TargetLowering.cpp revision e5af2d3a224d4b38760a26d237cde040cb6e14eb
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I16] = "__ashli16";
33  Names[RTLIB::SHL_I32] = "__ashlsi3";
34  Names[RTLIB::SHL_I64] = "__ashldi3";
35  Names[RTLIB::SHL_I128] = "__ashlti3";
36  Names[RTLIB::SRL_I16] = "__lshri16";
37  Names[RTLIB::SRL_I32] = "__lshrsi3";
38  Names[RTLIB::SRL_I64] = "__lshrdi3";
39  Names[RTLIB::SRL_I128] = "__lshrti3";
40  Names[RTLIB::SRA_I16] = "__ashri16";
41  Names[RTLIB::SRA_I32] = "__ashrsi3";
42  Names[RTLIB::SRA_I64] = "__ashrdi3";
43  Names[RTLIB::SRA_I128] = "__ashrti3";
44  Names[RTLIB::MUL_I16] = "__muli16";
45  Names[RTLIB::MUL_I32] = "__mulsi3";
46  Names[RTLIB::MUL_I64] = "__muldi3";
47  Names[RTLIB::MUL_I128] = "__multi3";
48  Names[RTLIB::SDIV_I32] = "__divsi3";
49  Names[RTLIB::SDIV_I64] = "__divdi3";
50  Names[RTLIB::SDIV_I128] = "__divti3";
51  Names[RTLIB::UDIV_I32] = "__udivsi3";
52  Names[RTLIB::UDIV_I64] = "__udivdi3";
53  Names[RTLIB::UDIV_I128] = "__udivti3";
54  Names[RTLIB::SREM_I32] = "__modsi3";
55  Names[RTLIB::SREM_I64] = "__moddi3";
56  Names[RTLIB::SREM_I128] = "__modti3";
57  Names[RTLIB::UREM_I32] = "__umodsi3";
58  Names[RTLIB::UREM_I64] = "__umoddi3";
59  Names[RTLIB::UREM_I128] = "__umodti3";
60  Names[RTLIB::NEG_I32] = "__negsi2";
61  Names[RTLIB::NEG_I64] = "__negdi2";
62  Names[RTLIB::ADD_F32] = "__addsf3";
63  Names[RTLIB::ADD_F64] = "__adddf3";
64  Names[RTLIB::ADD_F80] = "__addxf3";
65  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
66  Names[RTLIB::SUB_F32] = "__subsf3";
67  Names[RTLIB::SUB_F64] = "__subdf3";
68  Names[RTLIB::SUB_F80] = "__subxf3";
69  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
70  Names[RTLIB::MUL_F32] = "__mulsf3";
71  Names[RTLIB::MUL_F64] = "__muldf3";
72  Names[RTLIB::MUL_F80] = "__mulxf3";
73  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
74  Names[RTLIB::DIV_F32] = "__divsf3";
75  Names[RTLIB::DIV_F64] = "__divdf3";
76  Names[RTLIB::DIV_F80] = "__divxf3";
77  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
78  Names[RTLIB::REM_F32] = "fmodf";
79  Names[RTLIB::REM_F64] = "fmod";
80  Names[RTLIB::REM_F80] = "fmodl";
81  Names[RTLIB::REM_PPCF128] = "fmodl";
82  Names[RTLIB::POWI_F32] = "__powisf2";
83  Names[RTLIB::POWI_F64] = "__powidf2";
84  Names[RTLIB::POWI_F80] = "__powixf2";
85  Names[RTLIB::POWI_PPCF128] = "__powitf2";
86  Names[RTLIB::SQRT_F32] = "sqrtf";
87  Names[RTLIB::SQRT_F64] = "sqrt";
88  Names[RTLIB::SQRT_F80] = "sqrtl";
89  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
90  Names[RTLIB::LOG_F32] = "logf";
91  Names[RTLIB::LOG_F64] = "log";
92  Names[RTLIB::LOG_F80] = "logl";
93  Names[RTLIB::LOG_PPCF128] = "logl";
94  Names[RTLIB::LOG2_F32] = "log2f";
95  Names[RTLIB::LOG2_F64] = "log2";
96  Names[RTLIB::LOG2_F80] = "log2l";
97  Names[RTLIB::LOG2_PPCF128] = "log2l";
98  Names[RTLIB::LOG10_F32] = "log10f";
99  Names[RTLIB::LOG10_F64] = "log10";
100  Names[RTLIB::LOG10_F80] = "log10l";
101  Names[RTLIB::LOG10_PPCF128] = "log10l";
102  Names[RTLIB::EXP_F32] = "expf";
103  Names[RTLIB::EXP_F64] = "exp";
104  Names[RTLIB::EXP_F80] = "expl";
105  Names[RTLIB::EXP_PPCF128] = "expl";
106  Names[RTLIB::EXP2_F32] = "exp2f";
107  Names[RTLIB::EXP2_F64] = "exp2";
108  Names[RTLIB::EXP2_F80] = "exp2l";
109  Names[RTLIB::EXP2_PPCF128] = "exp2l";
110  Names[RTLIB::SIN_F32] = "sinf";
111  Names[RTLIB::SIN_F64] = "sin";
112  Names[RTLIB::SIN_F80] = "sinl";
113  Names[RTLIB::SIN_PPCF128] = "sinl";
114  Names[RTLIB::COS_F32] = "cosf";
115  Names[RTLIB::COS_F64] = "cos";
116  Names[RTLIB::COS_F80] = "cosl";
117  Names[RTLIB::COS_PPCF128] = "cosl";
118  Names[RTLIB::POW_F32] = "powf";
119  Names[RTLIB::POW_F64] = "pow";
120  Names[RTLIB::POW_F80] = "powl";
121  Names[RTLIB::POW_PPCF128] = "powl";
122  Names[RTLIB::CEIL_F32] = "ceilf";
123  Names[RTLIB::CEIL_F64] = "ceil";
124  Names[RTLIB::CEIL_F80] = "ceill";
125  Names[RTLIB::CEIL_PPCF128] = "ceill";
126  Names[RTLIB::TRUNC_F32] = "truncf";
127  Names[RTLIB::TRUNC_F64] = "trunc";
128  Names[RTLIB::TRUNC_F80] = "truncl";
129  Names[RTLIB::TRUNC_PPCF128] = "truncl";
130  Names[RTLIB::RINT_F32] = "rintf";
131  Names[RTLIB::RINT_F64] = "rint";
132  Names[RTLIB::RINT_F80] = "rintl";
133  Names[RTLIB::RINT_PPCF128] = "rintl";
134  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
135  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
136  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
137  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
138  Names[RTLIB::FLOOR_F32] = "floorf";
139  Names[RTLIB::FLOOR_F64] = "floor";
140  Names[RTLIB::FLOOR_F80] = "floorl";
141  Names[RTLIB::FLOOR_PPCF128] = "floorl";
142  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
143  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
144  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
145  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
146  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
147  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
148  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
149  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
150  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
151  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
152  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
153  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
154  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
155  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
156  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
157  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
158  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
159  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
160  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
161  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
162  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
163  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
164  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
165  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
166  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
167  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
168  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
169  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
170  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
171  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
172  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
173  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
174  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
175  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
176  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
177  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
178  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
179  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
180  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
181  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
182  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
183  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
184  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
185  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
186  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
187  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
188  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
189  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
190  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
191  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
192  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
193  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
194  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
195  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
196  Names[RTLIB::OEQ_F32] = "__eqsf2";
197  Names[RTLIB::OEQ_F64] = "__eqdf2";
198  Names[RTLIB::UNE_F32] = "__nesf2";
199  Names[RTLIB::UNE_F64] = "__nedf2";
200  Names[RTLIB::OGE_F32] = "__gesf2";
201  Names[RTLIB::OGE_F64] = "__gedf2";
202  Names[RTLIB::OLT_F32] = "__ltsf2";
203  Names[RTLIB::OLT_F64] = "__ltdf2";
204  Names[RTLIB::OLE_F32] = "__lesf2";
205  Names[RTLIB::OLE_F64] = "__ledf2";
206  Names[RTLIB::OGT_F32] = "__gtsf2";
207  Names[RTLIB::OGT_F64] = "__gtdf2";
208  Names[RTLIB::UO_F32] = "__unordsf2";
209  Names[RTLIB::UO_F64] = "__unorddf2";
210  Names[RTLIB::O_F32] = "__unordsf2";
211  Names[RTLIB::O_F64] = "__unorddf2";
212}
213
214/// getFPEXT - Return the FPEXT_*_* value for the given types, or
215/// UNKNOWN_LIBCALL if there is none.
216RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
217  if (OpVT == MVT::f32) {
218    if (RetVT == MVT::f64)
219      return FPEXT_F32_F64;
220  }
221  return UNKNOWN_LIBCALL;
222}
223
224/// getFPROUND - Return the FPROUND_*_* value for the given types, or
225/// UNKNOWN_LIBCALL if there is none.
226RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
227  if (RetVT == MVT::f32) {
228    if (OpVT == MVT::f64)
229      return FPROUND_F64_F32;
230    if (OpVT == MVT::f80)
231      return FPROUND_F80_F32;
232    if (OpVT == MVT::ppcf128)
233      return FPROUND_PPCF128_F32;
234  } else if (RetVT == MVT::f64) {
235    if (OpVT == MVT::f80)
236      return FPROUND_F80_F64;
237    if (OpVT == MVT::ppcf128)
238      return FPROUND_PPCF128_F64;
239  }
240  return UNKNOWN_LIBCALL;
241}
242
243/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
244/// UNKNOWN_LIBCALL if there is none.
245RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
246  if (OpVT == MVT::f32) {
247    if (RetVT == MVT::i32)
248      return FPTOSINT_F32_I32;
249    if (RetVT == MVT::i64)
250      return FPTOSINT_F32_I64;
251    if (RetVT == MVT::i128)
252      return FPTOSINT_F32_I128;
253  } else if (OpVT == MVT::f64) {
254    if (RetVT == MVT::i32)
255      return FPTOSINT_F64_I32;
256    if (RetVT == MVT::i64)
257      return FPTOSINT_F64_I64;
258    if (RetVT == MVT::i128)
259      return FPTOSINT_F64_I128;
260  } else if (OpVT == MVT::f80) {
261    if (RetVT == MVT::i32)
262      return FPTOSINT_F80_I32;
263    if (RetVT == MVT::i64)
264      return FPTOSINT_F80_I64;
265    if (RetVT == MVT::i128)
266      return FPTOSINT_F80_I128;
267  } else if (OpVT == MVT::ppcf128) {
268    if (RetVT == MVT::i32)
269      return FPTOSINT_PPCF128_I32;
270    if (RetVT == MVT::i64)
271      return FPTOSINT_PPCF128_I64;
272    if (RetVT == MVT::i128)
273      return FPTOSINT_PPCF128_I128;
274  }
275  return UNKNOWN_LIBCALL;
276}
277
278/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
279/// UNKNOWN_LIBCALL if there is none.
280RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
281  if (OpVT == MVT::f32) {
282    if (RetVT == MVT::i32)
283      return FPTOUINT_F32_I32;
284    if (RetVT == MVT::i64)
285      return FPTOUINT_F32_I64;
286    if (RetVT == MVT::i128)
287      return FPTOUINT_F32_I128;
288  } else if (OpVT == MVT::f64) {
289    if (RetVT == MVT::i32)
290      return FPTOUINT_F64_I32;
291    if (RetVT == MVT::i64)
292      return FPTOUINT_F64_I64;
293    if (RetVT == MVT::i128)
294      return FPTOUINT_F64_I128;
295  } else if (OpVT == MVT::f80) {
296    if (RetVT == MVT::i32)
297      return FPTOUINT_F80_I32;
298    if (RetVT == MVT::i64)
299      return FPTOUINT_F80_I64;
300    if (RetVT == MVT::i128)
301      return FPTOUINT_F80_I128;
302  } else if (OpVT == MVT::ppcf128) {
303    if (RetVT == MVT::i32)
304      return FPTOUINT_PPCF128_I32;
305    if (RetVT == MVT::i64)
306      return FPTOUINT_PPCF128_I64;
307    if (RetVT == MVT::i128)
308      return FPTOUINT_PPCF128_I128;
309  }
310  return UNKNOWN_LIBCALL;
311}
312
313/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
314/// UNKNOWN_LIBCALL if there is none.
315RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
316  if (OpVT == MVT::i32) {
317    if (RetVT == MVT::f32)
318      return SINTTOFP_I32_F32;
319    else if (RetVT == MVT::f64)
320      return SINTTOFP_I32_F64;
321    else if (RetVT == MVT::f80)
322      return SINTTOFP_I32_F80;
323    else if (RetVT == MVT::ppcf128)
324      return SINTTOFP_I32_PPCF128;
325  } else if (OpVT == MVT::i64) {
326    if (RetVT == MVT::f32)
327      return SINTTOFP_I64_F32;
328    else if (RetVT == MVT::f64)
329      return SINTTOFP_I64_F64;
330    else if (RetVT == MVT::f80)
331      return SINTTOFP_I64_F80;
332    else if (RetVT == MVT::ppcf128)
333      return SINTTOFP_I64_PPCF128;
334  } else if (OpVT == MVT::i128) {
335    if (RetVT == MVT::f32)
336      return SINTTOFP_I128_F32;
337    else if (RetVT == MVT::f64)
338      return SINTTOFP_I128_F64;
339    else if (RetVT == MVT::f80)
340      return SINTTOFP_I128_F80;
341    else if (RetVT == MVT::ppcf128)
342      return SINTTOFP_I128_PPCF128;
343  }
344  return UNKNOWN_LIBCALL;
345}
346
347/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
348/// UNKNOWN_LIBCALL if there is none.
349RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
350  if (OpVT == MVT::i32) {
351    if (RetVT == MVT::f32)
352      return UINTTOFP_I32_F32;
353    else if (RetVT == MVT::f64)
354      return UINTTOFP_I32_F64;
355    else if (RetVT == MVT::f80)
356      return UINTTOFP_I32_F80;
357    else if (RetVT == MVT::ppcf128)
358      return UINTTOFP_I32_PPCF128;
359  } else if (OpVT == MVT::i64) {
360    if (RetVT == MVT::f32)
361      return UINTTOFP_I64_F32;
362    else if (RetVT == MVT::f64)
363      return UINTTOFP_I64_F64;
364    else if (RetVT == MVT::f80)
365      return UINTTOFP_I64_F80;
366    else if (RetVT == MVT::ppcf128)
367      return UINTTOFP_I64_PPCF128;
368  } else if (OpVT == MVT::i128) {
369    if (RetVT == MVT::f32)
370      return UINTTOFP_I128_F32;
371    else if (RetVT == MVT::f64)
372      return UINTTOFP_I128_F64;
373    else if (RetVT == MVT::f80)
374      return UINTTOFP_I128_F80;
375    else if (RetVT == MVT::ppcf128)
376      return UINTTOFP_I128_PPCF128;
377  }
378  return UNKNOWN_LIBCALL;
379}
380
381/// InitCmpLibcallCCs - Set default comparison libcall CC.
382///
383static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
384  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
385  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
386  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
387  CCs[RTLIB::UNE_F32] = ISD::SETNE;
388  CCs[RTLIB::UNE_F64] = ISD::SETNE;
389  CCs[RTLIB::OGE_F32] = ISD::SETGE;
390  CCs[RTLIB::OGE_F64] = ISD::SETGE;
391  CCs[RTLIB::OLT_F32] = ISD::SETLT;
392  CCs[RTLIB::OLT_F64] = ISD::SETLT;
393  CCs[RTLIB::OLE_F32] = ISD::SETLE;
394  CCs[RTLIB::OLE_F64] = ISD::SETLE;
395  CCs[RTLIB::OGT_F32] = ISD::SETGT;
396  CCs[RTLIB::OGT_F64] = ISD::SETGT;
397  CCs[RTLIB::UO_F32] = ISD::SETNE;
398  CCs[RTLIB::UO_F64] = ISD::SETNE;
399  CCs[RTLIB::O_F32] = ISD::SETEQ;
400  CCs[RTLIB::O_F64] = ISD::SETEQ;
401}
402
403TargetLowering::TargetLowering(TargetMachine &tm)
404  : TM(tm), TD(TM.getTargetData()) {
405  // All operations default to being supported.
406  memset(OpActions, 0, sizeof(OpActions));
407  memset(LoadExtActions, 0, sizeof(LoadExtActions));
408  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
409  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
410  memset(ConvertActions, 0, sizeof(ConvertActions));
411  memset(CondCodeActions, 0, sizeof(CondCodeActions));
412
413  // Set default actions for various operations.
414  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
415    // Default all indexed load / store to expand.
416    for (unsigned IM = (unsigned)ISD::PRE_INC;
417         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
418      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
419      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
420    }
421
422    // These operations default to expand.
423    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
424  }
425
426  // Most targets ignore the @llvm.prefetch intrinsic.
427  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
428
429  // ConstantFP nodes default to expand.  Targets can either change this to
430  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
431  // to optimize expansions for certain constants.
432  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
433  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
434  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
435
436  // These library functions default to expand.
437  setOperationAction(ISD::FLOG , MVT::f64, Expand);
438  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
439  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
440  setOperationAction(ISD::FEXP , MVT::f64, Expand);
441  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
442  setOperationAction(ISD::FLOG , MVT::f32, Expand);
443  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
444  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
445  setOperationAction(ISD::FEXP , MVT::f32, Expand);
446  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
447
448  // Default ISD::TRAP to expand (which turns it into abort).
449  setOperationAction(ISD::TRAP, MVT::Other, Expand);
450
451  IsLittleEndian = TD->isLittleEndian();
452  UsesGlobalOffsetTable = false;
453  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
454  ShiftAmtHandling = Undefined;
455  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
456  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
457  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
458  allowUnalignedMemoryAccesses = false;
459  UseUnderscoreSetJmp = false;
460  UseUnderscoreLongJmp = false;
461  SelectIsExpensive = false;
462  IntDivIsCheap = false;
463  Pow2DivIsCheap = false;
464  StackPointerRegisterToSaveRestore = 0;
465  ExceptionPointerRegister = 0;
466  ExceptionSelectorRegister = 0;
467  BooleanContents = UndefinedBooleanContent;
468  SchedPreferenceInfo = SchedulingForLatency;
469  JumpBufSize = 0;
470  JumpBufAlignment = 0;
471  IfCvtBlockSizeLimit = 2;
472  IfCvtDupBlockSizeLimit = 0;
473  PrefLoopAlignment = 0;
474
475  InitLibcallNames(LibcallRoutineNames);
476  InitCmpLibcallCCs(CmpLibcallCCs);
477
478  // Tell Legalize whether the assembler supports DEBUG_LOC.
479  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
480  if (!TASM || !TASM->hasDotLocAndDotFile())
481    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
482}
483
484TargetLowering::~TargetLowering() {}
485
486/// computeRegisterProperties - Once all of the register classes are added,
487/// this allows us to compute derived properties we expose.
488void TargetLowering::computeRegisterProperties() {
489  assert(MVT::LAST_VALUETYPE <= 32 &&
490         "Too many value types for ValueTypeActions to hold!");
491
492  // Everything defaults to needing one register.
493  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
494    NumRegistersForVT[i] = 1;
495    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
496  }
497  // ...except isVoid, which doesn't need any registers.
498  NumRegistersForVT[MVT::isVoid] = 0;
499
500  // Find the largest integer register class.
501  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
502  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
503    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
504
505  // Every integer value type larger than this largest register takes twice as
506  // many registers to represent as the previous ValueType.
507  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
508    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
509    if (!EVT.isInteger())
510      break;
511    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
512    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
513    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
514    ValueTypeActions.setTypeAction(EVT, Expand);
515  }
516
517  // Inspect all of the ValueType's smaller than the largest integer
518  // register to see which ones need promotion.
519  unsigned LegalIntReg = LargestIntReg;
520  for (unsigned IntReg = LargestIntReg - 1;
521       IntReg >= (unsigned)MVT::i1; --IntReg) {
522    MVT IVT = (MVT::SimpleValueType)IntReg;
523    if (isTypeLegal(IVT)) {
524      LegalIntReg = IntReg;
525    } else {
526      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
527        (MVT::SimpleValueType)LegalIntReg;
528      ValueTypeActions.setTypeAction(IVT, Promote);
529    }
530  }
531
532  // ppcf128 type is really two f64's.
533  if (!isTypeLegal(MVT::ppcf128)) {
534    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
535    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
536    TransformToType[MVT::ppcf128] = MVT::f64;
537    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
538  }
539
540  // Decide how to handle f64. If the target does not have native f64 support,
541  // expand it to i64 and we will be generating soft float library calls.
542  if (!isTypeLegal(MVT::f64)) {
543    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
544    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
545    TransformToType[MVT::f64] = MVT::i64;
546    ValueTypeActions.setTypeAction(MVT::f64, Expand);
547  }
548
549  // Decide how to handle f32. If the target does not have native support for
550  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
551  if (!isTypeLegal(MVT::f32)) {
552    if (isTypeLegal(MVT::f64)) {
553      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
554      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
555      TransformToType[MVT::f32] = MVT::f64;
556      ValueTypeActions.setTypeAction(MVT::f32, Promote);
557    } else {
558      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
559      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
560      TransformToType[MVT::f32] = MVT::i32;
561      ValueTypeActions.setTypeAction(MVT::f32, Expand);
562    }
563  }
564
565  // Loop over all of the vector value types to see which need transformations.
566  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
567       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
568    MVT VT = (MVT::SimpleValueType)i;
569    if (!isTypeLegal(VT)) {
570      MVT IntermediateVT, RegisterVT;
571      unsigned NumIntermediates;
572      NumRegistersForVT[i] =
573        getVectorTypeBreakdown(VT,
574                               IntermediateVT, NumIntermediates,
575                               RegisterVT);
576      RegisterTypeForVT[i] = RegisterVT;
577
578      // Determine if there is a legal wider type.
579      bool IsLegalWiderType = false;
580      MVT EltVT = VT.getVectorElementType();
581      unsigned NElts = VT.getVectorNumElements();
582      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
583        MVT SVT = (MVT::SimpleValueType)nVT;
584        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
585            SVT.getVectorNumElements() > NElts) {
586          TransformToType[i] = SVT;
587          ValueTypeActions.setTypeAction(VT, Promote);
588          IsLegalWiderType = true;
589          break;
590        }
591      }
592      if (!IsLegalWiderType) {
593        MVT NVT = VT.getPow2VectorType();
594        if (NVT == VT) {
595          // Type is already a power of 2.  The default action is to split.
596          TransformToType[i] = MVT::Other;
597          ValueTypeActions.setTypeAction(VT, Expand);
598        } else {
599          TransformToType[i] = NVT;
600          ValueTypeActions.setTypeAction(VT, Promote);
601        }
602      }
603    }
604  }
605}
606
607const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
608  return NULL;
609}
610
611
612MVT TargetLowering::getSetCCResultType(MVT VT) const {
613  return getValueType(TD->getIntPtrType());
614}
615
616
617/// getVectorTypeBreakdown - Vector types are broken down into some number of
618/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
619/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
620/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
621///
622/// This method returns the number of registers needed, and the VT for each
623/// register.  It also returns the VT and quantity of the intermediate values
624/// before they are promoted/expanded.
625///
626unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
627                                                MVT &IntermediateVT,
628                                                unsigned &NumIntermediates,
629                                      MVT &RegisterVT) const {
630  // Figure out the right, legal destination reg to copy into.
631  unsigned NumElts = VT.getVectorNumElements();
632  MVT EltTy = VT.getVectorElementType();
633
634  unsigned NumVectorRegs = 1;
635
636  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
637  // could break down into LHS/RHS like LegalizeDAG does.
638  if (!isPowerOf2_32(NumElts)) {
639    NumVectorRegs = NumElts;
640    NumElts = 1;
641  }
642
643  // Divide the input until we get to a supported size.  This will always
644  // end with a scalar if the target doesn't support vectors.
645  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
646    NumElts >>= 1;
647    NumVectorRegs <<= 1;
648  }
649
650  NumIntermediates = NumVectorRegs;
651
652  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
653  if (!isTypeLegal(NewVT))
654    NewVT = EltTy;
655  IntermediateVT = NewVT;
656
657  MVT DestVT = getTypeToTransformTo(NewVT);
658  RegisterVT = DestVT;
659  if (DestVT.bitsLT(NewVT)) {
660    // Value is expanded, e.g. i64 -> i16.
661    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
662  } else {
663    // Otherwise, promotion or legal types use the same number of registers as
664    // the vector decimated to the appropriate level.
665    return NumVectorRegs;
666  }
667
668  return 1;
669}
670
671/// getWidenVectorType: given a vector type, returns the type to widen to
672/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
673/// If there is no vector type that we want to widen to, returns MVT::Other
674/// When and where to widen is target dependent based on the cost of
675/// scalarizing vs using the wider vector type.
676MVT TargetLowering::getWidenVectorType(MVT VT) const {
677  assert(VT.isVector());
678  if (isTypeLegal(VT))
679    return VT;
680
681  // Default is not to widen until moved to LegalizeTypes
682  return MVT::Other;
683}
684
685/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
686/// function arguments in the caller parameter area.  This is the actual
687/// alignment, not its logarithm.
688unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
689  return TD->getCallFrameTypeAlignment(Ty);
690}
691
692SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
693                                                 SelectionDAG &DAG) const {
694  if (usesGlobalOffsetTable())
695    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
696  return Table;
697}
698
699bool
700TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
701  // Assume that everything is safe in static mode.
702  if (getTargetMachine().getRelocationModel() == Reloc::Static)
703    return true;
704
705  // In dynamic-no-pic mode, assume that known defined values are safe.
706  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
707      GA &&
708      !GA->getGlobal()->isDeclaration() &&
709      !GA->getGlobal()->mayBeOverridden())
710    return true;
711
712  // Otherwise assume nothing is safe.
713  return false;
714}
715
716//===----------------------------------------------------------------------===//
717//  Optimization Methods
718//===----------------------------------------------------------------------===//
719
720/// ShrinkDemandedConstant - Check to see if the specified operand of the
721/// specified instruction is a constant integer.  If so, check to see if there
722/// are any bits set in the constant that are not demanded.  If so, shrink the
723/// constant and return true.
724bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
725                                                        const APInt &Demanded) {
726  // FIXME: ISD::SELECT, ISD::SELECT_CC
727  switch (Op.getOpcode()) {
728  default: break;
729  case ISD::AND:
730  case ISD::OR:
731  case ISD::XOR:
732    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
733      if (C->getAPIntValue().intersects(~Demanded)) {
734        MVT VT = Op.getValueType();
735        SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
736                                    DAG.getConstant(Demanded &
737                                                      C->getAPIntValue(),
738                                                    VT));
739        return CombineTo(Op, New);
740      }
741    break;
742  }
743  return false;
744}
745
746/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
747/// DemandedMask bits of the result of Op are ever used downstream.  If we can
748/// use this information to simplify Op, create a new simplified DAG node and
749/// return true, returning the original and new nodes in Old and New. Otherwise,
750/// analyze the expression and return a mask of KnownOne and KnownZero bits for
751/// the expression (used to simplify the caller).  The KnownZero/One bits may
752/// only be accurate for those bits in the DemandedMask.
753bool TargetLowering::SimplifyDemandedBits(SDValue Op,
754                                          const APInt &DemandedMask,
755                                          APInt &KnownZero,
756                                          APInt &KnownOne,
757                                          TargetLoweringOpt &TLO,
758                                          unsigned Depth) const {
759  unsigned BitWidth = DemandedMask.getBitWidth();
760  assert(Op.getValueSizeInBits() == BitWidth &&
761         "Mask size mismatches value type size!");
762  APInt NewMask = DemandedMask;
763
764  // Don't know anything.
765  KnownZero = KnownOne = APInt(BitWidth, 0);
766
767  // Other users may use these bits.
768  if (!Op.getNode()->hasOneUse()) {
769    if (Depth != 0) {
770      // If not at the root, Just compute the KnownZero/KnownOne bits to
771      // simplify things downstream.
772      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
773      return false;
774    }
775    // If this is the root being simplified, allow it to have multiple uses,
776    // just set the NewMask to all bits.
777    NewMask = APInt::getAllOnesValue(BitWidth);
778  } else if (DemandedMask == 0) {
779    // Not demanding any bits from Op.
780    if (Op.getOpcode() != ISD::UNDEF)
781      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
782    return false;
783  } else if (Depth == 6) {        // Limit search depth.
784    return false;
785  }
786
787  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
788  switch (Op.getOpcode()) {
789  case ISD::Constant:
790    // We know all of the bits for a constant!
791    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
792    KnownZero = ~KnownOne & NewMask;
793    return false;   // Don't fall through, will infinitely loop.
794  case ISD::AND:
795    // If the RHS is a constant, check to see if the LHS would be zero without
796    // using the bits from the RHS.  Below, we use knowledge about the RHS to
797    // simplify the LHS, here we're using information from the LHS to simplify
798    // the RHS.
799    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
800      APInt LHSZero, LHSOne;
801      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
802                                LHSZero, LHSOne, Depth+1);
803      // If the LHS already has zeros where RHSC does, this and is dead.
804      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
805        return TLO.CombineTo(Op, Op.getOperand(0));
806      // If any of the set bits in the RHS are known zero on the LHS, shrink
807      // the constant.
808      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
809        return true;
810    }
811
812    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
813                             KnownOne, TLO, Depth+1))
814      return true;
815    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
816    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
817                             KnownZero2, KnownOne2, TLO, Depth+1))
818      return true;
819    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
820
821    // If all of the demanded bits are known one on one side, return the other.
822    // These bits cannot contribute to the result of the 'and'.
823    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
824      return TLO.CombineTo(Op, Op.getOperand(0));
825    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
826      return TLO.CombineTo(Op, Op.getOperand(1));
827    // If all of the demanded bits in the inputs are known zeros, return zero.
828    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
829      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
830    // If the RHS is a constant, see if we can simplify it.
831    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
832      return true;
833
834    // Output known-1 bits are only known if set in both the LHS & RHS.
835    KnownOne &= KnownOne2;
836    // Output known-0 are known to be clear if zero in either the LHS | RHS.
837    KnownZero |= KnownZero2;
838    break;
839  case ISD::OR:
840    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
841                             KnownOne, TLO, Depth+1))
842      return true;
843    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
844    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
845                             KnownZero2, KnownOne2, TLO, Depth+1))
846      return true;
847    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
848
849    // If all of the demanded bits are known zero on one side, return the other.
850    // These bits cannot contribute to the result of the 'or'.
851    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
852      return TLO.CombineTo(Op, Op.getOperand(0));
853    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
854      return TLO.CombineTo(Op, Op.getOperand(1));
855    // If all of the potentially set bits on one side are known to be set on
856    // the other side, just use the 'other' side.
857    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
858      return TLO.CombineTo(Op, Op.getOperand(0));
859    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
860      return TLO.CombineTo(Op, Op.getOperand(1));
861    // If the RHS is a constant, see if we can simplify it.
862    if (TLO.ShrinkDemandedConstant(Op, NewMask))
863      return true;
864
865    // Output known-0 bits are only known if clear in both the LHS & RHS.
866    KnownZero &= KnownZero2;
867    // Output known-1 are known to be set if set in either the LHS | RHS.
868    KnownOne |= KnownOne2;
869    break;
870  case ISD::XOR:
871    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
872                             KnownOne, TLO, Depth+1))
873      return true;
874    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
875    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
876                             KnownOne2, TLO, Depth+1))
877      return true;
878    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
879
880    // If all of the demanded bits are known zero on one side, return the other.
881    // These bits cannot contribute to the result of the 'xor'.
882    if ((KnownZero & NewMask) == NewMask)
883      return TLO.CombineTo(Op, Op.getOperand(0));
884    if ((KnownZero2 & NewMask) == NewMask)
885      return TLO.CombineTo(Op, Op.getOperand(1));
886
887    // If all of the unknown bits are known to be zero on one side or the other
888    // (but not both) turn this into an *inclusive* or.
889    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
890    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
891      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
892                                               Op.getOperand(0),
893                                               Op.getOperand(1)));
894
895    // Output known-0 bits are known if clear or set in both the LHS & RHS.
896    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
897    // Output known-1 are known to be set if set in only one of the LHS, RHS.
898    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
899
900    // If all of the demanded bits on one side are known, and all of the set
901    // bits on that side are also known to be set on the other side, turn this
902    // into an AND, as we know the bits will be cleared.
903    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
904    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
905      if ((KnownOne & KnownOne2) == KnownOne) {
906        MVT VT = Op.getValueType();
907        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
908        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
909                                                 ANDC));
910      }
911    }
912
913    // If the RHS is a constant, see if we can simplify it.
914    // for XOR, we prefer to force bits to 1 if they will make a -1.
915    // if we can't force bits, try to shrink constant
916    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
917      APInt Expanded = C->getAPIntValue() | (~NewMask);
918      // if we can expand it to have all bits set, do it
919      if (Expanded.isAllOnesValue()) {
920        if (Expanded != C->getAPIntValue()) {
921          MVT VT = Op.getValueType();
922          SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
923                                          TLO.DAG.getConstant(Expanded, VT));
924          return TLO.CombineTo(Op, New);
925        }
926        // if it already has all the bits set, nothing to change
927        // but don't shrink either!
928      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
929        return true;
930      }
931    }
932
933    KnownZero = KnownZeroOut;
934    KnownOne  = KnownOneOut;
935    break;
936  case ISD::SELECT:
937    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
938                             KnownOne, TLO, Depth+1))
939      return true;
940    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
941                             KnownOne2, TLO, Depth+1))
942      return true;
943    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
944    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
945
946    // If the operands are constants, see if we can simplify them.
947    if (TLO.ShrinkDemandedConstant(Op, NewMask))
948      return true;
949
950    // Only known if known in both the LHS and RHS.
951    KnownOne &= KnownOne2;
952    KnownZero &= KnownZero2;
953    break;
954  case ISD::SELECT_CC:
955    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
956                             KnownOne, TLO, Depth+1))
957      return true;
958    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
959                             KnownOne2, TLO, Depth+1))
960      return true;
961    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
962    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
963
964    // If the operands are constants, see if we can simplify them.
965    if (TLO.ShrinkDemandedConstant(Op, NewMask))
966      return true;
967
968    // Only known if known in both the LHS and RHS.
969    KnownOne &= KnownOne2;
970    KnownZero &= KnownZero2;
971    break;
972  case ISD::SHL:
973    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
974      unsigned ShAmt = SA->getZExtValue();
975      SDValue InOp = Op.getOperand(0);
976
977      // If the shift count is an invalid immediate, don't do anything.
978      if (ShAmt >= BitWidth)
979        break;
980
981      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
982      // single shift.  We can do this if the bottom bits (which are shifted
983      // out) are never demanded.
984      if (InOp.getOpcode() == ISD::SRL &&
985          isa<ConstantSDNode>(InOp.getOperand(1))) {
986        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
987          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
988          unsigned Opc = ISD::SHL;
989          int Diff = ShAmt-C1;
990          if (Diff < 0) {
991            Diff = -Diff;
992            Opc = ISD::SRL;
993          }
994
995          SDValue NewSA =
996            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
997          MVT VT = Op.getValueType();
998          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
999                                                   InOp.getOperand(0), NewSA));
1000        }
1001      }
1002
1003      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1004                               KnownZero, KnownOne, TLO, Depth+1))
1005        return true;
1006      KnownZero <<= SA->getZExtValue();
1007      KnownOne  <<= SA->getZExtValue();
1008      // low bits known zero.
1009      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1010    }
1011    break;
1012  case ISD::SRL:
1013    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1014      MVT VT = Op.getValueType();
1015      unsigned ShAmt = SA->getZExtValue();
1016      unsigned VTSize = VT.getSizeInBits();
1017      SDValue InOp = Op.getOperand(0);
1018
1019      // If the shift count is an invalid immediate, don't do anything.
1020      if (ShAmt >= BitWidth)
1021        break;
1022
1023      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1024      // single shift.  We can do this if the top bits (which are shifted out)
1025      // are never demanded.
1026      if (InOp.getOpcode() == ISD::SHL &&
1027          isa<ConstantSDNode>(InOp.getOperand(1))) {
1028        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1029          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1030          unsigned Opc = ISD::SRL;
1031          int Diff = ShAmt-C1;
1032          if (Diff < 0) {
1033            Diff = -Diff;
1034            Opc = ISD::SHL;
1035          }
1036
1037          SDValue NewSA =
1038            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1039          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
1040                                                   InOp.getOperand(0), NewSA));
1041        }
1042      }
1043
1044      // Compute the new bits that are at the top now.
1045      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1046                               KnownZero, KnownOne, TLO, Depth+1))
1047        return true;
1048      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1049      KnownZero = KnownZero.lshr(ShAmt);
1050      KnownOne  = KnownOne.lshr(ShAmt);
1051
1052      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1053      KnownZero |= HighBits;  // High bits known zero.
1054    }
1055    break;
1056  case ISD::SRA:
1057    // If this is an arithmetic shift right and only the low-bit is set, we can
1058    // always convert this into a logical shr, even if the shift amount is
1059    // variable.  The low bit of the shift cannot be an input sign bit unless
1060    // the shift amount is >= the size of the datatype, which is undefined.
1061    if (DemandedMask == 1)
1062      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, Op.getValueType(),
1063                                               Op.getOperand(0), Op.getOperand(1)));
1064
1065    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1066      MVT VT = Op.getValueType();
1067      unsigned ShAmt = SA->getZExtValue();
1068
1069      // If the shift count is an invalid immediate, don't do anything.
1070      if (ShAmt >= BitWidth)
1071        break;
1072
1073      APInt InDemandedMask = (NewMask << ShAmt);
1074
1075      // If any of the demanded bits are produced by the sign extension, we also
1076      // demand the input sign bit.
1077      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1078      if (HighBits.intersects(NewMask))
1079        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1080
1081      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1082                               KnownZero, KnownOne, TLO, Depth+1))
1083        return true;
1084      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1085      KnownZero = KnownZero.lshr(ShAmt);
1086      KnownOne  = KnownOne.lshr(ShAmt);
1087
1088      // Handle the sign bit, adjusted to where it is now in the mask.
1089      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1090
1091      // If the input sign bit is known to be zero, or if none of the top bits
1092      // are demanded, turn this into an unsigned shift right.
1093      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1094        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
1095                                                 Op.getOperand(1)));
1096      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1097        KnownOne |= HighBits;
1098      }
1099    }
1100    break;
1101  case ISD::SIGN_EXTEND_INREG: {
1102    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1103
1104    // Sign extension.  Compute the demanded bits in the result that are not
1105    // present in the input.
1106    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1107                                          BitWidth - EVT.getSizeInBits()) &
1108                    NewMask;
1109
1110    // If none of the extended bits are demanded, eliminate the sextinreg.
1111    if (NewBits == 0)
1112      return TLO.CombineTo(Op, Op.getOperand(0));
1113
1114    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1115    InSignBit.zext(BitWidth);
1116    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1117                                                   EVT.getSizeInBits()) &
1118                              NewMask;
1119
1120    // Since the sign extended bits are demanded, we know that the sign
1121    // bit is demanded.
1122    InputDemandedBits |= InSignBit;
1123
1124    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1125                             KnownZero, KnownOne, TLO, Depth+1))
1126      return true;
1127    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1128
1129    // If the sign bit of the input is known set or clear, then we know the
1130    // top bits of the result.
1131
1132    // If the input sign bit is known zero, convert this into a zero extension.
1133    if (KnownZero.intersects(InSignBit))
1134      return TLO.CombineTo(Op,
1135                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1136
1137    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1138      KnownOne |= NewBits;
1139      KnownZero &= ~NewBits;
1140    } else {                       // Input sign bit unknown
1141      KnownZero &= ~NewBits;
1142      KnownOne &= ~NewBits;
1143    }
1144    break;
1145  }
1146  case ISD::ZERO_EXTEND: {
1147    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1148    APInt InMask = NewMask;
1149    InMask.trunc(OperandBitWidth);
1150
1151    // If none of the top bits are demanded, convert this into an any_extend.
1152    APInt NewBits =
1153      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1154    if (!NewBits.intersects(NewMask))
1155      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1156                                               Op.getValueType(),
1157                                               Op.getOperand(0)));
1158
1159    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1160                             KnownZero, KnownOne, TLO, Depth+1))
1161      return true;
1162    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1163    KnownZero.zext(BitWidth);
1164    KnownOne.zext(BitWidth);
1165    KnownZero |= NewBits;
1166    break;
1167  }
1168  case ISD::SIGN_EXTEND: {
1169    MVT InVT = Op.getOperand(0).getValueType();
1170    unsigned InBits = InVT.getSizeInBits();
1171    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1172    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1173    APInt NewBits   = ~InMask & NewMask;
1174
1175    // If none of the top bits are demanded, convert this into an any_extend.
1176    if (NewBits == 0)
1177      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1178                                           Op.getOperand(0)));
1179
1180    // Since some of the sign extended bits are demanded, we know that the sign
1181    // bit is demanded.
1182    APInt InDemandedBits = InMask & NewMask;
1183    InDemandedBits |= InSignBit;
1184    InDemandedBits.trunc(InBits);
1185
1186    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1187                             KnownOne, TLO, Depth+1))
1188      return true;
1189    KnownZero.zext(BitWidth);
1190    KnownOne.zext(BitWidth);
1191
1192    // If the sign bit is known zero, convert this to a zero extend.
1193    if (KnownZero.intersects(InSignBit))
1194      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1195                                               Op.getValueType(),
1196                                               Op.getOperand(0)));
1197
1198    // If the sign bit is known one, the top bits match.
1199    if (KnownOne.intersects(InSignBit)) {
1200      KnownOne  |= NewBits;
1201      KnownZero &= ~NewBits;
1202    } else {   // Otherwise, top bits aren't known.
1203      KnownOne  &= ~NewBits;
1204      KnownZero &= ~NewBits;
1205    }
1206    break;
1207  }
1208  case ISD::ANY_EXTEND: {
1209    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1210    APInt InMask = NewMask;
1211    InMask.trunc(OperandBitWidth);
1212    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1213                             KnownZero, KnownOne, TLO, Depth+1))
1214      return true;
1215    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1216    KnownZero.zext(BitWidth);
1217    KnownOne.zext(BitWidth);
1218    break;
1219  }
1220  case ISD::TRUNCATE: {
1221    // Simplify the input, using demanded bit information, and compute the known
1222    // zero/one bits live out.
1223    APInt TruncMask = NewMask;
1224    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1225    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1226                             KnownZero, KnownOne, TLO, Depth+1))
1227      return true;
1228    KnownZero.trunc(BitWidth);
1229    KnownOne.trunc(BitWidth);
1230
1231    // If the input is only used by this truncate, see if we can shrink it based
1232    // on the known demanded bits.
1233    if (Op.getOperand(0).getNode()->hasOneUse()) {
1234      SDValue In = Op.getOperand(0);
1235      unsigned InBitWidth = In.getValueSizeInBits();
1236      switch (In.getOpcode()) {
1237      default: break;
1238      case ISD::SRL:
1239        // Shrink SRL by a constant if none of the high bits shifted in are
1240        // demanded.
1241        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1242          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1243                                                 InBitWidth - BitWidth);
1244          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1245          HighBits.trunc(BitWidth);
1246
1247          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1248            // None of the shifted in bits are needed.  Add a truncate of the
1249            // shift input, then shift it.
1250            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1251                                                 Op.getValueType(),
1252                                                 In.getOperand(0));
1253            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1254                                                   NewTrunc, In.getOperand(1)));
1255          }
1256        }
1257        break;
1258      }
1259    }
1260
1261    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1262    break;
1263  }
1264  case ISD::AssertZext: {
1265    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1266    APInt InMask = APInt::getLowBitsSet(BitWidth,
1267                                        VT.getSizeInBits());
1268    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1269                             KnownZero, KnownOne, TLO, Depth+1))
1270      return true;
1271    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1272    KnownZero |= ~InMask & NewMask;
1273    break;
1274  }
1275  case ISD::BIT_CONVERT:
1276#if 0
1277    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1278    // is demanded, turn this into a FGETSIGN.
1279    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1280        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1281        !MVT::isVector(Op.getOperand(0).getValueType())) {
1282      // Only do this xform if FGETSIGN is valid or if before legalize.
1283      if (!TLO.AfterLegalize ||
1284          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1285        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1286        // place.  We expect the SHL to be eliminated by other optimizations.
1287        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1288                                         Op.getOperand(0));
1289        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1290        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1291        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1292                                                 Sign, ShAmt));
1293      }
1294    }
1295#endif
1296    break;
1297  default:
1298    // Just use ComputeMaskedBits to compute output bits.
1299    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1300    break;
1301  }
1302
1303  // If we know the value of all of the demanded bits, return this as a
1304  // constant.
1305  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1306    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1307
1308  return false;
1309}
1310
1311/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1312/// in Mask are known to be either zero or one and return them in the
1313/// KnownZero/KnownOne bitsets.
1314void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1315                                                    const APInt &Mask,
1316                                                    APInt &KnownZero,
1317                                                    APInt &KnownOne,
1318                                                    const SelectionDAG &DAG,
1319                                                    unsigned Depth) const {
1320  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1321          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1322          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1323          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1324         "Should use MaskedValueIsZero if you don't know whether Op"
1325         " is a target node!");
1326  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1327}
1328
1329/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1330/// targets that want to expose additional information about sign bits to the
1331/// DAG Combiner.
1332unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1333                                                         unsigned Depth) const {
1334  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1335          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1336          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1337          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1338         "Should use ComputeNumSignBits if you don't know whether Op"
1339         " is a target node!");
1340  return 1;
1341}
1342
1343static bool ValueHasAtMostOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1344  // Logical shift right or left won't ever introduce new set bits.
1345  // We check for this case because we don't care which bits are
1346  // set, but ComputeMaskedBits won't know anything unless it can
1347  // determine which specific bits may be set.
1348  if (Val.getOpcode() == ISD::SHL || Val.getOpcode() == ISD::SRL)
1349    return ValueHasAtMostOneBitSet(Val.getOperand(0), DAG);
1350
1351  MVT OpVT = Val.getValueType();
1352  unsigned BitWidth = OpVT.getSizeInBits();
1353  APInt Mask = APInt::getAllOnesValue(BitWidth);
1354  APInt KnownZero, KnownOne;
1355  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1356  return KnownZero.countPopulation() == BitWidth - 1;
1357}
1358
1359/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1360/// and cc. If it is unable to simplify it, return a null SDValue.
1361SDValue
1362TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1363                              ISD::CondCode Cond, bool foldBooleans,
1364                              DAGCombinerInfo &DCI) const {
1365  SelectionDAG &DAG = DCI.DAG;
1366
1367  // These setcc operations always fold.
1368  switch (Cond) {
1369  default: break;
1370  case ISD::SETFALSE:
1371  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1372  case ISD::SETTRUE:
1373  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1374  }
1375
1376  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1377    const APInt &C1 = N1C->getAPIntValue();
1378    if (isa<ConstantSDNode>(N0.getNode())) {
1379      return DAG.FoldSetCC(VT, N0, N1, Cond);
1380    } else {
1381      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1382      // equality comparison, then we're just comparing whether X itself is
1383      // zero.
1384      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1385          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1386          N0.getOperand(1).getOpcode() == ISD::Constant) {
1387        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1388        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1389            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1390          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1391            // (srl (ctlz x), 5) == 0  -> X != 0
1392            // (srl (ctlz x), 5) != 1  -> X != 0
1393            Cond = ISD::SETNE;
1394          } else {
1395            // (srl (ctlz x), 5) != 0  -> X == 0
1396            // (srl (ctlz x), 5) == 1  -> X == 0
1397            Cond = ISD::SETEQ;
1398          }
1399          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1400          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1401                              Zero, Cond);
1402        }
1403      }
1404
1405      // If the LHS is '(and load, const)', the RHS is 0,
1406      // the test is for equality or unsigned, and all 1 bits of the const are
1407      // in the same partial word, see if we can shorten the load.
1408      if (DCI.isBeforeLegalize() &&
1409          N0.getOpcode() == ISD::AND && C1 == 0 &&
1410          isa<LoadSDNode>(N0.getOperand(0)) &&
1411          N0.getOperand(0).getNode()->hasOneUse() &&
1412          isa<ConstantSDNode>(N0.getOperand(1))) {
1413        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1414        uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1415        uint64_t bestMask = 0;
1416        unsigned bestWidth = 0, bestOffset = 0;
1417        if (!Lod->isVolatile() && Lod->isUnindexed()) {
1418          unsigned origWidth = N0.getValueType().getSizeInBits();
1419          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1420          // 8 bits, but have to be careful...
1421          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1422            origWidth = Lod->getMemoryVT().getSizeInBits();
1423          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1424            uint64_t newMask = (1ULL << width) - 1;
1425            for (unsigned offset=0; offset<origWidth/width; offset++) {
1426              if ((newMask & Mask)==Mask) {
1427                if (!TD->isLittleEndian())
1428                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1429                else
1430                  bestOffset = (uint64_t)offset * (width/8);
1431                bestMask = Mask >> (offset * (width/8) * 8);
1432                bestWidth = width;
1433                break;
1434              }
1435              newMask = newMask << width;
1436            }
1437          }
1438        }
1439        if (bestWidth) {
1440          MVT newVT = MVT::getIntegerVT(bestWidth);
1441          if (newVT.isRound()) {
1442            MVT PtrType = Lod->getOperand(1).getValueType();
1443            SDValue Ptr = Lod->getBasePtr();
1444            if (bestOffset != 0)
1445              Ptr = DAG.getNode(ISD::ADD, PtrType, Lod->getBasePtr(),
1446                                DAG.getConstant(bestOffset, PtrType));
1447            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1448            SDValue NewLoad = DAG.getLoad(newVT, Lod->getChain(), Ptr,
1449                                          Lod->getSrcValue(),
1450                                          Lod->getSrcValueOffset() + bestOffset,
1451                                          false, NewAlign);
1452            return DAG.getSetCC(VT, DAG.getNode(ISD::AND, newVT, NewLoad,
1453                                            DAG.getConstant(bestMask, newVT)),
1454                                    DAG.getConstant(0LL, newVT), Cond);
1455          }
1456        }
1457      }
1458
1459      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1460      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1461        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1462
1463        // If the comparison constant has bits in the upper part, the
1464        // zero-extended value could never match.
1465        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1466                                                C1.getBitWidth() - InSize))) {
1467          switch (Cond) {
1468          case ISD::SETUGT:
1469          case ISD::SETUGE:
1470          case ISD::SETEQ: return DAG.getConstant(0, VT);
1471          case ISD::SETULT:
1472          case ISD::SETULE:
1473          case ISD::SETNE: return DAG.getConstant(1, VT);
1474          case ISD::SETGT:
1475          case ISD::SETGE:
1476            // True if the sign bit of C1 is set.
1477            return DAG.getConstant(C1.isNegative(), VT);
1478          case ISD::SETLT:
1479          case ISD::SETLE:
1480            // True if the sign bit of C1 isn't set.
1481            return DAG.getConstant(C1.isNonNegative(), VT);
1482          default:
1483            break;
1484          }
1485        }
1486
1487        // Otherwise, we can perform the comparison with the low bits.
1488        switch (Cond) {
1489        case ISD::SETEQ:
1490        case ISD::SETNE:
1491        case ISD::SETUGT:
1492        case ISD::SETUGE:
1493        case ISD::SETULT:
1494        case ISD::SETULE:
1495          return DAG.getSetCC(VT, N0.getOperand(0),
1496                          DAG.getConstant(APInt(C1).trunc(InSize),
1497                                          N0.getOperand(0).getValueType()),
1498                          Cond);
1499        default:
1500          break;   // todo, be more careful with signed comparisons
1501        }
1502      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1503                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1504        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1505        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1506        MVT ExtDstTy = N0.getValueType();
1507        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1508
1509        // If the extended part has any inconsistent bits, it cannot ever
1510        // compare equal.  In other words, they have to be all ones or all
1511        // zeros.
1512        APInt ExtBits =
1513          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1514        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1515          return DAG.getConstant(Cond == ISD::SETNE, VT);
1516
1517        SDValue ZextOp;
1518        MVT Op0Ty = N0.getOperand(0).getValueType();
1519        if (Op0Ty == ExtSrcTy) {
1520          ZextOp = N0.getOperand(0);
1521        } else {
1522          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1523          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1524                               DAG.getConstant(Imm, Op0Ty));
1525        }
1526        if (!DCI.isCalledByLegalizer())
1527          DCI.AddToWorklist(ZextOp.getNode());
1528        // Otherwise, make this a use of a zext.
1529        return DAG.getSetCC(VT, ZextOp,
1530                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1531                                                               ExtDstTyBits,
1532                                                               ExtSrcTyBits),
1533                                            ExtDstTy),
1534                            Cond);
1535      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1536                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1537
1538        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1539        if (N0.getOpcode() == ISD::SETCC) {
1540          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1541          if (TrueWhenTrue)
1542            return N0;
1543
1544          // Invert the condition.
1545          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1546          CC = ISD::getSetCCInverse(CC,
1547                                   N0.getOperand(0).getValueType().isInteger());
1548          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1549        }
1550
1551        if ((N0.getOpcode() == ISD::XOR ||
1552             (N0.getOpcode() == ISD::AND &&
1553              N0.getOperand(0).getOpcode() == ISD::XOR &&
1554              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1555            isa<ConstantSDNode>(N0.getOperand(1)) &&
1556            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1557          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1558          // can only do this if the top bits are known zero.
1559          unsigned BitWidth = N0.getValueSizeInBits();
1560          if (DAG.MaskedValueIsZero(N0,
1561                                    APInt::getHighBitsSet(BitWidth,
1562                                                          BitWidth-1))) {
1563            // Okay, get the un-inverted input value.
1564            SDValue Val;
1565            if (N0.getOpcode() == ISD::XOR)
1566              Val = N0.getOperand(0);
1567            else {
1568              assert(N0.getOpcode() == ISD::AND &&
1569                     N0.getOperand(0).getOpcode() == ISD::XOR);
1570              // ((X^1)&1)^1 -> X & 1
1571              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1572                                N0.getOperand(0).getOperand(0),
1573                                N0.getOperand(1));
1574            }
1575            return DAG.getSetCC(VT, Val, N1,
1576                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1577          }
1578        }
1579      }
1580
1581      APInt MinVal, MaxVal;
1582      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1583      if (ISD::isSignedIntSetCC(Cond)) {
1584        MinVal = APInt::getSignedMinValue(OperandBitSize);
1585        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1586      } else {
1587        MinVal = APInt::getMinValue(OperandBitSize);
1588        MaxVal = APInt::getMaxValue(OperandBitSize);
1589      }
1590
1591      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1592      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1593        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1594        // X >= C0 --> X > (C0-1)
1595        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1596                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1597      }
1598
1599      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1600        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1601        // X <= C0 --> X < (C0+1)
1602        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1603                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1604      }
1605
1606      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1607        return DAG.getConstant(0, VT);      // X < MIN --> false
1608      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1609        return DAG.getConstant(1, VT);      // X >= MIN --> true
1610      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1611        return DAG.getConstant(0, VT);      // X > MAX --> false
1612      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1613        return DAG.getConstant(1, VT);      // X <= MAX --> true
1614
1615      // Canonicalize setgt X, Min --> setne X, Min
1616      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1617        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1618      // Canonicalize setlt X, Max --> setne X, Max
1619      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1620        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1621
1622      // If we have setult X, 1, turn it into seteq X, 0
1623      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1624        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1625                        ISD::SETEQ);
1626      // If we have setugt X, Max-1, turn it into seteq X, Max
1627      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1628        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1629                        ISD::SETEQ);
1630
1631      // If we have "setcc X, C0", check to see if we can shrink the immediate
1632      // by changing cc.
1633
1634      // SETUGT X, SINTMAX  -> SETLT X, 0
1635      if (Cond == ISD::SETUGT &&
1636          C1 == APInt::getSignedMaxValue(OperandBitSize))
1637        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1638                            ISD::SETLT);
1639
1640      // SETULT X, SINTMIN  -> SETGT X, -1
1641      if (Cond == ISD::SETULT &&
1642          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1643        SDValue ConstMinusOne =
1644            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1645                            N1.getValueType());
1646        return DAG.getSetCC(VT, N0, ConstMinusOne, ISD::SETGT);
1647      }
1648
1649      // Fold bit comparisons when we can.
1650      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1651          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1652        if (ConstantSDNode *AndRHS =
1653                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1654          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1655            // Perform the xform if the AND RHS is a single bit.
1656            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1657              return DAG.getNode(ISD::SRL, VT, N0,
1658                             DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1659                                             getShiftAmountTy()));
1660            }
1661          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1662            // (X & 8) == 8  -->  (X & 8) >> 3
1663            // Perform the xform if C1 is a single bit.
1664            if (C1.isPowerOf2()) {
1665              return DAG.getNode(ISD::SRL, VT, N0,
1666                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1667            }
1668          }
1669        }
1670    }
1671  } else if (isa<ConstantSDNode>(N0.getNode())) {
1672      // Ensure that the constant occurs on the RHS.
1673    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1674  }
1675
1676  if (isa<ConstantFPSDNode>(N0.getNode())) {
1677    // Constant fold or commute setcc.
1678    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond);
1679    if (O.getNode()) return O;
1680  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1681    // If the RHS of an FP comparison is a constant, simplify it away in
1682    // some cases.
1683    if (CFP->getValueAPF().isNaN()) {
1684      // If an operand is known to be a nan, we can fold it.
1685      switch (ISD::getUnorderedFlavor(Cond)) {
1686      default: assert(0 && "Unknown flavor!");
1687      case 0:  // Known false.
1688        return DAG.getConstant(0, VT);
1689      case 1:  // Known true.
1690        return DAG.getConstant(1, VT);
1691      case 2:  // Undefined.
1692        return DAG.getNode(ISD::UNDEF, VT);
1693      }
1694    }
1695
1696    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1697    // constant if knowing that the operand is non-nan is enough.  We prefer to
1698    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1699    // materialize 0.0.
1700    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1701      return DAG.getSetCC(VT, N0, N0, Cond);
1702  }
1703
1704  if (N0 == N1) {
1705    // We can always fold X == X for integer setcc's.
1706    if (N0.getValueType().isInteger())
1707      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1708    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1709    if (UOF == 2)   // FP operators that are undefined on NaNs.
1710      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1711    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1712      return DAG.getConstant(UOF, VT);
1713    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1714    // if it is not already.
1715    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1716    if (NewCond != Cond)
1717      return DAG.getSetCC(VT, N0, N1, NewCond);
1718  }
1719
1720  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1721      N0.getValueType().isInteger()) {
1722    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1723        N0.getOpcode() == ISD::XOR) {
1724      // Simplify (X+Y) == (X+Z) -->  Y == Z
1725      if (N0.getOpcode() == N1.getOpcode()) {
1726        if (N0.getOperand(0) == N1.getOperand(0))
1727          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1728        if (N0.getOperand(1) == N1.getOperand(1))
1729          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1730        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1731          // If X op Y == Y op X, try other combinations.
1732          if (N0.getOperand(0) == N1.getOperand(1))
1733            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1734          if (N0.getOperand(1) == N1.getOperand(0))
1735            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1736        }
1737      }
1738
1739      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1740        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1741          // Turn (X+C1) == C2 --> X == C2-C1
1742          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1743            return DAG.getSetCC(VT, N0.getOperand(0),
1744                                DAG.getConstant(RHSC->getAPIntValue()-
1745                                                LHSR->getAPIntValue(),
1746                                N0.getValueType()), Cond);
1747          }
1748
1749          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1750          if (N0.getOpcode() == ISD::XOR)
1751            // If we know that all of the inverted bits are zero, don't bother
1752            // performing the inversion.
1753            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1754              return
1755                DAG.getSetCC(VT, N0.getOperand(0),
1756                             DAG.getConstant(LHSR->getAPIntValue() ^
1757                                               RHSC->getAPIntValue(),
1758                                             N0.getValueType()),
1759                             Cond);
1760        }
1761
1762        // Turn (C1-X) == C2 --> X == C1-C2
1763        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1764          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1765            return
1766              DAG.getSetCC(VT, N0.getOperand(1),
1767                           DAG.getConstant(SUBC->getAPIntValue() -
1768                                             RHSC->getAPIntValue(),
1769                                           N0.getValueType()),
1770                           Cond);
1771          }
1772        }
1773      }
1774
1775      // Simplify (X+Z) == X -->  Z == 0
1776      if (N0.getOperand(0) == N1)
1777        return DAG.getSetCC(VT, N0.getOperand(1),
1778                        DAG.getConstant(0, N0.getValueType()), Cond);
1779      if (N0.getOperand(1) == N1) {
1780        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1781          return DAG.getSetCC(VT, N0.getOperand(0),
1782                          DAG.getConstant(0, N0.getValueType()), Cond);
1783        else if (N0.getNode()->hasOneUse()) {
1784          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1785          // (Z-X) == X  --> Z == X<<1
1786          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1787                                     N1,
1788                                     DAG.getConstant(1, getShiftAmountTy()));
1789          if (!DCI.isCalledByLegalizer())
1790            DCI.AddToWorklist(SH.getNode());
1791          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1792        }
1793      }
1794    }
1795
1796    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1797        N1.getOpcode() == ISD::XOR) {
1798      // Simplify  X == (X+Z) -->  Z == 0
1799      if (N1.getOperand(0) == N0) {
1800        return DAG.getSetCC(VT, N1.getOperand(1),
1801                        DAG.getConstant(0, N1.getValueType()), Cond);
1802      } else if (N1.getOperand(1) == N0) {
1803        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1804          return DAG.getSetCC(VT, N1.getOperand(0),
1805                          DAG.getConstant(0, N1.getValueType()), Cond);
1806        } else if (N1.getNode()->hasOneUse()) {
1807          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1808          // X == (Z-X)  --> X<<1 == Z
1809          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1810                                     DAG.getConstant(1, getShiftAmountTy()));
1811          if (!DCI.isCalledByLegalizer())
1812            DCI.AddToWorklist(SH.getNode());
1813          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1814        }
1815      }
1816    }
1817
1818    // Simpify x&y == y to x&y == 0 if y has exactly one bit set.
1819    if (N0.getOpcode() == ISD::AND)
1820      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1821        if (ValueHasAtMostOneBitSet(N1, DAG)) {
1822          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1823          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1824          return DAG.getSetCC(VT, N0, Zero, Cond);
1825        }
1826      }
1827    if (N1.getOpcode() == ISD::AND)
1828      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1829        if (ValueHasAtMostOneBitSet(N0, DAG)) {
1830          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1831          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1832          return DAG.getSetCC(VT, N1, Zero, Cond);
1833        }
1834      }
1835  }
1836
1837  // Fold away ALL boolean setcc's.
1838  SDValue Temp;
1839  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1840    switch (Cond) {
1841    default: assert(0 && "Unknown integer setcc!");
1842    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1843      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1844      N0 = DAG.getNOT(Temp, MVT::i1);
1845      if (!DCI.isCalledByLegalizer())
1846        DCI.AddToWorklist(Temp.getNode());
1847      break;
1848    case ISD::SETNE:  // X != Y   -->  (X^Y)
1849      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1850      break;
1851    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1852    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1853      Temp = DAG.getNOT(N0, MVT::i1);
1854      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1855      if (!DCI.isCalledByLegalizer())
1856        DCI.AddToWorklist(Temp.getNode());
1857      break;
1858    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1859    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1860      Temp = DAG.getNOT(N1, MVT::i1);
1861      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1862      if (!DCI.isCalledByLegalizer())
1863        DCI.AddToWorklist(Temp.getNode());
1864      break;
1865    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1866    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1867      Temp = DAG.getNOT(N0, MVT::i1);
1868      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1869      if (!DCI.isCalledByLegalizer())
1870        DCI.AddToWorklist(Temp.getNode());
1871      break;
1872    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
1873    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
1874      Temp = DAG.getNOT(N1, MVT::i1);
1875      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1876      break;
1877    }
1878    if (VT != MVT::i1) {
1879      if (!DCI.isCalledByLegalizer())
1880        DCI.AddToWorklist(N0.getNode());
1881      // FIXME: If running after legalize, we probably can't do this.
1882      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1883    }
1884    return N0;
1885  }
1886
1887  // Could not fold it.
1888  return SDValue();
1889}
1890
1891/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1892/// node is a GlobalAddress + offset.
1893bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1894                                    int64_t &Offset) const {
1895  if (isa<GlobalAddressSDNode>(N)) {
1896    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1897    GA = GASD->getGlobal();
1898    Offset += GASD->getOffset();
1899    return true;
1900  }
1901
1902  if (N->getOpcode() == ISD::ADD) {
1903    SDValue N1 = N->getOperand(0);
1904    SDValue N2 = N->getOperand(1);
1905    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1906      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1907      if (V) {
1908        Offset += V->getSExtValue();
1909        return true;
1910      }
1911    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1912      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1913      if (V) {
1914        Offset += V->getSExtValue();
1915        return true;
1916      }
1917    }
1918  }
1919  return false;
1920}
1921
1922
1923/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1924/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1925/// location that the 'Base' load is loading from.
1926bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1927                                       unsigned Bytes, int Dist,
1928                                       const MachineFrameInfo *MFI) const {
1929  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1930    return false;
1931  MVT VT = LD->getValueType(0);
1932  if (VT.getSizeInBits() / 8 != Bytes)
1933    return false;
1934
1935  SDValue Loc = LD->getOperand(1);
1936  SDValue BaseLoc = Base->getOperand(1);
1937  if (Loc.getOpcode() == ISD::FrameIndex) {
1938    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1939      return false;
1940    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1941    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1942    int FS  = MFI->getObjectSize(FI);
1943    int BFS = MFI->getObjectSize(BFI);
1944    if (FS != BFS || FS != (int)Bytes) return false;
1945    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1946  }
1947
1948  GlobalValue *GV1 = NULL;
1949  GlobalValue *GV2 = NULL;
1950  int64_t Offset1 = 0;
1951  int64_t Offset2 = 0;
1952  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
1953  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
1954  if (isGA1 && isGA2 && GV1 == GV2)
1955    return Offset1 == (Offset2 + Dist*Bytes);
1956  return false;
1957}
1958
1959
1960SDValue TargetLowering::
1961PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1962  // Default implementation: no optimization.
1963  return SDValue();
1964}
1965
1966//===----------------------------------------------------------------------===//
1967//  Inline Assembler Implementation Methods
1968//===----------------------------------------------------------------------===//
1969
1970
1971TargetLowering::ConstraintType
1972TargetLowering::getConstraintType(const std::string &Constraint) const {
1973  // FIXME: lots more standard ones to handle.
1974  if (Constraint.size() == 1) {
1975    switch (Constraint[0]) {
1976    default: break;
1977    case 'r': return C_RegisterClass;
1978    case 'm':    // memory
1979    case 'o':    // offsetable
1980    case 'V':    // not offsetable
1981      return C_Memory;
1982    case 'i':    // Simple Integer or Relocatable Constant
1983    case 'n':    // Simple Integer
1984    case 's':    // Relocatable Constant
1985    case 'X':    // Allow ANY value.
1986    case 'I':    // Target registers.
1987    case 'J':
1988    case 'K':
1989    case 'L':
1990    case 'M':
1991    case 'N':
1992    case 'O':
1993    case 'P':
1994      return C_Other;
1995    }
1996  }
1997
1998  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1999      Constraint[Constraint.size()-1] == '}')
2000    return C_Register;
2001  return C_Unknown;
2002}
2003
2004/// LowerXConstraint - try to replace an X constraint, which matches anything,
2005/// with another that has more specific requirements based on the type of the
2006/// corresponding operand.
2007const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2008  if (ConstraintVT.isInteger())
2009    return "r";
2010  if (ConstraintVT.isFloatingPoint())
2011    return "f";      // works for many targets
2012  return 0;
2013}
2014
2015/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2016/// vector.  If it is invalid, don't add anything to Ops.
2017void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2018                                                  char ConstraintLetter,
2019                                                  bool hasMemory,
2020                                                  std::vector<SDValue> &Ops,
2021                                                  SelectionDAG &DAG) const {
2022  switch (ConstraintLetter) {
2023  default: break;
2024  case 'X':     // Allows any operand; labels (basic block) use this.
2025    if (Op.getOpcode() == ISD::BasicBlock) {
2026      Ops.push_back(Op);
2027      return;
2028    }
2029    // fall through
2030  case 'i':    // Simple Integer or Relocatable Constant
2031  case 'n':    // Simple Integer
2032  case 's': {  // Relocatable Constant
2033    // These operands are interested in values of the form (GV+C), where C may
2034    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2035    // is possible and fine if either GV or C are missing.
2036    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2037    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2038
2039    // If we have "(add GV, C)", pull out GV/C
2040    if (Op.getOpcode() == ISD::ADD) {
2041      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2042      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2043      if (C == 0 || GA == 0) {
2044        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2045        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2046      }
2047      if (C == 0 || GA == 0)
2048        C = 0, GA = 0;
2049    }
2050
2051    // If we find a valid operand, map to the TargetXXX version so that the
2052    // value itself doesn't get selected.
2053    if (GA) {   // Either &GV   or   &GV+C
2054      if (ConstraintLetter != 'n') {
2055        int64_t Offs = GA->getOffset();
2056        if (C) Offs += C->getZExtValue();
2057        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2058                                                 Op.getValueType(), Offs));
2059        return;
2060      }
2061    }
2062    if (C) {   // just C, no GV.
2063      // Simple constants are not allowed for 's'.
2064      if (ConstraintLetter != 's') {
2065        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(),
2066                                            Op.getValueType()));
2067        return;
2068      }
2069    }
2070    break;
2071  }
2072  }
2073}
2074
2075std::vector<unsigned> TargetLowering::
2076getRegClassForInlineAsmConstraint(const std::string &Constraint,
2077                                  MVT VT) const {
2078  return std::vector<unsigned>();
2079}
2080
2081
2082std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2083getRegForInlineAsmConstraint(const std::string &Constraint,
2084                             MVT VT) const {
2085  if (Constraint[0] != '{')
2086    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2087  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2088
2089  // Remove the braces from around the name.
2090  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2091
2092  // Figure out which register class contains this reg.
2093  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2094  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2095       E = RI->regclass_end(); RCI != E; ++RCI) {
2096    const TargetRegisterClass *RC = *RCI;
2097
2098    // If none of the the value types for this register class are valid, we
2099    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2100    bool isLegal = false;
2101    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2102         I != E; ++I) {
2103      if (isTypeLegal(*I)) {
2104        isLegal = true;
2105        break;
2106      }
2107    }
2108
2109    if (!isLegal) continue;
2110
2111    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2112         I != E; ++I) {
2113      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2114        return std::make_pair(*I, RC);
2115    }
2116  }
2117
2118  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2119}
2120
2121//===----------------------------------------------------------------------===//
2122// Constraint Selection.
2123
2124/// isMatchingInputConstraint - Return true of this is an input operand that is
2125/// a matching constraint like "4".
2126bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2127  assert(!ConstraintCode.empty() && "No known constraint!");
2128  return isdigit(ConstraintCode[0]);
2129}
2130
2131/// getMatchedOperand - If this is an input matching constraint, this method
2132/// returns the output operand it matches.
2133unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2134  assert(!ConstraintCode.empty() && "No known constraint!");
2135  return atoi(ConstraintCode.c_str());
2136}
2137
2138
2139/// getConstraintGenerality - Return an integer indicating how general CT
2140/// is.
2141static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2142  switch (CT) {
2143  default: assert(0 && "Unknown constraint type!");
2144  case TargetLowering::C_Other:
2145  case TargetLowering::C_Unknown:
2146    return 0;
2147  case TargetLowering::C_Register:
2148    return 1;
2149  case TargetLowering::C_RegisterClass:
2150    return 2;
2151  case TargetLowering::C_Memory:
2152    return 3;
2153  }
2154}
2155
2156/// ChooseConstraint - If there are multiple different constraints that we
2157/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2158/// This is somewhat tricky: constraints fall into four classes:
2159///    Other         -> immediates and magic values
2160///    Register      -> one specific register
2161///    RegisterClass -> a group of regs
2162///    Memory        -> memory
2163/// Ideally, we would pick the most specific constraint possible: if we have
2164/// something that fits into a register, we would pick it.  The problem here
2165/// is that if we have something that could either be in a register or in
2166/// memory that use of the register could cause selection of *other*
2167/// operands to fail: they might only succeed if we pick memory.  Because of
2168/// this the heuristic we use is:
2169///
2170///  1) If there is an 'other' constraint, and if the operand is valid for
2171///     that constraint, use it.  This makes us take advantage of 'i'
2172///     constraints when available.
2173///  2) Otherwise, pick the most general constraint present.  This prefers
2174///     'm' over 'r', for example.
2175///
2176static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2177                             bool hasMemory,  const TargetLowering &TLI,
2178                             SDValue Op, SelectionDAG *DAG) {
2179  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2180  unsigned BestIdx = 0;
2181  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2182  int BestGenerality = -1;
2183
2184  // Loop over the options, keeping track of the most general one.
2185  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2186    TargetLowering::ConstraintType CType =
2187      TLI.getConstraintType(OpInfo.Codes[i]);
2188
2189    // If this is an 'other' constraint, see if the operand is valid for it.
2190    // For example, on X86 we might have an 'rI' constraint.  If the operand
2191    // is an integer in the range [0..31] we want to use I (saving a load
2192    // of a register), otherwise we must use 'r'.
2193    if (CType == TargetLowering::C_Other && Op.getNode()) {
2194      assert(OpInfo.Codes[i].size() == 1 &&
2195             "Unhandled multi-letter 'other' constraint");
2196      std::vector<SDValue> ResultOps;
2197      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2198                                       ResultOps, *DAG);
2199      if (!ResultOps.empty()) {
2200        BestType = CType;
2201        BestIdx = i;
2202        break;
2203      }
2204    }
2205
2206    // This constraint letter is more general than the previous one, use it.
2207    int Generality = getConstraintGenerality(CType);
2208    if (Generality > BestGenerality) {
2209      BestType = CType;
2210      BestIdx = i;
2211      BestGenerality = Generality;
2212    }
2213  }
2214
2215  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2216  OpInfo.ConstraintType = BestType;
2217}
2218
2219/// ComputeConstraintToUse - Determines the constraint code and constraint
2220/// type to use for the specific AsmOperandInfo, setting
2221/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2222void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2223                                            SDValue Op,
2224                                            bool hasMemory,
2225                                            SelectionDAG *DAG) const {
2226  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2227
2228  // Single-letter constraints ('r') are very common.
2229  if (OpInfo.Codes.size() == 1) {
2230    OpInfo.ConstraintCode = OpInfo.Codes[0];
2231    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2232  } else {
2233    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2234  }
2235
2236  // 'X' matches anything.
2237  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2238    // Labels and constants are handled elsewhere ('X' is the only thing
2239    // that matches labels).
2240    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2241        isa<ConstantInt>(OpInfo.CallOperandVal))
2242      return;
2243
2244    // Otherwise, try to resolve it to something we know about by looking at
2245    // the actual operand type.
2246    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2247      OpInfo.ConstraintCode = Repl;
2248      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2249    }
2250  }
2251}
2252
2253//===----------------------------------------------------------------------===//
2254//  Loop Strength Reduction hooks
2255//===----------------------------------------------------------------------===//
2256
2257/// isLegalAddressingMode - Return true if the addressing mode represented
2258/// by AM is legal for this target, for a load/store of the specified type.
2259bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2260                                           const Type *Ty) const {
2261  // The default implementation of this implements a conservative RISCy, r+r and
2262  // r+i addr mode.
2263
2264  // Allows a sign-extended 16-bit immediate field.
2265  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2266    return false;
2267
2268  // No global is ever allowed as a base.
2269  if (AM.BaseGV)
2270    return false;
2271
2272  // Only support r+r,
2273  switch (AM.Scale) {
2274  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2275    break;
2276  case 1:
2277    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2278      return false;
2279    // Otherwise we have r+r or r+i.
2280    break;
2281  case 2:
2282    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2283      return false;
2284    // Allow 2*r as r+r.
2285    break;
2286  }
2287
2288  return true;
2289}
2290
2291struct mu {
2292  APInt m;     // magic number
2293  bool a;      // add indicator
2294  unsigned s;  // shift amount
2295};
2296
2297/// magicu - calculate the magic numbers required to codegen an integer udiv as
2298/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2299static mu magicu(const APInt& d) {
2300  unsigned p;
2301  APInt nc, delta, q1, r1, q2, r2;
2302  struct mu magu;
2303  magu.a = 0;               // initialize "add" indicator
2304  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2305  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2306  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2307
2308  nc = allOnes - (-d).urem(d);
2309  p = d.getBitWidth() - 1;  // initialize p
2310  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
2311  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
2312  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
2313  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
2314  do {
2315    p = p + 1;
2316    if (r1.uge(nc - r1)) {
2317      q1 = q1 + q1 + 1;  // update q1
2318      r1 = r1 + r1 - nc; // update r1
2319    }
2320    else {
2321      q1 = q1+q1; // update q1
2322      r1 = r1+r1; // update r1
2323    }
2324    if ((r2 + 1).uge(d - r2)) {
2325      if (q2.uge(signedMax)) magu.a = 1;
2326      q2 = q2+q2 + 1;     // update q2
2327      r2 = r2+r2 + 1 - d; // update r2
2328    }
2329    else {
2330      if (q2.uge(signedMin)) magu.a = 1;
2331      q2 = q2+q2;     // update q2
2332      r2 = r2+r2 + 1; // update r2
2333    }
2334    delta = d - 1 - r2;
2335  } while (p < d.getBitWidth()*2 &&
2336           (q1.ult(delta) || (q1 == delta && r1 == 0)));
2337  magu.m = q2 + 1; // resulting magic number
2338  magu.s = p - d.getBitWidth();  // resulting shift
2339  return magu;
2340}
2341
2342// Magic for divide replacement
2343struct ms {
2344  APInt m;  // magic number
2345  unsigned s;  // shift amount
2346};
2347
2348/// magic - calculate the magic numbers required to codegen an integer sdiv as
2349/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2350/// or -1.
2351static ms magic(const APInt& d) {
2352  unsigned p;
2353  APInt ad, anc, delta, q1, r1, q2, r2, t;
2354  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2355  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2356  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2357  struct ms mag;
2358
2359  ad = d.abs();
2360  t = signedMin + (d.lshr(d.getBitWidth() - 1));
2361  anc = t - 1 - t.urem(ad);   // absolute value of nc
2362  p = d.getBitWidth() - 1;    // initialize p
2363  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
2364  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
2365  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
2366  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
2367  do {
2368    p = p + 1;
2369    q1 = q1<<1;          // update q1 = 2p/abs(nc)
2370    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
2371    if (r1.uge(anc)) {  // must be unsigned comparison
2372      q1 = q1 + 1;
2373      r1 = r1 - anc;
2374    }
2375    q2 = q2<<1;          // update q2 = 2p/abs(d)
2376    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
2377    if (r2.uge(ad)) {   // must be unsigned comparison
2378      q2 = q2 + 1;
2379      r2 = r2 - ad;
2380    }
2381    delta = ad - r2;
2382  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
2383
2384  mag.m = q2 + 1;
2385  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
2386  mag.s = p - d.getBitWidth();          // resulting shift
2387  return mag;
2388}
2389
2390/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2391/// return a DAG expression to select that will generate the same value by
2392/// multiplying by a magic number.  See:
2393/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2394SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2395                                  std::vector<SDNode*>* Created) const {
2396  MVT VT = N->getValueType(0);
2397
2398  // Check to see if we can do this.
2399  // FIXME: We should be more aggressive here.
2400  if (!isTypeLegal(VT))
2401    return SDValue();
2402
2403  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2404  ms magics = magic(d);
2405
2406  // Multiply the numerator (operand 0) by the magic value
2407  // FIXME: We should support doing a MUL in a wider type
2408  SDValue Q;
2409  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2410    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2411                    DAG.getConstant(magics.m, VT));
2412  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2413    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2414                              N->getOperand(0),
2415                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2416  else
2417    return SDValue();       // No mulhs or equvialent
2418  // If d > 0 and m < 0, add the numerator
2419  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2420    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2421    if (Created)
2422      Created->push_back(Q.getNode());
2423  }
2424  // If d < 0 and m > 0, subtract the numerator.
2425  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2426    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2427    if (Created)
2428      Created->push_back(Q.getNode());
2429  }
2430  // Shift right algebraic if shift value is nonzero
2431  if (magics.s > 0) {
2432    Q = DAG.getNode(ISD::SRA, VT, Q,
2433                    DAG.getConstant(magics.s, getShiftAmountTy()));
2434    if (Created)
2435      Created->push_back(Q.getNode());
2436  }
2437  // Extract the sign bit and add it to the quotient
2438  SDValue T =
2439    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2440                                                 getShiftAmountTy()));
2441  if (Created)
2442    Created->push_back(T.getNode());
2443  return DAG.getNode(ISD::ADD, VT, Q, T);
2444}
2445
2446/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2447/// return a DAG expression to select that will generate the same value by
2448/// multiplying by a magic number.  See:
2449/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2450SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2451                                  std::vector<SDNode*>* Created) const {
2452  MVT VT = N->getValueType(0);
2453
2454  // Check to see if we can do this.
2455  // FIXME: We should be more aggressive here.
2456  if (!isTypeLegal(VT))
2457    return SDValue();
2458
2459  // FIXME: We should use a narrower constant when the upper
2460  // bits are known to be zero.
2461  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2462  mu magics = magicu(N1C->getAPIntValue());
2463
2464  // Multiply the numerator (operand 0) by the magic value
2465  // FIXME: We should support doing a MUL in a wider type
2466  SDValue Q;
2467  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2468    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2469                    DAG.getConstant(magics.m, VT));
2470  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2471    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2472                              N->getOperand(0),
2473                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2474  else
2475    return SDValue();       // No mulhu or equvialent
2476  if (Created)
2477    Created->push_back(Q.getNode());
2478
2479  if (magics.a == 0) {
2480    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2481           "We shouldn't generate an undefined shift!");
2482    return DAG.getNode(ISD::SRL, VT, Q,
2483                       DAG.getConstant(magics.s, getShiftAmountTy()));
2484  } else {
2485    SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2486    if (Created)
2487      Created->push_back(NPQ.getNode());
2488    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2489                      DAG.getConstant(1, getShiftAmountTy()));
2490    if (Created)
2491      Created->push_back(NPQ.getNode());
2492    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2493    if (Created)
2494      Created->push_back(NPQ.getNode());
2495    return DAG.getNode(ISD::SRL, VT, NPQ,
2496                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2497  }
2498}
2499