcTy) {
1656          ZextOp = N0.getOperand(0);
1657        } else {
1658          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1659          ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1660                               DAG.getConstant(Imm, Op0Ty));
1661        }
1662        if (!DCI.isCalledByLegalizer())
1663          DCI.AddToWorklist(ZextOp.getNode());
1664        // Otherwise, make this a use of a zext.
1665        return DAG.getSetCC(dl, VT, ZextOp,
1666                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1667                                                               ExtDstTyBits,
1668                                                               ExtSrcTyBits),
1669                                            ExtDstTy),
1670                            Cond);
1671      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1672                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1673
1674        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1675        if (N0.getOpcode() == ISD::SETCC) {
1676          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1677          if (TrueWhenTrue)
1678            return N0;
1679
1680          // Invert the condition.
1681          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1682          CC = ISD::getSetCCInverse(CC,
1683                                   N0.getOperand(0).getValueType().isInteger());
1684          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1685        }
1686
1687        if ((N0.getOpcode() == ISD::XOR ||
1688             (N0.getOpcode() == ISD::AND &&
1689              N0.getOperand(0).getOpcode() == ISD::XOR &&
1690              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1691            isa<ConstantSDNode>(N0.getOperand(1)) &&
1692            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1693          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1694          // can only do this if the top bits are known zero.
1695          unsigned BitWidth = N0.getValueSizeInBits();
1696          if (DAG.MaskedValueIsZero(N0,
1697                                    APInt::getHighBitsSet(BitWidth,
1698                                                          BitWidth-1))) {
1699            // Okay, get the un-inverted input value.
1700            SDValue Val;
1701            if (N0.getOpcode() == ISD::XOR)
1702              Val = N0.getOperand(0);
1703            else {
1704              assert(N0.getOpcode() == ISD::AND &&
1705                     N0.getOperand(0).getOpcode() == ISD::XOR);
1706              // ((X^1)&1)^1 -> X & 1
1707              Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1708                                N0.getOperand(0).getOperand(0),
1709                                N0.getOperand(1));
1710            }
1711            return DAG.getSetCC(dl, VT, Val, N1,
1712                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1713          }
1714        }
1715      }
1716
1717      APInt MinVal, MaxVal;
1718      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1719      if (ISD::isSignedIntSetCC(Cond)) {
1720        MinVal = APInt::getSignedMinValue(OperandBitSize);
1721        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1722      } else {
1723        MinVal = APInt::getMinValue(OperandBitSize);
1724        MaxVal = APInt::getMaxValue(OperandBitSize);
1725      }
1726
1727      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1728      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1729        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1730        // X >= C0 --> X > (C0-1)
1731        return DAG.getSetCC(dl, VT, N0,
1732                            DAG.getConstant(C1-1, N1.getValueType()),
1733                            (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1734      }
1735
1736      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1737        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1738        // X <= C0 --> X < (C0+1)
1739        return DAG.getSetCC(dl, VT, N0,
1740                            DAG.getConstant(C1+1, N1.getValueType()),
1741                            (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1742      }
1743
1744      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1745        return DAG.getConstant(0, VT);      // X < MIN --> false
1746      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1747        return DAG.getConstant(1, VT);      // X >= MIN --> true
1748      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1749        return DAG.getConstant(0, VT);      // X > MAX --> false
1750      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1751        return DAG.getConstant(1, VT);      // X <= MAX --> true
1752
1753      // Canonicalize setgt X, Min --> setne X, Min
1754      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1755        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1756      // Canonicalize setlt X, Max --> setne X, Max
1757      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1758        return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1759
1760      // If we have setult X, 1, turn it into seteq X, 0
1761      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1762        return DAG.getSetCC(dl, VT, N0,
1763                            DAG.getConstant(MinVal, N0.getValueType()),
1764                            ISD::SETEQ);
1765      // If we have setugt X, Max-1, turn it into seteq X, Max
1766      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1767        return DAG.getSetCC(dl, VT, N0,
1768                            DAG.getConstant(MaxVal, N0.getValueType()),
1769                            ISD::SETEQ);
1770
1771      // If we have "setcc X, C0", check to see if we can shrink the immediate
1772      // by changing cc.
1773
1774      // SETUGT X, SINTMAX  -> SETLT X, 0
1775      if (Cond == ISD::SETUGT &&
1776          C1 == APInt::getSignedMaxValue(OperandBitSize))
1777        return DAG.getSetCC(dl, VT, N0,
1778                            DAG.getConstant(0, N1.getValueType()),
1779                            ISD::SETLT);
1780
1781      // SETULT X, SINTMIN  -> SETGT X, -1
1782      if (Cond == ISD::SETULT &&
1783          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1784        SDValue ConstMinusOne =
1785            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1786                            N1.getValueType());
1787        return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1788      }
1789
1790      // Fold bit comparisons when we can.
1791      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1792          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1793        if (ConstantSDNode *AndRHS =
1794                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1795          MVT ShiftTy = DCI.isBeforeLegalize() ?
1796            getPointerTy() : getShiftAmountTy();
1797          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1798            // Perform the xform if the AND RHS is a single bit.
1799            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1800              return DAG.getNode(ISD::SRL, dl, VT, N0,
1801                                 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1802                                                 ShiftTy));
1803            }
1804          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1805            // (X & 8) == 8  -->  (X & 8) >> 3
1806            // Perform the xform if C1 is a single bit.
1807            if (C1.isPowerOf2()) {
1808              return DAG.getNode(ISD::SRL, dl, VT, N0,
1809                                 DAG.getConstant(C1.logBase2(), ShiftTy));
1810            }
1811          }
1812        }
1813    }
1814  } else if (isa<ConstantSDNode>(N0.getNode())) {
1815      // Ensure that the constant occurs on the RHS.
1816    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1817  }
1818
1819  if (isa<ConstantFPSDNode>(N0.getNode())) {
1820    // Constant fold or commute setcc.
1821    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1822    if (O.getNode()) return O;
1823  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1824    // If the RHS of an FP comparison is a constant, simplify it away in
1825    // some cases.
1826    if (CFP->getValueAPF().isNaN()) {
1827      // If an operand is known to be a nan, we can fold it.
1828      switch (ISD::getUnorderedFlavor(Cond)) {
1829      default: assert(0 && "Unknown flavor!");
1830      case 0:  // Known false.
1831        return DAG.getConstant(0, VT);
1832      case 1:  // Known true.
1833        return DAG.getConstant(1, VT);
1834      case 2:  // Undefined.
1835        return DAG.getUNDEF(VT);
1836      }
1837    }
1838
1839    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1840    // constant if knowing that the operand is non-nan is enough.  We prefer to
1841    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1842    // materialize 0.0.
1843    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1844      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1845  }
1846
1847  if (N0 == N1) {
1848    // We can always fold X == X for integer setcc's.
1849    if (N0.getValueType().isInteger())
1850      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1851    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1852    if (UOF == 2)   // FP operators that are undefined on NaNs.
1853      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1854    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1855      return DAG.getConstant(UOF, VT);
1856    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1857    // if it is not already.
1858    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1859    if (NewCond != Cond)
1860      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1861  }
1862
1863  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1864      N0.getValueType().isInteger()) {
1865    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1866        N0.getOpcode() == ISD::XOR) {
1867      // Simplify (X+Y) == (X+Z) -->  Y == Z
1868      if (N0.getOpcode() == N1.getOpcode()) {
1869        if (N0.getOperand(0) == N1.getOperand(0))
1870          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1871        if (N0.getOperand(1) == N1.getOperand(1))
1872          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1873        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1874          // If X op Y == Y op X, try other combinations.
1875          if (N0.getOperand(0) == N1.getOperand(1))
1876            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1877                                Cond);
1878          if (N0.getOperand(1) == N1.getOperand(0))
1879            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1880                                Cond);
1881        }
1882      }
1883
1884      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1885        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1886          // Turn (X+C1) == C2 --> X == C2-C1
1887          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1888            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1889                                DAG.getConstant(RHSC->getAPIntValue()-
1890                                                LHSR->getAPIntValue(),
1891                                N0.getValueType()), Cond);
1892          }
1893
1894          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1895          if (N0.getOpcode() == ISD::XOR)
1896            // If we know that all of the inverted bits are zero, don't bother
1897            // performing the inversion.
1898            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1899              return
1900                DAG.getSetCC(dl, VT, N0.getOperand(0),
1901                             DAG.getConstant(LHSR->getAPIntValue() ^
1902                                               RHSC->getAPIntValue(),
1903                                             N0.getValueType()),
1904                             Cond);
1905        }
1906
1907        // Turn (C1-X) == C2 --> X == C1-C2
1908        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1909          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1910            return
1911              DAG.getSetCC(dl, VT, N0.getOperand(1),
1912                           DAG.getConstant(SUBC->getAPIntValue() -
1913                                             RHSC->getAPIntValue(),
1914                                           N0.getValueType()),
1915                           Cond);
1916          }
1917        }
1918      }
1919
1920      // Simplify (X+Z) == X -->  Z == 0
1921      if (N0.getOperand(0) == N1)
1922        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1923                        DAG.getConstant(0, N0.getValueType()), Cond);
1924      if (N0.getOperand(1) == N1) {
1925        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1926          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1927                          DAG.getConstant(0, N0.getValueType()), Cond);
1928        else if (N0.getNode()->hasOneUse()) {
1929          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1930          // (Z-X) == X  --> Z == X<<1
1931          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1932                                     N1,
1933                                     DAG.getConstant(1, getShiftAmountTy()));
1934          if (!DCI.isCalledByLegalizer())
1935            DCI.AddToWorklist(SH.getNode());
1936          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1937        }
1938      }
1939    }
1940
1941    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1942        N1.getOpcode() == ISD::XOR) {
1943      // Simplify  X == (X+Z) -->  Z == 0
1944      if (N1.getOperand(0) == N0) {
1945        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1946                        DAG.getConstant(0, N1.getValueType()), Cond);
1947      } else if (N1.getOperand(1) == N0) {
1948        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1949          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1950                          DAG.getConstant(0, N1.getValueType()), Cond);
1951        } else if (N1.getNode()->hasOneUse()) {
1952          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1953          // X == (Z-X)  --> X<<1 == Z
1954          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1955                                     DAG.getConstant(1, getShiftAmountTy()));
1956          if (!DCI.isCalledByLegalizer())
1957            DCI.AddToWorklist(SH.getNode());
1958          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1959        }
1960      }
1961    }
1962
1963    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1964    // Note that where y is variable and is known to have at most
1965    // one bit set (for example, if it is z&1) we cannot do this;
1966    // the expressions are not equivalent when y==0.
1967    if (N0.getOpcode() == ISD::AND)
1968      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1969        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1970          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1971          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1972          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1973        }
1974      }
1975    if (N1.getOpcode() == ISD::AND)
1976      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1977        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1978          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1979          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1980          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1981        }
1982      }
1983  }
1984
1985  // Fold away ALL boolean setcc's.
1986  SDValue Temp;
1987  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1988    switch (Cond) {
1989    default: assert(0 && "Unknown integer setcc!");
1990    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1991      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1992      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1993      if (!DCI.isCalledByLegalizer())
1994        DCI.AddToWorklist(Temp.getNode());
1995      break;
1996    case ISD::SETNE:  // X != Y   -->  (X^Y)
1997      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1998      break;
1999    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2000    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2001      Temp = DAG.getNOT(dl, N0, MVT::i1);
2002      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2003      if (!DCI.isCalledByLegalizer())
2004        DCI.AddToWorklist(Temp.getNode());
2005      break;
2006    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2007    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2008      Temp = DAG.getNOT(dl, N1, MVT::i1);
2009      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2010      if (!DCI.isCalledByLegalizer())
2011        DCI.AddToWorklist(Temp.getNode());
2012      break;
2013    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2014    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2015      Temp = DAG.getNOT(dl, N0, MVT::i1);
2016      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2017      if (!DCI.isCalledByLegalizer())
2018        DCI.AddToWorklist(Temp.getNode());
2019      break;
2020    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2021    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2022      Temp = DAG.getNOT(dl, N1, MVT::i1);
2023      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2024      break;
2025    }
2026    if (VT != MVT::i1) {
2027      if (!DCI.isCalledByLegalizer())
2028        DCI.AddToWorklist(N0.getNode());
2029      // FIXME: If running after legalize, we probably can't do this.
2030      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2031    }
2032    return N0;
2033  }
2034
2035  // Could not fold it.
2036  return SDValue();
2037}
2038
2039/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2040/// node is a GlobalAddress + offset.
2041bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2042                                    int64_t &Offset) const {
2043  if (isa<GlobalAddressSDNode>(N)) {
2044    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2045    GA = GASD->getGlobal();
2046    Offset += GASD->getOffset();
2047    return true;
2048  }
2049
2050  if (N->getOpcode() == ISD::ADD) {
2051    SDValue N1 = N->getOperand(0);
2052    SDValue N2 = N->getOperand(1);
2053    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2054      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2055      if (V) {
2056        Offset += V->getSExtValue();
2057        return true;
2058      }
2059    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2060      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2061      if (V) {
2062        Offset += V->getSExtValue();
2063        return true;
2064      }
2065    }
2066  }
2067  return false;
2068}
2069
2070
2071/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
2072/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
2073/// location that the 'Base' load is loading from.
2074bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
2075                                       unsigned Bytes, int Dist,
2076                                       const MachineFrameInfo *MFI) const {
2077  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
2078    return false;
2079  MVT VT = LD->getValueType(0);
2080  if (VT.getSizeInBits() / 8 != Bytes)
2081    return false;
2082
2083  SDValue Loc = LD->getOperand(1);
2084  SDValue BaseLoc = Base->getOperand(1);
2085  if (Loc.getOpcode() == ISD::FrameIndex) {
2086    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2087      return false;
2088    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2089    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2090    int FS  = MFI->getObjectSize(FI);
2091    int BFS = MFI->getObjectSize(BFI);
2092    if (FS != BFS || FS != (int)Bytes) return false;
2093    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2094  }
2095
2096  GlobalValue *GV1 = NULL;
2097  GlobalValue *GV2 = NULL;
2098  int64_t Offset1 = 0;
2099  int64_t Offset2 = 0;
2100  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2101  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2102  if (isGA1 && isGA2 && GV1 == GV2)
2103    return Offset1 == (Offset2 + Dist*Bytes);
2104  return false;
2105}
2106
2107
2108SDValue TargetLowering::
2109PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2110  // Default implementation: no optimization.
2111  return SDValue();
2112}
2113
2114//===----------------------------------------------------------------------===//
2115//  Inline Assembler Implementation Methods
2116//===----------------------------------------------------------------------===//
2117
2118
2119TargetLowering::ConstraintType
2120TargetLowering::getConstraintType(const std::string &Constraint) const {
2121  // FIXME: lots more standard ones to handle.
2122  if (Constraint.size() == 1) {
2123    switch (Constraint[0]) {
2124    default: break;
2125    case 'r': return C_RegisterClass;
2126    case 'm':    // memory
2127    case 'o':    // offsetable
2128    case 'V':    // not offsetable
2129      return C_Memory;
2130    case 'i':    // Simple Integer or Relocatable Constant
2131    case 'n':    // Simple Integer
2132    case 's':    // Relocatable Constant
2133    case 'X':    // Allow ANY value.
2134    case 'I':    // Target registers.
2135    case 'J':
2136    case 'K':
2137    case 'L':
2138    case 'M':
2139    case 'N':
2140    case 'O':
2141    case 'P':
2142      return C_Other;
2143    }
2144  }
2145
2146  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2147      Constraint[Constraint.size()-1] == '}')
2148    return C_Register;
2149  return C_Unknown;
2150}
2151
2152/// LowerXConstraint - try to replace an X constraint, which matches anything,
2153/// with another that has more specific requirements based on the type of the
2154/// corresponding operand.
2155const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2156  if (ConstraintVT.isInteger())
2157    return "r";
2158  if (ConstraintVT.isFloatingPoint())
2159    return "f";      // works for many targets
2160  return 0;
2161}
2162
2163/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2164/// vector.  If it is invalid, don't add anything to Ops.
2165void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2166                                                  char ConstraintLetter,
2167                                                  bool hasMemory,
2168                                                  std::vector<SDValue> &Ops,
2169                                                  SelectionDAG &DAG) const {
2170  switch (ConstraintLetter) {
2171  default: break;
2172  case 'X':     // Allows any operand; labels (basic block) use this.
2173    if (Op.getOpcode() == ISD::BasicBlock) {
2174      Ops.push_back(Op);
2175      return;
2176    }
2177    // fall through
2178  case 'i':    // Simple Integer or Relocatable Constant
2179  case 'n':    // Simple Integer
2180  case 's': {  // Relocatable Constant
2181    // These operands are interested in values of the form (GV+C), where C may
2182    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2183    // is possible and fine if either GV or C are missing.
2184    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2185    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2186
2187    // If we have "(add GV, C)", pull out GV/C
2188    if (Op.getOpcode() == ISD::ADD) {
2189      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2190      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2191      if (C == 0 || GA == 0) {
2192        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2193        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2194      }
2195      if (C == 0 || GA == 0)
2196        C = 0, GA = 0;
2197    }
2198
2199    // If we find a valid operand, map to the TargetXXX version so that the
2200    // value itself doesn't get selected.
2201    if (GA) {   // Either &GV   or   &GV+C
2202      if (ConstraintLetter != 'n') {
2203        int64_t Offs = GA->getOffset();
2204        if (C) Offs += C->getZExtValue();
2205        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2206                                                 Op.getValueType(), Offs));
2207        return;
2208      }
2209    }
2210    if (C) {   // just C, no GV.
2211      // Simple constants are not allowed for 's'.
2212      if (ConstraintLetter != 's') {
2213        // gcc prints these as sign extended.  Sign extend value to 64 bits
2214        // now; without this it would get ZExt'd later in
2215        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2216        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2217                                            MVT::i64));
2218        return;
2219      }
2220    }
2221    break;
2222  }
2223  }
2224}
2225
2226std::vector<unsigned> TargetLowering::
2227getRegClassForInlineAsmConstraint(const std::string &Constraint,
2228                                  MVT VT) const {
2229  return std::vector<unsigned>();
2230}
2231
2232
2233std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2234getRegForInlineAsmConstraint(const std::string &Constraint,
2235                             MVT VT) const {
2236  if (Constraint[0] != '{')
2237    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2238  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2239
2240  // Remove the braces from around the name.
2241  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2242
2243  // Figure out which register class contains this reg.
2244  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2245  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2246       E = RI->regclass_end(); RCI != E; ++RCI) {
2247    const TargetRegisterClass *RC = *RCI;
2248
2249    // If none of the the value types for this register class are valid, we
2250    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2251    bool isLegal = false;
2252    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2253         I != E; ++I) {
2254      if (isTypeLegal(*I)) {
2255        isLegal = true;
2256        break;
2257      }
2258    }
2259
2260    if (!isLegal) continue;
2261
2262    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2263         I != E; ++I) {
2264      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2265        return std::make_pair(*I, RC);
2266    }
2267  }
2268
2269  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2270}
2271
2272//===----------------------------------------------------------------------===//
2273// Constraint Selection.
2274
2275/// isMatchingInputConstraint - Return true of this is an input operand that is
2276/// a matching constraint like "4".
2277bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2278  assert(!ConstraintCode.empty() && "No known constraint!");
2279  return isdigit(ConstraintCode[0]);
2280}
2281
2282/// getMatchedOperand - If this is an input matching constraint, this method
2283/// returns the output operand it matches.
2284unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2285  assert(!ConstraintCode.empty() && "No known constraint!");
2286  return atoi(ConstraintCode.c_str());
2287}
2288
2289
2290/// getConstraintGenerality - Return an integer indicating how general CT
2291/// is.
2292static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2293  switch (CT) {
2294  default: assert(0 && "Unknown constraint type!");
2295  case TargetLowering::C_Other:
2296  case TargetLowering::C_Unknown:
2297    return 0;
2298  case TargetLowering::C_Register:
2299    return 1;
2300  case TargetLowering::C_RegisterClass:
2301    return 2;
2302  case TargetLowering::C_Memory:
2303    return 3;
2304  }
2305}
2306
2307/// ChooseConstraint - If there are multiple different constraints that we
2308/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2309/// This is somewhat tricky: constraints fall into four classes:
2310///    Other         -> immediates and magic values
2311///    Register      -> one specific register
2312///    RegisterClass -> a group of regs
2313///    Memory        -> memory
2314/// Ideally, we would pick the most specific constraint possible: if we have
2315/// something that fits into a register, we would pick it.  The problem here
2316/// is that if we have something that could either be in a register or in
2317/// memory that use of the register could cause selection of *other*
2318/// operands to fail: they might only succeed if we pick memory.  Because of
2319/// this the heuristic we use is:
2320///
2321///  1) If there is an 'other' constraint, and if the operand is valid for
2322///     that constraint, use it.  This makes us take advantage of 'i'
2323///     constraints when available.
2324///  2) Otherwise, pick the most general constraint present.  This prefers
2325///     'm' over 'r', for example.
2326///
2327static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2328                             bool hasMemory,  const TargetLowering &TLI,
2329                             SDValue Op, SelectionDAG *DAG) {
2330  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2331  unsigned BestIdx = 0;
2332  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2333  int BestGenerality = -1;
2334
2335  // Loop over the options, keeping track of the most general one.
2336  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2337    TargetLowering::ConstraintType CType =
2338      TLI.getConstraintType(OpInfo.Codes[i]);
2339
2340    // If this is an 'other' constraint, see if the operand is valid for it.
2341    // For example, on X86 we might have an 'rI' constraint.  If the operand
2342    // is an integer in the range [0..31] we want to use I (saving a load
2343    // of a register), otherwise we must use 'r'.
2344    if (CType == TargetLowering::C_Other && Op.getNode()) {
2345      assert(OpInfo.Codes[i].size() == 1 &&
2346             "Unhandled multi-letter 'other' constraint");
2347      std::vector<SDValue> ResultOps;
2348      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2349                                       ResultOps, *DAG);
2350      if (!ResultOps.empty()) {
2351        BestType = CType;
2352        BestIdx = i;
2353        break;
2354      }
2355    }
2356
2357    // This constraint letter is more general than the previous one, use it.
2358    int Generality = getConstraintGenerality(CType);
2359    if (Generality > BestGenerality) {
2360      BestType = CType;
2361      BestIdx = i;
2362      BestGenerality = Generality;
2363    }
2364  }
2365
2366  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2367  OpInfo.ConstraintType = BestType;
2368}
2369
2370/// ComputeConstraintToUse - Determines the constraint code and constraint
2371/// type to use for the specific AsmOperandInfo, setting
2372/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2373void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2374                                            SDValue Op,
2375                                            bool hasMemory,
2376                                            SelectionDAG *DAG) const {
2377  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2378
2379  // Single-letter constraints ('r') are very common.
2380  if (OpInfo.Codes.size() == 1) {
2381    OpInfo.ConstraintCode = OpInfo.Codes[0];
2382    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2383  } else {
2384    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2385  }
2386
2387  // 'X' matches anything.
2388  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2389    // Labels and constants are handled elsewhere ('X' is the only thing
2390    // that matches labels).
2391    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2392        isa<ConstantInt>(OpInfo.CallOperandVal))
2393      return;
2394
2395    // Otherwise, try to resolve it to something we know about by looking at
2396    // the actual operand type.
2397    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2398      OpInfo.ConstraintCode = Repl;
2399      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2400    }
2401  }
2402}
2403
2404//===----------------------------------------------------------------------===//
2405//  Loop Strength Reduction hooks
2406//===----------------------------------------------------------------------===//
2407
2408/// isLegalAddressingMode - Return true if the addressing mode represented
2409/// by AM is legal for this target, for a load/store of the specified type.
2410bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2411                                           const Type *Ty) const {
2412  // The default implementation of this implements a conservative RISCy, r+r and
2413  // r+i addr mode.
2414
2415  // Allows a sign-extended 16-bit immediate field.
2416  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2417    return false;
2418
2419  // No global is ever allowed as a base.
2420  if (AM.BaseGV)
2421    return false;
2422
2423  // Only support r+r,
2424  switch (AM.Scale) {
2425  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2426    break;
2427  case 1:
2428    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2429      return false;
2430    // Otherwise we have r+r or r+i.
2431    break;
2432  case 2:
2433    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2434      return false;
2435    // Allow 2*r as r+r.
2436    break;
2437  }
2438
2439  return true;
2440}
2441
2442/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2443/// return a DAG expression to select that will generate the same value by
2444/// multiplying by a magic number.  See:
2445/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2446SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2447                                  std::vector<SDNode*>* Created) const {
2448  MVT VT = N->getValueType(0);
2449  DebugLoc dl= N->getDebugLoc();
2450
2451  // Check to see if we can do this.
2452  // FIXME: We should be more aggressive here.
2453  if (!isTypeLegal(VT))
2454    return SDValue();
2455
2456  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2457  APInt::ms magics = d.magic();
2458
2459  // Multiply the numerator (operand 0) by the magic value
2460  // FIXME: We should support doing a MUL in a wider type
2461  SDValue Q;
2462  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2463    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2464                    DAG.getConstant(magics.m, VT));
2465  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2466    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2467                              N->getOperand(0),
2468                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2469  else
2470    return SDValue();       // No mulhs or equvialent
2471  // If d > 0 and m < 0, add the numerator
2472  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2473    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2474    if (Created)
2475      Created->push_back(Q.getNode());
2476  }
2477  // If d < 0 and m > 0, subtract the numerator.
2478  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2479    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2480    if (Created)
2481      Created->push_back(Q.getNode());
2482  }
2483  // Shift right algebraic if shift value is nonzero
2484  if (magics.s > 0) {
2485    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2486                    DAG.getConstant(magics.s, getShiftAmountTy()));
2487    if (Created)
2488      Created->push_back(Q.getNode());
2489  }
2490  // Extract the sign bit and add it to the quotient
2491  SDValue T =
2492    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2493                                                 getShiftAmountTy()));
2494  if (Created)
2495    Created->push_back(T.getNode());
2496  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2497}
2498
2499/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2500/// return a DAG expression to select that will generate the same value by
2501/// multiplying by a magic number.  See:
2502/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2503SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2504                                  std::vector<SDNode*>* Created) const {
2505  MVT VT = N->getValueType(0);
2506  DebugLoc dl = N->getDebugLoc();
2507
2508  // Check to see if we can do this.
2509  // FIXME: We should be more aggressive here.
2510  if (!isTypeLegal(VT))
2511    return SDValue();
2512
2513  // FIXME: We should use a narrower constant when the upper
2514  // bits are known to be zero.
2515  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2516  APInt::mu magics = N1C->getAPIntValue().magicu();
2517
2518  // Multiply the numerator (operand 0) by the magic value
2519  // FIXME: We should support doing a MUL in a wider type
2520  SDValue Q;
2521  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2522    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2523                    DAG.getConstant(magics.m, VT));
2524  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2525    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2526                              N->getOperand(0),
2527                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2528  else
2529    return SDValue();       // No mulhu or equvialent
2530  if (Created)
2531    Created->push_back(Q.getNode());
2532
2533  if (magics.a == 0) {
2534    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2535           "We shouldn't generate an undefined shift!");
2536    return DAG.getNode(ISD::SRL, dl, VT, Q,
2537                       DAG.getConstant(magics.s, getShiftAmountTy()));
2538  } else {
2539    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2540    if (Created)
2541      Created->push_back(NPQ.getNode());
2542    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2543                      DAG.getConstant(1, getShiftAmountTy()));
2544    if (Created)
2545      Created->push_back(NPQ.getNode());
2546    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2547    if (Created)
2548      Created->push_back(NPQ.getNode());
2549    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2550                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2551  }
2552}
2553
2554/// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2555/// node that don't prevent tail call optimization.
2556static SDValue IgnoreHarmlessInstructions(SDValue node) {
2557  // Found call return.
2558  if (node.getOpcode() == ISD::CALL) return node;
2559  // Ignore MERGE_VALUES. Will have at least one operand.
2560  if (node.getOpcode() == ISD::MERGE_VALUES)
2561    return IgnoreHarmlessInstructions(node.getOperand(0));
2562  // Ignore ANY_EXTEND node.
2563  if (node.getOpcode() == ISD::ANY_EXTEND)
2564    return IgnoreHarmlessInstructions(node.getOperand(0));
2565  if (node.getOpcode() == ISD::TRUNCATE)
2566    return IgnoreHarmlessInstructions(node.getOperand(0));
2567  // Any other node type.
2568  return node;
2569}
2570
2571bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2572                                                    SDValue Ret) {
2573  unsigned NumOps = Ret.getNumOperands();
2574  // ISD::CALL results:(value0, ..., valuen, chain)
2575  // ISD::RET  operands:(chain, value0, flag0, ..., valuen, flagn)
2576  // Value return:
2577  // Check that operand of the RET node sources from the CALL node. The RET node
2578  // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2579  // value.
2580  if (NumOps > 1 &&
2581      IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0))
2582    return true;
2583  // void return: The RET node  has the chain result value of the CALL node as
2584  // input.
2585  if (NumOps == 1 &&
2586      Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2587    return true;
2588
2589  return false;
2590}
2591