TargetLowering.cpp revision a6bc5a4d2138ea3cba90f5a794dd525228ec2c73
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetMachine.h"
16#include "llvm/Target/MRegisterInfo.h"
17#include "llvm/CodeGen/SelectionDAG.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/Support/MathExtras.h"
20using namespace llvm;
21
22TargetLowering::TargetLowering(TargetMachine &tm)
23  : TM(tm), TD(TM.getTargetData()) {
24  assert(ISD::BUILTIN_OP_END <= 128 &&
25         "Fixed size array in TargetLowering is not large enough!");
26  // All operations default to being supported.
27  memset(OpActions, 0, sizeof(OpActions));
28
29  IsLittleEndian = TD.isLittleEndian();
30  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
31  ShiftAmtHandling = Undefined;
32  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
33  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
34  allowUnalignedMemoryAccesses = false;
35  UseUnderscoreSetJmpLongJmp = false;
36  IntDivIsCheap = false;
37  Pow2DivIsCheap = false;
38  StackPointerRegisterToSaveRestore = 0;
39  SchedPreferenceInfo = SchedulingForLatency;
40}
41
42TargetLowering::~TargetLowering() {}
43
44/// setValueTypeAction - Set the action for a particular value type.  This
45/// assumes an action has not already been set for this value type.
46static void SetValueTypeAction(MVT::ValueType VT,
47                               TargetLowering::LegalizeAction Action,
48                               TargetLowering &TLI,
49                               MVT::ValueType *TransformToType,
50                        TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
51  ValueTypeActions.setTypeAction(VT, Action);
52  if (Action == TargetLowering::Promote) {
53    MVT::ValueType PromoteTo;
54    if (VT == MVT::f32)
55      PromoteTo = MVT::f64;
56    else {
57      unsigned LargerReg = VT+1;
58      while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
59        ++LargerReg;
60        assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
61               "Nothing to promote to??");
62      }
63      PromoteTo = (MVT::ValueType)LargerReg;
64    }
65
66    assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
67           MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
68           "Can only promote from int->int or fp->fp!");
69    assert(VT < PromoteTo && "Must promote to a larger type!");
70    TransformToType[VT] = PromoteTo;
71  } else if (Action == TargetLowering::Expand) {
72    assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
73           "Cannot expand this type: target must support SOME integer reg!");
74    // Expand to the next smaller integer type!
75    TransformToType[VT] = (MVT::ValueType)(VT-1);
76  }
77}
78
79
80/// computeRegisterProperties - Once all of the register classes are added,
81/// this allows us to compute derived properties we expose.
82void TargetLowering::computeRegisterProperties() {
83  assert(MVT::LAST_VALUETYPE <= 32 &&
84         "Too many value types for ValueTypeActions to hold!");
85
86  // Everything defaults to one.
87  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
88    NumElementsForVT[i] = 1;
89
90  // Find the largest integer register class.
91  unsigned LargestIntReg = MVT::i128;
92  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
93    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
94
95  // Every integer value type larger than this largest register takes twice as
96  // many registers to represent as the previous ValueType.
97  unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
98  for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
99    NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
100
101  // Inspect all of the ValueType's possible, deciding how to process them.
102  for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
103    // If we are expanding this type, expand it!
104    if (getNumElements((MVT::ValueType)IntReg) != 1)
105      SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
106                         ValueTypeActions);
107    else if (!isTypeLegal((MVT::ValueType)IntReg))
108      // Otherwise, if we don't have native support, we must promote to a
109      // larger type.
110      SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
111                         TransformToType, ValueTypeActions);
112    else
113      TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
114
115  // If the target does not have native support for F32, promote it to F64.
116  if (!isTypeLegal(MVT::f32))
117    SetValueTypeAction(MVT::f32, Promote, *this,
118                       TransformToType, ValueTypeActions);
119  else
120    TransformToType[MVT::f32] = MVT::f32;
121
122  // Set MVT::Vector to always be Expanded
123  SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
124                     ValueTypeActions);
125
126  assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
127  TransformToType[MVT::f64] = MVT::f64;
128}
129
130const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
131  return NULL;
132}
133
134//===----------------------------------------------------------------------===//
135//  Optimization Methods
136//===----------------------------------------------------------------------===//
137
138/// ShrinkDemandedConstant - Check to see if the specified operand of the
139/// specified instruction is a constant integer.  If so, check to see if there
140/// are any bits set in the constant that are not demanded.  If so, shrink the
141/// constant and return true.
142bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
143                                                            uint64_t Demanded) {
144  // FIXME: ISD::SELECT, ISD::SELECT_CC
145  switch(Op.getOpcode()) {
146  default: break;
147  case ISD::AND:
148  case ISD::OR:
149  case ISD::XOR:
150    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
151      if ((~Demanded & C->getValue()) != 0) {
152        MVT::ValueType VT = Op.getValueType();
153        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
154                                    DAG.getConstant(Demanded & C->getValue(),
155                                                    VT));
156        return CombineTo(Op, New);
157      }
158    break;
159  }
160  return false;
161}
162
163/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
164/// DemandedMask bits of the result of Op are ever used downstream.  If we can
165/// use this information to simplify Op, create a new simplified DAG node and
166/// return true, returning the original and new nodes in Old and New. Otherwise,
167/// analyze the expression and return a mask of KnownOne and KnownZero bits for
168/// the expression (used to simplify the caller).  The KnownZero/One bits may
169/// only be accurate for those bits in the DemandedMask.
170bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
171                                          uint64_t &KnownZero,
172                                          uint64_t &KnownOne,
173                                          TargetLoweringOpt &TLO,
174                                          unsigned Depth) const {
175  KnownZero = KnownOne = 0;   // Don't know anything.
176  // Other users may use these bits.
177  if (!Op.Val->hasOneUse()) {
178    if (Depth != 0) {
179      // If not at the root, Just compute the KnownZero/KnownOne bits to
180      // simplify things downstream.
181      ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
182      return false;
183    }
184    // If this is the root being simplified, allow it to have multiple uses,
185    // just set the DemandedMask to all bits.
186    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
187  } else if (DemandedMask == 0) {
188    // Not demanding any bits from Op.
189    if (Op.getOpcode() != ISD::UNDEF)
190      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
191    return false;
192  } else if (Depth == 6) {        // Limit search depth.
193    return false;
194  }
195
196  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
197  switch (Op.getOpcode()) {
198  case ISD::Constant:
199    // We know all of the bits for a constant!
200    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
201    KnownZero = ~KnownOne & DemandedMask;
202    return false;   // Don't fall through, will infinitely loop.
203  case ISD::AND:
204    // If the RHS is a constant, check to see if the LHS would be zero without
205    // using the bits from the RHS.  Below, we use knowledge about the RHS to
206    // simplify the LHS, here we're using information from the LHS to simplify
207    // the RHS.
208    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
209      uint64_t LHSZero, LHSOne;
210      ComputeMaskedBits(Op.getOperand(0), DemandedMask,
211                        LHSZero, LHSOne, Depth+1);
212      // If the LHS already has zeros where RHSC does, this and is dead.
213      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
214        return TLO.CombineTo(Op, Op.getOperand(0));
215      // If any of the set bits in the RHS are known zero on the LHS, shrink
216      // the constant.
217      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
218        return true;
219    }
220
221    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
222                             KnownOne, TLO, Depth+1))
223      return true;
224    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
225    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
226                             KnownZero2, KnownOne2, TLO, Depth+1))
227      return true;
228    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
229
230    // If all of the demanded bits are known one on one side, return the other.
231    // These bits cannot contribute to the result of the 'and'.
232    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
233      return TLO.CombineTo(Op, Op.getOperand(0));
234    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
235      return TLO.CombineTo(Op, Op.getOperand(1));
236    // If all of the demanded bits in the inputs are known zeros, return zero.
237    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
238      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
239    // If the RHS is a constant, see if we can simplify it.
240    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
241      return true;
242
243    // Output known-1 bits are only known if set in both the LHS & RHS.
244    KnownOne &= KnownOne2;
245    // Output known-0 are known to be clear if zero in either the LHS | RHS.
246    KnownZero |= KnownZero2;
247    break;
248  case ISD::OR:
249    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
250                             KnownOne, TLO, Depth+1))
251      return true;
252    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
253    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
254                             KnownZero2, KnownOne2, TLO, Depth+1))
255      return true;
256    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
257
258    // If all of the demanded bits are known zero on one side, return the other.
259    // These bits cannot contribute to the result of the 'or'.
260    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
261      return TLO.CombineTo(Op, Op.getOperand(0));
262    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
263      return TLO.CombineTo(Op, Op.getOperand(1));
264    // If all of the potentially set bits on one side are known to be set on
265    // the other side, just use the 'other' side.
266    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
267        (DemandedMask & (~KnownZero)))
268      return TLO.CombineTo(Op, Op.getOperand(0));
269    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
270        (DemandedMask & (~KnownZero2)))
271      return TLO.CombineTo(Op, Op.getOperand(1));
272    // If the RHS is a constant, see if we can simplify it.
273    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
274      return true;
275
276    // Output known-0 bits are only known if clear in both the LHS & RHS.
277    KnownZero &= KnownZero2;
278    // Output known-1 are known to be set if set in either the LHS | RHS.
279    KnownOne |= KnownOne2;
280    break;
281  case ISD::XOR:
282    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
283                             KnownOne, TLO, Depth+1))
284      return true;
285    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
286    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
287                             KnownOne2, TLO, Depth+1))
288      return true;
289    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
290
291    // If all of the demanded bits are known zero on one side, return the other.
292    // These bits cannot contribute to the result of the 'xor'.
293    if ((DemandedMask & KnownZero) == DemandedMask)
294      return TLO.CombineTo(Op, Op.getOperand(0));
295    if ((DemandedMask & KnownZero2) == DemandedMask)
296      return TLO.CombineTo(Op, Op.getOperand(1));
297
298    // Output known-0 bits are known if clear or set in both the LHS & RHS.
299    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
300    // Output known-1 are known to be set if set in only one of the LHS, RHS.
301    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
302
303    // If all of the unknown bits are known to be zero on one side or the other
304    // (but not both) turn this into an *inclusive* or.
305    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
306    if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
307      if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
308        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
309                                                 Op.getOperand(0),
310                                                 Op.getOperand(1)));
311    // If all of the demanded bits on one side are known, and all of the set
312    // bits on that side are also known to be set on the other side, turn this
313    // into an AND, as we know the bits will be cleared.
314    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
315    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
316      if ((KnownOne & KnownOne2) == KnownOne) {
317        MVT::ValueType VT = Op.getValueType();
318        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
319        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
320                                                 ANDC));
321      }
322    }
323
324    // If the RHS is a constant, see if we can simplify it.
325    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
326    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
327      return true;
328
329    KnownZero = KnownZeroOut;
330    KnownOne  = KnownOneOut;
331    break;
332  case ISD::SETCC:
333    // If we know the result of a setcc has the top bits zero, use this info.
334    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
335      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
336    break;
337  case ISD::SELECT:
338    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
339                             KnownOne, TLO, Depth+1))
340      return true;
341    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
342                             KnownOne2, TLO, Depth+1))
343      return true;
344    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
345    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
346
347    // If the operands are constants, see if we can simplify them.
348    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
349      return true;
350
351    // Only known if known in both the LHS and RHS.
352    KnownOne &= KnownOne2;
353    KnownZero &= KnownZero2;
354    break;
355  case ISD::SELECT_CC:
356    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
357                             KnownOne, TLO, Depth+1))
358      return true;
359    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
360                             KnownOne2, TLO, Depth+1))
361      return true;
362    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
363    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
364
365    // If the operands are constants, see if we can simplify them.
366    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
367      return true;
368
369    // Only known if known in both the LHS and RHS.
370    KnownOne &= KnownOne2;
371    KnownZero &= KnownZero2;
372    break;
373  case ISD::SHL:
374    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
375      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
376                               KnownZero, KnownOne, TLO, Depth+1))
377        return true;
378      KnownZero <<= SA->getValue();
379      KnownOne  <<= SA->getValue();
380      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
381    }
382    break;
383  case ISD::SRL:
384    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
385      MVT::ValueType VT = Op.getValueType();
386      unsigned ShAmt = SA->getValue();
387
388      // Compute the new bits that are at the top now.
389      uint64_t HighBits = (1ULL << ShAmt)-1;
390      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
391      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
392
393      if (SimplifyDemandedBits(Op.getOperand(0),
394                               (DemandedMask << ShAmt) & TypeMask,
395                               KnownZero, KnownOne, TLO, Depth+1))
396        return true;
397      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
398      KnownZero &= TypeMask;
399      KnownOne  &= TypeMask;
400      KnownZero >>= ShAmt;
401      KnownOne  >>= ShAmt;
402      KnownZero |= HighBits;  // high bits known zero.
403    }
404    break;
405  case ISD::SRA:
406    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
407      MVT::ValueType VT = Op.getValueType();
408      unsigned ShAmt = SA->getValue();
409
410      // Compute the new bits that are at the top now.
411      uint64_t HighBits = (1ULL << ShAmt)-1;
412      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
413      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
414
415      if (SimplifyDemandedBits(Op.getOperand(0),
416                               (DemandedMask << ShAmt) & TypeMask,
417                               KnownZero, KnownOne, TLO, Depth+1))
418        return true;
419      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
420      KnownZero &= TypeMask;
421      KnownOne  &= TypeMask;
422      KnownZero >>= SA->getValue();
423      KnownOne  >>= SA->getValue();
424
425      // Handle the sign bits.
426      uint64_t SignBit = MVT::getIntVTSignBit(VT);
427      SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
428
429      // If the input sign bit is known to be zero, or if none of the top bits
430      // are demanded, turn this into an unsigned shift right.
431      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
432        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
433                                                 Op.getOperand(1)));
434      } else if (KnownOne & SignBit) { // New bits are known one.
435        KnownOne |= HighBits;
436      }
437    }
438    break;
439  case ISD::SIGN_EXTEND_INREG: {
440    MVT::ValueType  VT = Op.getValueType();
441    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
442
443    // Sign extension.  Compute the demanded bits in the result that are not
444    // present in the input.
445    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
446
447    // If none of the extended bits are demanded, eliminate the sextinreg.
448    if (NewBits == 0)
449      return TLO.CombineTo(Op, Op.getOperand(0));
450
451    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
452    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
453
454    // Since the sign extended bits are demanded, we know that the sign
455    // bit is demanded.
456    InputDemandedBits |= InSignBit;
457
458    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
459                             KnownZero, KnownOne, TLO, Depth+1))
460      return true;
461    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
462
463    // If the sign bit of the input is known set or clear, then we know the
464    // top bits of the result.
465
466    // If the input sign bit is known zero, convert this into a zero extension.
467    if (KnownZero & InSignBit)
468      return TLO.CombineTo(Op,
469                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
470
471    if (KnownOne & InSignBit) {    // Input sign bit known set
472      KnownOne |= NewBits;
473      KnownZero &= ~NewBits;
474    } else {                       // Input sign bit unknown
475      KnownZero &= ~NewBits;
476      KnownOne &= ~NewBits;
477    }
478    break;
479  }
480  case ISD::CTTZ:
481  case ISD::CTLZ:
482  case ISD::CTPOP: {
483    MVT::ValueType VT = Op.getValueType();
484    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
485    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
486    KnownOne  = 0;
487    break;
488  }
489  case ISD::ZEXTLOAD: {
490    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
491    KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
492    break;
493  }
494  case ISD::ZERO_EXTEND: {
495    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
496
497    // If none of the top bits are demanded, convert this into an any_extend.
498    uint64_t NewBits = (~InMask) & DemandedMask;
499    if (NewBits == 0)
500      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
501                                               Op.getValueType(),
502                                               Op.getOperand(0)));
503
504    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
505                             KnownZero, KnownOne, TLO, Depth+1))
506      return true;
507    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
508    KnownZero |= NewBits;
509    break;
510  }
511  case ISD::SIGN_EXTEND: {
512    MVT::ValueType InVT = Op.getOperand(0).getValueType();
513    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
514    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
515    uint64_t NewBits   = (~InMask) & DemandedMask;
516
517    // If none of the top bits are demanded, convert this into an any_extend.
518    if (NewBits == 0)
519      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
520                                           Op.getOperand(0)));
521
522    // Since some of the sign extended bits are demanded, we know that the sign
523    // bit is demanded.
524    uint64_t InDemandedBits = DemandedMask & InMask;
525    InDemandedBits |= InSignBit;
526
527    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
528                             KnownOne, TLO, Depth+1))
529      return true;
530
531    // If the sign bit is known zero, convert this to a zero extend.
532    if (KnownZero & InSignBit)
533      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
534                                               Op.getValueType(),
535                                               Op.getOperand(0)));
536
537    // If the sign bit is known one, the top bits match.
538    if (KnownOne & InSignBit) {
539      KnownOne  |= NewBits;
540      KnownZero &= ~NewBits;
541    } else {   // Otherwise, top bits aren't known.
542      KnownOne  &= ~NewBits;
543      KnownZero &= ~NewBits;
544    }
545    break;
546  }
547  case ISD::ANY_EXTEND: {
548    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
549    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
550                             KnownZero, KnownOne, TLO, Depth+1))
551      return true;
552    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
553    break;
554  }
555  case ISD::AssertZext: {
556    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
557    uint64_t InMask = MVT::getIntVTBitMask(VT);
558    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
559                             KnownZero, KnownOne, TLO, Depth+1))
560      return true;
561    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
562    KnownZero |= ~InMask & DemandedMask;
563    break;
564  }
565  case ISD::ADD:
566    if (ConstantSDNode *AA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
567      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero,
568                               KnownOne, TLO, Depth+1))
569        return true;
570      // Compute the KnownOne/KnownZero masks for the constant, so we can set
571      // KnownZero appropriately if we're adding a constant that has all low
572      // bits cleared.
573      ComputeMaskedBits(Op.getOperand(1),
574                        MVT::getIntVTBitMask(Op.getValueType()),
575                        KnownZero2, KnownOne2, Depth+1);
576
577      uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
578                                       CountTrailingZeros_64(~KnownZero2));
579      KnownZero = (1ULL << KnownZeroOut) - 1;
580      KnownOne = 0;
581
582      SDOperand SH = Op.getOperand(0);
583      // fold (add (shl x, c1), (shl c2, c1)) -> (shl (add x, c2), c1)
584      if (KnownZero && SH.getOpcode() == ISD::SHL && SH.Val->hasOneUse() &&
585          Op.Val->hasOneUse()) {
586        if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(SH.getOperand(1))) {
587          MVT::ValueType VT = Op.getValueType();
588          unsigned ShiftAmt = SA->getValue();
589          uint64_t AddAmt = AA->getValue();
590          uint64_t AddShr = AddAmt >> ShiftAmt;
591          if (AddAmt == (AddShr << ShiftAmt)) {
592            SDOperand ADD = TLO.DAG.getNode(ISD::ADD, VT, SH.getOperand(0),
593                                            TLO.DAG.getConstant(AddShr, VT));
594            SDOperand SHL = TLO.DAG.getNode(ISD::SHL, VT, ADD,SH.getOperand(1));
595            return TLO.CombineTo(Op, SHL);
596          }
597        }
598      }
599    }
600    break;
601  case ISD::SUB:
602    // Just use ComputeMaskedBits to compute output bits, there are no
603    // simplifications that can be done here, and sub always demands all input
604    // bits.
605    ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
606    break;
607  }
608
609  // If we know the value of all of the demanded bits, return this as a
610  // constant.
611  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
612    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
613
614  return false;
615}
616
617/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
618/// this predicate to simplify operations downstream.  Mask is known to be zero
619/// for bits that V cannot have.
620bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
621                                       unsigned Depth) const {
622  uint64_t KnownZero, KnownOne;
623  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
624  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
625  return (KnownZero & Mask) == Mask;
626}
627
628/// ComputeMaskedBits - Determine which of the bits specified in Mask are
629/// known to be either zero or one and return them in the KnownZero/KnownOne
630/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
631/// processing.
632void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
633                                       uint64_t &KnownZero, uint64_t &KnownOne,
634                                       unsigned Depth) const {
635  KnownZero = KnownOne = 0;   // Don't know anything.
636  if (Depth == 6 || Mask == 0)
637    return;  // Limit search depth.
638
639  uint64_t KnownZero2, KnownOne2;
640
641  switch (Op.getOpcode()) {
642  case ISD::Constant:
643    // We know all of the bits for a constant!
644    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
645    KnownZero = ~KnownOne & Mask;
646    return;
647  case ISD::AND:
648    // If either the LHS or the RHS are Zero, the result is zero.
649    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
650    Mask &= ~KnownZero;
651    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
652    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
653    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
654
655    // Output known-1 bits are only known if set in both the LHS & RHS.
656    KnownOne &= KnownOne2;
657    // Output known-0 are known to be clear if zero in either the LHS | RHS.
658    KnownZero |= KnownZero2;
659    return;
660  case ISD::OR:
661    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
662    Mask &= ~KnownOne;
663    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
664    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
665    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
666
667    // Output known-0 bits are only known if clear in both the LHS & RHS.
668    KnownZero &= KnownZero2;
669    // Output known-1 are known to be set if set in either the LHS | RHS.
670    KnownOne |= KnownOne2;
671    return;
672  case ISD::XOR: {
673    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
674    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
675    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
676    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
677
678    // Output known-0 bits are known if clear or set in both the LHS & RHS.
679    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
680    // Output known-1 are known to be set if set in only one of the LHS, RHS.
681    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
682    KnownZero = KnownZeroOut;
683    return;
684  }
685  case ISD::SELECT:
686    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
687    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
688    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
689    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
690
691    // Only known if known in both the LHS and RHS.
692    KnownOne &= KnownOne2;
693    KnownZero &= KnownZero2;
694    return;
695  case ISD::SELECT_CC:
696    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
697    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
698    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
699    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
700
701    // Only known if known in both the LHS and RHS.
702    KnownOne &= KnownOne2;
703    KnownZero &= KnownZero2;
704    return;
705  case ISD::SETCC:
706    // If we know the result of a setcc has the top bits zero, use this info.
707    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
708      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
709    return;
710  case ISD::SHL:
711    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
712    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
713      Mask >>= SA->getValue();
714      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
715      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
716      KnownZero <<= SA->getValue();
717      KnownOne  <<= SA->getValue();
718      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
719    }
720    return;
721  case ISD::SRL:
722    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
723    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
724      uint64_t HighBits = (1ULL << SA->getValue())-1;
725      HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
726      Mask <<= SA->getValue();
727      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
728      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
729      KnownZero >>= SA->getValue();
730      KnownOne  >>= SA->getValue();
731      KnownZero |= HighBits;  // high bits known zero.
732    }
733    return;
734  case ISD::SRA:
735    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
736      uint64_t HighBits = (1ULL << SA->getValue())-1;
737      HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
738      Mask <<= SA->getValue();
739      ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
740      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
741      KnownZero >>= SA->getValue();
742      KnownOne  >>= SA->getValue();
743
744      // Handle the sign bits.
745      uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
746      SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
747
748      if (KnownZero & SignBit) {       // New bits are known zero.
749        KnownZero |= HighBits;
750      } else if (KnownOne & SignBit) { // New bits are known one.
751        KnownOne |= HighBits;
752      }
753    }
754    return;
755  case ISD::SIGN_EXTEND_INREG: {
756    MVT::ValueType  VT = Op.getValueType();
757    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
758
759    // Sign extension.  Compute the demanded bits in the result that are not
760    // present in the input.
761    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
762
763    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
764    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
765
766    // If the sign extended bits are demanded, we know that the sign
767    // bit is demanded.
768    if (NewBits)
769      InputDemandedBits |= InSignBit;
770
771    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
772                      KnownZero, KnownOne, Depth+1);
773    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
774
775    // If the sign bit of the input is known set or clear, then we know the
776    // top bits of the result.
777    if (KnownZero & InSignBit) {          // Input sign bit known clear
778      KnownZero |= NewBits;
779      KnownOne  &= ~NewBits;
780    } else if (KnownOne & InSignBit) {    // Input sign bit known set
781      KnownOne  |= NewBits;
782      KnownZero &= ~NewBits;
783    } else {                              // Input sign bit unknown
784      KnownZero &= ~NewBits;
785      KnownOne  &= ~NewBits;
786    }
787    return;
788  }
789  case ISD::CTTZ:
790  case ISD::CTLZ:
791  case ISD::CTPOP: {
792    MVT::ValueType VT = Op.getValueType();
793    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
794    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
795    KnownOne  = 0;
796    return;
797  }
798  case ISD::ZEXTLOAD: {
799    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
800    KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
801    return;
802  }
803  case ISD::ZERO_EXTEND: {
804    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
805    uint64_t NewBits = (~InMask) & Mask;
806    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
807                      KnownOne, Depth+1);
808    KnownZero |= NewBits & Mask;
809    KnownOne  &= ~NewBits;
810    return;
811  }
812  case ISD::SIGN_EXTEND: {
813    MVT::ValueType InVT = Op.getOperand(0).getValueType();
814    unsigned InBits    = MVT::getSizeInBits(InVT);
815    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
816    uint64_t InSignBit = 1ULL << (InBits-1);
817    uint64_t NewBits   = (~InMask) & Mask;
818    uint64_t InDemandedBits = Mask & InMask;
819
820    // If any of the sign extended bits are demanded, we know that the sign
821    // bit is demanded.
822    if (NewBits & Mask)
823      InDemandedBits |= InSignBit;
824
825    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
826                      KnownOne, Depth+1);
827    // If the sign bit is known zero or one, the  top bits match.
828    if (KnownZero & InSignBit) {
829      KnownZero |= NewBits;
830      KnownOne  &= ~NewBits;
831    } else if (KnownOne & InSignBit) {
832      KnownOne  |= NewBits;
833      KnownZero &= ~NewBits;
834    } else {   // Otherwise, top bits aren't known.
835      KnownOne  &= ~NewBits;
836      KnownZero &= ~NewBits;
837    }
838    return;
839  }
840  case ISD::ANY_EXTEND: {
841    MVT::ValueType VT = Op.getOperand(0).getValueType();
842    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
843                      KnownZero, KnownOne, Depth+1);
844    return;
845  }
846  case ISD::AssertZext: {
847    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
848    uint64_t InMask = MVT::getIntVTBitMask(VT);
849    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
850                      KnownOne, Depth+1);
851    KnownZero |= (~InMask) & Mask;
852    return;
853  }
854  case ISD::ADD: {
855    // If either the LHS or the RHS are Zero, the result is zero.
856    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
857    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
858    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
859    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
860
861    // Output known-0 bits are known if clear or set in both the low clear bits
862    // common to both LHS & RHS;
863    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
864                                     CountTrailingZeros_64(~KnownZero2));
865
866    KnownZero = (1ULL << KnownZeroOut) - 1;
867    KnownOne = 0;
868    return;
869  }
870  case ISD::SUB: {
871    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
872    if (!CLHS) return;
873
874    // We know that the top bits of C-X are clear if X contains less bits
875    // than C (i.e. no wrap-around can happen).  For example, 20-X is
876    // positive if we can prove that X is >= 0 and < 16.
877    MVT::ValueType VT = CLHS->getValueType(0);
878    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
879      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
880      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
881      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
882      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
883
884      // If all of the MaskV bits are known to be zero, then we know the output
885      // top bits are zero, because we now know that the output is from [0-C].
886      if ((KnownZero & MaskV) == MaskV) {
887        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
888        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
889        KnownOne = 0;   // No one bits known.
890      } else {
891        KnownOne = KnownOne = 0;  // Otherwise, nothing known.
892      }
893    }
894    return;
895  }
896  default:
897    // Allow the target to implement this method for its nodes.
898    if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
899      computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
900    return;
901  }
902}
903
904/// computeMaskedBitsForTargetNode - Determine which of the bits specified
905/// in Mask are known to be either zero or one and return them in the
906/// KnownZero/KnownOne bitsets.
907void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
908                                                    uint64_t Mask,
909                                                    uint64_t &KnownZero,
910                                                    uint64_t &KnownOne,
911                                                    unsigned Depth) const {
912  assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
913         "Should use MaskedValueIsZero if you don't know whether Op"
914         " is a target node!");
915  KnownZero = 0;
916  KnownOne = 0;
917}
918
919//===----------------------------------------------------------------------===//
920//  Inline Assembler Implementation Methods
921//===----------------------------------------------------------------------===//
922
923TargetLowering::ConstraintType
924TargetLowering::getConstraintType(char ConstraintLetter) const {
925  // FIXME: lots more standard ones to handle.
926  switch (ConstraintLetter) {
927  default: return C_Unknown;
928  case 'r': return C_RegisterClass;
929  case 'm':    // memory
930  case 'o':    // offsetable
931  case 'V':    // not offsetable
932    return C_Memory;
933  case 'i':    // Simple Integer or Relocatable Constant
934  case 'n':    // Simple Integer
935  case 's':    // Relocatable Constant
936  case 'I':    // Target registers.
937  case 'J':
938  case 'K':
939  case 'L':
940  case 'M':
941  case 'N':
942  case 'O':
943  case 'P':
944    return C_Other;
945  }
946}
947
948bool TargetLowering::isOperandValidForConstraint(SDOperand Op,
949                                                 char ConstraintLetter) {
950  switch (ConstraintLetter) {
951  default: return false;
952  case 'i':    // Simple Integer or Relocatable Constant
953  case 'n':    // Simple Integer
954  case 's':    // Relocatable Constant
955    return true;   // FIXME: not right.
956  }
957}
958
959
960std::vector<unsigned> TargetLowering::
961getRegClassForInlineAsmConstraint(const std::string &Constraint,
962                                  MVT::ValueType VT) const {
963  return std::vector<unsigned>();
964}
965
966
967std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
968getRegForInlineAsmConstraint(const std::string &Constraint,
969                             MVT::ValueType VT) const {
970  if (Constraint[0] != '{')
971    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
972  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
973
974  // Remove the braces from around the name.
975  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
976
977  // Figure out which register class contains this reg.
978  const MRegisterInfo *RI = TM.getRegisterInfo();
979  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
980       E = RI->regclass_end(); RCI != E; ++RCI) {
981    const TargetRegisterClass *RC = *RCI;
982
983    // If none of the the value types for this register class are valid, we
984    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
985    bool isLegal = false;
986    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
987         I != E; ++I) {
988      if (isTypeLegal(*I)) {
989        isLegal = true;
990        break;
991      }
992    }
993
994    if (!isLegal) continue;
995
996    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
997         I != E; ++I) {
998      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
999        return std::make_pair(*I, RC);
1000    }
1001  }
1002
1003  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1004}
1005