TargetLowering.cpp revision fe3f5d7538954474731dbbed70430016600fa477
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include <cctype>
32using namespace llvm;
33
34namespace llvm {
35TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
36  bool isLocal = GV->hasLocalLinkage();
37  bool isDeclaration = GV->isDeclaration();
38  // FIXME: what should we do for protected and internal visibility?
39  // For variables, is internal different from hidden?
40  bool isHidden = GV->hasHiddenVisibility();
41
42  if (reloc == Reloc::PIC_) {
43    if (isLocal || isHidden)
44      return TLSModel::LocalDynamic;
45    else
46      return TLSModel::GeneralDynamic;
47  } else {
48    if (!isDeclaration || isHidden)
49      return TLSModel::LocalExec;
50    else
51      return TLSModel::InitialExec;
52  }
53}
54}
55
56/// InitLibcallNames - Set default libcall names.
57///
58static void InitLibcallNames(const char **Names) {
59  Names[RTLIB::SHL_I16] = "__ashlhi3";
60  Names[RTLIB::SHL_I32] = "__ashlsi3";
61  Names[RTLIB::SHL_I64] = "__ashldi3";
62  Names[RTLIB::SHL_I128] = "__ashlti3";
63  Names[RTLIB::SRL_I16] = "__lshrhi3";
64  Names[RTLIB::SRL_I32] = "__lshrsi3";
65  Names[RTLIB::SRL_I64] = "__lshrdi3";
66  Names[RTLIB::SRL_I128] = "__lshrti3";
67  Names[RTLIB::SRA_I16] = "__ashrhi3";
68  Names[RTLIB::SRA_I32] = "__ashrsi3";
69  Names[RTLIB::SRA_I64] = "__ashrdi3";
70  Names[RTLIB::SRA_I128] = "__ashrti3";
71  Names[RTLIB::MUL_I8] = "__mulqi3";
72  Names[RTLIB::MUL_I16] = "__mulhi3";
73  Names[RTLIB::MUL_I32] = "__mulsi3";
74  Names[RTLIB::MUL_I64] = "__muldi3";
75  Names[RTLIB::MUL_I128] = "__multi3";
76  Names[RTLIB::SDIV_I8] = "__divqi3";
77  Names[RTLIB::SDIV_I16] = "__divhi3";
78  Names[RTLIB::SDIV_I32] = "__divsi3";
79  Names[RTLIB::SDIV_I64] = "__divdi3";
80  Names[RTLIB::SDIV_I128] = "__divti3";
81  Names[RTLIB::UDIV_I8] = "__udivqi3";
82  Names[RTLIB::UDIV_I16] = "__udivhi3";
83  Names[RTLIB::UDIV_I32] = "__udivsi3";
84  Names[RTLIB::UDIV_I64] = "__udivdi3";
85  Names[RTLIB::UDIV_I128] = "__udivti3";
86  Names[RTLIB::SREM_I8] = "__modqi3";
87  Names[RTLIB::SREM_I16] = "__modhi3";
88  Names[RTLIB::SREM_I32] = "__modsi3";
89  Names[RTLIB::SREM_I64] = "__moddi3";
90  Names[RTLIB::SREM_I128] = "__modti3";
91  Names[RTLIB::UREM_I8] = "__umodqi3";
92  Names[RTLIB::UREM_I16] = "__umodhi3";
93  Names[RTLIB::UREM_I32] = "__umodsi3";
94  Names[RTLIB::UREM_I64] = "__umoddi3";
95  Names[RTLIB::UREM_I128] = "__umodti3";
96
97  // These are generally not available.
98  Names[RTLIB::SDIVREM_I8] = 0;
99  Names[RTLIB::SDIVREM_I16] = 0;
100  Names[RTLIB::SDIVREM_I32] = 0;
101  Names[RTLIB::SDIVREM_I64] = 0;
102  Names[RTLIB::SDIVREM_I128] = 0;
103  Names[RTLIB::UDIVREM_I8] = 0;
104  Names[RTLIB::UDIVREM_I16] = 0;
105  Names[RTLIB::UDIVREM_I32] = 0;
106  Names[RTLIB::UDIVREM_I64] = 0;
107  Names[RTLIB::UDIVREM_I128] = 0;
108
109  Names[RTLIB::NEG_I32] = "__negsi2";
110  Names[RTLIB::NEG_I64] = "__negdi2";
111  Names[RTLIB::ADD_F32] = "__addsf3";
112  Names[RTLIB::ADD_F64] = "__adddf3";
113  Names[RTLIB::ADD_F80] = "__addxf3";
114  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
115  Names[RTLIB::SUB_F32] = "__subsf3";
116  Names[RTLIB::SUB_F64] = "__subdf3";
117  Names[RTLIB::SUB_F80] = "__subxf3";
118  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
119  Names[RTLIB::MUL_F32] = "__mulsf3";
120  Names[RTLIB::MUL_F64] = "__muldf3";
121  Names[RTLIB::MUL_F80] = "__mulxf3";
122  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
123  Names[RTLIB::DIV_F32] = "__divsf3";
124  Names[RTLIB::DIV_F64] = "__divdf3";
125  Names[RTLIB::DIV_F80] = "__divxf3";
126  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
127  Names[RTLIB::REM_F32] = "fmodf";
128  Names[RTLIB::REM_F64] = "fmod";
129  Names[RTLIB::REM_F80] = "fmodl";
130  Names[RTLIB::REM_PPCF128] = "fmodl";
131  Names[RTLIB::POWI_F32] = "__powisf2";
132  Names[RTLIB::POWI_F64] = "__powidf2";
133  Names[RTLIB::POWI_F80] = "__powixf2";
134  Names[RTLIB::POWI_PPCF128] = "__powitf2";
135  Names[RTLIB::SQRT_F32] = "sqrtf";
136  Names[RTLIB::SQRT_F64] = "sqrt";
137  Names[RTLIB::SQRT_F80] = "sqrtl";
138  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
139  Names[RTLIB::LOG_F32] = "logf";
140  Names[RTLIB::LOG_F64] = "log";
141  Names[RTLIB::LOG_F80] = "logl";
142  Names[RTLIB::LOG_PPCF128] = "logl";
143  Names[RTLIB::LOG2_F32] = "log2f";
144  Names[RTLIB::LOG2_F64] = "log2";
145  Names[RTLIB::LOG2_F80] = "log2l";
146  Names[RTLIB::LOG2_PPCF128] = "log2l";
147  Names[RTLIB::LOG10_F32] = "log10f";
148  Names[RTLIB::LOG10_F64] = "log10";
149  Names[RTLIB::LOG10_F80] = "log10l";
150  Names[RTLIB::LOG10_PPCF128] = "log10l";
151  Names[RTLIB::EXP_F32] = "expf";
152  Names[RTLIB::EXP_F64] = "exp";
153  Names[RTLIB::EXP_F80] = "expl";
154  Names[RTLIB::EXP_PPCF128] = "expl";
155  Names[RTLIB::EXP2_F32] = "exp2f";
156  Names[RTLIB::EXP2_F64] = "exp2";
157  Names[RTLIB::EXP2_F80] = "exp2l";
158  Names[RTLIB::EXP2_PPCF128] = "exp2l";
159  Names[RTLIB::SIN_F32] = "sinf";
160  Names[RTLIB::SIN_F64] = "sin";
161  Names[RTLIB::SIN_F80] = "sinl";
162  Names[RTLIB::SIN_PPCF128] = "sinl";
163  Names[RTLIB::COS_F32] = "cosf";
164  Names[RTLIB::COS_F64] = "cos";
165  Names[RTLIB::COS_F80] = "cosl";
166  Names[RTLIB::COS_PPCF128] = "cosl";
167  Names[RTLIB::POW_F32] = "powf";
168  Names[RTLIB::POW_F64] = "pow";
169  Names[RTLIB::POW_F80] = "powl";
170  Names[RTLIB::POW_PPCF128] = "powl";
171  Names[RTLIB::CEIL_F32] = "ceilf";
172  Names[RTLIB::CEIL_F64] = "ceil";
173  Names[RTLIB::CEIL_F80] = "ceill";
174  Names[RTLIB::CEIL_PPCF128] = "ceill";
175  Names[RTLIB::TRUNC_F32] = "truncf";
176  Names[RTLIB::TRUNC_F64] = "trunc";
177  Names[RTLIB::TRUNC_F80] = "truncl";
178  Names[RTLIB::TRUNC_PPCF128] = "truncl";
179  Names[RTLIB::RINT_F32] = "rintf";
180  Names[RTLIB::RINT_F64] = "rint";
181  Names[RTLIB::RINT_F80] = "rintl";
182  Names[RTLIB::RINT_PPCF128] = "rintl";
183  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
184  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
185  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
186  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
187  Names[RTLIB::FLOOR_F32] = "floorf";
188  Names[RTLIB::FLOOR_F64] = "floor";
189  Names[RTLIB::FLOOR_F80] = "floorl";
190  Names[RTLIB::FLOOR_PPCF128] = "floorl";
191  Names[RTLIB::COPYSIGN_F32] = "copysignf";
192  Names[RTLIB::COPYSIGN_F64] = "copysign";
193  Names[RTLIB::COPYSIGN_F80] = "copysignl";
194  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
195  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
196  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
197  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
198  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
199  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
200  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
201  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
202  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
203  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
204  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
205  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
206  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
207  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
208  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
209  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
210  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
211  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
212  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
213  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
214  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
215  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
216  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
217  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
218  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
219  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
220  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
221  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
222  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
223  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
224  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
225  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
226  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
227  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
228  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
229  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
230  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
231  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
232  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
233  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
234  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
235  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
236  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
237  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
238  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
239  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
240  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
241  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
242  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
243  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
244  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
245  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
246  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
247  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
248  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
249  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
250  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
251  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
252  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
253  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
254  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
255  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
256  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
257  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
258  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
259  Names[RTLIB::OEQ_F32] = "__eqsf2";
260  Names[RTLIB::OEQ_F64] = "__eqdf2";
261  Names[RTLIB::UNE_F32] = "__nesf2";
262  Names[RTLIB::UNE_F64] = "__nedf2";
263  Names[RTLIB::OGE_F32] = "__gesf2";
264  Names[RTLIB::OGE_F64] = "__gedf2";
265  Names[RTLIB::OLT_F32] = "__ltsf2";
266  Names[RTLIB::OLT_F64] = "__ltdf2";
267  Names[RTLIB::OLE_F32] = "__lesf2";
268  Names[RTLIB::OLE_F64] = "__ledf2";
269  Names[RTLIB::OGT_F32] = "__gtsf2";
270  Names[RTLIB::OGT_F64] = "__gtdf2";
271  Names[RTLIB::UO_F32] = "__unordsf2";
272  Names[RTLIB::UO_F64] = "__unorddf2";
273  Names[RTLIB::O_F32] = "__unordsf2";
274  Names[RTLIB::O_F64] = "__unorddf2";
275  Names[RTLIB::MEMCPY] = "memcpy";
276  Names[RTLIB::MEMMOVE] = "memmove";
277  Names[RTLIB::MEMSET] = "memset";
278  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
279  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
280  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
281  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
282  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
283  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
284  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
285  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
286  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
287  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
288  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
289  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
290  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
291  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
292  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
293  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
294  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
295  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
296  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
297  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
298  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
299  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
300  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
301  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
302  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
303  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
304  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
305  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
306  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
307  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
308  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
309  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
310  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
311}
312
313/// InitLibcallCallingConvs - Set default libcall CallingConvs.
314///
315static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
316  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
317    CCs[i] = CallingConv::C;
318  }
319}
320
321/// getFPEXT - Return the FPEXT_*_* value for the given types, or
322/// UNKNOWN_LIBCALL if there is none.
323RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
324  if (OpVT == MVT::f32) {
325    if (RetVT == MVT::f64)
326      return FPEXT_F32_F64;
327  }
328
329  return UNKNOWN_LIBCALL;
330}
331
332/// getFPROUND - Return the FPROUND_*_* value for the given types, or
333/// UNKNOWN_LIBCALL if there is none.
334RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
335  if (RetVT == MVT::f32) {
336    if (OpVT == MVT::f64)
337      return FPROUND_F64_F32;
338    if (OpVT == MVT::f80)
339      return FPROUND_F80_F32;
340    if (OpVT == MVT::ppcf128)
341      return FPROUND_PPCF128_F32;
342  } else if (RetVT == MVT::f64) {
343    if (OpVT == MVT::f80)
344      return FPROUND_F80_F64;
345    if (OpVT == MVT::ppcf128)
346      return FPROUND_PPCF128_F64;
347  }
348
349  return UNKNOWN_LIBCALL;
350}
351
352/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
353/// UNKNOWN_LIBCALL if there is none.
354RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
355  if (OpVT == MVT::f32) {
356    if (RetVT == MVT::i8)
357      return FPTOSINT_F32_I8;
358    if (RetVT == MVT::i16)
359      return FPTOSINT_F32_I16;
360    if (RetVT == MVT::i32)
361      return FPTOSINT_F32_I32;
362    if (RetVT == MVT::i64)
363      return FPTOSINT_F32_I64;
364    if (RetVT == MVT::i128)
365      return FPTOSINT_F32_I128;
366  } else if (OpVT == MVT::f64) {
367    if (RetVT == MVT::i8)
368      return FPTOSINT_F64_I8;
369    if (RetVT == MVT::i16)
370      return FPTOSINT_F64_I16;
371    if (RetVT == MVT::i32)
372      return FPTOSINT_F64_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_F64_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_F64_I128;
377  } else if (OpVT == MVT::f80) {
378    if (RetVT == MVT::i32)
379      return FPTOSINT_F80_I32;
380    if (RetVT == MVT::i64)
381      return FPTOSINT_F80_I64;
382    if (RetVT == MVT::i128)
383      return FPTOSINT_F80_I128;
384  } else if (OpVT == MVT::ppcf128) {
385    if (RetVT == MVT::i32)
386      return FPTOSINT_PPCF128_I32;
387    if (RetVT == MVT::i64)
388      return FPTOSINT_PPCF128_I64;
389    if (RetVT == MVT::i128)
390      return FPTOSINT_PPCF128_I128;
391  }
392  return UNKNOWN_LIBCALL;
393}
394
395/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
396/// UNKNOWN_LIBCALL if there is none.
397RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
398  if (OpVT == MVT::f32) {
399    if (RetVT == MVT::i8)
400      return FPTOUINT_F32_I8;
401    if (RetVT == MVT::i16)
402      return FPTOUINT_F32_I16;
403    if (RetVT == MVT::i32)
404      return FPTOUINT_F32_I32;
405    if (RetVT == MVT::i64)
406      return FPTOUINT_F32_I64;
407    if (RetVT == MVT::i128)
408      return FPTOUINT_F32_I128;
409  } else if (OpVT == MVT::f64) {
410    if (RetVT == MVT::i8)
411      return FPTOUINT_F64_I8;
412    if (RetVT == MVT::i16)
413      return FPTOUINT_F64_I16;
414    if (RetVT == MVT::i32)
415      return FPTOUINT_F64_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_F64_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_F64_I128;
420  } else if (OpVT == MVT::f80) {
421    if (RetVT == MVT::i32)
422      return FPTOUINT_F80_I32;
423    if (RetVT == MVT::i64)
424      return FPTOUINT_F80_I64;
425    if (RetVT == MVT::i128)
426      return FPTOUINT_F80_I128;
427  } else if (OpVT == MVT::ppcf128) {
428    if (RetVT == MVT::i32)
429      return FPTOUINT_PPCF128_I32;
430    if (RetVT == MVT::i64)
431      return FPTOUINT_PPCF128_I64;
432    if (RetVT == MVT::i128)
433      return FPTOUINT_PPCF128_I128;
434  }
435  return UNKNOWN_LIBCALL;
436}
437
438/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
439/// UNKNOWN_LIBCALL if there is none.
440RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
441  if (OpVT == MVT::i32) {
442    if (RetVT == MVT::f32)
443      return SINTTOFP_I32_F32;
444    else if (RetVT == MVT::f64)
445      return SINTTOFP_I32_F64;
446    else if (RetVT == MVT::f80)
447      return SINTTOFP_I32_F80;
448    else if (RetVT == MVT::ppcf128)
449      return SINTTOFP_I32_PPCF128;
450  } else if (OpVT == MVT::i64) {
451    if (RetVT == MVT::f32)
452      return SINTTOFP_I64_F32;
453    else if (RetVT == MVT::f64)
454      return SINTTOFP_I64_F64;
455    else if (RetVT == MVT::f80)
456      return SINTTOFP_I64_F80;
457    else if (RetVT == MVT::ppcf128)
458      return SINTTOFP_I64_PPCF128;
459  } else if (OpVT == MVT::i128) {
460    if (RetVT == MVT::f32)
461      return SINTTOFP_I128_F32;
462    else if (RetVT == MVT::f64)
463      return SINTTOFP_I128_F64;
464    else if (RetVT == MVT::f80)
465      return SINTTOFP_I128_F80;
466    else if (RetVT == MVT::ppcf128)
467      return SINTTOFP_I128_PPCF128;
468  }
469  return UNKNOWN_LIBCALL;
470}
471
472/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
473/// UNKNOWN_LIBCALL if there is none.
474RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
475  if (OpVT == MVT::i32) {
476    if (RetVT == MVT::f32)
477      return UINTTOFP_I32_F32;
478    else if (RetVT == MVT::f64)
479      return UINTTOFP_I32_F64;
480    else if (RetVT == MVT::f80)
481      return UINTTOFP_I32_F80;
482    else if (RetVT == MVT::ppcf128)
483      return UINTTOFP_I32_PPCF128;
484  } else if (OpVT == MVT::i64) {
485    if (RetVT == MVT::f32)
486      return UINTTOFP_I64_F32;
487    else if (RetVT == MVT::f64)
488      return UINTTOFP_I64_F64;
489    else if (RetVT == MVT::f80)
490      return UINTTOFP_I64_F80;
491    else if (RetVT == MVT::ppcf128)
492      return UINTTOFP_I64_PPCF128;
493  } else if (OpVT == MVT::i128) {
494    if (RetVT == MVT::f32)
495      return UINTTOFP_I128_F32;
496    else if (RetVT == MVT::f64)
497      return UINTTOFP_I128_F64;
498    else if (RetVT == MVT::f80)
499      return UINTTOFP_I128_F80;
500    else if (RetVT == MVT::ppcf128)
501      return UINTTOFP_I128_PPCF128;
502  }
503  return UNKNOWN_LIBCALL;
504}
505
506/// InitCmpLibcallCCs - Set default comparison libcall CC.
507///
508static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
509  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
510  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
511  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
512  CCs[RTLIB::UNE_F32] = ISD::SETNE;
513  CCs[RTLIB::UNE_F64] = ISD::SETNE;
514  CCs[RTLIB::OGE_F32] = ISD::SETGE;
515  CCs[RTLIB::OGE_F64] = ISD::SETGE;
516  CCs[RTLIB::OLT_F32] = ISD::SETLT;
517  CCs[RTLIB::OLT_F64] = ISD::SETLT;
518  CCs[RTLIB::OLE_F32] = ISD::SETLE;
519  CCs[RTLIB::OLE_F64] = ISD::SETLE;
520  CCs[RTLIB::OGT_F32] = ISD::SETGT;
521  CCs[RTLIB::OGT_F64] = ISD::SETGT;
522  CCs[RTLIB::UO_F32] = ISD::SETNE;
523  CCs[RTLIB::UO_F64] = ISD::SETNE;
524  CCs[RTLIB::O_F32] = ISD::SETEQ;
525  CCs[RTLIB::O_F64] = ISD::SETEQ;
526}
527
528/// NOTE: The constructor takes ownership of TLOF.
529TargetLowering::TargetLowering(const TargetMachine &tm,
530                               const TargetLoweringObjectFile *tlof)
531  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
532  // All operations default to being supported.
533  memset(OpActions, 0, sizeof(OpActions));
534  memset(LoadExtActions, 0, sizeof(LoadExtActions));
535  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
536  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
537  memset(CondCodeActions, 0, sizeof(CondCodeActions));
538
539  // Set default actions for various operations.
540  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
541    // Default all indexed load / store to expand.
542    for (unsigned IM = (unsigned)ISD::PRE_INC;
543         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
544      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
545      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
546    }
547
548    // These operations default to expand.
549    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
551  }
552
553  // Most targets ignore the @llvm.prefetch intrinsic.
554  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
555
556  // ConstantFP nodes default to expand.  Targets can either change this to
557  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
558  // to optimize expansions for certain constants.
559  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
560  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
561  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
562
563  // These library functions default to expand.
564  setOperationAction(ISD::FLOG , MVT::f64, Expand);
565  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
566  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
567  setOperationAction(ISD::FEXP , MVT::f64, Expand);
568  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
569  setOperationAction(ISD::FLOG , MVT::f32, Expand);
570  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
571  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
572  setOperationAction(ISD::FEXP , MVT::f32, Expand);
573  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
574
575  // Default ISD::TRAP to expand (which turns it into abort).
576  setOperationAction(ISD::TRAP, MVT::Other, Expand);
577
578  IsLittleEndian = TD->isLittleEndian();
579  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
580  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
581  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
582  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
583  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
584    = maxStoresPerMemmoveOptSize = 4;
585  benefitFromCodePlacementOpt = false;
586  UseUnderscoreSetJmp = false;
587  UseUnderscoreLongJmp = false;
588  SelectIsExpensive = false;
589  IntDivIsCheap = false;
590  Pow2DivIsCheap = false;
591  JumpIsExpensive = false;
592  StackPointerRegisterToSaveRestore = 0;
593  ExceptionPointerRegister = 0;
594  ExceptionSelectorRegister = 0;
595  BooleanContents = UndefinedBooleanContent;
596  SchedPreferenceInfo = Sched::Latency;
597  JumpBufSize = 0;
598  JumpBufAlignment = 0;
599  MinFunctionAlignment = 0;
600  PrefFunctionAlignment = 0;
601  PrefLoopAlignment = 0;
602  MinStackArgumentAlignment = 1;
603  ShouldFoldAtomicFences = false;
604
605  InitLibcallNames(LibcallRoutineNames);
606  InitCmpLibcallCCs(CmpLibcallCCs);
607  InitLibcallCallingConvs(LibcallCallingConvs);
608}
609
610TargetLowering::~TargetLowering() {
611  delete &TLOF;
612}
613
614MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
615  return MVT::getIntegerVT(8*TD->getPointerSize());
616}
617
618/// canOpTrap - Returns true if the operation can trap for the value type.
619/// VT must be a legal type.
620bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
621  assert(isTypeLegal(VT));
622  switch (Op) {
623  default:
624    return false;
625  case ISD::FDIV:
626  case ISD::FREM:
627  case ISD::SDIV:
628  case ISD::UDIV:
629  case ISD::SREM:
630  case ISD::UREM:
631    return true;
632  }
633}
634
635
636static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
637                                          unsigned &NumIntermediates,
638                                          EVT &RegisterVT,
639                                          TargetLowering *TLI) {
640  // Figure out the right, legal destination reg to copy into.
641  unsigned NumElts = VT.getVectorNumElements();
642  MVT EltTy = VT.getVectorElementType();
643
644  unsigned NumVectorRegs = 1;
645
646  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
647  // could break down into LHS/RHS like LegalizeDAG does.
648  if (!isPowerOf2_32(NumElts)) {
649    NumVectorRegs = NumElts;
650    NumElts = 1;
651  }
652
653  // Divide the input until we get to a supported size.  This will always
654  // end with a scalar if the target doesn't support vectors.
655  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
656    NumElts >>= 1;
657    NumVectorRegs <<= 1;
658  }
659
660  NumIntermediates = NumVectorRegs;
661
662  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
663  if (!TLI->isTypeLegal(NewVT))
664    NewVT = EltTy;
665  IntermediateVT = NewVT;
666
667  EVT DestVT = TLI->getRegisterType(NewVT);
668  RegisterVT = DestVT;
669  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
670    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
671
672  // Otherwise, promotion or legal types use the same number of registers as
673  // the vector decimated to the appropriate level.
674  return NumVectorRegs;
675}
676
677/// isLegalRC - Return true if the value types that can be represented by the
678/// specified register class are all legal.
679bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
680  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
681       I != E; ++I) {
682    if (isTypeLegal(*I))
683      return true;
684  }
685  return false;
686}
687
688/// hasLegalSuperRegRegClasses - Return true if the specified register class
689/// has one or more super-reg register classes that are legal.
690bool
691TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
692  if (*RC->superregclasses_begin() == 0)
693    return false;
694  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
695         E = RC->superregclasses_end(); I != E; ++I) {
696    const TargetRegisterClass *RRC = *I;
697    if (isLegalRC(RRC))
698      return true;
699  }
700  return false;
701}
702
703/// findRepresentativeClass - Return the largest legal super-reg register class
704/// of the register class for the specified type and its associated "cost".
705std::pair<const TargetRegisterClass*, uint8_t>
706TargetLowering::findRepresentativeClass(EVT VT) const {
707  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
708  if (!RC)
709    return std::make_pair(RC, 0);
710  const TargetRegisterClass *BestRC = RC;
711  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
712         E = RC->superregclasses_end(); I != E; ++I) {
713    const TargetRegisterClass *RRC = *I;
714    if (RRC->isASubClass() || !isLegalRC(RRC))
715      continue;
716    if (!hasLegalSuperRegRegClasses(RRC))
717      return std::make_pair(RRC, 1);
718    BestRC = RRC;
719  }
720  return std::make_pair(BestRC, 1);
721}
722
723
724/// computeRegisterProperties - Once all of the register classes are added,
725/// this allows us to compute derived properties we expose.
726void TargetLowering::computeRegisterProperties() {
727  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
728         "Too many value types for ValueTypeActions to hold!");
729
730  // Everything defaults to needing one register.
731  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
732    NumRegistersForVT[i] = 1;
733    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
734  }
735  // ...except isVoid, which doesn't need any registers.
736  NumRegistersForVT[MVT::isVoid] = 0;
737
738  // Find the largest integer register class.
739  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
740  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
741    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
742
743  // Every integer value type larger than this largest register takes twice as
744  // many registers to represent as the previous ValueType.
745  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
746    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
747    if (!ExpandedVT.isInteger())
748      break;
749    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
750    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
751    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
752    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
753  }
754
755  // Inspect all of the ValueType's smaller than the largest integer
756  // register to see which ones need promotion.
757  unsigned LegalIntReg = LargestIntReg;
758  for (unsigned IntReg = LargestIntReg - 1;
759       IntReg >= (unsigned)MVT::i1; --IntReg) {
760    EVT IVT = (MVT::SimpleValueType)IntReg;
761    if (isTypeLegal(IVT)) {
762      LegalIntReg = IntReg;
763    } else {
764      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
765        (MVT::SimpleValueType)LegalIntReg;
766      ValueTypeActions.setTypeAction(IVT, Promote);
767    }
768  }
769
770  // ppcf128 type is really two f64's.
771  if (!isTypeLegal(MVT::ppcf128)) {
772    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
773    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
774    TransformToType[MVT::ppcf128] = MVT::f64;
775    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
776  }
777
778  // Decide how to handle f64. If the target does not have native f64 support,
779  // expand it to i64 and we will be generating soft float library calls.
780  if (!isTypeLegal(MVT::f64)) {
781    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
782    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
783    TransformToType[MVT::f64] = MVT::i64;
784    ValueTypeActions.setTypeAction(MVT::f64, Expand);
785  }
786
787  // Decide how to handle f32. If the target does not have native support for
788  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
789  if (!isTypeLegal(MVT::f32)) {
790    if (isTypeLegal(MVT::f64)) {
791      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
792      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
793      TransformToType[MVT::f32] = MVT::f64;
794      ValueTypeActions.setTypeAction(MVT::f32, Promote);
795    } else {
796      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
797      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
798      TransformToType[MVT::f32] = MVT::i32;
799      ValueTypeActions.setTypeAction(MVT::f32, Expand);
800    }
801  }
802
803  // Loop over all of the vector value types to see which need transformations.
804  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
805       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
806    MVT VT = (MVT::SimpleValueType)i;
807    if (isTypeLegal(VT)) continue;
808
809    // Determine if there is a legal wider type.  If so, we should promote to
810    // that wider vector type.
811    EVT EltVT = VT.getVectorElementType();
812    unsigned NElts = VT.getVectorNumElements();
813    if (NElts != 1) {
814      bool IsLegalWiderType = false;
815      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
816        EVT SVT = (MVT::SimpleValueType)nVT;
817        if (SVT.getVectorElementType() == EltVT &&
818            SVT.getVectorNumElements() > NElts &&
819            isTypeLegal(SVT)) {
820          TransformToType[i] = SVT;
821          RegisterTypeForVT[i] = SVT;
822          NumRegistersForVT[i] = 1;
823          ValueTypeActions.setTypeAction(VT, Promote);
824          IsLegalWiderType = true;
825          break;
826        }
827      }
828      if (IsLegalWiderType) continue;
829    }
830
831    MVT IntermediateVT;
832    EVT RegisterVT;
833    unsigned NumIntermediates;
834    NumRegistersForVT[i] =
835      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
836                                RegisterVT, this);
837    RegisterTypeForVT[i] = RegisterVT;
838
839    EVT NVT = VT.getPow2VectorType();
840    if (NVT == VT) {
841      // Type is already a power of 2.  The default action is to split.
842      TransformToType[i] = MVT::Other;
843      ValueTypeActions.setTypeAction(VT, Expand);
844    } else {
845      TransformToType[i] = NVT;
846      ValueTypeActions.setTypeAction(VT, Promote);
847    }
848  }
849
850  // Determine the 'representative' register class for each value type.
851  // An representative register class is the largest (meaning one which is
852  // not a sub-register class / subreg register class) legal register class for
853  // a group of value types. For example, on i386, i8, i16, and i32
854  // representative would be GR32; while on x86_64 it's GR64.
855  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
856    const TargetRegisterClass* RRC;
857    uint8_t Cost;
858    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
859    RepRegClassForVT[i] = RRC;
860    RepRegClassCostForVT[i] = Cost;
861  }
862}
863
864const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
865  return NULL;
866}
867
868
869MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
870  return PointerTy.SimpleTy;
871}
872
873MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
874  return MVT::i32; // return the default value
875}
876
877/// getVectorTypeBreakdown - Vector types are broken down into some number of
878/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
879/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
880/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
881///
882/// This method returns the number of registers needed, and the VT for each
883/// register.  It also returns the VT and quantity of the intermediate values
884/// before they are promoted/expanded.
885///
886unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
887                                                EVT &IntermediateVT,
888                                                unsigned &NumIntermediates,
889                                                EVT &RegisterVT) const {
890  unsigned NumElts = VT.getVectorNumElements();
891
892  // If there is a wider vector type with the same element type as this one,
893  // we should widen to that legal vector type.  This handles things like
894  // <2 x float> -> <4 x float>.
895  if (NumElts != 1 && getTypeAction(Context, VT) == Promote) {
896    RegisterVT = getTypeToTransformTo(Context, VT);
897    if (isTypeLegal(RegisterVT)) {
898      IntermediateVT = RegisterVT;
899      NumIntermediates = 1;
900      return 1;
901    }
902  }
903
904  // Figure out the right, legal destination reg to copy into.
905  EVT EltTy = VT.getVectorElementType();
906
907  unsigned NumVectorRegs = 1;
908
909  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
910  // could break down into LHS/RHS like LegalizeDAG does.
911  if (!isPowerOf2_32(NumElts)) {
912    NumVectorRegs = NumElts;
913    NumElts = 1;
914  }
915
916  // Divide the input until we get to a supported size.  This will always
917  // end with a scalar if the target doesn't support vectors.
918  while (NumElts > 1 && !isTypeLegal(
919                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
920    NumElts >>= 1;
921    NumVectorRegs <<= 1;
922  }
923
924  NumIntermediates = NumVectorRegs;
925
926  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
927  if (!isTypeLegal(NewVT))
928    NewVT = EltTy;
929  IntermediateVT = NewVT;
930
931  EVT DestVT = getRegisterType(Context, NewVT);
932  RegisterVT = DestVT;
933  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
934    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
935
936  // Otherwise, promotion or legal types use the same number of registers as
937  // the vector decimated to the appropriate level.
938  return NumVectorRegs;
939}
940
941/// Get the EVTs and ArgFlags collections that represent the legalized return
942/// type of the given function.  This does not require a DAG or a return value,
943/// and is suitable for use before any DAGs for the function are constructed.
944/// TODO: Move this out of TargetLowering.cpp.
945void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
946                         SmallVectorImpl<ISD::OutputArg> &Outs,
947                         const TargetLowering &TLI,
948                         SmallVectorImpl<uint64_t> *Offsets) {
949  SmallVector<EVT, 4> ValueVTs;
950  ComputeValueVTs(TLI, ReturnType, ValueVTs);
951  unsigned NumValues = ValueVTs.size();
952  if (NumValues == 0) return;
953  unsigned Offset = 0;
954
955  for (unsigned j = 0, f = NumValues; j != f; ++j) {
956    EVT VT = ValueVTs[j];
957    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
958
959    if (attr & Attribute::SExt)
960      ExtendKind = ISD::SIGN_EXTEND;
961    else if (attr & Attribute::ZExt)
962      ExtendKind = ISD::ZERO_EXTEND;
963
964    // FIXME: C calling convention requires the return type to be promoted to
965    // at least 32-bit. But this is not necessary for non-C calling
966    // conventions. The frontend should mark functions whose return values
967    // require promoting with signext or zeroext attributes.
968    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
969      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
970      if (VT.bitsLT(MinVT))
971        VT = MinVT;
972    }
973
974    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
975    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
976    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
977                        PartVT.getTypeForEVT(ReturnType->getContext()));
978
979    // 'inreg' on function refers to return value
980    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
981    if (attr & Attribute::InReg)
982      Flags.setInReg();
983
984    // Propagate extension type if any
985    if (attr & Attribute::SExt)
986      Flags.setSExt();
987    else if (attr & Attribute::ZExt)
988      Flags.setZExt();
989
990    for (unsigned i = 0; i < NumParts; ++i) {
991      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
992      if (Offsets) {
993        Offsets->push_back(Offset);
994        Offset += PartSize;
995      }
996    }
997  }
998}
999
1000/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1001/// function arguments in the caller parameter area.  This is the actual
1002/// alignment, not its logarithm.
1003unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1004  return TD->getCallFrameTypeAlignment(Ty);
1005}
1006
1007/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1008/// current function.  The returned value is a member of the
1009/// MachineJumpTableInfo::JTEntryKind enum.
1010unsigned TargetLowering::getJumpTableEncoding() const {
1011  // In non-pic modes, just use the address of a block.
1012  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1013    return MachineJumpTableInfo::EK_BlockAddress;
1014
1015  // In PIC mode, if the target supports a GPRel32 directive, use it.
1016  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1017    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1018
1019  // Otherwise, use a label difference.
1020  return MachineJumpTableInfo::EK_LabelDifference32;
1021}
1022
1023SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1024                                                 SelectionDAG &DAG) const {
1025  // If our PIC model is GP relative, use the global offset table as the base.
1026  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1027    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1028  return Table;
1029}
1030
1031/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1032/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1033/// MCExpr.
1034const MCExpr *
1035TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1036                                             unsigned JTI,MCContext &Ctx) const{
1037  // The normal PIC reloc base is the label at the start of the jump table.
1038  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1039}
1040
1041bool
1042TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1043  // Assume that everything is safe in static mode.
1044  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1045    return true;
1046
1047  // In dynamic-no-pic mode, assume that known defined values are safe.
1048  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1049      GA &&
1050      !GA->getGlobal()->isDeclaration() &&
1051      !GA->getGlobal()->isWeakForLinker())
1052    return true;
1053
1054  // Otherwise assume nothing is safe.
1055  return false;
1056}
1057
1058//===----------------------------------------------------------------------===//
1059//  Optimization Methods
1060//===----------------------------------------------------------------------===//
1061
1062/// ShrinkDemandedConstant - Check to see if the specified operand of the
1063/// specified instruction is a constant integer.  If so, check to see if there
1064/// are any bits set in the constant that are not demanded.  If so, shrink the
1065/// constant and return true.
1066bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1067                                                        const APInt &Demanded) {
1068  DebugLoc dl = Op.getDebugLoc();
1069
1070  // FIXME: ISD::SELECT, ISD::SELECT_CC
1071  switch (Op.getOpcode()) {
1072  default: break;
1073  case ISD::XOR:
1074  case ISD::AND:
1075  case ISD::OR: {
1076    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1077    if (!C) return false;
1078
1079    if (Op.getOpcode() == ISD::XOR &&
1080        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1081      return false;
1082
1083    // if we can expand it to have all bits set, do it
1084    if (C->getAPIntValue().intersects(~Demanded)) {
1085      EVT VT = Op.getValueType();
1086      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1087                                DAG.getConstant(Demanded &
1088                                                C->getAPIntValue(),
1089                                                VT));
1090      return CombineTo(Op, New);
1091    }
1092
1093    break;
1094  }
1095  }
1096
1097  return false;
1098}
1099
1100/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1101/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1102/// cast, but it could be generalized for targets with other types of
1103/// implicit widening casts.
1104bool
1105TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1106                                                    unsigned BitWidth,
1107                                                    const APInt &Demanded,
1108                                                    DebugLoc dl) {
1109  assert(Op.getNumOperands() == 2 &&
1110         "ShrinkDemandedOp only supports binary operators!");
1111  assert(Op.getNode()->getNumValues() == 1 &&
1112         "ShrinkDemandedOp only supports nodes with one result!");
1113
1114  // Don't do this if the node has another user, which may require the
1115  // full value.
1116  if (!Op.getNode()->hasOneUse())
1117    return false;
1118
1119  // Search for the smallest integer type with free casts to and from
1120  // Op's type. For expedience, just check power-of-2 integer types.
1121  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1122  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1123  if (!isPowerOf2_32(SmallVTBits))
1124    SmallVTBits = NextPowerOf2(SmallVTBits);
1125  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1126    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1127    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1128        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1129      // We found a type with free casts.
1130      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1131                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1132                                          Op.getNode()->getOperand(0)),
1133                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1134                                          Op.getNode()->getOperand(1)));
1135      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1136      return CombineTo(Op, Z);
1137    }
1138  }
1139  return false;
1140}
1141
1142/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1143/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1144/// use this information to simplify Op, create a new simplified DAG node and
1145/// return true, returning the original and new nodes in Old and New. Otherwise,
1146/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1147/// the expression (used to simplify the caller).  The KnownZero/One bits may
1148/// only be accurate for those bits in the DemandedMask.
1149bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1150                                          const APInt &DemandedMask,
1151                                          APInt &KnownZero,
1152                                          APInt &KnownOne,
1153                                          TargetLoweringOpt &TLO,
1154                                          unsigned Depth) const {
1155  unsigned BitWidth = DemandedMask.getBitWidth();
1156  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1157         "Mask size mismatches value type size!");
1158  APInt NewMask = DemandedMask;
1159  DebugLoc dl = Op.getDebugLoc();
1160
1161  // Don't know anything.
1162  KnownZero = KnownOne = APInt(BitWidth, 0);
1163
1164  // Other users may use these bits.
1165  if (!Op.getNode()->hasOneUse()) {
1166    if (Depth != 0) {
1167      // If not at the root, Just compute the KnownZero/KnownOne bits to
1168      // simplify things downstream.
1169      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1170      return false;
1171    }
1172    // If this is the root being simplified, allow it to have multiple uses,
1173    // just set the NewMask to all bits.
1174    NewMask = APInt::getAllOnesValue(BitWidth);
1175  } else if (DemandedMask == 0) {
1176    // Not demanding any bits from Op.
1177    if (Op.getOpcode() != ISD::UNDEF)
1178      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1179    return false;
1180  } else if (Depth == 6) {        // Limit search depth.
1181    return false;
1182  }
1183
1184  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1185  switch (Op.getOpcode()) {
1186  case ISD::Constant:
1187    // We know all of the bits for a constant!
1188    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1189    KnownZero = ~KnownOne & NewMask;
1190    return false;   // Don't fall through, will infinitely loop.
1191  case ISD::AND:
1192    // If the RHS is a constant, check to see if the LHS would be zero without
1193    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1194    // simplify the LHS, here we're using information from the LHS to simplify
1195    // the RHS.
1196    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1197      APInt LHSZero, LHSOne;
1198      // Do not increment Depth here; that can cause an infinite loop.
1199      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1200                                LHSZero, LHSOne, Depth);
1201      // If the LHS already has zeros where RHSC does, this and is dead.
1202      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1203        return TLO.CombineTo(Op, Op.getOperand(0));
1204      // If any of the set bits in the RHS are known zero on the LHS, shrink
1205      // the constant.
1206      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1207        return true;
1208    }
1209
1210    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1211                             KnownOne, TLO, Depth+1))
1212      return true;
1213    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1214    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1215                             KnownZero2, KnownOne2, TLO, Depth+1))
1216      return true;
1217    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1218
1219    // If all of the demanded bits are known one on one side, return the other.
1220    // These bits cannot contribute to the result of the 'and'.
1221    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1222      return TLO.CombineTo(Op, Op.getOperand(0));
1223    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1224      return TLO.CombineTo(Op, Op.getOperand(1));
1225    // If all of the demanded bits in the inputs are known zeros, return zero.
1226    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1227      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1228    // If the RHS is a constant, see if we can simplify it.
1229    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1230      return true;
1231    // If the operation can be done in a smaller type, do so.
1232    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1233      return true;
1234
1235    // Output known-1 bits are only known if set in both the LHS & RHS.
1236    KnownOne &= KnownOne2;
1237    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1238    KnownZero |= KnownZero2;
1239    break;
1240  case ISD::OR:
1241    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1242                             KnownOne, TLO, Depth+1))
1243      return true;
1244    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1245    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1246                             KnownZero2, KnownOne2, TLO, Depth+1))
1247      return true;
1248    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1249
1250    // If all of the demanded bits are known zero on one side, return the other.
1251    // These bits cannot contribute to the result of the 'or'.
1252    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1253      return TLO.CombineTo(Op, Op.getOperand(0));
1254    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1255      return TLO.CombineTo(Op, Op.getOperand(1));
1256    // If all of the potentially set bits on one side are known to be set on
1257    // the other side, just use the 'other' side.
1258    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1259      return TLO.CombineTo(Op, Op.getOperand(0));
1260    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1261      return TLO.CombineTo(Op, Op.getOperand(1));
1262    // If the RHS is a constant, see if we can simplify it.
1263    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1264      return true;
1265    // If the operation can be done in a smaller type, do so.
1266    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1267      return true;
1268
1269    // Output known-0 bits are only known if clear in both the LHS & RHS.
1270    KnownZero &= KnownZero2;
1271    // Output known-1 are known to be set if set in either the LHS | RHS.
1272    KnownOne |= KnownOne2;
1273    break;
1274  case ISD::XOR:
1275    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1276                             KnownOne, TLO, Depth+1))
1277      return true;
1278    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1279    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1280                             KnownOne2, TLO, Depth+1))
1281      return true;
1282    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1283
1284    // If all of the demanded bits are known zero on one side, return the other.
1285    // These bits cannot contribute to the result of the 'xor'.
1286    if ((KnownZero & NewMask) == NewMask)
1287      return TLO.CombineTo(Op, Op.getOperand(0));
1288    if ((KnownZero2 & NewMask) == NewMask)
1289      return TLO.CombineTo(Op, Op.getOperand(1));
1290    // If the operation can be done in a smaller type, do so.
1291    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1292      return true;
1293
1294    // If all of the unknown bits are known to be zero on one side or the other
1295    // (but not both) turn this into an *inclusive* or.
1296    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1297    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1298      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1299                                               Op.getOperand(0),
1300                                               Op.getOperand(1)));
1301
1302    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1303    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1304    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1305    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1306
1307    // If all of the demanded bits on one side are known, and all of the set
1308    // bits on that side are also known to be set on the other side, turn this
1309    // into an AND, as we know the bits will be cleared.
1310    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1311    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1312      if ((KnownOne & KnownOne2) == KnownOne) {
1313        EVT VT = Op.getValueType();
1314        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1315        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1316                                                 Op.getOperand(0), ANDC));
1317      }
1318    }
1319
1320    // If the RHS is a constant, see if we can simplify it.
1321    // for XOR, we prefer to force bits to 1 if they will make a -1.
1322    // if we can't force bits, try to shrink constant
1323    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1324      APInt Expanded = C->getAPIntValue() | (~NewMask);
1325      // if we can expand it to have all bits set, do it
1326      if (Expanded.isAllOnesValue()) {
1327        if (Expanded != C->getAPIntValue()) {
1328          EVT VT = Op.getValueType();
1329          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1330                                          TLO.DAG.getConstant(Expanded, VT));
1331          return TLO.CombineTo(Op, New);
1332        }
1333        // if it already has all the bits set, nothing to change
1334        // but don't shrink either!
1335      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1336        return true;
1337      }
1338    }
1339
1340    KnownZero = KnownZeroOut;
1341    KnownOne  = KnownOneOut;
1342    break;
1343  case ISD::SELECT:
1344    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1345                             KnownOne, TLO, Depth+1))
1346      return true;
1347    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1348                             KnownOne2, TLO, Depth+1))
1349      return true;
1350    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1351    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1352
1353    // If the operands are constants, see if we can simplify them.
1354    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1355      return true;
1356
1357    // Only known if known in both the LHS and RHS.
1358    KnownOne &= KnownOne2;
1359    KnownZero &= KnownZero2;
1360    break;
1361  case ISD::SELECT_CC:
1362    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1363                             KnownOne, TLO, Depth+1))
1364      return true;
1365    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1366                             KnownOne2, TLO, Depth+1))
1367      return true;
1368    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1369    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1370
1371    // If the operands are constants, see if we can simplify them.
1372    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1373      return true;
1374
1375    // Only known if known in both the LHS and RHS.
1376    KnownOne &= KnownOne2;
1377    KnownZero &= KnownZero2;
1378    break;
1379  case ISD::SHL:
1380    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1381      unsigned ShAmt = SA->getZExtValue();
1382      SDValue InOp = Op.getOperand(0);
1383
1384      // If the shift count is an invalid immediate, don't do anything.
1385      if (ShAmt >= BitWidth)
1386        break;
1387
1388      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1389      // single shift.  We can do this if the bottom bits (which are shifted
1390      // out) are never demanded.
1391      if (InOp.getOpcode() == ISD::SRL &&
1392          isa<ConstantSDNode>(InOp.getOperand(1))) {
1393        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1394          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1395          unsigned Opc = ISD::SHL;
1396          int Diff = ShAmt-C1;
1397          if (Diff < 0) {
1398            Diff = -Diff;
1399            Opc = ISD::SRL;
1400          }
1401
1402          SDValue NewSA =
1403            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1404          EVT VT = Op.getValueType();
1405          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1406                                                   InOp.getOperand(0), NewSA));
1407        }
1408      }
1409
1410      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1411                               KnownZero, KnownOne, TLO, Depth+1))
1412        return true;
1413
1414      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1415      // are not demanded. This will likely allow the anyext to be folded away.
1416      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1417        SDValue InnerOp = InOp.getNode()->getOperand(0);
1418        EVT InnerVT = InnerOp.getValueType();
1419        if ((APInt::getHighBitsSet(BitWidth,
1420                                   BitWidth - InnerVT.getSizeInBits()) &
1421               DemandedMask) == 0 &&
1422            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1423          EVT ShTy = getShiftAmountTy(InnerVT);
1424          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1425            ShTy = InnerVT;
1426          SDValue NarrowShl =
1427            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1428                            TLO.DAG.getConstant(ShAmt, ShTy));
1429          return
1430            TLO.CombineTo(Op,
1431                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1432                                          NarrowShl));
1433        }
1434      }
1435
1436      KnownZero <<= SA->getZExtValue();
1437      KnownOne  <<= SA->getZExtValue();
1438      // low bits known zero.
1439      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1440    }
1441    break;
1442  case ISD::SRL:
1443    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1444      EVT VT = Op.getValueType();
1445      unsigned ShAmt = SA->getZExtValue();
1446      unsigned VTSize = VT.getSizeInBits();
1447      SDValue InOp = Op.getOperand(0);
1448
1449      // If the shift count is an invalid immediate, don't do anything.
1450      if (ShAmt >= BitWidth)
1451        break;
1452
1453      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1454      // single shift.  We can do this if the top bits (which are shifted out)
1455      // are never demanded.
1456      if (InOp.getOpcode() == ISD::SHL &&
1457          isa<ConstantSDNode>(InOp.getOperand(1))) {
1458        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1459          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1460          unsigned Opc = ISD::SRL;
1461          int Diff = ShAmt-C1;
1462          if (Diff < 0) {
1463            Diff = -Diff;
1464            Opc = ISD::SHL;
1465          }
1466
1467          SDValue NewSA =
1468            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1469          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1470                                                   InOp.getOperand(0), NewSA));
1471        }
1472      }
1473
1474      // Compute the new bits that are at the top now.
1475      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1476                               KnownZero, KnownOne, TLO, Depth+1))
1477        return true;
1478      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1479      KnownZero = KnownZero.lshr(ShAmt);
1480      KnownOne  = KnownOne.lshr(ShAmt);
1481
1482      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1483      KnownZero |= HighBits;  // High bits known zero.
1484    }
1485    break;
1486  case ISD::SRA:
1487    // If this is an arithmetic shift right and only the low-bit is set, we can
1488    // always convert this into a logical shr, even if the shift amount is
1489    // variable.  The low bit of the shift cannot be an input sign bit unless
1490    // the shift amount is >= the size of the datatype, which is undefined.
1491    if (DemandedMask == 1)
1492      return TLO.CombineTo(Op,
1493                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1494                                           Op.getOperand(0), Op.getOperand(1)));
1495
1496    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1497      EVT VT = Op.getValueType();
1498      unsigned ShAmt = SA->getZExtValue();
1499
1500      // If the shift count is an invalid immediate, don't do anything.
1501      if (ShAmt >= BitWidth)
1502        break;
1503
1504      APInt InDemandedMask = (NewMask << ShAmt);
1505
1506      // If any of the demanded bits are produced by the sign extension, we also
1507      // demand the input sign bit.
1508      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1509      if (HighBits.intersects(NewMask))
1510        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1511
1512      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1513                               KnownZero, KnownOne, TLO, Depth+1))
1514        return true;
1515      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1516      KnownZero = KnownZero.lshr(ShAmt);
1517      KnownOne  = KnownOne.lshr(ShAmt);
1518
1519      // Handle the sign bit, adjusted to where it is now in the mask.
1520      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1521
1522      // If the input sign bit is known to be zero, or if none of the top bits
1523      // are demanded, turn this into an unsigned shift right.
1524      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1525        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1526                                                 Op.getOperand(0),
1527                                                 Op.getOperand(1)));
1528      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1529        KnownOne |= HighBits;
1530      }
1531    }
1532    break;
1533  case ISD::SIGN_EXTEND_INREG: {
1534    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1535
1536    // Sign extension.  Compute the demanded bits in the result that are not
1537    // present in the input.
1538    APInt NewBits =
1539      APInt::getHighBitsSet(BitWidth,
1540                            BitWidth - EVT.getScalarType().getSizeInBits());
1541
1542    // If none of the extended bits are demanded, eliminate the sextinreg.
1543    if ((NewBits & NewMask) == 0)
1544      return TLO.CombineTo(Op, Op.getOperand(0));
1545
1546    APInt InSignBit =
1547      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1548    APInt InputDemandedBits =
1549      APInt::getLowBitsSet(BitWidth,
1550                           EVT.getScalarType().getSizeInBits()) &
1551      NewMask;
1552
1553    // Since the sign extended bits are demanded, we know that the sign
1554    // bit is demanded.
1555    InputDemandedBits |= InSignBit;
1556
1557    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1558                             KnownZero, KnownOne, TLO, Depth+1))
1559      return true;
1560    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1561
1562    // If the sign bit of the input is known set or clear, then we know the
1563    // top bits of the result.
1564
1565    // If the input sign bit is known zero, convert this into a zero extension.
1566    if (KnownZero.intersects(InSignBit))
1567      return TLO.CombineTo(Op,
1568                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1569
1570    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1571      KnownOne |= NewBits;
1572      KnownZero &= ~NewBits;
1573    } else {                       // Input sign bit unknown
1574      KnownZero &= ~NewBits;
1575      KnownOne &= ~NewBits;
1576    }
1577    break;
1578  }
1579  case ISD::ZERO_EXTEND: {
1580    unsigned OperandBitWidth =
1581      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1582    APInt InMask = NewMask.trunc(OperandBitWidth);
1583
1584    // If none of the top bits are demanded, convert this into an any_extend.
1585    APInt NewBits =
1586      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1587    if (!NewBits.intersects(NewMask))
1588      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1589                                               Op.getValueType(),
1590                                               Op.getOperand(0)));
1591
1592    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1593                             KnownZero, KnownOne, TLO, Depth+1))
1594      return true;
1595    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596    KnownZero = KnownZero.zext(BitWidth);
1597    KnownOne = KnownOne.zext(BitWidth);
1598    KnownZero |= NewBits;
1599    break;
1600  }
1601  case ISD::SIGN_EXTEND: {
1602    EVT InVT = Op.getOperand(0).getValueType();
1603    unsigned InBits = InVT.getScalarType().getSizeInBits();
1604    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1605    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1606    APInt NewBits   = ~InMask & NewMask;
1607
1608    // If none of the top bits are demanded, convert this into an any_extend.
1609    if (NewBits == 0)
1610      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1611                                              Op.getValueType(),
1612                                              Op.getOperand(0)));
1613
1614    // Since some of the sign extended bits are demanded, we know that the sign
1615    // bit is demanded.
1616    APInt InDemandedBits = InMask & NewMask;
1617    InDemandedBits |= InSignBit;
1618    InDemandedBits = InDemandedBits.trunc(InBits);
1619
1620    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1621                             KnownOne, TLO, Depth+1))
1622      return true;
1623    KnownZero = KnownZero.zext(BitWidth);
1624    KnownOne = KnownOne.zext(BitWidth);
1625
1626    // If the sign bit is known zero, convert this to a zero extend.
1627    if (KnownZero.intersects(InSignBit))
1628      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1629                                               Op.getValueType(),
1630                                               Op.getOperand(0)));
1631
1632    // If the sign bit is known one, the top bits match.
1633    if (KnownOne.intersects(InSignBit)) {
1634      KnownOne  |= NewBits;
1635      KnownZero &= ~NewBits;
1636    } else {   // Otherwise, top bits aren't known.
1637      KnownOne  &= ~NewBits;
1638      KnownZero &= ~NewBits;
1639    }
1640    break;
1641  }
1642  case ISD::ANY_EXTEND: {
1643    unsigned OperandBitWidth =
1644      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1645    APInt InMask = NewMask.trunc(OperandBitWidth);
1646    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1647                             KnownZero, KnownOne, TLO, Depth+1))
1648      return true;
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    KnownZero = KnownZero.zext(BitWidth);
1651    KnownOne = KnownOne.zext(BitWidth);
1652    break;
1653  }
1654  case ISD::TRUNCATE: {
1655    // Simplify the input, using demanded bit information, and compute the known
1656    // zero/one bits live out.
1657    unsigned OperandBitWidth =
1658      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1659    APInt TruncMask = NewMask.zext(OperandBitWidth);
1660    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1661                             KnownZero, KnownOne, TLO, Depth+1))
1662      return true;
1663    KnownZero = KnownZero.trunc(BitWidth);
1664    KnownOne = KnownOne.trunc(BitWidth);
1665
1666    // If the input is only used by this truncate, see if we can shrink it based
1667    // on the known demanded bits.
1668    if (Op.getOperand(0).getNode()->hasOneUse()) {
1669      SDValue In = Op.getOperand(0);
1670      switch (In.getOpcode()) {
1671      default: break;
1672      case ISD::SRL:
1673        // Shrink SRL by a constant if none of the high bits shifted in are
1674        // demanded.
1675        if (TLO.LegalTypes() &&
1676            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1677          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1678          // undesirable.
1679          break;
1680        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1681        if (!ShAmt)
1682          break;
1683        SDValue Shift = In.getOperand(1);
1684        if (TLO.LegalTypes()) {
1685          uint64_t ShVal = ShAmt->getZExtValue();
1686          Shift =
1687            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1688        }
1689
1690        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1691                                               OperandBitWidth - BitWidth);
1692        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1693
1694        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1695          // None of the shifted in bits are needed.  Add a truncate of the
1696          // shift input, then shift it.
1697          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1698                                             Op.getValueType(),
1699                                             In.getOperand(0));
1700          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1701                                                   Op.getValueType(),
1702                                                   NewTrunc,
1703                                                   Shift));
1704        }
1705        break;
1706      }
1707    }
1708
1709    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1710    break;
1711  }
1712  case ISD::AssertZext: {
1713    // Demand all the bits of the input that are demanded in the output.
1714    // The low bits are obvious; the high bits are demanded because we're
1715    // asserting that they're zero here.
1716    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1717                             KnownZero, KnownOne, TLO, Depth+1))
1718      return true;
1719    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1720
1721    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1722    APInt InMask = APInt::getLowBitsSet(BitWidth,
1723                                        VT.getSizeInBits());
1724    KnownZero |= ~InMask & NewMask;
1725    break;
1726  }
1727  case ISD::BITCAST:
1728#if 0
1729    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1730    // is demanded, turn this into a FGETSIGN.
1731    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1732        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1733        !MVT::isVector(Op.getOperand(0).getValueType())) {
1734      // Only do this xform if FGETSIGN is valid or if before legalize.
1735      if (!TLO.AfterLegalize ||
1736          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1737        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1738        // place.  We expect the SHL to be eliminated by other optimizations.
1739        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1740                                         Op.getOperand(0));
1741        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1742        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1743        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1744                                                 Sign, ShAmt));
1745      }
1746    }
1747#endif
1748    break;
1749  case ISD::ADD:
1750  case ISD::MUL:
1751  case ISD::SUB: {
1752    // Add, Sub, and Mul don't demand any bits in positions beyond that
1753    // of the highest bit demanded of them.
1754    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1755                                        BitWidth - NewMask.countLeadingZeros());
1756    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1757                             KnownOne2, TLO, Depth+1))
1758      return true;
1759    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1760                             KnownOne2, TLO, Depth+1))
1761      return true;
1762    // See if the operation should be performed at a smaller bit width.
1763    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1764      return true;
1765  }
1766  // FALL THROUGH
1767  default:
1768    // Just use ComputeMaskedBits to compute output bits.
1769    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1770    break;
1771  }
1772
1773  // If we know the value of all of the demanded bits, return this as a
1774  // constant.
1775  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1776    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1777
1778  return false;
1779}
1780
1781/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1782/// in Mask are known to be either zero or one and return them in the
1783/// KnownZero/KnownOne bitsets.
1784void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1785                                                    const APInt &Mask,
1786                                                    APInt &KnownZero,
1787                                                    APInt &KnownOne,
1788                                                    const SelectionDAG &DAG,
1789                                                    unsigned Depth) const {
1790  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1791          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1792          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1793          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1794         "Should use MaskedValueIsZero if you don't know whether Op"
1795         " is a target node!");
1796  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1797}
1798
1799/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1800/// targets that want to expose additional information about sign bits to the
1801/// DAG Combiner.
1802unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1803                                                         unsigned Depth) const {
1804  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1805          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1806          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1807          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1808         "Should use ComputeNumSignBits if you don't know whether Op"
1809         " is a target node!");
1810  return 1;
1811}
1812
1813/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1814/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1815/// determine which bit is set.
1816///
1817static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1818  // A left-shift of a constant one will have exactly one bit set, because
1819  // shifting the bit off the end is undefined.
1820  if (Val.getOpcode() == ISD::SHL)
1821    if (ConstantSDNode *C =
1822         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1823      if (C->getAPIntValue() == 1)
1824        return true;
1825
1826  // Similarly, a right-shift of a constant sign-bit will have exactly
1827  // one bit set.
1828  if (Val.getOpcode() == ISD::SRL)
1829    if (ConstantSDNode *C =
1830         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1831      if (C->getAPIntValue().isSignBit())
1832        return true;
1833
1834  // More could be done here, though the above checks are enough
1835  // to handle some common cases.
1836
1837  // Fall back to ComputeMaskedBits to catch other known cases.
1838  EVT OpVT = Val.getValueType();
1839  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1840  APInt Mask = APInt::getAllOnesValue(BitWidth);
1841  APInt KnownZero, KnownOne;
1842  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1843  return (KnownZero.countPopulation() == BitWidth - 1) &&
1844         (KnownOne.countPopulation() == 1);
1845}
1846
1847/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1848/// and cc. If it is unable to simplify it, return a null SDValue.
1849SDValue
1850TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1851                              ISD::CondCode Cond, bool foldBooleans,
1852                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1853  SelectionDAG &DAG = DCI.DAG;
1854
1855  // These setcc operations always fold.
1856  switch (Cond) {
1857  default: break;
1858  case ISD::SETFALSE:
1859  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1860  case ISD::SETTRUE:
1861  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1862  }
1863
1864  // Ensure that the constant occurs on the RHS, and fold constant
1865  // comparisons.
1866  if (isa<ConstantSDNode>(N0.getNode()))
1867    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1868
1869  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1870    const APInt &C1 = N1C->getAPIntValue();
1871
1872    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1873    // equality comparison, then we're just comparing whether X itself is
1874    // zero.
1875    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1876        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1877        N0.getOperand(1).getOpcode() == ISD::Constant) {
1878      const APInt &ShAmt
1879        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1880      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1881          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1882        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1883          // (srl (ctlz x), 5) == 0  -> X != 0
1884          // (srl (ctlz x), 5) != 1  -> X != 0
1885          Cond = ISD::SETNE;
1886        } else {
1887          // (srl (ctlz x), 5) != 0  -> X == 0
1888          // (srl (ctlz x), 5) == 1  -> X == 0
1889          Cond = ISD::SETEQ;
1890        }
1891        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1892        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1893                            Zero, Cond);
1894      }
1895    }
1896
1897    SDValue CTPOP = N0;
1898    // Look through truncs that don't change the value of a ctpop.
1899    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1900      CTPOP = N0.getOperand(0);
1901
1902    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1903        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1904                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1905      EVT CTVT = CTPOP.getValueType();
1906      SDValue CTOp = CTPOP.getOperand(0);
1907
1908      // (ctpop x) u< 2 -> (x & x-1) == 0
1909      // (ctpop x) u> 1 -> (x & x-1) != 0
1910      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1911        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1912                                  DAG.getConstant(1, CTVT));
1913        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1914        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1915        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1916      }
1917
1918      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1919    }
1920
1921    // (zext x) == C --> x == (trunc C)
1922    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1923        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1924      unsigned MinBits = N0.getValueSizeInBits();
1925      SDValue PreZExt;
1926      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1927        // ZExt
1928        MinBits = N0->getOperand(0).getValueSizeInBits();
1929        PreZExt = N0->getOperand(0);
1930      } else if (N0->getOpcode() == ISD::AND) {
1931        // DAGCombine turns costly ZExts into ANDs
1932        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1933          if ((C->getAPIntValue()+1).isPowerOf2()) {
1934            MinBits = C->getAPIntValue().countTrailingOnes();
1935            PreZExt = N0->getOperand(0);
1936          }
1937      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1938        // ZEXTLOAD
1939        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1940          MinBits = LN0->getMemoryVT().getSizeInBits();
1941          PreZExt = N0;
1942        }
1943      }
1944
1945      // Make sure we're not loosing bits from the constant.
1946      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
1947        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1948        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1949          // Will get folded away.
1950          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
1951          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1952          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1953        }
1954      }
1955    }
1956
1957    // If the LHS is '(and load, const)', the RHS is 0,
1958    // the test is for equality or unsigned, and all 1 bits of the const are
1959    // in the same partial word, see if we can shorten the load.
1960    if (DCI.isBeforeLegalize() &&
1961        N0.getOpcode() == ISD::AND && C1 == 0 &&
1962        N0.getNode()->hasOneUse() &&
1963        isa<LoadSDNode>(N0.getOperand(0)) &&
1964        N0.getOperand(0).getNode()->hasOneUse() &&
1965        isa<ConstantSDNode>(N0.getOperand(1))) {
1966      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1967      APInt bestMask;
1968      unsigned bestWidth = 0, bestOffset = 0;
1969      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1970        unsigned origWidth = N0.getValueType().getSizeInBits();
1971        unsigned maskWidth = origWidth;
1972        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1973        // 8 bits, but have to be careful...
1974        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1975          origWidth = Lod->getMemoryVT().getSizeInBits();
1976        const APInt &Mask =
1977          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1978        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1979          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1980          for (unsigned offset=0; offset<origWidth/width; offset++) {
1981            if ((newMask & Mask) == Mask) {
1982              if (!TD->isLittleEndian())
1983                bestOffset = (origWidth/width - offset - 1) * (width/8);
1984              else
1985                bestOffset = (uint64_t)offset * (width/8);
1986              bestMask = Mask.lshr(offset * (width/8) * 8);
1987              bestWidth = width;
1988              break;
1989            }
1990            newMask = newMask << width;
1991          }
1992        }
1993      }
1994      if (bestWidth) {
1995        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1996        if (newVT.isRound()) {
1997          EVT PtrType = Lod->getOperand(1).getValueType();
1998          SDValue Ptr = Lod->getBasePtr();
1999          if (bestOffset != 0)
2000            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2001                              DAG.getConstant(bestOffset, PtrType));
2002          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2003          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2004                                Lod->getPointerInfo().getWithOffset(bestOffset),
2005                                        false, false, NewAlign);
2006          return DAG.getSetCC(dl, VT,
2007                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2008                                      DAG.getConstant(bestMask.trunc(bestWidth),
2009                                                      newVT)),
2010                              DAG.getConstant(0LL, newVT), Cond);
2011        }
2012      }
2013    }
2014
2015    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2016    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2017      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2018
2019      // If the comparison constant has bits in the upper part, the
2020      // zero-extended value could never match.
2021      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2022                                              C1.getBitWidth() - InSize))) {
2023        switch (Cond) {
2024        case ISD::SETUGT:
2025        case ISD::SETUGE:
2026        case ISD::SETEQ: return DAG.getConstant(0, VT);
2027        case ISD::SETULT:
2028        case ISD::SETULE:
2029        case ISD::SETNE: return DAG.getConstant(1, VT);
2030        case ISD::SETGT:
2031        case ISD::SETGE:
2032          // True if the sign bit of C1 is set.
2033          return DAG.getConstant(C1.isNegative(), VT);
2034        case ISD::SETLT:
2035        case ISD::SETLE:
2036          // True if the sign bit of C1 isn't set.
2037          return DAG.getConstant(C1.isNonNegative(), VT);
2038        default:
2039          break;
2040        }
2041      }
2042
2043      // Otherwise, we can perform the comparison with the low bits.
2044      switch (Cond) {
2045      case ISD::SETEQ:
2046      case ISD::SETNE:
2047      case ISD::SETUGT:
2048      case ISD::SETUGE:
2049      case ISD::SETULT:
2050      case ISD::SETULE: {
2051        EVT newVT = N0.getOperand(0).getValueType();
2052        if (DCI.isBeforeLegalizeOps() ||
2053            (isOperationLegal(ISD::SETCC, newVT) &&
2054              getCondCodeAction(Cond, newVT)==Legal))
2055          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2056                              DAG.getConstant(C1.trunc(InSize), newVT),
2057                              Cond);
2058        break;
2059      }
2060      default:
2061        break;   // todo, be more careful with signed comparisons
2062      }
2063    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2064               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2065      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2066      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2067      EVT ExtDstTy = N0.getValueType();
2068      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2069
2070      // If the constant doesn't fit into the number of bits for the source of
2071      // the sign extension, it is impossible for both sides to be equal.
2072      if (C1.getMinSignedBits() > ExtSrcTyBits)
2073        return DAG.getConstant(Cond == ISD::SETNE, VT);
2074
2075      SDValue ZextOp;
2076      EVT Op0Ty = N0.getOperand(0).getValueType();
2077      if (Op0Ty == ExtSrcTy) {
2078        ZextOp = N0.getOperand(0);
2079      } else {
2080        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2081        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2082                              DAG.getConstant(Imm, Op0Ty));
2083      }
2084      if (!DCI.isCalledByLegalizer())
2085        DCI.AddToWorklist(ZextOp.getNode());
2086      // Otherwise, make this a use of a zext.
2087      return DAG.getSetCC(dl, VT, ZextOp,
2088                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2089                                                              ExtDstTyBits,
2090                                                              ExtSrcTyBits),
2091                                          ExtDstTy),
2092                          Cond);
2093    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2094                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2095      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2096      if (N0.getOpcode() == ISD::SETCC &&
2097          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2098        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2099        if (TrueWhenTrue)
2100          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2101        // Invert the condition.
2102        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2103        CC = ISD::getSetCCInverse(CC,
2104                                  N0.getOperand(0).getValueType().isInteger());
2105        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2106      }
2107
2108      if ((N0.getOpcode() == ISD::XOR ||
2109           (N0.getOpcode() == ISD::AND &&
2110            N0.getOperand(0).getOpcode() == ISD::XOR &&
2111            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2112          isa<ConstantSDNode>(N0.getOperand(1)) &&
2113          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2114        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2115        // can only do this if the top bits are known zero.
2116        unsigned BitWidth = N0.getValueSizeInBits();
2117        if (DAG.MaskedValueIsZero(N0,
2118                                  APInt::getHighBitsSet(BitWidth,
2119                                                        BitWidth-1))) {
2120          // Okay, get the un-inverted input value.
2121          SDValue Val;
2122          if (N0.getOpcode() == ISD::XOR)
2123            Val = N0.getOperand(0);
2124          else {
2125            assert(N0.getOpcode() == ISD::AND &&
2126                    N0.getOperand(0).getOpcode() == ISD::XOR);
2127            // ((X^1)&1)^1 -> X & 1
2128            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2129                              N0.getOperand(0).getOperand(0),
2130                              N0.getOperand(1));
2131          }
2132
2133          return DAG.getSetCC(dl, VT, Val, N1,
2134                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2135        }
2136      } else if (N1C->getAPIntValue() == 1 &&
2137                 (VT == MVT::i1 ||
2138                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2139        SDValue Op0 = N0;
2140        if (Op0.getOpcode() == ISD::TRUNCATE)
2141          Op0 = Op0.getOperand(0);
2142
2143        if ((Op0.getOpcode() == ISD::XOR) &&
2144            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2145            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2146          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2147          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2148          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2149                              Cond);
2150        } else if (Op0.getOpcode() == ISD::AND &&
2151                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2152                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2153          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2154          if (Op0.getValueType().bitsGT(VT))
2155            Op0 = DAG.getNode(ISD::AND, dl, VT,
2156                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2157                          DAG.getConstant(1, VT));
2158          else if (Op0.getValueType().bitsLT(VT))
2159            Op0 = DAG.getNode(ISD::AND, dl, VT,
2160                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2161                        DAG.getConstant(1, VT));
2162
2163          return DAG.getSetCC(dl, VT, Op0,
2164                              DAG.getConstant(0, Op0.getValueType()),
2165                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2166        }
2167      }
2168    }
2169
2170    APInt MinVal, MaxVal;
2171    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2172    if (ISD::isSignedIntSetCC(Cond)) {
2173      MinVal = APInt::getSignedMinValue(OperandBitSize);
2174      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2175    } else {
2176      MinVal = APInt::getMinValue(OperandBitSize);
2177      MaxVal = APInt::getMaxValue(OperandBitSize);
2178    }
2179
2180    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2181    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2182      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2183      // X >= C0 --> X > (C0-1)
2184      return DAG.getSetCC(dl, VT, N0,
2185                          DAG.getConstant(C1-1, N1.getValueType()),
2186                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2187    }
2188
2189    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2190      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2191      // X <= C0 --> X < (C0+1)
2192      return DAG.getSetCC(dl, VT, N0,
2193                          DAG.getConstant(C1+1, N1.getValueType()),
2194                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2195    }
2196
2197    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2198      return DAG.getConstant(0, VT);      // X < MIN --> false
2199    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2200      return DAG.getConstant(1, VT);      // X >= MIN --> true
2201    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2202      return DAG.getConstant(0, VT);      // X > MAX --> false
2203    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2204      return DAG.getConstant(1, VT);      // X <= MAX --> true
2205
2206    // Canonicalize setgt X, Min --> setne X, Min
2207    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2208      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2209    // Canonicalize setlt X, Max --> setne X, Max
2210    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2211      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2212
2213    // If we have setult X, 1, turn it into seteq X, 0
2214    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2215      return DAG.getSetCC(dl, VT, N0,
2216                          DAG.getConstant(MinVal, N0.getValueType()),
2217                          ISD::SETEQ);
2218    // If we have setugt X, Max-1, turn it into seteq X, Max
2219    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2220      return DAG.getSetCC(dl, VT, N0,
2221                          DAG.getConstant(MaxVal, N0.getValueType()),
2222                          ISD::SETEQ);
2223
2224    // If we have "setcc X, C0", check to see if we can shrink the immediate
2225    // by changing cc.
2226
2227    // SETUGT X, SINTMAX  -> SETLT X, 0
2228    if (Cond == ISD::SETUGT &&
2229        C1 == APInt::getSignedMaxValue(OperandBitSize))
2230      return DAG.getSetCC(dl, VT, N0,
2231                          DAG.getConstant(0, N1.getValueType()),
2232                          ISD::SETLT);
2233
2234    // SETULT X, SINTMIN  -> SETGT X, -1
2235    if (Cond == ISD::SETULT &&
2236        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2237      SDValue ConstMinusOne =
2238          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2239                          N1.getValueType());
2240      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2241    }
2242
2243    // Fold bit comparisons when we can.
2244    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2245        (VT == N0.getValueType() ||
2246         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2247        N0.getOpcode() == ISD::AND)
2248      if (ConstantSDNode *AndRHS =
2249                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2250        EVT ShiftTy = DCI.isBeforeLegalize() ?
2251          getPointerTy() : getShiftAmountTy(N0.getValueType());
2252        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2253          // Perform the xform if the AND RHS is a single bit.
2254          if (AndRHS->getAPIntValue().isPowerOf2()) {
2255            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2256                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2257                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2258          }
2259        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2260          // (X & 8) == 8  -->  (X & 8) >> 3
2261          // Perform the xform if C1 is a single bit.
2262          if (C1.isPowerOf2()) {
2263            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2264                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2265                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2266          }
2267        }
2268      }
2269  }
2270
2271  if (isa<ConstantFPSDNode>(N0.getNode())) {
2272    // Constant fold or commute setcc.
2273    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2274    if (O.getNode()) return O;
2275  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2276    // If the RHS of an FP comparison is a constant, simplify it away in
2277    // some cases.
2278    if (CFP->getValueAPF().isNaN()) {
2279      // If an operand is known to be a nan, we can fold it.
2280      switch (ISD::getUnorderedFlavor(Cond)) {
2281      default: llvm_unreachable("Unknown flavor!");
2282      case 0:  // Known false.
2283        return DAG.getConstant(0, VT);
2284      case 1:  // Known true.
2285        return DAG.getConstant(1, VT);
2286      case 2:  // Undefined.
2287        return DAG.getUNDEF(VT);
2288      }
2289    }
2290
2291    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2292    // constant if knowing that the operand is non-nan is enough.  We prefer to
2293    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2294    // materialize 0.0.
2295    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2296      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2297
2298    // If the condition is not legal, see if we can find an equivalent one
2299    // which is legal.
2300    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2301      // If the comparison was an awkward floating-point == or != and one of
2302      // the comparison operands is infinity or negative infinity, convert the
2303      // condition to a less-awkward <= or >=.
2304      if (CFP->getValueAPF().isInfinity()) {
2305        if (CFP->getValueAPF().isNegative()) {
2306          if (Cond == ISD::SETOEQ &&
2307              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2308            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2309          if (Cond == ISD::SETUEQ &&
2310              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2311            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2312          if (Cond == ISD::SETUNE &&
2313              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2314            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2315          if (Cond == ISD::SETONE &&
2316              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2317            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2318        } else {
2319          if (Cond == ISD::SETOEQ &&
2320              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2321            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2322          if (Cond == ISD::SETUEQ &&
2323              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2324            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2325          if (Cond == ISD::SETUNE &&
2326              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2327            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2328          if (Cond == ISD::SETONE &&
2329              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2330            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2331        }
2332      }
2333    }
2334  }
2335
2336  if (N0 == N1) {
2337    // We can always fold X == X for integer setcc's.
2338    if (N0.getValueType().isInteger())
2339      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2340    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2341    if (UOF == 2)   // FP operators that are undefined on NaNs.
2342      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2343    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2344      return DAG.getConstant(UOF, VT);
2345    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2346    // if it is not already.
2347    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2348    if (NewCond != Cond)
2349      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2350  }
2351
2352  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2353      N0.getValueType().isInteger()) {
2354    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2355        N0.getOpcode() == ISD::XOR) {
2356      // Simplify (X+Y) == (X+Z) -->  Y == Z
2357      if (N0.getOpcode() == N1.getOpcode()) {
2358        if (N0.getOperand(0) == N1.getOperand(0))
2359          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2360        if (N0.getOperand(1) == N1.getOperand(1))
2361          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2362        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2363          // If X op Y == Y op X, try other combinations.
2364          if (N0.getOperand(0) == N1.getOperand(1))
2365            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2366                                Cond);
2367          if (N0.getOperand(1) == N1.getOperand(0))
2368            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2369                                Cond);
2370        }
2371      }
2372
2373      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2374        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2375          // Turn (X+C1) == C2 --> X == C2-C1
2376          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2377            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2378                                DAG.getConstant(RHSC->getAPIntValue()-
2379                                                LHSR->getAPIntValue(),
2380                                N0.getValueType()), Cond);
2381          }
2382
2383          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2384          if (N0.getOpcode() == ISD::XOR)
2385            // If we know that all of the inverted bits are zero, don't bother
2386            // performing the inversion.
2387            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2388              return
2389                DAG.getSetCC(dl, VT, N0.getOperand(0),
2390                             DAG.getConstant(LHSR->getAPIntValue() ^
2391                                               RHSC->getAPIntValue(),
2392                                             N0.getValueType()),
2393                             Cond);
2394        }
2395
2396        // Turn (C1-X) == C2 --> X == C1-C2
2397        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2398          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2399            return
2400              DAG.getSetCC(dl, VT, N0.getOperand(1),
2401                           DAG.getConstant(SUBC->getAPIntValue() -
2402                                             RHSC->getAPIntValue(),
2403                                           N0.getValueType()),
2404                           Cond);
2405          }
2406        }
2407      }
2408
2409      // Simplify (X+Z) == X -->  Z == 0
2410      if (N0.getOperand(0) == N1)
2411        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2412                        DAG.getConstant(0, N0.getValueType()), Cond);
2413      if (N0.getOperand(1) == N1) {
2414        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2415          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2416                          DAG.getConstant(0, N0.getValueType()), Cond);
2417        else if (N0.getNode()->hasOneUse()) {
2418          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2419          // (Z-X) == X  --> Z == X<<1
2420          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2421                                     N1,
2422                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2423          if (!DCI.isCalledByLegalizer())
2424            DCI.AddToWorklist(SH.getNode());
2425          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2426        }
2427      }
2428    }
2429
2430    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2431        N1.getOpcode() == ISD::XOR) {
2432      // Simplify  X == (X+Z) -->  Z == 0
2433      if (N1.getOperand(0) == N0) {
2434        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2435                        DAG.getConstant(0, N1.getValueType()), Cond);
2436      } else if (N1.getOperand(1) == N0) {
2437        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2438          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2439                          DAG.getConstant(0, N1.getValueType()), Cond);
2440        } else if (N1.getNode()->hasOneUse()) {
2441          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2442          // X == (Z-X)  --> X<<1 == Z
2443          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2444                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2445          if (!DCI.isCalledByLegalizer())
2446            DCI.AddToWorklist(SH.getNode());
2447          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2448        }
2449      }
2450    }
2451
2452    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2453    // Note that where y is variable and is known to have at most
2454    // one bit set (for example, if it is z&1) we cannot do this;
2455    // the expressions are not equivalent when y==0.
2456    if (N0.getOpcode() == ISD::AND)
2457      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2458        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2459          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2460          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2461          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2462        }
2463      }
2464    if (N1.getOpcode() == ISD::AND)
2465      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2466        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2467          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2468          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2469          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2470        }
2471      }
2472  }
2473
2474  // Fold away ALL boolean setcc's.
2475  SDValue Temp;
2476  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2477    switch (Cond) {
2478    default: llvm_unreachable("Unknown integer setcc!");
2479    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2480      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2481      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2482      if (!DCI.isCalledByLegalizer())
2483        DCI.AddToWorklist(Temp.getNode());
2484      break;
2485    case ISD::SETNE:  // X != Y   -->  (X^Y)
2486      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2487      break;
2488    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2489    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2490      Temp = DAG.getNOT(dl, N0, MVT::i1);
2491      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2492      if (!DCI.isCalledByLegalizer())
2493        DCI.AddToWorklist(Temp.getNode());
2494      break;
2495    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2496    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2497      Temp = DAG.getNOT(dl, N1, MVT::i1);
2498      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2499      if (!DCI.isCalledByLegalizer())
2500        DCI.AddToWorklist(Temp.getNode());
2501      break;
2502    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2503    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2504      Temp = DAG.getNOT(dl, N0, MVT::i1);
2505      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2506      if (!DCI.isCalledByLegalizer())
2507        DCI.AddToWorklist(Temp.getNode());
2508      break;
2509    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2510    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2511      Temp = DAG.getNOT(dl, N1, MVT::i1);
2512      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2513      break;
2514    }
2515    if (VT != MVT::i1) {
2516      if (!DCI.isCalledByLegalizer())
2517        DCI.AddToWorklist(N0.getNode());
2518      // FIXME: If running after legalize, we probably can't do this.
2519      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2520    }
2521    return N0;
2522  }
2523
2524  // Could not fold it.
2525  return SDValue();
2526}
2527
2528/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2529/// node is a GlobalAddress + offset.
2530bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2531                                    int64_t &Offset) const {
2532  if (isa<GlobalAddressSDNode>(N)) {
2533    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2534    GA = GASD->getGlobal();
2535    Offset += GASD->getOffset();
2536    return true;
2537  }
2538
2539  if (N->getOpcode() == ISD::ADD) {
2540    SDValue N1 = N->getOperand(0);
2541    SDValue N2 = N->getOperand(1);
2542    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2543      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2544      if (V) {
2545        Offset += V->getSExtValue();
2546        return true;
2547      }
2548    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2549      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2550      if (V) {
2551        Offset += V->getSExtValue();
2552        return true;
2553      }
2554    }
2555  }
2556
2557  return false;
2558}
2559
2560
2561SDValue TargetLowering::
2562PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2563  // Default implementation: no optimization.
2564  return SDValue();
2565}
2566
2567//===----------------------------------------------------------------------===//
2568//  Inline Assembler Implementation Methods
2569//===----------------------------------------------------------------------===//
2570
2571
2572TargetLowering::ConstraintType
2573TargetLowering::getConstraintType(const std::string &Constraint) const {
2574  // FIXME: lots more standard ones to handle.
2575  if (Constraint.size() == 1) {
2576    switch (Constraint[0]) {
2577    default: break;
2578    case 'r': return C_RegisterClass;
2579    case 'm':    // memory
2580    case 'o':    // offsetable
2581    case 'V':    // not offsetable
2582      return C_Memory;
2583    case 'i':    // Simple Integer or Relocatable Constant
2584    case 'n':    // Simple Integer
2585    case 'E':    // Floating Point Constant
2586    case 'F':    // Floating Point Constant
2587    case 's':    // Relocatable Constant
2588    case 'p':    // Address.
2589    case 'X':    // Allow ANY value.
2590    case 'I':    // Target registers.
2591    case 'J':
2592    case 'K':
2593    case 'L':
2594    case 'M':
2595    case 'N':
2596    case 'O':
2597    case 'P':
2598    case '<':
2599    case '>':
2600      return C_Other;
2601    }
2602  }
2603
2604  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2605      Constraint[Constraint.size()-1] == '}')
2606    return C_Register;
2607  return C_Unknown;
2608}
2609
2610/// LowerXConstraint - try to replace an X constraint, which matches anything,
2611/// with another that has more specific requirements based on the type of the
2612/// corresponding operand.
2613const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2614  if (ConstraintVT.isInteger())
2615    return "r";
2616  if (ConstraintVT.isFloatingPoint())
2617    return "f";      // works for many targets
2618  return 0;
2619}
2620
2621/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2622/// vector.  If it is invalid, don't add anything to Ops.
2623void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2624                                                  char ConstraintLetter,
2625                                                  std::vector<SDValue> &Ops,
2626                                                  SelectionDAG &DAG) const {
2627  switch (ConstraintLetter) {
2628  default: break;
2629  case 'X':     // Allows any operand; labels (basic block) use this.
2630    if (Op.getOpcode() == ISD::BasicBlock) {
2631      Ops.push_back(Op);
2632      return;
2633    }
2634    // fall through
2635  case 'i':    // Simple Integer or Relocatable Constant
2636  case 'n':    // Simple Integer
2637  case 's': {  // Relocatable Constant
2638    // These operands are interested in values of the form (GV+C), where C may
2639    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2640    // is possible and fine if either GV or C are missing.
2641    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2642    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2643
2644    // If we have "(add GV, C)", pull out GV/C
2645    if (Op.getOpcode() == ISD::ADD) {
2646      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2647      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2648      if (C == 0 || GA == 0) {
2649        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2650        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2651      }
2652      if (C == 0 || GA == 0)
2653        C = 0, GA = 0;
2654    }
2655
2656    // If we find a valid operand, map to the TargetXXX version so that the
2657    // value itself doesn't get selected.
2658    if (GA) {   // Either &GV   or   &GV+C
2659      if (ConstraintLetter != 'n') {
2660        int64_t Offs = GA->getOffset();
2661        if (C) Offs += C->getZExtValue();
2662        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2663                                                 C ? C->getDebugLoc() : DebugLoc(),
2664                                                 Op.getValueType(), Offs));
2665        return;
2666      }
2667    }
2668    if (C) {   // just C, no GV.
2669      // Simple constants are not allowed for 's'.
2670      if (ConstraintLetter != 's') {
2671        // gcc prints these as sign extended.  Sign extend value to 64 bits
2672        // now; without this it would get ZExt'd later in
2673        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2674        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2675                                            MVT::i64));
2676        return;
2677      }
2678    }
2679    break;
2680  }
2681  }
2682}
2683
2684std::vector<unsigned> TargetLowering::
2685getRegClassForInlineAsmConstraint(const std::string &Constraint,
2686                                  EVT VT) const {
2687  return std::vector<unsigned>();
2688}
2689
2690
2691std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2692getRegForInlineAsmConstraint(const std::string &Constraint,
2693                             EVT VT) const {
2694  if (Constraint[0] != '{')
2695    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2696  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2697
2698  // Remove the braces from around the name.
2699  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2700
2701  // Figure out which register class contains this reg.
2702  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2703  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2704       E = RI->regclass_end(); RCI != E; ++RCI) {
2705    const TargetRegisterClass *RC = *RCI;
2706
2707    // If none of the value types for this register class are valid, we
2708    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2709    bool isLegal = false;
2710    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2711         I != E; ++I) {
2712      if (isTypeLegal(*I)) {
2713        isLegal = true;
2714        break;
2715      }
2716    }
2717
2718    if (!isLegal) continue;
2719
2720    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2721         I != E; ++I) {
2722      if (RegName.equals_lower(RI->getName(*I)))
2723        return std::make_pair(*I, RC);
2724    }
2725  }
2726
2727  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2728}
2729
2730//===----------------------------------------------------------------------===//
2731// Constraint Selection.
2732
2733/// isMatchingInputConstraint - Return true of this is an input operand that is
2734/// a matching constraint like "4".
2735bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2736  assert(!ConstraintCode.empty() && "No known constraint!");
2737  return isdigit(ConstraintCode[0]);
2738}
2739
2740/// getMatchedOperand - If this is an input matching constraint, this method
2741/// returns the output operand it matches.
2742unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2743  assert(!ConstraintCode.empty() && "No known constraint!");
2744  return atoi(ConstraintCode.c_str());
2745}
2746
2747
2748/// ParseConstraints - Split up the constraint string from the inline
2749/// assembly value into the specific constraints and their prefixes,
2750/// and also tie in the associated operand values.
2751/// If this returns an empty vector, and if the constraint string itself
2752/// isn't empty, there was an error parsing.
2753TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2754    ImmutableCallSite CS) const {
2755  /// ConstraintOperands - Information about all of the constraints.
2756  AsmOperandInfoVector ConstraintOperands;
2757  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2758  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2759
2760  // Do a prepass over the constraints, canonicalizing them, and building up the
2761  // ConstraintOperands list.
2762  InlineAsm::ConstraintInfoVector
2763    ConstraintInfos = IA->ParseConstraints();
2764
2765  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2766  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2767
2768  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2769    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2770    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2771
2772    // Update multiple alternative constraint count.
2773    if (OpInfo.multipleAlternatives.size() > maCount)
2774      maCount = OpInfo.multipleAlternatives.size();
2775
2776    OpInfo.ConstraintVT = MVT::Other;
2777
2778    // Compute the value type for each operand.
2779    switch (OpInfo.Type) {
2780    case InlineAsm::isOutput:
2781      // Indirect outputs just consume an argument.
2782      if (OpInfo.isIndirect) {
2783        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2784        break;
2785      }
2786
2787      // The return value of the call is this value.  As such, there is no
2788      // corresponding argument.
2789      assert(!CS.getType()->isVoidTy() &&
2790             "Bad inline asm!");
2791      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2792        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2793      } else {
2794        assert(ResNo == 0 && "Asm only has one result!");
2795        OpInfo.ConstraintVT = getValueType(CS.getType());
2796      }
2797      ++ResNo;
2798      break;
2799    case InlineAsm::isInput:
2800      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2801      break;
2802    case InlineAsm::isClobber:
2803      // Nothing to do.
2804      break;
2805    }
2806
2807    if (OpInfo.CallOperandVal) {
2808      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2809      if (OpInfo.isIndirect) {
2810        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2811        if (!PtrTy)
2812          report_fatal_error("Indirect operand for inline asm not a pointer!");
2813        OpTy = PtrTy->getElementType();
2814      }
2815
2816      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2817      if (const StructType *STy = dyn_cast<StructType>(OpTy))
2818        if (STy->getNumElements() == 1)
2819          OpTy = STy->getElementType(0);
2820
2821      // If OpTy is not a single value, it may be a struct/union that we
2822      // can tile with integers.
2823      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2824        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2825        switch (BitSize) {
2826        default: break;
2827        case 1:
2828        case 8:
2829        case 16:
2830        case 32:
2831        case 64:
2832        case 128:
2833          OpInfo.ConstraintVT =
2834              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2835          break;
2836        }
2837      } else if (dyn_cast<PointerType>(OpTy)) {
2838        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2839      } else {
2840        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2841      }
2842    }
2843  }
2844
2845  // If we have multiple alternative constraints, select the best alternative.
2846  if (ConstraintInfos.size()) {
2847    if (maCount) {
2848      unsigned bestMAIndex = 0;
2849      int bestWeight = -1;
2850      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2851      int weight = -1;
2852      unsigned maIndex;
2853      // Compute the sums of the weights for each alternative, keeping track
2854      // of the best (highest weight) one so far.
2855      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2856        int weightSum = 0;
2857        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2858            cIndex != eIndex; ++cIndex) {
2859          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2860          if (OpInfo.Type == InlineAsm::isClobber)
2861            continue;
2862
2863          // If this is an output operand with a matching input operand,
2864          // look up the matching input. If their types mismatch, e.g. one
2865          // is an integer, the other is floating point, or their sizes are
2866          // different, flag it as an maCantMatch.
2867          if (OpInfo.hasMatchingInput()) {
2868            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2869            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2870              if ((OpInfo.ConstraintVT.isInteger() !=
2871                   Input.ConstraintVT.isInteger()) ||
2872                  (OpInfo.ConstraintVT.getSizeInBits() !=
2873                   Input.ConstraintVT.getSizeInBits())) {
2874                weightSum = -1;  // Can't match.
2875                break;
2876              }
2877            }
2878          }
2879          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2880          if (weight == -1) {
2881            weightSum = -1;
2882            break;
2883          }
2884          weightSum += weight;
2885        }
2886        // Update best.
2887        if (weightSum > bestWeight) {
2888          bestWeight = weightSum;
2889          bestMAIndex = maIndex;
2890        }
2891      }
2892
2893      // Now select chosen alternative in each constraint.
2894      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2895          cIndex != eIndex; ++cIndex) {
2896        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2897        if (cInfo.Type == InlineAsm::isClobber)
2898          continue;
2899        cInfo.selectAlternative(bestMAIndex);
2900      }
2901    }
2902  }
2903
2904  // Check and hook up tied operands, choose constraint code to use.
2905  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2906      cIndex != eIndex; ++cIndex) {
2907    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2908
2909    // If this is an output operand with a matching input operand, look up the
2910    // matching input. If their types mismatch, e.g. one is an integer, the
2911    // other is floating point, or their sizes are different, flag it as an
2912    // error.
2913    if (OpInfo.hasMatchingInput()) {
2914      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2915
2916      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2917        if ((OpInfo.ConstraintVT.isInteger() !=
2918             Input.ConstraintVT.isInteger()) ||
2919            (OpInfo.ConstraintVT.getSizeInBits() !=
2920             Input.ConstraintVT.getSizeInBits())) {
2921          report_fatal_error("Unsupported asm: input constraint"
2922                             " with a matching output constraint of"
2923                             " incompatible type!");
2924        }
2925      }
2926
2927    }
2928  }
2929
2930  return ConstraintOperands;
2931}
2932
2933
2934/// getConstraintGenerality - Return an integer indicating how general CT
2935/// is.
2936static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2937  switch (CT) {
2938  default: llvm_unreachable("Unknown constraint type!");
2939  case TargetLowering::C_Other:
2940  case TargetLowering::C_Unknown:
2941    return 0;
2942  case TargetLowering::C_Register:
2943    return 1;
2944  case TargetLowering::C_RegisterClass:
2945    return 2;
2946  case TargetLowering::C_Memory:
2947    return 3;
2948  }
2949}
2950
2951/// Examine constraint type and operand type and determine a weight value.
2952/// This object must already have been set up with the operand type
2953/// and the current alternative constraint selected.
2954TargetLowering::ConstraintWeight
2955  TargetLowering::getMultipleConstraintMatchWeight(
2956    AsmOperandInfo &info, int maIndex) const {
2957  InlineAsm::ConstraintCodeVector *rCodes;
2958  if (maIndex >= (int)info.multipleAlternatives.size())
2959    rCodes = &info.Codes;
2960  else
2961    rCodes = &info.multipleAlternatives[maIndex].Codes;
2962  ConstraintWeight BestWeight = CW_Invalid;
2963
2964  // Loop over the options, keeping track of the most general one.
2965  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2966    ConstraintWeight weight =
2967      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2968    if (weight > BestWeight)
2969      BestWeight = weight;
2970  }
2971
2972  return BestWeight;
2973}
2974
2975/// Examine constraint type and operand type and determine a weight value.
2976/// This object must already have been set up with the operand type
2977/// and the current alternative constraint selected.
2978TargetLowering::ConstraintWeight
2979  TargetLowering::getSingleConstraintMatchWeight(
2980    AsmOperandInfo &info, const char *constraint) const {
2981  ConstraintWeight weight = CW_Invalid;
2982  Value *CallOperandVal = info.CallOperandVal;
2983    // If we don't have a value, we can't do a match,
2984    // but allow it at the lowest weight.
2985  if (CallOperandVal == NULL)
2986    return CW_Default;
2987  // Look at the constraint type.
2988  switch (*constraint) {
2989    case 'i': // immediate integer.
2990    case 'n': // immediate integer with a known value.
2991      if (isa<ConstantInt>(CallOperandVal))
2992        weight = CW_Constant;
2993      break;
2994    case 's': // non-explicit intregal immediate.
2995      if (isa<GlobalValue>(CallOperandVal))
2996        weight = CW_Constant;
2997      break;
2998    case 'E': // immediate float if host format.
2999    case 'F': // immediate float.
3000      if (isa<ConstantFP>(CallOperandVal))
3001        weight = CW_Constant;
3002      break;
3003    case '<': // memory operand with autodecrement.
3004    case '>': // memory operand with autoincrement.
3005    case 'm': // memory operand.
3006    case 'o': // offsettable memory operand
3007    case 'V': // non-offsettable memory operand
3008      weight = CW_Memory;
3009      break;
3010    case 'r': // general register.
3011    case 'g': // general register, memory operand or immediate integer.
3012              // note: Clang converts "g" to "imr".
3013      if (CallOperandVal->getType()->isIntegerTy())
3014        weight = CW_Register;
3015      break;
3016    case 'X': // any operand.
3017    default:
3018      weight = CW_Default;
3019      break;
3020  }
3021  return weight;
3022}
3023
3024/// ChooseConstraint - If there are multiple different constraints that we
3025/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3026/// This is somewhat tricky: constraints fall into four classes:
3027///    Other         -> immediates and magic values
3028///    Register      -> one specific register
3029///    RegisterClass -> a group of regs
3030///    Memory        -> memory
3031/// Ideally, we would pick the most specific constraint possible: if we have
3032/// something that fits into a register, we would pick it.  The problem here
3033/// is that if we have something that could either be in a register or in
3034/// memory that use of the register could cause selection of *other*
3035/// operands to fail: they might only succeed if we pick memory.  Because of
3036/// this the heuristic we use is:
3037///
3038///  1) If there is an 'other' constraint, and if the operand is valid for
3039///     that constraint, use it.  This makes us take advantage of 'i'
3040///     constraints when available.
3041///  2) Otherwise, pick the most general constraint present.  This prefers
3042///     'm' over 'r', for example.
3043///
3044static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3045                             const TargetLowering &TLI,
3046                             SDValue Op, SelectionDAG *DAG) {
3047  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3048  unsigned BestIdx = 0;
3049  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3050  int BestGenerality = -1;
3051
3052  // Loop over the options, keeping track of the most general one.
3053  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3054    TargetLowering::ConstraintType CType =
3055      TLI.getConstraintType(OpInfo.Codes[i]);
3056
3057    // If this is an 'other' constraint, see if the operand is valid for it.
3058    // For example, on X86 we might have an 'rI' constraint.  If the operand
3059    // is an integer in the range [0..31] we want to use I (saving a load
3060    // of a register), otherwise we must use 'r'.
3061    if (CType == TargetLowering::C_Other && Op.getNode()) {
3062      assert(OpInfo.Codes[i].size() == 1 &&
3063             "Unhandled multi-letter 'other' constraint");
3064      std::vector<SDValue> ResultOps;
3065      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
3066                                       ResultOps, *DAG);
3067      if (!ResultOps.empty()) {
3068        BestType = CType;
3069        BestIdx = i;
3070        break;
3071      }
3072    }
3073
3074    // Things with matching constraints can only be registers, per gcc
3075    // documentation.  This mainly affects "g" constraints.
3076    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3077      continue;
3078
3079    // This constraint letter is more general than the previous one, use it.
3080    int Generality = getConstraintGenerality(CType);
3081    if (Generality > BestGenerality) {
3082      BestType = CType;
3083      BestIdx = i;
3084      BestGenerality = Generality;
3085    }
3086  }
3087
3088  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3089  OpInfo.ConstraintType = BestType;
3090}
3091
3092/// ComputeConstraintToUse - Determines the constraint code and constraint
3093/// type to use for the specific AsmOperandInfo, setting
3094/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3095void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3096                                            SDValue Op,
3097                                            SelectionDAG *DAG) const {
3098  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3099
3100  // Single-letter constraints ('r') are very common.
3101  if (OpInfo.Codes.size() == 1) {
3102    OpInfo.ConstraintCode = OpInfo.Codes[0];
3103    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3104  } else {
3105    ChooseConstraint(OpInfo, *this, Op, DAG);
3106  }
3107
3108  // 'X' matches anything.
3109  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3110    // Labels and constants are handled elsewhere ('X' is the only thing
3111    // that matches labels).  For Functions, the type here is the type of
3112    // the result, which is not what we want to look at; leave them alone.
3113    Value *v = OpInfo.CallOperandVal;
3114    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3115      OpInfo.CallOperandVal = v;
3116      return;
3117    }
3118
3119    // Otherwise, try to resolve it to something we know about by looking at
3120    // the actual operand type.
3121    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3122      OpInfo.ConstraintCode = Repl;
3123      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3124    }
3125  }
3126}
3127
3128//===----------------------------------------------------------------------===//
3129//  Loop Strength Reduction hooks
3130//===----------------------------------------------------------------------===//
3131
3132/// isLegalAddressingMode - Return true if the addressing mode represented
3133/// by AM is legal for this target, for a load/store of the specified type.
3134bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3135                                           const Type *Ty) const {
3136  // The default implementation of this implements a conservative RISCy, r+r and
3137  // r+i addr mode.
3138
3139  // Allows a sign-extended 16-bit immediate field.
3140  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3141    return false;
3142
3143  // No global is ever allowed as a base.
3144  if (AM.BaseGV)
3145    return false;
3146
3147  // Only support r+r,
3148  switch (AM.Scale) {
3149  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3150    break;
3151  case 1:
3152    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3153      return false;
3154    // Otherwise we have r+r or r+i.
3155    break;
3156  case 2:
3157    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3158      return false;
3159    // Allow 2*r as r+r.
3160    break;
3161  }
3162
3163  return true;
3164}
3165
3166/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3167/// return a DAG expression to select that will generate the same value by
3168/// multiplying by a magic number.  See:
3169/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3170SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3171                                  std::vector<SDNode*>* Created) const {
3172  EVT VT = N->getValueType(0);
3173  DebugLoc dl= N->getDebugLoc();
3174
3175  // Check to see if we can do this.
3176  // FIXME: We should be more aggressive here.
3177  if (!isTypeLegal(VT))
3178    return SDValue();
3179
3180  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3181  APInt::ms magics = d.magic();
3182
3183  // Multiply the numerator (operand 0) by the magic value
3184  // FIXME: We should support doing a MUL in a wider type
3185  SDValue Q;
3186  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3187    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3188                    DAG.getConstant(magics.m, VT));
3189  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3190    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3191                              N->getOperand(0),
3192                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3193  else
3194    return SDValue();       // No mulhs or equvialent
3195  // If d > 0 and m < 0, add the numerator
3196  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3197    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3198    if (Created)
3199      Created->push_back(Q.getNode());
3200  }
3201  // If d < 0 and m > 0, subtract the numerator.
3202  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3203    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3204    if (Created)
3205      Created->push_back(Q.getNode());
3206  }
3207  // Shift right algebraic if shift value is nonzero
3208  if (magics.s > 0) {
3209    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3210                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3211    if (Created)
3212      Created->push_back(Q.getNode());
3213  }
3214  // Extract the sign bit and add it to the quotient
3215  SDValue T =
3216    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3217                                           getShiftAmountTy(Q.getValueType())));
3218  if (Created)
3219    Created->push_back(T.getNode());
3220  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3221}
3222
3223/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3224/// return a DAG expression to select that will generate the same value by
3225/// multiplying by a magic number.  See:
3226/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3227SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3228                                  std::vector<SDNode*>* Created) const {
3229  EVT VT = N->getValueType(0);
3230  DebugLoc dl = N->getDebugLoc();
3231
3232  // Check to see if we can do this.
3233  // FIXME: We should be more aggressive here.
3234  if (!isTypeLegal(VT))
3235    return SDValue();
3236
3237  // FIXME: We should use a narrower constant when the upper
3238  // bits are known to be zero.
3239  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3240  APInt::mu magics = N1C.magicu();
3241
3242  SDValue Q = N->getOperand(0);
3243
3244  // If the divisor is even, we can avoid using the expensive fixup by shifting
3245  // the divided value upfront.
3246  if (magics.a != 0 && !N1C[0]) {
3247    unsigned Shift = N1C.countTrailingZeros();
3248    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3249                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3250    if (Created)
3251      Created->push_back(Q.getNode());
3252
3253    // Get magic number for the shifted divisor.
3254    magics = N1C.lshr(Shift).magicu(Shift);
3255    assert(magics.a == 0 && "Should use cheap fixup now");
3256  }
3257
3258  // Multiply the numerator (operand 0) by the magic value
3259  // FIXME: We should support doing a MUL in a wider type
3260  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3261    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3262  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3263    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3264                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3265  else
3266    return SDValue();       // No mulhu or equvialent
3267  if (Created)
3268    Created->push_back(Q.getNode());
3269
3270  if (magics.a == 0) {
3271    assert(magics.s < N1C.getBitWidth() &&
3272           "We shouldn't generate an undefined shift!");
3273    return DAG.getNode(ISD::SRL, dl, VT, Q,
3274                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3275  } else {
3276    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3277    if (Created)
3278      Created->push_back(NPQ.getNode());
3279    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3280                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3281    if (Created)
3282      Created->push_back(NPQ.getNode());
3283    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3284    if (Created)
3285      Created->push_back(NPQ.getNode());
3286    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3287             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3288  }
3289}
3290