TargetLowering.cpp revision e03262fcfc09356a0e3ec589041bc2e0248944e9
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30using namespace llvm;
31
32namespace llvm {
33TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
34  bool isLocal = GV->hasLocalLinkage();
35  bool isDeclaration = GV->isDeclaration();
36  // FIXME: what should we do for protected and internal visibility?
37  // For variables, is internal different from hidden?
38  bool isHidden = GV->hasHiddenVisibility();
39
40  if (reloc == Reloc::PIC_) {
41    if (isLocal || isHidden)
42      return TLSModel::LocalDynamic;
43    else
44      return TLSModel::GeneralDynamic;
45  } else {
46    if (!isDeclaration || isHidden)
47      return TLSModel::LocalExec;
48    else
49      return TLSModel::InitialExec;
50  }
51}
52}
53
54/// InitLibcallNames - Set default libcall names.
55///
56static void InitLibcallNames(const char **Names) {
57  Names[RTLIB::SHL_I16] = "__ashlhi3";
58  Names[RTLIB::SHL_I32] = "__ashlsi3";
59  Names[RTLIB::SHL_I64] = "__ashldi3";
60  Names[RTLIB::SHL_I128] = "__ashlti3";
61  Names[RTLIB::SRL_I16] = "__lshrhi3";
62  Names[RTLIB::SRL_I32] = "__lshrsi3";
63  Names[RTLIB::SRL_I64] = "__lshrdi3";
64  Names[RTLIB::SRL_I128] = "__lshrti3";
65  Names[RTLIB::SRA_I16] = "__ashrhi3";
66  Names[RTLIB::SRA_I32] = "__ashrsi3";
67  Names[RTLIB::SRA_I64] = "__ashrdi3";
68  Names[RTLIB::SRA_I128] = "__ashrti3";
69  Names[RTLIB::MUL_I8] = "__mulqi3";
70  Names[RTLIB::MUL_I16] = "__mulhi3";
71  Names[RTLIB::MUL_I32] = "__mulsi3";
72  Names[RTLIB::MUL_I64] = "__muldi3";
73  Names[RTLIB::MUL_I128] = "__multi3";
74  Names[RTLIB::SDIV_I8] = "__divqi3";
75  Names[RTLIB::SDIV_I16] = "__divhi3";
76  Names[RTLIB::SDIV_I32] = "__divsi3";
77  Names[RTLIB::SDIV_I64] = "__divdi3";
78  Names[RTLIB::SDIV_I128] = "__divti3";
79  Names[RTLIB::UDIV_I8] = "__udivqi3";
80  Names[RTLIB::UDIV_I16] = "__udivhi3";
81  Names[RTLIB::UDIV_I32] = "__udivsi3";
82  Names[RTLIB::UDIV_I64] = "__udivdi3";
83  Names[RTLIB::UDIV_I128] = "__udivti3";
84  Names[RTLIB::SREM_I8] = "__modqi3";
85  Names[RTLIB::SREM_I16] = "__modhi3";
86  Names[RTLIB::SREM_I32] = "__modsi3";
87  Names[RTLIB::SREM_I64] = "__moddi3";
88  Names[RTLIB::SREM_I128] = "__modti3";
89  Names[RTLIB::UREM_I8] = "__umodqi3";
90  Names[RTLIB::UREM_I16] = "__umodhi3";
91  Names[RTLIB::UREM_I32] = "__umodsi3";
92  Names[RTLIB::UREM_I64] = "__umoddi3";
93  Names[RTLIB::UREM_I128] = "__umodti3";
94  Names[RTLIB::NEG_I32] = "__negsi2";
95  Names[RTLIB::NEG_I64] = "__negdi2";
96  Names[RTLIB::ADD_F32] = "__addsf3";
97  Names[RTLIB::ADD_F64] = "__adddf3";
98  Names[RTLIB::ADD_F80] = "__addxf3";
99  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
100  Names[RTLIB::SUB_F32] = "__subsf3";
101  Names[RTLIB::SUB_F64] = "__subdf3";
102  Names[RTLIB::SUB_F80] = "__subxf3";
103  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104  Names[RTLIB::MUL_F32] = "__mulsf3";
105  Names[RTLIB::MUL_F64] = "__muldf3";
106  Names[RTLIB::MUL_F80] = "__mulxf3";
107  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
108  Names[RTLIB::DIV_F32] = "__divsf3";
109  Names[RTLIB::DIV_F64] = "__divdf3";
110  Names[RTLIB::DIV_F80] = "__divxf3";
111  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
112  Names[RTLIB::REM_F32] = "fmodf";
113  Names[RTLIB::REM_F64] = "fmod";
114  Names[RTLIB::REM_F80] = "fmodl";
115  Names[RTLIB::REM_PPCF128] = "fmodl";
116  Names[RTLIB::POWI_F32] = "__powisf2";
117  Names[RTLIB::POWI_F64] = "__powidf2";
118  Names[RTLIB::POWI_F80] = "__powixf2";
119  Names[RTLIB::POWI_PPCF128] = "__powitf2";
120  Names[RTLIB::SQRT_F32] = "sqrtf";
121  Names[RTLIB::SQRT_F64] = "sqrt";
122  Names[RTLIB::SQRT_F80] = "sqrtl";
123  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
124  Names[RTLIB::LOG_F32] = "logf";
125  Names[RTLIB::LOG_F64] = "log";
126  Names[RTLIB::LOG_F80] = "logl";
127  Names[RTLIB::LOG_PPCF128] = "logl";
128  Names[RTLIB::LOG2_F32] = "log2f";
129  Names[RTLIB::LOG2_F64] = "log2";
130  Names[RTLIB::LOG2_F80] = "log2l";
131  Names[RTLIB::LOG2_PPCF128] = "log2l";
132  Names[RTLIB::LOG10_F32] = "log10f";
133  Names[RTLIB::LOG10_F64] = "log10";
134  Names[RTLIB::LOG10_F80] = "log10l";
135  Names[RTLIB::LOG10_PPCF128] = "log10l";
136  Names[RTLIB::EXP_F32] = "expf";
137  Names[RTLIB::EXP_F64] = "exp";
138  Names[RTLIB::EXP_F80] = "expl";
139  Names[RTLIB::EXP_PPCF128] = "expl";
140  Names[RTLIB::EXP2_F32] = "exp2f";
141  Names[RTLIB::EXP2_F64] = "exp2";
142  Names[RTLIB::EXP2_F80] = "exp2l";
143  Names[RTLIB::EXP2_PPCF128] = "exp2l";
144  Names[RTLIB::SIN_F32] = "sinf";
145  Names[RTLIB::SIN_F64] = "sin";
146  Names[RTLIB::SIN_F80] = "sinl";
147  Names[RTLIB::SIN_PPCF128] = "sinl";
148  Names[RTLIB::COS_F32] = "cosf";
149  Names[RTLIB::COS_F64] = "cos";
150  Names[RTLIB::COS_F80] = "cosl";
151  Names[RTLIB::COS_PPCF128] = "cosl";
152  Names[RTLIB::POW_F32] = "powf";
153  Names[RTLIB::POW_F64] = "pow";
154  Names[RTLIB::POW_F80] = "powl";
155  Names[RTLIB::POW_PPCF128] = "powl";
156  Names[RTLIB::CEIL_F32] = "ceilf";
157  Names[RTLIB::CEIL_F64] = "ceil";
158  Names[RTLIB::CEIL_F80] = "ceill";
159  Names[RTLIB::CEIL_PPCF128] = "ceill";
160  Names[RTLIB::TRUNC_F32] = "truncf";
161  Names[RTLIB::TRUNC_F64] = "trunc";
162  Names[RTLIB::TRUNC_F80] = "truncl";
163  Names[RTLIB::TRUNC_PPCF128] = "truncl";
164  Names[RTLIB::RINT_F32] = "rintf";
165  Names[RTLIB::RINT_F64] = "rint";
166  Names[RTLIB::RINT_F80] = "rintl";
167  Names[RTLIB::RINT_PPCF128] = "rintl";
168  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
169  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
170  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
171  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
172  Names[RTLIB::FLOOR_F32] = "floorf";
173  Names[RTLIB::FLOOR_F64] = "floor";
174  Names[RTLIB::FLOOR_F80] = "floorl";
175  Names[RTLIB::FLOOR_PPCF128] = "floorl";
176  Names[RTLIB::COPYSIGN_F32] = "copysignf";
177  Names[RTLIB::COPYSIGN_F64] = "copysign";
178  Names[RTLIB::COPYSIGN_F80] = "copysignl";
179  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
180  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
181  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
182  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
183  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
184  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
185  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
186  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
187  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
188  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
189  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
190  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
191  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
192  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
193  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
194  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
195  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
196  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
197  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
198  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
199  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
200  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
201  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
202  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
203  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
204  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
205  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
206  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
207  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
208  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
209  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
210  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
211  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
212  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
213  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
214  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
215  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
216  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
217  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
218  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
219  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
220  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
221  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
222  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
223  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
224  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
225  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
226  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
227  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
228  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
229  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
230  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
231  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
232  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
233  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
234  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
235  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
236  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
237  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
238  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
239  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
240  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
241  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
242  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
243  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
244  Names[RTLIB::OEQ_F32] = "__eqsf2";
245  Names[RTLIB::OEQ_F64] = "__eqdf2";
246  Names[RTLIB::UNE_F32] = "__nesf2";
247  Names[RTLIB::UNE_F64] = "__nedf2";
248  Names[RTLIB::OGE_F32] = "__gesf2";
249  Names[RTLIB::OGE_F64] = "__gedf2";
250  Names[RTLIB::OLT_F32] = "__ltsf2";
251  Names[RTLIB::OLT_F64] = "__ltdf2";
252  Names[RTLIB::OLE_F32] = "__lesf2";
253  Names[RTLIB::OLE_F64] = "__ledf2";
254  Names[RTLIB::OGT_F32] = "__gtsf2";
255  Names[RTLIB::OGT_F64] = "__gtdf2";
256  Names[RTLIB::UO_F32] = "__unordsf2";
257  Names[RTLIB::UO_F64] = "__unorddf2";
258  Names[RTLIB::O_F32] = "__unordsf2";
259  Names[RTLIB::O_F64] = "__unorddf2";
260  Names[RTLIB::MEMCPY] = "memcpy";
261  Names[RTLIB::MEMMOVE] = "memmove";
262  Names[RTLIB::MEMSET] = "memset";
263  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
264  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
265  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
268  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
269  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
270  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
271  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
272  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
273  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
274  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
275  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
276  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
277  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
278  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
279  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
280  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
281  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
282  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
283  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
284  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
285  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
286  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
287  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
288  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
289  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
290  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
291  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
292}
293
294/// InitLibcallCallingConvs - Set default libcall CallingConvs.
295///
296static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
297  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
298    CCs[i] = CallingConv::C;
299  }
300}
301
302/// getFPEXT - Return the FPEXT_*_* value for the given types, or
303/// UNKNOWN_LIBCALL if there is none.
304RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
305  if (OpVT == MVT::f32) {
306    if (RetVT == MVT::f64)
307      return FPEXT_F32_F64;
308  }
309
310  return UNKNOWN_LIBCALL;
311}
312
313/// getFPROUND - Return the FPROUND_*_* value for the given types, or
314/// UNKNOWN_LIBCALL if there is none.
315RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
316  if (RetVT == MVT::f32) {
317    if (OpVT == MVT::f64)
318      return FPROUND_F64_F32;
319    if (OpVT == MVT::f80)
320      return FPROUND_F80_F32;
321    if (OpVT == MVT::ppcf128)
322      return FPROUND_PPCF128_F32;
323  } else if (RetVT == MVT::f64) {
324    if (OpVT == MVT::f80)
325      return FPROUND_F80_F64;
326    if (OpVT == MVT::ppcf128)
327      return FPROUND_PPCF128_F64;
328  }
329
330  return UNKNOWN_LIBCALL;
331}
332
333/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
334/// UNKNOWN_LIBCALL if there is none.
335RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
336  if (OpVT == MVT::f32) {
337    if (RetVT == MVT::i8)
338      return FPTOSINT_F32_I8;
339    if (RetVT == MVT::i16)
340      return FPTOSINT_F32_I16;
341    if (RetVT == MVT::i32)
342      return FPTOSINT_F32_I32;
343    if (RetVT == MVT::i64)
344      return FPTOSINT_F32_I64;
345    if (RetVT == MVT::i128)
346      return FPTOSINT_F32_I128;
347  } else if (OpVT == MVT::f64) {
348    if (RetVT == MVT::i8)
349      return FPTOSINT_F64_I8;
350    if (RetVT == MVT::i16)
351      return FPTOSINT_F64_I16;
352    if (RetVT == MVT::i32)
353      return FPTOSINT_F64_I32;
354    if (RetVT == MVT::i64)
355      return FPTOSINT_F64_I64;
356    if (RetVT == MVT::i128)
357      return FPTOSINT_F64_I128;
358  } else if (OpVT == MVT::f80) {
359    if (RetVT == MVT::i32)
360      return FPTOSINT_F80_I32;
361    if (RetVT == MVT::i64)
362      return FPTOSINT_F80_I64;
363    if (RetVT == MVT::i128)
364      return FPTOSINT_F80_I128;
365  } else if (OpVT == MVT::ppcf128) {
366    if (RetVT == MVT::i32)
367      return FPTOSINT_PPCF128_I32;
368    if (RetVT == MVT::i64)
369      return FPTOSINT_PPCF128_I64;
370    if (RetVT == MVT::i128)
371      return FPTOSINT_PPCF128_I128;
372  }
373  return UNKNOWN_LIBCALL;
374}
375
376/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
377/// UNKNOWN_LIBCALL if there is none.
378RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
379  if (OpVT == MVT::f32) {
380    if (RetVT == MVT::i8)
381      return FPTOUINT_F32_I8;
382    if (RetVT == MVT::i16)
383      return FPTOUINT_F32_I16;
384    if (RetVT == MVT::i32)
385      return FPTOUINT_F32_I32;
386    if (RetVT == MVT::i64)
387      return FPTOUINT_F32_I64;
388    if (RetVT == MVT::i128)
389      return FPTOUINT_F32_I128;
390  } else if (OpVT == MVT::f64) {
391    if (RetVT == MVT::i8)
392      return FPTOUINT_F64_I8;
393    if (RetVT == MVT::i16)
394      return FPTOUINT_F64_I16;
395    if (RetVT == MVT::i32)
396      return FPTOUINT_F64_I32;
397    if (RetVT == MVT::i64)
398      return FPTOUINT_F64_I64;
399    if (RetVT == MVT::i128)
400      return FPTOUINT_F64_I128;
401  } else if (OpVT == MVT::f80) {
402    if (RetVT == MVT::i32)
403      return FPTOUINT_F80_I32;
404    if (RetVT == MVT::i64)
405      return FPTOUINT_F80_I64;
406    if (RetVT == MVT::i128)
407      return FPTOUINT_F80_I128;
408  } else if (OpVT == MVT::ppcf128) {
409    if (RetVT == MVT::i32)
410      return FPTOUINT_PPCF128_I32;
411    if (RetVT == MVT::i64)
412      return FPTOUINT_PPCF128_I64;
413    if (RetVT == MVT::i128)
414      return FPTOUINT_PPCF128_I128;
415  }
416  return UNKNOWN_LIBCALL;
417}
418
419/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
420/// UNKNOWN_LIBCALL if there is none.
421RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
422  if (OpVT == MVT::i32) {
423    if (RetVT == MVT::f32)
424      return SINTTOFP_I32_F32;
425    else if (RetVT == MVT::f64)
426      return SINTTOFP_I32_F64;
427    else if (RetVT == MVT::f80)
428      return SINTTOFP_I32_F80;
429    else if (RetVT == MVT::ppcf128)
430      return SINTTOFP_I32_PPCF128;
431  } else if (OpVT == MVT::i64) {
432    if (RetVT == MVT::f32)
433      return SINTTOFP_I64_F32;
434    else if (RetVT == MVT::f64)
435      return SINTTOFP_I64_F64;
436    else if (RetVT == MVT::f80)
437      return SINTTOFP_I64_F80;
438    else if (RetVT == MVT::ppcf128)
439      return SINTTOFP_I64_PPCF128;
440  } else if (OpVT == MVT::i128) {
441    if (RetVT == MVT::f32)
442      return SINTTOFP_I128_F32;
443    else if (RetVT == MVT::f64)
444      return SINTTOFP_I128_F64;
445    else if (RetVT == MVT::f80)
446      return SINTTOFP_I128_F80;
447    else if (RetVT == MVT::ppcf128)
448      return SINTTOFP_I128_PPCF128;
449  }
450  return UNKNOWN_LIBCALL;
451}
452
453/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
454/// UNKNOWN_LIBCALL if there is none.
455RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
456  if (OpVT == MVT::i32) {
457    if (RetVT == MVT::f32)
458      return UINTTOFP_I32_F32;
459    else if (RetVT == MVT::f64)
460      return UINTTOFP_I32_F64;
461    else if (RetVT == MVT::f80)
462      return UINTTOFP_I32_F80;
463    else if (RetVT == MVT::ppcf128)
464      return UINTTOFP_I32_PPCF128;
465  } else if (OpVT == MVT::i64) {
466    if (RetVT == MVT::f32)
467      return UINTTOFP_I64_F32;
468    else if (RetVT == MVT::f64)
469      return UINTTOFP_I64_F64;
470    else if (RetVT == MVT::f80)
471      return UINTTOFP_I64_F80;
472    else if (RetVT == MVT::ppcf128)
473      return UINTTOFP_I64_PPCF128;
474  } else if (OpVT == MVT::i128) {
475    if (RetVT == MVT::f32)
476      return UINTTOFP_I128_F32;
477    else if (RetVT == MVT::f64)
478      return UINTTOFP_I128_F64;
479    else if (RetVT == MVT::f80)
480      return UINTTOFP_I128_F80;
481    else if (RetVT == MVT::ppcf128)
482      return UINTTOFP_I128_PPCF128;
483  }
484  return UNKNOWN_LIBCALL;
485}
486
487/// InitCmpLibcallCCs - Set default comparison libcall CC.
488///
489static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
490  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
491  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
492  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
493  CCs[RTLIB::UNE_F32] = ISD::SETNE;
494  CCs[RTLIB::UNE_F64] = ISD::SETNE;
495  CCs[RTLIB::OGE_F32] = ISD::SETGE;
496  CCs[RTLIB::OGE_F64] = ISD::SETGE;
497  CCs[RTLIB::OLT_F32] = ISD::SETLT;
498  CCs[RTLIB::OLT_F64] = ISD::SETLT;
499  CCs[RTLIB::OLE_F32] = ISD::SETLE;
500  CCs[RTLIB::OLE_F64] = ISD::SETLE;
501  CCs[RTLIB::OGT_F32] = ISD::SETGT;
502  CCs[RTLIB::OGT_F64] = ISD::SETGT;
503  CCs[RTLIB::UO_F32] = ISD::SETNE;
504  CCs[RTLIB::UO_F64] = ISD::SETNE;
505  CCs[RTLIB::O_F32] = ISD::SETEQ;
506  CCs[RTLIB::O_F64] = ISD::SETEQ;
507}
508
509/// NOTE: The constructor takes ownership of TLOF.
510TargetLowering::TargetLowering(const TargetMachine &tm,
511                               const TargetLoweringObjectFile *tlof)
512  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
513  // All operations default to being supported.
514  memset(OpActions, 0, sizeof(OpActions));
515  memset(LoadExtActions, 0, sizeof(LoadExtActions));
516  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
517  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
518  memset(CondCodeActions, 0, sizeof(CondCodeActions));
519
520  // Set default actions for various operations.
521  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
522    // Default all indexed load / store to expand.
523    for (unsigned IM = (unsigned)ISD::PRE_INC;
524         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
525      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
526      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
527    }
528
529    // These operations default to expand.
530    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
532  }
533
534  // Most targets ignore the @llvm.prefetch intrinsic.
535  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
536
537  // ConstantFP nodes default to expand.  Targets can either change this to
538  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
539  // to optimize expansions for certain constants.
540  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
541  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
542  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
543
544  // These library functions default to expand.
545  setOperationAction(ISD::FLOG , MVT::f64, Expand);
546  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
547  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
548  setOperationAction(ISD::FEXP , MVT::f64, Expand);
549  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
550  setOperationAction(ISD::FLOG , MVT::f32, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
552  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
553  setOperationAction(ISD::FEXP , MVT::f32, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
555
556  // Default ISD::TRAP to expand (which turns it into abort).
557  setOperationAction(ISD::TRAP, MVT::Other, Expand);
558
559  IsLittleEndian = TD->isLittleEndian();
560  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
561  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
562  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
563  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
564  benefitFromCodePlacementOpt = false;
565  UseUnderscoreSetJmp = false;
566  UseUnderscoreLongJmp = false;
567  SelectIsExpensive = false;
568  IntDivIsCheap = false;
569  Pow2DivIsCheap = false;
570  StackPointerRegisterToSaveRestore = 0;
571  ExceptionPointerRegister = 0;
572  ExceptionSelectorRegister = 0;
573  BooleanContents = UndefinedBooleanContent;
574  SchedPreferenceInfo = Sched::Latency;
575  JumpBufSize = 0;
576  JumpBufAlignment = 0;
577  IfCvtBlockSizeLimit = 2;
578  IfCvtDupBlockSizeLimit = 0;
579  PrefLoopAlignment = 0;
580
581  InitLibcallNames(LibcallRoutineNames);
582  InitCmpLibcallCCs(CmpLibcallCCs);
583  InitLibcallCallingConvs(LibcallCallingConvs);
584}
585
586TargetLowering::~TargetLowering() {
587  delete &TLOF;
588}
589
590/// canOpTrap - Returns true if the operation can trap for the value type.
591/// VT must be a legal type.
592bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
593  assert(isTypeLegal(VT));
594  switch (Op) {
595  default:
596    return false;
597  case ISD::FDIV:
598  case ISD::FREM:
599  case ISD::SDIV:
600  case ISD::UDIV:
601  case ISD::SREM:
602  case ISD::UREM:
603    return true;
604  }
605}
606
607
608static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
609                                       unsigned &NumIntermediates,
610                                       EVT &RegisterVT,
611                                       TargetLowering* TLI) {
612  // Figure out the right, legal destination reg to copy into.
613  unsigned NumElts = VT.getVectorNumElements();
614  MVT EltTy = VT.getVectorElementType();
615
616  unsigned NumVectorRegs = 1;
617
618  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
619  // could break down into LHS/RHS like LegalizeDAG does.
620  if (!isPowerOf2_32(NumElts)) {
621    NumVectorRegs = NumElts;
622    NumElts = 1;
623  }
624
625  // Divide the input until we get to a supported size.  This will always
626  // end with a scalar if the target doesn't support vectors.
627  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
628    NumElts >>= 1;
629    NumVectorRegs <<= 1;
630  }
631
632  NumIntermediates = NumVectorRegs;
633
634  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
635  if (!TLI->isTypeLegal(NewVT))
636    NewVT = EltTy;
637  IntermediateVT = NewVT;
638
639  EVT DestVT = TLI->getRegisterType(NewVT);
640  RegisterVT = DestVT;
641  if (EVT(DestVT).bitsLT(NewVT)) {
642    // Value is expanded, e.g. i64 -> i16.
643    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
644  } else {
645    // Otherwise, promotion or legal types use the same number of registers as
646    // the vector decimated to the appropriate level.
647    return NumVectorRegs;
648  }
649
650  return 1;
651}
652
653/// computeRegisterProperties - Once all of the register classes are added,
654/// this allows us to compute derived properties we expose.
655void TargetLowering::computeRegisterProperties() {
656  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
657         "Too many value types for ValueTypeActions to hold!");
658
659  // Everything defaults to needing one register.
660  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
661    NumRegistersForVT[i] = 1;
662    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
663  }
664  // ...except isVoid, which doesn't need any registers.
665  NumRegistersForVT[MVT::isVoid] = 0;
666
667  // Find the largest integer register class.
668  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
669  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
670    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
671
672  // Every integer value type larger than this largest register takes twice as
673  // many registers to represent as the previous ValueType.
674  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
675    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
676    if (!ExpandedVT.isInteger())
677      break;
678    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
679    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
680    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
681    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
682  }
683
684  // Inspect all of the ValueType's smaller than the largest integer
685  // register to see which ones need promotion.
686  unsigned LegalIntReg = LargestIntReg;
687  for (unsigned IntReg = LargestIntReg - 1;
688       IntReg >= (unsigned)MVT::i1; --IntReg) {
689    EVT IVT = (MVT::SimpleValueType)IntReg;
690    if (isTypeLegal(IVT)) {
691      LegalIntReg = IntReg;
692    } else {
693      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
694        (MVT::SimpleValueType)LegalIntReg;
695      ValueTypeActions.setTypeAction(IVT, Promote);
696    }
697  }
698
699  // ppcf128 type is really two f64's.
700  if (!isTypeLegal(MVT::ppcf128)) {
701    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
702    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
703    TransformToType[MVT::ppcf128] = MVT::f64;
704    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
705  }
706
707  // Decide how to handle f64. If the target does not have native f64 support,
708  // expand it to i64 and we will be generating soft float library calls.
709  if (!isTypeLegal(MVT::f64)) {
710    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
711    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
712    TransformToType[MVT::f64] = MVT::i64;
713    ValueTypeActions.setTypeAction(MVT::f64, Expand);
714  }
715
716  // Decide how to handle f32. If the target does not have native support for
717  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
718  if (!isTypeLegal(MVT::f32)) {
719    if (isTypeLegal(MVT::f64)) {
720      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
721      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
722      TransformToType[MVT::f32] = MVT::f64;
723      ValueTypeActions.setTypeAction(MVT::f32, Promote);
724    } else {
725      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
726      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
727      TransformToType[MVT::f32] = MVT::i32;
728      ValueTypeActions.setTypeAction(MVT::f32, Expand);
729    }
730  }
731
732  // Loop over all of the vector value types to see which need transformations.
733  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
734       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
735    MVT VT = (MVT::SimpleValueType)i;
736    if (!isTypeLegal(VT)) {
737      MVT IntermediateVT;
738      EVT RegisterVT;
739      unsigned NumIntermediates;
740      NumRegistersForVT[i] =
741        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
742                                  RegisterVT, this);
743      RegisterTypeForVT[i] = RegisterVT;
744
745      // Determine if there is a legal wider type.
746      bool IsLegalWiderType = false;
747      EVT EltVT = VT.getVectorElementType();
748      unsigned NElts = VT.getVectorNumElements();
749      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
750        EVT SVT = (MVT::SimpleValueType)nVT;
751        if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
752            SVT.getVectorNumElements() > NElts && NElts != 1) {
753          TransformToType[i] = SVT;
754          ValueTypeActions.setTypeAction(VT, Promote);
755          IsLegalWiderType = true;
756          break;
757        }
758      }
759      if (!IsLegalWiderType) {
760        EVT NVT = VT.getPow2VectorType();
761        if (NVT == VT) {
762          // Type is already a power of 2.  The default action is to split.
763          TransformToType[i] = MVT::Other;
764          ValueTypeActions.setTypeAction(VT, Expand);
765        } else {
766          TransformToType[i] = NVT;
767          ValueTypeActions.setTypeAction(VT, Promote);
768        }
769      }
770    }
771  }
772}
773
774const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
775  return NULL;
776}
777
778
779MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
780  return PointerTy.SimpleTy;
781}
782
783MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
784  return MVT::i32; // return the default value
785}
786
787/// getVectorTypeBreakdown - Vector types are broken down into some number of
788/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
789/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
790/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
791///
792/// This method returns the number of registers needed, and the VT for each
793/// register.  It also returns the VT and quantity of the intermediate values
794/// before they are promoted/expanded.
795///
796unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
797                                                EVT &IntermediateVT,
798                                                unsigned &NumIntermediates,
799                                                EVT &RegisterVT) const {
800  // Figure out the right, legal destination reg to copy into.
801  unsigned NumElts = VT.getVectorNumElements();
802  EVT EltTy = VT.getVectorElementType();
803
804  unsigned NumVectorRegs = 1;
805
806  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
807  // could break down into LHS/RHS like LegalizeDAG does.
808  if (!isPowerOf2_32(NumElts)) {
809    NumVectorRegs = NumElts;
810    NumElts = 1;
811  }
812
813  // Divide the input until we get to a supported size.  This will always
814  // end with a scalar if the target doesn't support vectors.
815  while (NumElts > 1 && !isTypeLegal(
816                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
817    NumElts >>= 1;
818    NumVectorRegs <<= 1;
819  }
820
821  NumIntermediates = NumVectorRegs;
822
823  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
824  if (!isTypeLegal(NewVT))
825    NewVT = EltTy;
826  IntermediateVT = NewVT;
827
828  EVT DestVT = getRegisterType(Context, NewVT);
829  RegisterVT = DestVT;
830  if (DestVT.bitsLT(NewVT)) {
831    // Value is expanded, e.g. i64 -> i16.
832    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
833  } else {
834    // Otherwise, promotion or legal types use the same number of registers as
835    // the vector decimated to the appropriate level.
836    return NumVectorRegs;
837  }
838
839  return 1;
840}
841
842/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
843/// function arguments in the caller parameter area.  This is the actual
844/// alignment, not its logarithm.
845unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
846  return TD->getCallFrameTypeAlignment(Ty);
847}
848
849/// getJumpTableEncoding - Return the entry encoding for a jump table in the
850/// current function.  The returned value is a member of the
851/// MachineJumpTableInfo::JTEntryKind enum.
852unsigned TargetLowering::getJumpTableEncoding() const {
853  // In non-pic modes, just use the address of a block.
854  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
855    return MachineJumpTableInfo::EK_BlockAddress;
856
857  // In PIC mode, if the target supports a GPRel32 directive, use it.
858  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
859    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
860
861  // Otherwise, use a label difference.
862  return MachineJumpTableInfo::EK_LabelDifference32;
863}
864
865SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
866                                                 SelectionDAG &DAG) const {
867  // If our PIC model is GP relative, use the global offset table as the base.
868  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
869    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
870  return Table;
871}
872
873/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
874/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
875/// MCExpr.
876const MCExpr *
877TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
878                                             unsigned JTI,MCContext &Ctx) const{
879  // The normal PIC reloc base is the label at the start of the jump table.
880  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
881}
882
883bool
884TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
885  // Assume that everything is safe in static mode.
886  if (getTargetMachine().getRelocationModel() == Reloc::Static)
887    return true;
888
889  // In dynamic-no-pic mode, assume that known defined values are safe.
890  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
891      GA &&
892      !GA->getGlobal()->isDeclaration() &&
893      !GA->getGlobal()->isWeakForLinker())
894    return true;
895
896  // Otherwise assume nothing is safe.
897  return false;
898}
899
900//===----------------------------------------------------------------------===//
901//  Optimization Methods
902//===----------------------------------------------------------------------===//
903
904/// ShrinkDemandedConstant - Check to see if the specified operand of the
905/// specified instruction is a constant integer.  If so, check to see if there
906/// are any bits set in the constant that are not demanded.  If so, shrink the
907/// constant and return true.
908bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
909                                                        const APInt &Demanded) {
910  DebugLoc dl = Op.getDebugLoc();
911
912  // FIXME: ISD::SELECT, ISD::SELECT_CC
913  switch (Op.getOpcode()) {
914  default: break;
915  case ISD::XOR:
916  case ISD::AND:
917  case ISD::OR: {
918    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
919    if (!C) return false;
920
921    if (Op.getOpcode() == ISD::XOR &&
922        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
923      return false;
924
925    // if we can expand it to have all bits set, do it
926    if (C->getAPIntValue().intersects(~Demanded)) {
927      EVT VT = Op.getValueType();
928      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
929                                DAG.getConstant(Demanded &
930                                                C->getAPIntValue(),
931                                                VT));
932      return CombineTo(Op, New);
933    }
934
935    break;
936  }
937  }
938
939  return false;
940}
941
942/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
943/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
944/// cast, but it could be generalized for targets with other types of
945/// implicit widening casts.
946bool
947TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
948                                                    unsigned BitWidth,
949                                                    const APInt &Demanded,
950                                                    DebugLoc dl) {
951  assert(Op.getNumOperands() == 2 &&
952         "ShrinkDemandedOp only supports binary operators!");
953  assert(Op.getNode()->getNumValues() == 1 &&
954         "ShrinkDemandedOp only supports nodes with one result!");
955
956  // Don't do this if the node has another user, which may require the
957  // full value.
958  if (!Op.getNode()->hasOneUse())
959    return false;
960
961  // Search for the smallest integer type with free casts to and from
962  // Op's type. For expedience, just check power-of-2 integer types.
963  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
964  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
965  if (!isPowerOf2_32(SmallVTBits))
966    SmallVTBits = NextPowerOf2(SmallVTBits);
967  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
968    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
969    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
970        TLI.isZExtFree(SmallVT, Op.getValueType())) {
971      // We found a type with free casts.
972      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
973                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
974                                          Op.getNode()->getOperand(0)),
975                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
976                                          Op.getNode()->getOperand(1)));
977      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
978      return CombineTo(Op, Z);
979    }
980  }
981  return false;
982}
983
984/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
985/// DemandedMask bits of the result of Op are ever used downstream.  If we can
986/// use this information to simplify Op, create a new simplified DAG node and
987/// return true, returning the original and new nodes in Old and New. Otherwise,
988/// analyze the expression and return a mask of KnownOne and KnownZero bits for
989/// the expression (used to simplify the caller).  The KnownZero/One bits may
990/// only be accurate for those bits in the DemandedMask.
991bool TargetLowering::SimplifyDemandedBits(SDValue Op,
992                                          const APInt &DemandedMask,
993                                          APInt &KnownZero,
994                                          APInt &KnownOne,
995                                          TargetLoweringOpt &TLO,
996                                          unsigned Depth) const {
997  unsigned BitWidth = DemandedMask.getBitWidth();
998  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
999         "Mask size mismatches value type size!");
1000  APInt NewMask = DemandedMask;
1001  DebugLoc dl = Op.getDebugLoc();
1002
1003  // Don't know anything.
1004  KnownZero = KnownOne = APInt(BitWidth, 0);
1005
1006  // Other users may use these bits.
1007  if (!Op.getNode()->hasOneUse()) {
1008    if (Depth != 0) {
1009      // If not at the root, Just compute the KnownZero/KnownOne bits to
1010      // simplify things downstream.
1011      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1012      return false;
1013    }
1014    // If this is the root being simplified, allow it to have multiple uses,
1015    // just set the NewMask to all bits.
1016    NewMask = APInt::getAllOnesValue(BitWidth);
1017  } else if (DemandedMask == 0) {
1018    // Not demanding any bits from Op.
1019    if (Op.getOpcode() != ISD::UNDEF)
1020      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1021    return false;
1022  } else if (Depth == 6) {        // Limit search depth.
1023    return false;
1024  }
1025
1026  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1027  switch (Op.getOpcode()) {
1028  case ISD::Constant:
1029    // We know all of the bits for a constant!
1030    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1031    KnownZero = ~KnownOne & NewMask;
1032    return false;   // Don't fall through, will infinitely loop.
1033  case ISD::AND:
1034    // If the RHS is a constant, check to see if the LHS would be zero without
1035    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1036    // simplify the LHS, here we're using information from the LHS to simplify
1037    // the RHS.
1038    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1039      APInt LHSZero, LHSOne;
1040      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1041                                LHSZero, LHSOne, Depth+1);
1042      // If the LHS already has zeros where RHSC does, this and is dead.
1043      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1044        return TLO.CombineTo(Op, Op.getOperand(0));
1045      // If any of the set bits in the RHS are known zero on the LHS, shrink
1046      // the constant.
1047      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1048        return true;
1049    }
1050
1051    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1052                             KnownOne, TLO, Depth+1))
1053      return true;
1054    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1055    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1056                             KnownZero2, KnownOne2, TLO, Depth+1))
1057      return true;
1058    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1059
1060    // If all of the demanded bits are known one on one side, return the other.
1061    // These bits cannot contribute to the result of the 'and'.
1062    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1063      return TLO.CombineTo(Op, Op.getOperand(0));
1064    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1065      return TLO.CombineTo(Op, Op.getOperand(1));
1066    // If all of the demanded bits in the inputs are known zeros, return zero.
1067    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1068      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1069    // If the RHS is a constant, see if we can simplify it.
1070    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1071      return true;
1072    // If the operation can be done in a smaller type, do so.
1073    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1074      return true;
1075
1076    // Output known-1 bits are only known if set in both the LHS & RHS.
1077    KnownOne &= KnownOne2;
1078    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1079    KnownZero |= KnownZero2;
1080    break;
1081  case ISD::OR:
1082    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1083                             KnownOne, TLO, Depth+1))
1084      return true;
1085    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1086    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1087                             KnownZero2, KnownOne2, TLO, Depth+1))
1088      return true;
1089    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1090
1091    // If all of the demanded bits are known zero on one side, return the other.
1092    // These bits cannot contribute to the result of the 'or'.
1093    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1094      return TLO.CombineTo(Op, Op.getOperand(0));
1095    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1096      return TLO.CombineTo(Op, Op.getOperand(1));
1097    // If all of the potentially set bits on one side are known to be set on
1098    // the other side, just use the 'other' side.
1099    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1100      return TLO.CombineTo(Op, Op.getOperand(0));
1101    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1102      return TLO.CombineTo(Op, Op.getOperand(1));
1103    // If the RHS is a constant, see if we can simplify it.
1104    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1105      return true;
1106    // If the operation can be done in a smaller type, do so.
1107    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1108      return true;
1109
1110    // Output known-0 bits are only known if clear in both the LHS & RHS.
1111    KnownZero &= KnownZero2;
1112    // Output known-1 are known to be set if set in either the LHS | RHS.
1113    KnownOne |= KnownOne2;
1114    break;
1115  case ISD::XOR:
1116    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1117                             KnownOne, TLO, Depth+1))
1118      return true;
1119    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1120    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1121                             KnownOne2, TLO, Depth+1))
1122      return true;
1123    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1124
1125    // If all of the demanded bits are known zero on one side, return the other.
1126    // These bits cannot contribute to the result of the 'xor'.
1127    if ((KnownZero & NewMask) == NewMask)
1128      return TLO.CombineTo(Op, Op.getOperand(0));
1129    if ((KnownZero2 & NewMask) == NewMask)
1130      return TLO.CombineTo(Op, Op.getOperand(1));
1131    // If the operation can be done in a smaller type, do so.
1132    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1133      return true;
1134
1135    // If all of the unknown bits are known to be zero on one side or the other
1136    // (but not both) turn this into an *inclusive* or.
1137    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1138    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1139      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1140                                               Op.getOperand(0),
1141                                               Op.getOperand(1)));
1142
1143    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1144    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1145    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1146    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1147
1148    // If all of the demanded bits on one side are known, and all of the set
1149    // bits on that side are also known to be set on the other side, turn this
1150    // into an AND, as we know the bits will be cleared.
1151    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1152    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1153      if ((KnownOne & KnownOne2) == KnownOne) {
1154        EVT VT = Op.getValueType();
1155        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1156        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1157                                                 Op.getOperand(0), ANDC));
1158      }
1159    }
1160
1161    // If the RHS is a constant, see if we can simplify it.
1162    // for XOR, we prefer to force bits to 1 if they will make a -1.
1163    // if we can't force bits, try to shrink constant
1164    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1165      APInt Expanded = C->getAPIntValue() | (~NewMask);
1166      // if we can expand it to have all bits set, do it
1167      if (Expanded.isAllOnesValue()) {
1168        if (Expanded != C->getAPIntValue()) {
1169          EVT VT = Op.getValueType();
1170          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1171                                          TLO.DAG.getConstant(Expanded, VT));
1172          return TLO.CombineTo(Op, New);
1173        }
1174        // if it already has all the bits set, nothing to change
1175        // but don't shrink either!
1176      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1177        return true;
1178      }
1179    }
1180
1181    KnownZero = KnownZeroOut;
1182    KnownOne  = KnownOneOut;
1183    break;
1184  case ISD::SELECT:
1185    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1186                             KnownOne, TLO, Depth+1))
1187      return true;
1188    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1189                             KnownOne2, TLO, Depth+1))
1190      return true;
1191    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1192    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1193
1194    // If the operands are constants, see if we can simplify them.
1195    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1196      return true;
1197
1198    // Only known if known in both the LHS and RHS.
1199    KnownOne &= KnownOne2;
1200    KnownZero &= KnownZero2;
1201    break;
1202  case ISD::SELECT_CC:
1203    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1204                             KnownOne, TLO, Depth+1))
1205      return true;
1206    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1207                             KnownOne2, TLO, Depth+1))
1208      return true;
1209    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1210    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1211
1212    // If the operands are constants, see if we can simplify them.
1213    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1214      return true;
1215
1216    // Only known if known in both the LHS and RHS.
1217    KnownOne &= KnownOne2;
1218    KnownZero &= KnownZero2;
1219    break;
1220  case ISD::SHL:
1221    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1222      unsigned ShAmt = SA->getZExtValue();
1223      SDValue InOp = Op.getOperand(0);
1224
1225      // If the shift count is an invalid immediate, don't do anything.
1226      if (ShAmt >= BitWidth)
1227        break;
1228
1229      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1230      // single shift.  We can do this if the bottom bits (which are shifted
1231      // out) are never demanded.
1232      if (InOp.getOpcode() == ISD::SRL &&
1233          isa<ConstantSDNode>(InOp.getOperand(1))) {
1234        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1235          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1236          unsigned Opc = ISD::SHL;
1237          int Diff = ShAmt-C1;
1238          if (Diff < 0) {
1239            Diff = -Diff;
1240            Opc = ISD::SRL;
1241          }
1242
1243          SDValue NewSA =
1244            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1245          EVT VT = Op.getValueType();
1246          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1247                                                   InOp.getOperand(0), NewSA));
1248        }
1249      }
1250
1251      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1252                               KnownZero, KnownOne, TLO, Depth+1))
1253        return true;
1254      KnownZero <<= SA->getZExtValue();
1255      KnownOne  <<= SA->getZExtValue();
1256      // low bits known zero.
1257      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1258    }
1259    break;
1260  case ISD::SRL:
1261    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1262      EVT VT = Op.getValueType();
1263      unsigned ShAmt = SA->getZExtValue();
1264      unsigned VTSize = VT.getSizeInBits();
1265      SDValue InOp = Op.getOperand(0);
1266
1267      // If the shift count is an invalid immediate, don't do anything.
1268      if (ShAmt >= BitWidth)
1269        break;
1270
1271      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1272      // single shift.  We can do this if the top bits (which are shifted out)
1273      // are never demanded.
1274      if (InOp.getOpcode() == ISD::SHL &&
1275          isa<ConstantSDNode>(InOp.getOperand(1))) {
1276        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1277          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1278          unsigned Opc = ISD::SRL;
1279          int Diff = ShAmt-C1;
1280          if (Diff < 0) {
1281            Diff = -Diff;
1282            Opc = ISD::SHL;
1283          }
1284
1285          SDValue NewSA =
1286            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1287          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1288                                                   InOp.getOperand(0), NewSA));
1289        }
1290      }
1291
1292      // Compute the new bits that are at the top now.
1293      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1294                               KnownZero, KnownOne, TLO, Depth+1))
1295        return true;
1296      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1297      KnownZero = KnownZero.lshr(ShAmt);
1298      KnownOne  = KnownOne.lshr(ShAmt);
1299
1300      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1301      KnownZero |= HighBits;  // High bits known zero.
1302    }
1303    break;
1304  case ISD::SRA:
1305    // If this is an arithmetic shift right and only the low-bit is set, we can
1306    // always convert this into a logical shr, even if the shift amount is
1307    // variable.  The low bit of the shift cannot be an input sign bit unless
1308    // the shift amount is >= the size of the datatype, which is undefined.
1309    if (DemandedMask == 1)
1310      return TLO.CombineTo(Op,
1311                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1312                                           Op.getOperand(0), Op.getOperand(1)));
1313
1314    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1315      EVT VT = Op.getValueType();
1316      unsigned ShAmt = SA->getZExtValue();
1317
1318      // If the shift count is an invalid immediate, don't do anything.
1319      if (ShAmt >= BitWidth)
1320        break;
1321
1322      APInt InDemandedMask = (NewMask << ShAmt);
1323
1324      // If any of the demanded bits are produced by the sign extension, we also
1325      // demand the input sign bit.
1326      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1327      if (HighBits.intersects(NewMask))
1328        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1329
1330      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1331                               KnownZero, KnownOne, TLO, Depth+1))
1332        return true;
1333      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1334      KnownZero = KnownZero.lshr(ShAmt);
1335      KnownOne  = KnownOne.lshr(ShAmt);
1336
1337      // Handle the sign bit, adjusted to where it is now in the mask.
1338      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1339
1340      // If the input sign bit is known to be zero, or if none of the top bits
1341      // are demanded, turn this into an unsigned shift right.
1342      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1343        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1344                                                 Op.getOperand(0),
1345                                                 Op.getOperand(1)));
1346      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1347        KnownOne |= HighBits;
1348      }
1349    }
1350    break;
1351  case ISD::SIGN_EXTEND_INREG: {
1352    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1353
1354    // Sign extension.  Compute the demanded bits in the result that are not
1355    // present in the input.
1356    APInt NewBits =
1357      APInt::getHighBitsSet(BitWidth,
1358                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1359      NewMask;
1360
1361    // If none of the extended bits are demanded, eliminate the sextinreg.
1362    if (NewBits == 0)
1363      return TLO.CombineTo(Op, Op.getOperand(0));
1364
1365    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1366    InSignBit.zext(BitWidth);
1367    APInt InputDemandedBits =
1368      APInt::getLowBitsSet(BitWidth,
1369                           EVT.getScalarType().getSizeInBits()) &
1370      NewMask;
1371
1372    // Since the sign extended bits are demanded, we know that the sign
1373    // bit is demanded.
1374    InputDemandedBits |= InSignBit;
1375
1376    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1377                             KnownZero, KnownOne, TLO, Depth+1))
1378      return true;
1379    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1380
1381    // If the sign bit of the input is known set or clear, then we know the
1382    // top bits of the result.
1383
1384    // If the input sign bit is known zero, convert this into a zero extension.
1385    if (KnownZero.intersects(InSignBit))
1386      return TLO.CombineTo(Op,
1387                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1388
1389    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1390      KnownOne |= NewBits;
1391      KnownZero &= ~NewBits;
1392    } else {                       // Input sign bit unknown
1393      KnownZero &= ~NewBits;
1394      KnownOne &= ~NewBits;
1395    }
1396    break;
1397  }
1398  case ISD::ZERO_EXTEND: {
1399    unsigned OperandBitWidth =
1400      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1401    APInt InMask = NewMask;
1402    InMask.trunc(OperandBitWidth);
1403
1404    // If none of the top bits are demanded, convert this into an any_extend.
1405    APInt NewBits =
1406      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1407    if (!NewBits.intersects(NewMask))
1408      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1409                                               Op.getValueType(),
1410                                               Op.getOperand(0)));
1411
1412    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1413                             KnownZero, KnownOne, TLO, Depth+1))
1414      return true;
1415    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1416    KnownZero.zext(BitWidth);
1417    KnownOne.zext(BitWidth);
1418    KnownZero |= NewBits;
1419    break;
1420  }
1421  case ISD::SIGN_EXTEND: {
1422    EVT InVT = Op.getOperand(0).getValueType();
1423    unsigned InBits = InVT.getScalarType().getSizeInBits();
1424    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1425    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1426    APInt NewBits   = ~InMask & NewMask;
1427
1428    // If none of the top bits are demanded, convert this into an any_extend.
1429    if (NewBits == 0)
1430      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1431                                              Op.getValueType(),
1432                                              Op.getOperand(0)));
1433
1434    // Since some of the sign extended bits are demanded, we know that the sign
1435    // bit is demanded.
1436    APInt InDemandedBits = InMask & NewMask;
1437    InDemandedBits |= InSignBit;
1438    InDemandedBits.trunc(InBits);
1439
1440    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1441                             KnownOne, TLO, Depth+1))
1442      return true;
1443    KnownZero.zext(BitWidth);
1444    KnownOne.zext(BitWidth);
1445
1446    // If the sign bit is known zero, convert this to a zero extend.
1447    if (KnownZero.intersects(InSignBit))
1448      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1449                                               Op.getValueType(),
1450                                               Op.getOperand(0)));
1451
1452    // If the sign bit is known one, the top bits match.
1453    if (KnownOne.intersects(InSignBit)) {
1454      KnownOne  |= NewBits;
1455      KnownZero &= ~NewBits;
1456    } else {   // Otherwise, top bits aren't known.
1457      KnownOne  &= ~NewBits;
1458      KnownZero &= ~NewBits;
1459    }
1460    break;
1461  }
1462  case ISD::ANY_EXTEND: {
1463    unsigned OperandBitWidth =
1464      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1465    APInt InMask = NewMask;
1466    InMask.trunc(OperandBitWidth);
1467    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1468                             KnownZero, KnownOne, TLO, Depth+1))
1469      return true;
1470    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1471    KnownZero.zext(BitWidth);
1472    KnownOne.zext(BitWidth);
1473    break;
1474  }
1475  case ISD::TRUNCATE: {
1476    // Simplify the input, using demanded bit information, and compute the known
1477    // zero/one bits live out.
1478    unsigned OperandBitWidth =
1479      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1480    APInt TruncMask = NewMask;
1481    TruncMask.zext(OperandBitWidth);
1482    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1483                             KnownZero, KnownOne, TLO, Depth+1))
1484      return true;
1485    KnownZero.trunc(BitWidth);
1486    KnownOne.trunc(BitWidth);
1487
1488    // If the input is only used by this truncate, see if we can shrink it based
1489    // on the known demanded bits.
1490    if (Op.getOperand(0).getNode()->hasOneUse()) {
1491      SDValue In = Op.getOperand(0);
1492      switch (In.getOpcode()) {
1493      default: break;
1494      case ISD::SRL:
1495        // Shrink SRL by a constant if none of the high bits shifted in are
1496        // demanded.
1497        if (TLO.LegalTypes() &&
1498            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1499          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1500          // undesirable.
1501          break;
1502        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1503        if (!ShAmt)
1504          break;
1505        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1506                                               OperandBitWidth - BitWidth);
1507        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1508        HighBits.trunc(BitWidth);
1509
1510        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1511          // None of the shifted in bits are needed.  Add a truncate of the
1512          // shift input, then shift it.
1513          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1514                                             Op.getValueType(),
1515                                             In.getOperand(0));
1516          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1517                                                   Op.getValueType(),
1518                                                   NewTrunc,
1519                                                   In.getOperand(1)));
1520        }
1521        break;
1522      }
1523    }
1524
1525    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526    break;
1527  }
1528  case ISD::AssertZext: {
1529    // Demand all the bits of the input that are demanded in the output.
1530    // The low bits are obvious; the high bits are demanded because we're
1531    // asserting that they're zero here.
1532    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1533                             KnownZero, KnownOne, TLO, Depth+1))
1534      return true;
1535    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1536
1537    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1538    APInt InMask = APInt::getLowBitsSet(BitWidth,
1539                                        VT.getSizeInBits());
1540    KnownZero |= ~InMask & NewMask;
1541    break;
1542  }
1543  case ISD::BIT_CONVERT:
1544#if 0
1545    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1546    // is demanded, turn this into a FGETSIGN.
1547    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1548        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1549        !MVT::isVector(Op.getOperand(0).getValueType())) {
1550      // Only do this xform if FGETSIGN is valid or if before legalize.
1551      if (!TLO.AfterLegalize ||
1552          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1553        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1554        // place.  We expect the SHL to be eliminated by other optimizations.
1555        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1556                                         Op.getOperand(0));
1557        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1558        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1559        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1560                                                 Sign, ShAmt));
1561      }
1562    }
1563#endif
1564    break;
1565  case ISD::ADD:
1566  case ISD::MUL:
1567  case ISD::SUB: {
1568    // Add, Sub, and Mul don't demand any bits in positions beyond that
1569    // of the highest bit demanded of them.
1570    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1571                                        BitWidth - NewMask.countLeadingZeros());
1572    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1573                             KnownOne2, TLO, Depth+1))
1574      return true;
1575    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1576                             KnownOne2, TLO, Depth+1))
1577      return true;
1578    // See if the operation should be performed at a smaller bit width.
1579    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1580      return true;
1581  }
1582  // FALL THROUGH
1583  default:
1584    // Just use ComputeMaskedBits to compute output bits.
1585    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1586    break;
1587  }
1588
1589  // If we know the value of all of the demanded bits, return this as a
1590  // constant.
1591  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1592    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1593
1594  return false;
1595}
1596
1597/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1598/// in Mask are known to be either zero or one and return them in the
1599/// KnownZero/KnownOne bitsets.
1600void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1601                                                    const APInt &Mask,
1602                                                    APInt &KnownZero,
1603                                                    APInt &KnownOne,
1604                                                    const SelectionDAG &DAG,
1605                                                    unsigned Depth) const {
1606  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1607          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1608          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1609          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1610         "Should use MaskedValueIsZero if you don't know whether Op"
1611         " is a target node!");
1612  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1613}
1614
1615/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1616/// targets that want to expose additional information about sign bits to the
1617/// DAG Combiner.
1618unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1619                                                         unsigned Depth) const {
1620  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1621          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1622          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1623          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1624         "Should use ComputeNumSignBits if you don't know whether Op"
1625         " is a target node!");
1626  return 1;
1627}
1628
1629/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1630/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1631/// determine which bit is set.
1632///
1633static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1634  // A left-shift of a constant one will have exactly one bit set, because
1635  // shifting the bit off the end is undefined.
1636  if (Val.getOpcode() == ISD::SHL)
1637    if (ConstantSDNode *C =
1638         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1639      if (C->getAPIntValue() == 1)
1640        return true;
1641
1642  // Similarly, a right-shift of a constant sign-bit will have exactly
1643  // one bit set.
1644  if (Val.getOpcode() == ISD::SRL)
1645    if (ConstantSDNode *C =
1646         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1647      if (C->getAPIntValue().isSignBit())
1648        return true;
1649
1650  // More could be done here, though the above checks are enough
1651  // to handle some common cases.
1652
1653  // Fall back to ComputeMaskedBits to catch other known cases.
1654  EVT OpVT = Val.getValueType();
1655  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1656  APInt Mask = APInt::getAllOnesValue(BitWidth);
1657  APInt KnownZero, KnownOne;
1658  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1659  return (KnownZero.countPopulation() == BitWidth - 1) &&
1660         (KnownOne.countPopulation() == 1);
1661}
1662
1663/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1664/// and cc. If it is unable to simplify it, return a null SDValue.
1665SDValue
1666TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1667                              ISD::CondCode Cond, bool foldBooleans,
1668                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1669  SelectionDAG &DAG = DCI.DAG;
1670  LLVMContext &Context = *DAG.getContext();
1671
1672  // These setcc operations always fold.
1673  switch (Cond) {
1674  default: break;
1675  case ISD::SETFALSE:
1676  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1677  case ISD::SETTRUE:
1678  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1679  }
1680
1681  if (isa<ConstantSDNode>(N0.getNode())) {
1682    // Ensure that the constant occurs on the RHS, and fold constant
1683    // comparisons.
1684    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1685  }
1686
1687  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1688    const APInt &C1 = N1C->getAPIntValue();
1689
1690    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1691    // equality comparison, then we're just comparing whether X itself is
1692    // zero.
1693    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1694        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1695        N0.getOperand(1).getOpcode() == ISD::Constant) {
1696      const APInt &ShAmt
1697        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1698      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1699          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1700        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1701          // (srl (ctlz x), 5) == 0  -> X != 0
1702          // (srl (ctlz x), 5) != 1  -> X != 0
1703          Cond = ISD::SETNE;
1704        } else {
1705          // (srl (ctlz x), 5) != 0  -> X == 0
1706          // (srl (ctlz x), 5) == 1  -> X == 0
1707          Cond = ISD::SETEQ;
1708        }
1709        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1710        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1711                            Zero, Cond);
1712      }
1713    }
1714
1715    // If the LHS is '(and load, const)', the RHS is 0,
1716    // the test is for equality or unsigned, and all 1 bits of the const are
1717    // in the same partial word, see if we can shorten the load.
1718    if (DCI.isBeforeLegalize() &&
1719        N0.getOpcode() == ISD::AND && C1 == 0 &&
1720        N0.getNode()->hasOneUse() &&
1721        isa<LoadSDNode>(N0.getOperand(0)) &&
1722        N0.getOperand(0).getNode()->hasOneUse() &&
1723        isa<ConstantSDNode>(N0.getOperand(1))) {
1724      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1725      APInt bestMask;
1726      unsigned bestWidth = 0, bestOffset = 0;
1727      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1728        unsigned origWidth = N0.getValueType().getSizeInBits();
1729        unsigned maskWidth = origWidth;
1730        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1731        // 8 bits, but have to be careful...
1732        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1733          origWidth = Lod->getMemoryVT().getSizeInBits();
1734        const APInt &Mask =
1735          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1736        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1737          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1738          for (unsigned offset=0; offset<origWidth/width; offset++) {
1739            if ((newMask & Mask) == Mask) {
1740              if (!TD->isLittleEndian())
1741                bestOffset = (origWidth/width - offset - 1) * (width/8);
1742              else
1743                bestOffset = (uint64_t)offset * (width/8);
1744              bestMask = Mask.lshr(offset * (width/8) * 8);
1745              bestWidth = width;
1746              break;
1747            }
1748            newMask = newMask << width;
1749          }
1750        }
1751      }
1752      if (bestWidth) {
1753        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1754        if (newVT.isRound()) {
1755          EVT PtrType = Lod->getOperand(1).getValueType();
1756          SDValue Ptr = Lod->getBasePtr();
1757          if (bestOffset != 0)
1758            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1759                              DAG.getConstant(bestOffset, PtrType));
1760          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1761          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1762                                        Lod->getSrcValue(),
1763                                        Lod->getSrcValueOffset() + bestOffset,
1764                                        false, false, NewAlign);
1765          return DAG.getSetCC(dl, VT,
1766                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1767                                      DAG.getConstant(bestMask.trunc(bestWidth),
1768                                                      newVT)),
1769                              DAG.getConstant(0LL, newVT), Cond);
1770        }
1771      }
1772    }
1773
1774    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1775    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1776      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1777
1778      // If the comparison constant has bits in the upper part, the
1779      // zero-extended value could never match.
1780      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1781                                              C1.getBitWidth() - InSize))) {
1782        switch (Cond) {
1783        case ISD::SETUGT:
1784        case ISD::SETUGE:
1785        case ISD::SETEQ: return DAG.getConstant(0, VT);
1786        case ISD::SETULT:
1787        case ISD::SETULE:
1788        case ISD::SETNE: return DAG.getConstant(1, VT);
1789        case ISD::SETGT:
1790        case ISD::SETGE:
1791          // True if the sign bit of C1 is set.
1792          return DAG.getConstant(C1.isNegative(), VT);
1793        case ISD::SETLT:
1794        case ISD::SETLE:
1795          // True if the sign bit of C1 isn't set.
1796          return DAG.getConstant(C1.isNonNegative(), VT);
1797        default:
1798          break;
1799        }
1800      }
1801
1802      // Otherwise, we can perform the comparison with the low bits.
1803      switch (Cond) {
1804      case ISD::SETEQ:
1805      case ISD::SETNE:
1806      case ISD::SETUGT:
1807      case ISD::SETUGE:
1808      case ISD::SETULT:
1809      case ISD::SETULE: {
1810        EVT newVT = N0.getOperand(0).getValueType();
1811        if (DCI.isBeforeLegalizeOps() ||
1812            (isOperationLegal(ISD::SETCC, newVT) &&
1813              getCondCodeAction(Cond, newVT)==Legal))
1814          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1815                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1816                              Cond);
1817        break;
1818      }
1819      default:
1820        break;   // todo, be more careful with signed comparisons
1821      }
1822    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1823               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1824      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1825      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1826      EVT ExtDstTy = N0.getValueType();
1827      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1828
1829      // If the extended part has any inconsistent bits, it cannot ever
1830      // compare equal.  In other words, they have to be all ones or all
1831      // zeros.
1832      APInt ExtBits =
1833        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1834      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1835        return DAG.getConstant(Cond == ISD::SETNE, VT);
1836
1837      SDValue ZextOp;
1838      EVT Op0Ty = N0.getOperand(0).getValueType();
1839      if (Op0Ty == ExtSrcTy) {
1840        ZextOp = N0.getOperand(0);
1841      } else {
1842        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1843        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1844                              DAG.getConstant(Imm, Op0Ty));
1845      }
1846      if (!DCI.isCalledByLegalizer())
1847        DCI.AddToWorklist(ZextOp.getNode());
1848      // Otherwise, make this a use of a zext.
1849      return DAG.getSetCC(dl, VT, ZextOp,
1850                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1851                                                              ExtDstTyBits,
1852                                                              ExtSrcTyBits),
1853                                          ExtDstTy),
1854                          Cond);
1855    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1856                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1857      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1858      if (N0.getOpcode() == ISD::SETCC &&
1859          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1860        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1861        if (TrueWhenTrue)
1862          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1863        // Invert the condition.
1864        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1865        CC = ISD::getSetCCInverse(CC,
1866                                  N0.getOperand(0).getValueType().isInteger());
1867        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1868      }
1869
1870      if ((N0.getOpcode() == ISD::XOR ||
1871           (N0.getOpcode() == ISD::AND &&
1872            N0.getOperand(0).getOpcode() == ISD::XOR &&
1873            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1874          isa<ConstantSDNode>(N0.getOperand(1)) &&
1875          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1876        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1877        // can only do this if the top bits are known zero.
1878        unsigned BitWidth = N0.getValueSizeInBits();
1879        if (DAG.MaskedValueIsZero(N0,
1880                                  APInt::getHighBitsSet(BitWidth,
1881                                                        BitWidth-1))) {
1882          // Okay, get the un-inverted input value.
1883          SDValue Val;
1884          if (N0.getOpcode() == ISD::XOR)
1885            Val = N0.getOperand(0);
1886          else {
1887            assert(N0.getOpcode() == ISD::AND &&
1888                    N0.getOperand(0).getOpcode() == ISD::XOR);
1889            // ((X^1)&1)^1 -> X & 1
1890            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1891                              N0.getOperand(0).getOperand(0),
1892                              N0.getOperand(1));
1893          }
1894
1895          return DAG.getSetCC(dl, VT, Val, N1,
1896                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1897        }
1898      } else if (N1C->getAPIntValue() == 1 &&
1899                 (VT == MVT::i1 ||
1900                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1901        SDValue Op0 = N0;
1902        if (Op0.getOpcode() == ISD::TRUNCATE)
1903          Op0 = Op0.getOperand(0);
1904
1905        if ((Op0.getOpcode() == ISD::XOR) &&
1906            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1907            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1908          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1909          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1910          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1911                              Cond);
1912        } else if (Op0.getOpcode() == ISD::AND &&
1913                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1914                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1915          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1916          if (Op0.getValueType().bitsGT(VT))
1917            Op0 = DAG.getNode(ISD::AND, dl, VT,
1918                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1919                          DAG.getConstant(1, VT));
1920          else if (Op0.getValueType().bitsLT(VT))
1921            Op0 = DAG.getNode(ISD::AND, dl, VT,
1922                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1923                        DAG.getConstant(1, VT));
1924
1925          return DAG.getSetCC(dl, VT, Op0,
1926                              DAG.getConstant(0, Op0.getValueType()),
1927                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1928        }
1929      }
1930    }
1931
1932    APInt MinVal, MaxVal;
1933    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1934    if (ISD::isSignedIntSetCC(Cond)) {
1935      MinVal = APInt::getSignedMinValue(OperandBitSize);
1936      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1937    } else {
1938      MinVal = APInt::getMinValue(OperandBitSize);
1939      MaxVal = APInt::getMaxValue(OperandBitSize);
1940    }
1941
1942    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1943    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1944      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1945      // X >= C0 --> X > (C0-1)
1946      return DAG.getSetCC(dl, VT, N0,
1947                          DAG.getConstant(C1-1, N1.getValueType()),
1948                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1949    }
1950
1951    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1952      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1953      // X <= C0 --> X < (C0+1)
1954      return DAG.getSetCC(dl, VT, N0,
1955                          DAG.getConstant(C1+1, N1.getValueType()),
1956                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1957    }
1958
1959    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1960      return DAG.getConstant(0, VT);      // X < MIN --> false
1961    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1962      return DAG.getConstant(1, VT);      // X >= MIN --> true
1963    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1964      return DAG.getConstant(0, VT);      // X > MAX --> false
1965    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1966      return DAG.getConstant(1, VT);      // X <= MAX --> true
1967
1968    // Canonicalize setgt X, Min --> setne X, Min
1969    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1970      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1971    // Canonicalize setlt X, Max --> setne X, Max
1972    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1973      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1974
1975    // If we have setult X, 1, turn it into seteq X, 0
1976    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1977      return DAG.getSetCC(dl, VT, N0,
1978                          DAG.getConstant(MinVal, N0.getValueType()),
1979                          ISD::SETEQ);
1980    // If we have setugt X, Max-1, turn it into seteq X, Max
1981    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1982      return DAG.getSetCC(dl, VT, N0,
1983                          DAG.getConstant(MaxVal, N0.getValueType()),
1984                          ISD::SETEQ);
1985
1986    // If we have "setcc X, C0", check to see if we can shrink the immediate
1987    // by changing cc.
1988
1989    // SETUGT X, SINTMAX  -> SETLT X, 0
1990    if (Cond == ISD::SETUGT &&
1991        C1 == APInt::getSignedMaxValue(OperandBitSize))
1992      return DAG.getSetCC(dl, VT, N0,
1993                          DAG.getConstant(0, N1.getValueType()),
1994                          ISD::SETLT);
1995
1996    // SETULT X, SINTMIN  -> SETGT X, -1
1997    if (Cond == ISD::SETULT &&
1998        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1999      SDValue ConstMinusOne =
2000          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2001                          N1.getValueType());
2002      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2003    }
2004
2005    // Fold bit comparisons when we can.
2006    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2007        (VT == N0.getValueType() ||
2008         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2009        N0.getOpcode() == ISD::AND)
2010      if (ConstantSDNode *AndRHS =
2011                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2012        EVT ShiftTy = DCI.isBeforeLegalize() ?
2013          getPointerTy() : getShiftAmountTy();
2014        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2015          // Perform the xform if the AND RHS is a single bit.
2016          if (AndRHS->getAPIntValue().isPowerOf2()) {
2017            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2018                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2019                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2020          }
2021        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2022          // (X & 8) == 8  -->  (X & 8) >> 3
2023          // Perform the xform if C1 is a single bit.
2024          if (C1.isPowerOf2()) {
2025            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2026                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2027                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2028          }
2029        }
2030      }
2031  }
2032
2033  if (isa<ConstantFPSDNode>(N0.getNode())) {
2034    // Constant fold or commute setcc.
2035    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2036    if (O.getNode()) return O;
2037  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2038    // If the RHS of an FP comparison is a constant, simplify it away in
2039    // some cases.
2040    if (CFP->getValueAPF().isNaN()) {
2041      // If an operand is known to be a nan, we can fold it.
2042      switch (ISD::getUnorderedFlavor(Cond)) {
2043      default: llvm_unreachable("Unknown flavor!");
2044      case 0:  // Known false.
2045        return DAG.getConstant(0, VT);
2046      case 1:  // Known true.
2047        return DAG.getConstant(1, VT);
2048      case 2:  // Undefined.
2049        return DAG.getUNDEF(VT);
2050      }
2051    }
2052
2053    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2054    // constant if knowing that the operand is non-nan is enough.  We prefer to
2055    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2056    // materialize 0.0.
2057    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2058      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2059
2060    // If the condition is not legal, see if we can find an equivalent one
2061    // which is legal.
2062    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2063      // If the comparison was an awkward floating-point == or != and one of
2064      // the comparison operands is infinity or negative infinity, convert the
2065      // condition to a less-awkward <= or >=.
2066      if (CFP->getValueAPF().isInfinity()) {
2067        if (CFP->getValueAPF().isNegative()) {
2068          if (Cond == ISD::SETOEQ &&
2069              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2070            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2071          if (Cond == ISD::SETUEQ &&
2072              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2073            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2074          if (Cond == ISD::SETUNE &&
2075              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2076            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2077          if (Cond == ISD::SETONE &&
2078              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2079            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2080        } else {
2081          if (Cond == ISD::SETOEQ &&
2082              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2083            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2084          if (Cond == ISD::SETUEQ &&
2085              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2086            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2087          if (Cond == ISD::SETUNE &&
2088              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2089            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2090          if (Cond == ISD::SETONE &&
2091              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2092            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2093        }
2094      }
2095    }
2096  }
2097
2098  if (N0 == N1) {
2099    // We can always fold X == X for integer setcc's.
2100    if (N0.getValueType().isInteger())
2101      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2102    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2103    if (UOF == 2)   // FP operators that are undefined on NaNs.
2104      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2105    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2106      return DAG.getConstant(UOF, VT);
2107    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2108    // if it is not already.
2109    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2110    if (NewCond != Cond)
2111      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2112  }
2113
2114  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2115      N0.getValueType().isInteger()) {
2116    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2117        N0.getOpcode() == ISD::XOR) {
2118      // Simplify (X+Y) == (X+Z) -->  Y == Z
2119      if (N0.getOpcode() == N1.getOpcode()) {
2120        if (N0.getOperand(0) == N1.getOperand(0))
2121          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2122        if (N0.getOperand(1) == N1.getOperand(1))
2123          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2124        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2125          // If X op Y == Y op X, try other combinations.
2126          if (N0.getOperand(0) == N1.getOperand(1))
2127            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2128                                Cond);
2129          if (N0.getOperand(1) == N1.getOperand(0))
2130            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2131                                Cond);
2132        }
2133      }
2134
2135      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2136        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2137          // Turn (X+C1) == C2 --> X == C2-C1
2138          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2139            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2140                                DAG.getConstant(RHSC->getAPIntValue()-
2141                                                LHSR->getAPIntValue(),
2142                                N0.getValueType()), Cond);
2143          }
2144
2145          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2146          if (N0.getOpcode() == ISD::XOR)
2147            // If we know that all of the inverted bits are zero, don't bother
2148            // performing the inversion.
2149            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2150              return
2151                DAG.getSetCC(dl, VT, N0.getOperand(0),
2152                             DAG.getConstant(LHSR->getAPIntValue() ^
2153                                               RHSC->getAPIntValue(),
2154                                             N0.getValueType()),
2155                             Cond);
2156        }
2157
2158        // Turn (C1-X) == C2 --> X == C1-C2
2159        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2160          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2161            return
2162              DAG.getSetCC(dl, VT, N0.getOperand(1),
2163                           DAG.getConstant(SUBC->getAPIntValue() -
2164                                             RHSC->getAPIntValue(),
2165                                           N0.getValueType()),
2166                           Cond);
2167          }
2168        }
2169      }
2170
2171      // Simplify (X+Z) == X -->  Z == 0
2172      if (N0.getOperand(0) == N1)
2173        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2174                        DAG.getConstant(0, N0.getValueType()), Cond);
2175      if (N0.getOperand(1) == N1) {
2176        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2177          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2178                          DAG.getConstant(0, N0.getValueType()), Cond);
2179        else if (N0.getNode()->hasOneUse()) {
2180          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2181          // (Z-X) == X  --> Z == X<<1
2182          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2183                                     N1,
2184                                     DAG.getConstant(1, getShiftAmountTy()));
2185          if (!DCI.isCalledByLegalizer())
2186            DCI.AddToWorklist(SH.getNode());
2187          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2188        }
2189      }
2190    }
2191
2192    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2193        N1.getOpcode() == ISD::XOR) {
2194      // Simplify  X == (X+Z) -->  Z == 0
2195      if (N1.getOperand(0) == N0) {
2196        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2197                        DAG.getConstant(0, N1.getValueType()), Cond);
2198      } else if (N1.getOperand(1) == N0) {
2199        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2200          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2201                          DAG.getConstant(0, N1.getValueType()), Cond);
2202        } else if (N1.getNode()->hasOneUse()) {
2203          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2204          // X == (Z-X)  --> X<<1 == Z
2205          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2206                                     DAG.getConstant(1, getShiftAmountTy()));
2207          if (!DCI.isCalledByLegalizer())
2208            DCI.AddToWorklist(SH.getNode());
2209          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2210        }
2211      }
2212    }
2213
2214    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2215    // Note that where y is variable and is known to have at most
2216    // one bit set (for example, if it is z&1) we cannot do this;
2217    // the expressions are not equivalent when y==0.
2218    if (N0.getOpcode() == ISD::AND)
2219      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2220        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2221          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2222          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2223          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2224        }
2225      }
2226    if (N1.getOpcode() == ISD::AND)
2227      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2228        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2229          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2230          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2231          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2232        }
2233      }
2234  }
2235
2236  // Fold away ALL boolean setcc's.
2237  SDValue Temp;
2238  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2239    switch (Cond) {
2240    default: llvm_unreachable("Unknown integer setcc!");
2241    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2242      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2243      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2244      if (!DCI.isCalledByLegalizer())
2245        DCI.AddToWorklist(Temp.getNode());
2246      break;
2247    case ISD::SETNE:  // X != Y   -->  (X^Y)
2248      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2249      break;
2250    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2251    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2252      Temp = DAG.getNOT(dl, N0, MVT::i1);
2253      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2254      if (!DCI.isCalledByLegalizer())
2255        DCI.AddToWorklist(Temp.getNode());
2256      break;
2257    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2258    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2259      Temp = DAG.getNOT(dl, N1, MVT::i1);
2260      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2261      if (!DCI.isCalledByLegalizer())
2262        DCI.AddToWorklist(Temp.getNode());
2263      break;
2264    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2265    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2266      Temp = DAG.getNOT(dl, N0, MVT::i1);
2267      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2268      if (!DCI.isCalledByLegalizer())
2269        DCI.AddToWorklist(Temp.getNode());
2270      break;
2271    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2272    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2273      Temp = DAG.getNOT(dl, N1, MVT::i1);
2274      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2275      break;
2276    }
2277    if (VT != MVT::i1) {
2278      if (!DCI.isCalledByLegalizer())
2279        DCI.AddToWorklist(N0.getNode());
2280      // FIXME: If running after legalize, we probably can't do this.
2281      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2282    }
2283    return N0;
2284  }
2285
2286  // Could not fold it.
2287  return SDValue();
2288}
2289
2290/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2291/// node is a GlobalAddress + offset.
2292bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2293                                    int64_t &Offset) const {
2294  if (isa<GlobalAddressSDNode>(N)) {
2295    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2296    GA = GASD->getGlobal();
2297    Offset += GASD->getOffset();
2298    return true;
2299  }
2300
2301  if (N->getOpcode() == ISD::ADD) {
2302    SDValue N1 = N->getOperand(0);
2303    SDValue N2 = N->getOperand(1);
2304    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2305      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2306      if (V) {
2307        Offset += V->getSExtValue();
2308        return true;
2309      }
2310    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2311      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2312      if (V) {
2313        Offset += V->getSExtValue();
2314        return true;
2315      }
2316    }
2317  }
2318  return false;
2319}
2320
2321
2322SDValue TargetLowering::
2323PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2324  // Default implementation: no optimization.
2325  return SDValue();
2326}
2327
2328//===----------------------------------------------------------------------===//
2329//  Inline Assembler Implementation Methods
2330//===----------------------------------------------------------------------===//
2331
2332
2333TargetLowering::ConstraintType
2334TargetLowering::getConstraintType(const std::string &Constraint) const {
2335  // FIXME: lots more standard ones to handle.
2336  if (Constraint.size() == 1) {
2337    switch (Constraint[0]) {
2338    default: break;
2339    case 'r': return C_RegisterClass;
2340    case 'm':    // memory
2341    case 'o':    // offsetable
2342    case 'V':    // not offsetable
2343      return C_Memory;
2344    case 'i':    // Simple Integer or Relocatable Constant
2345    case 'n':    // Simple Integer
2346    case 's':    // Relocatable Constant
2347    case 'X':    // Allow ANY value.
2348    case 'I':    // Target registers.
2349    case 'J':
2350    case 'K':
2351    case 'L':
2352    case 'M':
2353    case 'N':
2354    case 'O':
2355    case 'P':
2356      return C_Other;
2357    }
2358  }
2359
2360  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2361      Constraint[Constraint.size()-1] == '}')
2362    return C_Register;
2363  return C_Unknown;
2364}
2365
2366/// LowerXConstraint - try to replace an X constraint, which matches anything,
2367/// with another that has more specific requirements based on the type of the
2368/// corresponding operand.
2369const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2370  if (ConstraintVT.isInteger())
2371    return "r";
2372  if (ConstraintVT.isFloatingPoint())
2373    return "f";      // works for many targets
2374  return 0;
2375}
2376
2377/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2378/// vector.  If it is invalid, don't add anything to Ops.
2379void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2380                                                  char ConstraintLetter,
2381                                                  bool hasMemory,
2382                                                  std::vector<SDValue> &Ops,
2383                                                  SelectionDAG &DAG) const {
2384  switch (ConstraintLetter) {
2385  default: break;
2386  case 'X':     // Allows any operand; labels (basic block) use this.
2387    if (Op.getOpcode() == ISD::BasicBlock) {
2388      Ops.push_back(Op);
2389      return;
2390    }
2391    // fall through
2392  case 'i':    // Simple Integer or Relocatable Constant
2393  case 'n':    // Simple Integer
2394  case 's': {  // Relocatable Constant
2395    // These operands are interested in values of the form (GV+C), where C may
2396    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2397    // is possible and fine if either GV or C are missing.
2398    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2399    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2400
2401    // If we have "(add GV, C)", pull out GV/C
2402    if (Op.getOpcode() == ISD::ADD) {
2403      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2404      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2405      if (C == 0 || GA == 0) {
2406        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2407        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2408      }
2409      if (C == 0 || GA == 0)
2410        C = 0, GA = 0;
2411    }
2412
2413    // If we find a valid operand, map to the TargetXXX version so that the
2414    // value itself doesn't get selected.
2415    if (GA) {   // Either &GV   or   &GV+C
2416      if (ConstraintLetter != 'n') {
2417        int64_t Offs = GA->getOffset();
2418        if (C) Offs += C->getZExtValue();
2419        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2420                                                 Op.getValueType(), Offs));
2421        return;
2422      }
2423    }
2424    if (C) {   // just C, no GV.
2425      // Simple constants are not allowed for 's'.
2426      if (ConstraintLetter != 's') {
2427        // gcc prints these as sign extended.  Sign extend value to 64 bits
2428        // now; without this it would get ZExt'd later in
2429        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2430        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2431                                            MVT::i64));
2432        return;
2433      }
2434    }
2435    break;
2436  }
2437  }
2438}
2439
2440std::vector<unsigned> TargetLowering::
2441getRegClassForInlineAsmConstraint(const std::string &Constraint,
2442                                  EVT VT) const {
2443  return std::vector<unsigned>();
2444}
2445
2446
2447std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2448getRegForInlineAsmConstraint(const std::string &Constraint,
2449                             EVT VT) const {
2450  if (Constraint[0] != '{')
2451    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2452  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2453
2454  // Remove the braces from around the name.
2455  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2456
2457  // Figure out which register class contains this reg.
2458  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2459  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2460       E = RI->regclass_end(); RCI != E; ++RCI) {
2461    const TargetRegisterClass *RC = *RCI;
2462
2463    // If none of the value types for this register class are valid, we
2464    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2465    bool isLegal = false;
2466    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2467         I != E; ++I) {
2468      if (isTypeLegal(*I)) {
2469        isLegal = true;
2470        break;
2471      }
2472    }
2473
2474    if (!isLegal) continue;
2475
2476    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2477         I != E; ++I) {
2478      if (RegName.equals_lower(RI->getName(*I)))
2479        return std::make_pair(*I, RC);
2480    }
2481  }
2482
2483  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2484}
2485
2486//===----------------------------------------------------------------------===//
2487// Constraint Selection.
2488
2489/// isMatchingInputConstraint - Return true of this is an input operand that is
2490/// a matching constraint like "4".
2491bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2492  assert(!ConstraintCode.empty() && "No known constraint!");
2493  return isdigit(ConstraintCode[0]);
2494}
2495
2496/// getMatchedOperand - If this is an input matching constraint, this method
2497/// returns the output operand it matches.
2498unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2499  assert(!ConstraintCode.empty() && "No known constraint!");
2500  return atoi(ConstraintCode.c_str());
2501}
2502
2503
2504/// getConstraintGenerality - Return an integer indicating how general CT
2505/// is.
2506static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2507  switch (CT) {
2508  default: llvm_unreachable("Unknown constraint type!");
2509  case TargetLowering::C_Other:
2510  case TargetLowering::C_Unknown:
2511    return 0;
2512  case TargetLowering::C_Register:
2513    return 1;
2514  case TargetLowering::C_RegisterClass:
2515    return 2;
2516  case TargetLowering::C_Memory:
2517    return 3;
2518  }
2519}
2520
2521/// ChooseConstraint - If there are multiple different constraints that we
2522/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2523/// This is somewhat tricky: constraints fall into four classes:
2524///    Other         -> immediates and magic values
2525///    Register      -> one specific register
2526///    RegisterClass -> a group of regs
2527///    Memory        -> memory
2528/// Ideally, we would pick the most specific constraint possible: if we have
2529/// something that fits into a register, we would pick it.  The problem here
2530/// is that if we have something that could either be in a register or in
2531/// memory that use of the register could cause selection of *other*
2532/// operands to fail: they might only succeed if we pick memory.  Because of
2533/// this the heuristic we use is:
2534///
2535///  1) If there is an 'other' constraint, and if the operand is valid for
2536///     that constraint, use it.  This makes us take advantage of 'i'
2537///     constraints when available.
2538///  2) Otherwise, pick the most general constraint present.  This prefers
2539///     'm' over 'r', for example.
2540///
2541static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2542                             bool hasMemory,  const TargetLowering &TLI,
2543                             SDValue Op, SelectionDAG *DAG) {
2544  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2545  unsigned BestIdx = 0;
2546  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2547  int BestGenerality = -1;
2548
2549  // Loop over the options, keeping track of the most general one.
2550  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2551    TargetLowering::ConstraintType CType =
2552      TLI.getConstraintType(OpInfo.Codes[i]);
2553
2554    // If this is an 'other' constraint, see if the operand is valid for it.
2555    // For example, on X86 we might have an 'rI' constraint.  If the operand
2556    // is an integer in the range [0..31] we want to use I (saving a load
2557    // of a register), otherwise we must use 'r'.
2558    if (CType == TargetLowering::C_Other && Op.getNode()) {
2559      assert(OpInfo.Codes[i].size() == 1 &&
2560             "Unhandled multi-letter 'other' constraint");
2561      std::vector<SDValue> ResultOps;
2562      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2563                                       ResultOps, *DAG);
2564      if (!ResultOps.empty()) {
2565        BestType = CType;
2566        BestIdx = i;
2567        break;
2568      }
2569    }
2570
2571    // This constraint letter is more general than the previous one, use it.
2572    int Generality = getConstraintGenerality(CType);
2573    if (Generality > BestGenerality) {
2574      BestType = CType;
2575      BestIdx = i;
2576      BestGenerality = Generality;
2577    }
2578  }
2579
2580  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2581  OpInfo.ConstraintType = BestType;
2582}
2583
2584/// ComputeConstraintToUse - Determines the constraint code and constraint
2585/// type to use for the specific AsmOperandInfo, setting
2586/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2587void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2588                                            SDValue Op,
2589                                            bool hasMemory,
2590                                            SelectionDAG *DAG) const {
2591  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2592
2593  // Single-letter constraints ('r') are very common.
2594  if (OpInfo.Codes.size() == 1) {
2595    OpInfo.ConstraintCode = OpInfo.Codes[0];
2596    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2597  } else {
2598    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2599  }
2600
2601  // 'X' matches anything.
2602  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2603    // Labels and constants are handled elsewhere ('X' is the only thing
2604    // that matches labels).  For Functions, the type here is the type of
2605    // the result, which is not what we want to look at; leave them alone.
2606    Value *v = OpInfo.CallOperandVal;
2607    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2608      OpInfo.CallOperandVal = v;
2609      return;
2610    }
2611
2612    // Otherwise, try to resolve it to something we know about by looking at
2613    // the actual operand type.
2614    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2615      OpInfo.ConstraintCode = Repl;
2616      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2617    }
2618  }
2619}
2620
2621//===----------------------------------------------------------------------===//
2622//  Loop Strength Reduction hooks
2623//===----------------------------------------------------------------------===//
2624
2625/// isLegalAddressingMode - Return true if the addressing mode represented
2626/// by AM is legal for this target, for a load/store of the specified type.
2627bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2628                                           const Type *Ty) const {
2629  // The default implementation of this implements a conservative RISCy, r+r and
2630  // r+i addr mode.
2631
2632  // Allows a sign-extended 16-bit immediate field.
2633  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2634    return false;
2635
2636  // No global is ever allowed as a base.
2637  if (AM.BaseGV)
2638    return false;
2639
2640  // Only support r+r,
2641  switch (AM.Scale) {
2642  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2643    break;
2644  case 1:
2645    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2646      return false;
2647    // Otherwise we have r+r or r+i.
2648    break;
2649  case 2:
2650    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2651      return false;
2652    // Allow 2*r as r+r.
2653    break;
2654  }
2655
2656  return true;
2657}
2658
2659/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2660/// return a DAG expression to select that will generate the same value by
2661/// multiplying by a magic number.  See:
2662/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2663SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2664                                  std::vector<SDNode*>* Created) const {
2665  EVT VT = N->getValueType(0);
2666  DebugLoc dl= N->getDebugLoc();
2667
2668  // Check to see if we can do this.
2669  // FIXME: We should be more aggressive here.
2670  if (!isTypeLegal(VT))
2671    return SDValue();
2672
2673  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2674  APInt::ms magics = d.magic();
2675
2676  // Multiply the numerator (operand 0) by the magic value
2677  // FIXME: We should support doing a MUL in a wider type
2678  SDValue Q;
2679  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2680    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2681                    DAG.getConstant(magics.m, VT));
2682  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2683    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2684                              N->getOperand(0),
2685                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2686  else
2687    return SDValue();       // No mulhs or equvialent
2688  // If d > 0 and m < 0, add the numerator
2689  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2690    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2691    if (Created)
2692      Created->push_back(Q.getNode());
2693  }
2694  // If d < 0 and m > 0, subtract the numerator.
2695  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2696    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2697    if (Created)
2698      Created->push_back(Q.getNode());
2699  }
2700  // Shift right algebraic if shift value is nonzero
2701  if (magics.s > 0) {
2702    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2703                    DAG.getConstant(magics.s, getShiftAmountTy()));
2704    if (Created)
2705      Created->push_back(Q.getNode());
2706  }
2707  // Extract the sign bit and add it to the quotient
2708  SDValue T =
2709    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2710                                                 getShiftAmountTy()));
2711  if (Created)
2712    Created->push_back(T.getNode());
2713  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2714}
2715
2716/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2717/// return a DAG expression to select that will generate the same value by
2718/// multiplying by a magic number.  See:
2719/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2720SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2721                                  std::vector<SDNode*>* Created) const {
2722  EVT VT = N->getValueType(0);
2723  DebugLoc dl = N->getDebugLoc();
2724
2725  // Check to see if we can do this.
2726  // FIXME: We should be more aggressive here.
2727  if (!isTypeLegal(VT))
2728    return SDValue();
2729
2730  // FIXME: We should use a narrower constant when the upper
2731  // bits are known to be zero.
2732  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2733  APInt::mu magics = N1C->getAPIntValue().magicu();
2734
2735  // Multiply the numerator (operand 0) by the magic value
2736  // FIXME: We should support doing a MUL in a wider type
2737  SDValue Q;
2738  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2739    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2740                    DAG.getConstant(magics.m, VT));
2741  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2742    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2743                              N->getOperand(0),
2744                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2745  else
2746    return SDValue();       // No mulhu or equvialent
2747  if (Created)
2748    Created->push_back(Q.getNode());
2749
2750  if (magics.a == 0) {
2751    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2752           "We shouldn't generate an undefined shift!");
2753    return DAG.getNode(ISD::SRL, dl, VT, Q,
2754                       DAG.getConstant(magics.s, getShiftAmountTy()));
2755  } else {
2756    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2757    if (Created)
2758      Created->push_back(NPQ.getNode());
2759    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2760                      DAG.getConstant(1, getShiftAmountTy()));
2761    if (Created)
2762      Created->push_back(NPQ.getNode());
2763    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2764    if (Created)
2765      Created->push_back(NPQ.getNode());
2766    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2767                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2768  }
2769}
2770