ExecutionEngine.cpp revision 18314dc741ab7dc4db02b199af77f43bd8551fd2
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Config/alloca.h"
22#include "llvm/ExecutionEngine/ExecutionEngine.h"
23#include "llvm/ExecutionEngine/GenericValue.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/MutexGuard.h"
26#include "llvm/System/DynamicLibrary.h"
27#include "llvm/System/Host.h"
28#include "llvm/Target/TargetData.h"
29#include <cmath>
30#include <cstring>
31using namespace llvm;
32
33STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
34STATISTIC(NumGlobals  , "Number of global vars initialized");
35
36ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
37ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
38ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
39
40
41ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
42  LazyCompilationDisabled = false;
43  GVCompilationDisabled   = false;
44  SymbolSearchingDisabled = false;
45  Modules.push_back(P);
46  assert(P && "ModuleProvider is null?");
47}
48
49ExecutionEngine::~ExecutionEngine() {
50  clearAllGlobalMappings();
51  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
52    delete Modules[i];
53}
54
55/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
56/// Release module from ModuleProvider.
57Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
58                                              std::string *ErrInfo) {
59  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
60        E = Modules.end(); I != E; ++I) {
61    ModuleProvider *MP = *I;
62    if (MP == P) {
63      Modules.erase(I);
64      clearGlobalMappingsFromModule(MP->getModule());
65      return MP->releaseModule(ErrInfo);
66    }
67  }
68  return NULL;
69}
70
71/// FindFunctionNamed - Search all of the active modules to find the one that
72/// defines FnName.  This is very slow operation and shouldn't be used for
73/// general code.
74Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
75  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
76    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
77      return F;
78  }
79  return 0;
80}
81
82
83/// addGlobalMapping - Tell the execution engine that the specified global is
84/// at the specified location.  This is used internally as functions are JIT'd
85/// and as global variables are laid out in memory.  It can and should also be
86/// used by clients of the EE that want to have an LLVM global overlay
87/// existing data in memory.
88void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
89  MutexGuard locked(lock);
90
91  DOUT << "Map " << *GV << " to " << Addr << "\n";
92  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
93  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
94  CurVal = Addr;
95
96  // If we are using the reverse mapping, add it too
97  if (!state.getGlobalAddressReverseMap(locked).empty()) {
98    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
99    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
100    V = GV;
101  }
102}
103
104/// clearAllGlobalMappings - Clear all global mappings and start over again
105/// use in dynamic compilation scenarios when you want to move globals
106void ExecutionEngine::clearAllGlobalMappings() {
107  MutexGuard locked(lock);
108
109  state.getGlobalAddressMap(locked).clear();
110  state.getGlobalAddressReverseMap(locked).clear();
111}
112
113/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
114/// particular module, because it has been removed from the JIT.
115void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
116  MutexGuard locked(lock);
117
118  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
119    state.getGlobalAddressMap(locked).erase(FI);
120    state.getGlobalAddressReverseMap(locked).erase(FI);
121  }
122  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
123       GI != GE; ++GI) {
124    state.getGlobalAddressMap(locked).erase(GI);
125    state.getGlobalAddressReverseMap(locked).erase(GI);
126  }
127}
128
129/// updateGlobalMapping - Replace an existing mapping for GV with a new
130/// address.  This updates both maps as required.  If "Addr" is null, the
131/// entry for the global is removed from the mappings.
132void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
133  MutexGuard locked(lock);
134
135  std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);
136
137  // Deleting from the mapping?
138  if (Addr == 0) {
139    std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
140    void *OldVal;
141    if (I == Map.end())
142      OldVal = 0;
143    else {
144      OldVal = I->second;
145      Map.erase(I);
146    }
147
148    if (!state.getGlobalAddressReverseMap(locked).empty())
149      state.getGlobalAddressReverseMap(locked).erase(Addr);
150    return OldVal;
151  }
152
153  void *&CurVal = Map[GV];
154  void *OldVal = CurVal;
155
156  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
157    state.getGlobalAddressReverseMap(locked).erase(CurVal);
158  CurVal = Addr;
159
160  // If we are using the reverse mapping, add it too
161  if (!state.getGlobalAddressReverseMap(locked).empty()) {
162    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
163    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
164    V = GV;
165  }
166  return OldVal;
167}
168
169/// getPointerToGlobalIfAvailable - This returns the address of the specified
170/// global value if it is has already been codegen'd, otherwise it returns null.
171///
172void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
173  MutexGuard locked(lock);
174
175  std::map<const GlobalValue*, void*>::iterator I =
176  state.getGlobalAddressMap(locked).find(GV);
177  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
178}
179
180/// getGlobalValueAtAddress - Return the LLVM global value object that starts
181/// at the specified address.
182///
183const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
184  MutexGuard locked(lock);
185
186  // If we haven't computed the reverse mapping yet, do so first.
187  if (state.getGlobalAddressReverseMap(locked).empty()) {
188    for (std::map<const GlobalValue*, void *>::iterator
189         I = state.getGlobalAddressMap(locked).begin(),
190         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
191      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
192                                                                     I->first));
193  }
194
195  std::map<void *, const GlobalValue*>::iterator I =
196    state.getGlobalAddressReverseMap(locked).find(Addr);
197  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
198}
199
200// CreateArgv - Turn a vector of strings into a nice argv style array of
201// pointers to null terminated strings.
202//
203static void *CreateArgv(ExecutionEngine *EE,
204                        const std::vector<std::string> &InputArgv) {
205  unsigned PtrSize = EE->getTargetData()->getPointerSize();
206  char *Result = new char[(InputArgv.size()+1)*PtrSize];
207
208  DOUT << "ARGV = " << (void*)Result << "\n";
209  const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);
210
211  for (unsigned i = 0; i != InputArgv.size(); ++i) {
212    unsigned Size = InputArgv[i].size()+1;
213    char *Dest = new char[Size];
214    DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
215
216    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
217    Dest[Size-1] = 0;
218
219    // Endian safe: Result[i] = (PointerTy)Dest;
220    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
221                           SBytePtr);
222  }
223
224  // Null terminate it
225  EE->StoreValueToMemory(PTOGV(0),
226                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
227                         SBytePtr);
228  return Result;
229}
230
231
232/// runStaticConstructorsDestructors - This method is used to execute all of
233/// the static constructors or destructors for a module, depending on the
234/// value of isDtors.
235void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
236  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
237
238  // Execute global ctors/dtors for each module in the program.
239
240 GlobalVariable *GV = module->getNamedGlobal(Name);
241
242 // If this global has internal linkage, or if it has a use, then it must be
243 // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
244 // this is the case, don't execute any of the global ctors, __main will do
245 // it.
246 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) return;
247
248 // Should be an array of '{ int, void ()* }' structs.  The first value is
249 // the init priority, which we ignore.
250 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
251 if (!InitList) return;
252 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
253   if (ConstantStruct *CS =
254       dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
255     if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
256
257     Constant *FP = CS->getOperand(1);
258     if (FP->isNullValue())
259       break;  // Found a null terminator, exit.
260
261     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
262       if (CE->isCast())
263         FP = CE->getOperand(0);
264     if (Function *F = dyn_cast<Function>(FP)) {
265       // Execute the ctor/dtor function!
266       runFunction(F, std::vector<GenericValue>());
267     }
268   }
269}
270
271/// runStaticConstructorsDestructors - This method is used to execute all of
272/// the static constructors or destructors for a program, depending on the
273/// value of isDtors.
274void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
275  // Execute global ctors/dtors for each module in the program.
276  for (unsigned m = 0, e = Modules.size(); m != e; ++m)
277    runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
278}
279
280#ifndef NDEBUG
281/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
282static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
283  unsigned PtrSize = EE->getTargetData()->getPointerSize();
284  for (unsigned i = 0; i < PtrSize; ++i)
285    if (*(i + (uint8_t*)Loc))
286      return false;
287  return true;
288}
289#endif
290
291/// runFunctionAsMain - This is a helper function which wraps runFunction to
292/// handle the common task of starting up main with the specified argc, argv,
293/// and envp parameters.
294int ExecutionEngine::runFunctionAsMain(Function *Fn,
295                                       const std::vector<std::string> &argv,
296                                       const char * const * envp) {
297  std::vector<GenericValue> GVArgs;
298  GenericValue GVArgc;
299  GVArgc.IntVal = APInt(32, argv.size());
300
301  // Check main() type
302  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
303  const FunctionType *FTy = Fn->getFunctionType();
304  const Type* PPInt8Ty =
305    PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
306  switch (NumArgs) {
307  case 3:
308   if (FTy->getParamType(2) != PPInt8Ty) {
309     cerr << "Invalid type for third argument of main() supplied\n";
310     abort();
311   }
312   // FALLS THROUGH
313  case 2:
314   if (FTy->getParamType(1) != PPInt8Ty) {
315     cerr << "Invalid type for second argument of main() supplied\n";
316     abort();
317   }
318   // FALLS THROUGH
319  case 1:
320   if (FTy->getParamType(0) != Type::Int32Ty) {
321     cerr << "Invalid type for first argument of main() supplied\n";
322     abort();
323   }
324   // FALLS THROUGH
325  case 0:
326   if (FTy->getReturnType() != Type::Int32Ty &&
327       FTy->getReturnType() != Type::VoidTy) {
328     cerr << "Invalid return type of main() supplied\n";
329     abort();
330   }
331   break;
332  default:
333   cerr << "Invalid number of arguments of main() supplied\n";
334   abort();
335  }
336
337  if (NumArgs) {
338    GVArgs.push_back(GVArgc); // Arg #0 = argc.
339    if (NumArgs > 1) {
340      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
341      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
342             "argv[0] was null after CreateArgv");
343      if (NumArgs > 2) {
344        std::vector<std::string> EnvVars;
345        for (unsigned i = 0; envp[i]; ++i)
346          EnvVars.push_back(envp[i]);
347        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
348      }
349    }
350  }
351  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
352}
353
354/// If possible, create a JIT, unless the caller specifically requests an
355/// Interpreter or there's an error. If even an Interpreter cannot be created,
356/// NULL is returned.
357///
358ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
359                                         bool ForceInterpreter,
360                                         std::string *ErrorStr,
361                                         bool Fast) {
362  ExecutionEngine *EE = 0;
363
364  // Make sure we can resolve symbols in the program as well. The zero arg
365  // to the function tells DynamicLibrary to load the program, not a library.
366  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
367    return 0;
368
369  // Unless the interpreter was explicitly selected, try making a JIT.
370  if (!ForceInterpreter && JITCtor)
371    EE = JITCtor(MP, ErrorStr, Fast);
372
373  // If we can't make a JIT, make an interpreter instead.
374  if (EE == 0 && InterpCtor)
375    EE = InterpCtor(MP, ErrorStr, Fast);
376
377  return EE;
378}
379
380ExecutionEngine *ExecutionEngine::create(Module *M) {
381  return create(new ExistingModuleProvider(M));
382}
383
384/// getPointerToGlobal - This returns the address of the specified global
385/// value.  This may involve code generation if it's a function.
386///
387void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
388  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
389    return getPointerToFunction(F);
390
391  MutexGuard locked(lock);
392  void *p = state.getGlobalAddressMap(locked)[GV];
393  if (p)
394    return p;
395
396  // Global variable might have been added since interpreter started.
397  if (GlobalVariable *GVar =
398          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
399    EmitGlobalVariable(GVar);
400  else
401    assert(0 && "Global hasn't had an address allocated yet!");
402  return state.getGlobalAddressMap(locked)[GV];
403}
404
405/// This function converts a Constant* into a GenericValue. The interesting
406/// part is if C is a ConstantExpr.
407/// @brief Get a GenericValue for a Constant*
408GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
409  // If its undefined, return the garbage.
410  if (isa<UndefValue>(C))
411    return GenericValue();
412
413  // If the value is a ConstantExpr
414  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
415    Constant *Op0 = CE->getOperand(0);
416    switch (CE->getOpcode()) {
417    case Instruction::GetElementPtr: {
418      // Compute the index
419      GenericValue Result = getConstantValue(Op0);
420      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
421      uint64_t Offset =
422        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
423
424      char* tmp = (char*) Result.PointerVal;
425      Result = PTOGV(tmp + Offset);
426      return Result;
427    }
428    case Instruction::Trunc: {
429      GenericValue GV = getConstantValue(Op0);
430      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
431      GV.IntVal = GV.IntVal.trunc(BitWidth);
432      return GV;
433    }
434    case Instruction::ZExt: {
435      GenericValue GV = getConstantValue(Op0);
436      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
437      GV.IntVal = GV.IntVal.zext(BitWidth);
438      return GV;
439    }
440    case Instruction::SExt: {
441      GenericValue GV = getConstantValue(Op0);
442      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
443      GV.IntVal = GV.IntVal.sext(BitWidth);
444      return GV;
445    }
446    case Instruction::FPTrunc: {
447      // FIXME long double
448      GenericValue GV = getConstantValue(Op0);
449      GV.FloatVal = float(GV.DoubleVal);
450      return GV;
451    }
452    case Instruction::FPExt:{
453      // FIXME long double
454      GenericValue GV = getConstantValue(Op0);
455      GV.DoubleVal = double(GV.FloatVal);
456      return GV;
457    }
458    case Instruction::UIToFP: {
459      GenericValue GV = getConstantValue(Op0);
460      if (CE->getType() == Type::FloatTy)
461        GV.FloatVal = float(GV.IntVal.roundToDouble());
462      else if (CE->getType() == Type::DoubleTy)
463        GV.DoubleVal = GV.IntVal.roundToDouble();
464      else if (CE->getType() == Type::X86_FP80Ty) {
465        const uint64_t zero[] = {0, 0};
466        APFloat apf = APFloat(APInt(80, 2, zero));
467        (void)apf.convertFromAPInt(GV.IntVal,
468                                   false,
469                                   APFloat::rmNearestTiesToEven);
470        GV.IntVal = apf.convertToAPInt();
471      }
472      return GV;
473    }
474    case Instruction::SIToFP: {
475      GenericValue GV = getConstantValue(Op0);
476      if (CE->getType() == Type::FloatTy)
477        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
478      else if (CE->getType() == Type::DoubleTy)
479        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
480      else if (CE->getType() == Type::X86_FP80Ty) {
481        const uint64_t zero[] = { 0, 0};
482        APFloat apf = APFloat(APInt(80, 2, zero));
483        (void)apf.convertFromAPInt(GV.IntVal,
484                                   true,
485                                   APFloat::rmNearestTiesToEven);
486        GV.IntVal = apf.convertToAPInt();
487      }
488      return GV;
489    }
490    case Instruction::FPToUI: // double->APInt conversion handles sign
491    case Instruction::FPToSI: {
492      GenericValue GV = getConstantValue(Op0);
493      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
494      if (Op0->getType() == Type::FloatTy)
495        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
496      else if (Op0->getType() == Type::DoubleTy)
497        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
498      else if (Op0->getType() == Type::X86_FP80Ty) {
499        APFloat apf = APFloat(GV.IntVal);
500        uint64_t v;
501        (void)apf.convertToInteger(&v, BitWidth,
502                                   CE->getOpcode()==Instruction::FPToSI,
503                                   APFloat::rmTowardZero);
504        GV.IntVal = v; // endian?
505      }
506      return GV;
507    }
508    case Instruction::PtrToInt: {
509      GenericValue GV = getConstantValue(Op0);
510      uint32_t PtrWidth = TD->getPointerSizeInBits();
511      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
512      return GV;
513    }
514    case Instruction::IntToPtr: {
515      GenericValue GV = getConstantValue(Op0);
516      uint32_t PtrWidth = TD->getPointerSizeInBits();
517      if (PtrWidth != GV.IntVal.getBitWidth())
518        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
519      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
520      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
521      return GV;
522    }
523    case Instruction::BitCast: {
524      GenericValue GV = getConstantValue(Op0);
525      const Type* DestTy = CE->getType();
526      switch (Op0->getType()->getTypeID()) {
527        default: assert(0 && "Invalid bitcast operand");
528        case Type::IntegerTyID:
529          assert(DestTy->isFloatingPoint() && "invalid bitcast");
530          if (DestTy == Type::FloatTy)
531            GV.FloatVal = GV.IntVal.bitsToFloat();
532          else if (DestTy == Type::DoubleTy)
533            GV.DoubleVal = GV.IntVal.bitsToDouble();
534          break;
535        case Type::FloatTyID:
536          assert(DestTy == Type::Int32Ty && "Invalid bitcast");
537          GV.IntVal.floatToBits(GV.FloatVal);
538          break;
539        case Type::DoubleTyID:
540          assert(DestTy == Type::Int64Ty && "Invalid bitcast");
541          GV.IntVal.doubleToBits(GV.DoubleVal);
542          break;
543        case Type::PointerTyID:
544          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
545          break; // getConstantValue(Op0)  above already converted it
546      }
547      return GV;
548    }
549    case Instruction::Add:
550    case Instruction::Sub:
551    case Instruction::Mul:
552    case Instruction::UDiv:
553    case Instruction::SDiv:
554    case Instruction::URem:
555    case Instruction::SRem:
556    case Instruction::And:
557    case Instruction::Or:
558    case Instruction::Xor: {
559      GenericValue LHS = getConstantValue(Op0);
560      GenericValue RHS = getConstantValue(CE->getOperand(1));
561      GenericValue GV;
562      switch (CE->getOperand(0)->getType()->getTypeID()) {
563      default: assert(0 && "Bad add type!"); abort();
564      case Type::IntegerTyID:
565        switch (CE->getOpcode()) {
566          default: assert(0 && "Invalid integer opcode");
567          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
568          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
569          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
570          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
571          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
572          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
573          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
574          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
575          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
576          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
577        }
578        break;
579      case Type::FloatTyID:
580        switch (CE->getOpcode()) {
581          default: assert(0 && "Invalid float opcode"); abort();
582          case Instruction::Add:
583            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
584          case Instruction::Sub:
585            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
586          case Instruction::Mul:
587            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
588          case Instruction::FDiv:
589            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
590          case Instruction::FRem:
591            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
592        }
593        break;
594      case Type::DoubleTyID:
595        switch (CE->getOpcode()) {
596          default: assert(0 && "Invalid double opcode"); abort();
597          case Instruction::Add:
598            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
599          case Instruction::Sub:
600            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
601          case Instruction::Mul:
602            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
603          case Instruction::FDiv:
604            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
605          case Instruction::FRem:
606            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
607        }
608        break;
609      case Type::X86_FP80TyID:
610      case Type::PPC_FP128TyID:
611      case Type::FP128TyID: {
612        APFloat apfLHS = APFloat(LHS.IntVal);
613        switch (CE->getOpcode()) {
614          default: assert(0 && "Invalid long double opcode"); abort();
615          case Instruction::Add:
616            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
617            GV.IntVal = apfLHS.convertToAPInt();
618            break;
619          case Instruction::Sub:
620            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
621            GV.IntVal = apfLHS.convertToAPInt();
622            break;
623          case Instruction::Mul:
624            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
625            GV.IntVal = apfLHS.convertToAPInt();
626            break;
627          case Instruction::FDiv:
628            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
629            GV.IntVal = apfLHS.convertToAPInt();
630            break;
631          case Instruction::FRem:
632            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
633            GV.IntVal = apfLHS.convertToAPInt();
634            break;
635          }
636        }
637        break;
638      }
639      return GV;
640    }
641    default:
642      break;
643    }
644    cerr << "ConstantExpr not handled: " << *CE << "\n";
645    abort();
646  }
647
648  GenericValue Result;
649  switch (C->getType()->getTypeID()) {
650  case Type::FloatTyID:
651    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
652    break;
653  case Type::DoubleTyID:
654    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
655    break;
656  case Type::X86_FP80TyID:
657  case Type::FP128TyID:
658  case Type::PPC_FP128TyID:
659    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt();
660    break;
661  case Type::IntegerTyID:
662    Result.IntVal = cast<ConstantInt>(C)->getValue();
663    break;
664  case Type::PointerTyID:
665    if (isa<ConstantPointerNull>(C))
666      Result.PointerVal = 0;
667    else if (const Function *F = dyn_cast<Function>(C))
668      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
669    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
670      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
671    else
672      assert(0 && "Unknown constant pointer type!");
673    break;
674  default:
675    cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
676    abort();
677  }
678  return Result;
679}
680
681/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
682/// with the integer held in IntVal.
683static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
684                             unsigned StoreBytes) {
685  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
686  uint8_t *Src = (uint8_t *)IntVal.getRawData();
687
688  if (sys::littleEndianHost())
689    // Little-endian host - the source is ordered from LSB to MSB.  Order the
690    // destination from LSB to MSB: Do a straight copy.
691    memcpy(Dst, Src, StoreBytes);
692  else {
693    // Big-endian host - the source is an array of 64 bit words ordered from
694    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
695    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
696    while (StoreBytes > sizeof(uint64_t)) {
697      StoreBytes -= sizeof(uint64_t);
698      // May not be aligned so use memcpy.
699      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
700      Src += sizeof(uint64_t);
701    }
702
703    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
704  }
705}
706
707/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
708/// is the address of the memory at which to store Val, cast to GenericValue *.
709/// It is not a pointer to a GenericValue containing the address at which to
710/// store Val.
711void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
712                                         const Type *Ty) {
713  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
714
715  switch (Ty->getTypeID()) {
716  case Type::IntegerTyID:
717    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
718    break;
719  case Type::FloatTyID:
720    *((float*)Ptr) = Val.FloatVal;
721    break;
722  case Type::DoubleTyID:
723    *((double*)Ptr) = Val.DoubleVal;
724    break;
725  case Type::X86_FP80TyID: {
726      uint16_t *Dest = (uint16_t*)Ptr;
727      const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData();
728      // This is endian dependent, but it will only work on x86 anyway.
729      Dest[0] = Src[4];
730      Dest[1] = Src[0];
731      Dest[2] = Src[1];
732      Dest[3] = Src[2];
733      Dest[4] = Src[3];
734      break;
735    }
736  case Type::PointerTyID:
737    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
738    if (StoreBytes != sizeof(PointerTy))
739      memset(Ptr, 0, StoreBytes);
740
741    *((PointerTy*)Ptr) = Val.PointerVal;
742    break;
743  default:
744    cerr << "Cannot store value of type " << *Ty << "!\n";
745  }
746
747  if (sys::littleEndianHost() != getTargetData()->isLittleEndian())
748    // Host and target are different endian - reverse the stored bytes.
749    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
750}
751
752/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
753/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
754static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
755  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
756  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
757
758  if (sys::littleEndianHost())
759    // Little-endian host - the destination must be ordered from LSB to MSB.
760    // The source is ordered from LSB to MSB: Do a straight copy.
761    memcpy(Dst, Src, LoadBytes);
762  else {
763    // Big-endian - the destination is an array of 64 bit words ordered from
764    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
765    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
766    // a word.
767    while (LoadBytes > sizeof(uint64_t)) {
768      LoadBytes -= sizeof(uint64_t);
769      // May not be aligned so use memcpy.
770      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
771      Dst += sizeof(uint64_t);
772    }
773
774    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
775  }
776}
777
778/// FIXME: document
779///
780void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
781                                          GenericValue *Ptr,
782                                          const Type *Ty) {
783  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
784
785  if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) {
786    // Host and target are different endian - reverse copy the stored
787    // bytes into a buffer, and load from that.
788    uint8_t *Src = (uint8_t*)Ptr;
789    uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
790    std::reverse_copy(Src, Src + LoadBytes, Buf);
791    Ptr = (GenericValue*)Buf;
792  }
793
794  switch (Ty->getTypeID()) {
795  case Type::IntegerTyID:
796    // An APInt with all words initially zero.
797    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
798    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
799    break;
800  case Type::FloatTyID:
801    Result.FloatVal = *((float*)Ptr);
802    break;
803  case Type::DoubleTyID:
804    Result.DoubleVal = *((double*)Ptr);
805    break;
806  case Type::PointerTyID:
807    Result.PointerVal = *((PointerTy*)Ptr);
808    break;
809  case Type::X86_FP80TyID: {
810    // This is endian dependent, but it will only work on x86 anyway.
811    // FIXME: Will not trap if loading a signaling NaN.
812    uint16_t *p = (uint16_t*)Ptr;
813    union {
814      uint16_t x[8];
815      uint64_t y[2];
816    };
817    x[0] = p[1];
818    x[1] = p[2];
819    x[2] = p[3];
820    x[3] = p[4];
821    x[4] = p[0];
822    Result.IntVal = APInt(80, 2, y);
823    break;
824  }
825  default:
826    cerr << "Cannot load value of type " << *Ty << "!\n";
827    abort();
828  }
829}
830
831// InitializeMemory - Recursive function to apply a Constant value into the
832// specified memory location...
833//
834void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
835  DOUT << "Initializing " << Addr;
836  DEBUG(Init->dump());
837  if (isa<UndefValue>(Init)) {
838    return;
839  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
840    unsigned ElementSize =
841      getTargetData()->getABITypeSize(CP->getType()->getElementType());
842    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
843      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
844    return;
845  } else if (isa<ConstantAggregateZero>(Init)) {
846    memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType()));
847    return;
848  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
849    unsigned ElementSize =
850      getTargetData()->getABITypeSize(CPA->getType()->getElementType());
851    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
852      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
853    return;
854  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
855    const StructLayout *SL =
856      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
857    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
858      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
859    return;
860  } else if (Init->getType()->isFirstClassType()) {
861    GenericValue Val = getConstantValue(Init);
862    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
863    return;
864  }
865
866  cerr << "Bad Type: " << *Init->getType() << "\n";
867  assert(0 && "Unknown constant type to initialize memory with!");
868}
869
870/// EmitGlobals - Emit all of the global variables to memory, storing their
871/// addresses into GlobalAddress.  This must make sure to copy the contents of
872/// their initializers into the memory.
873///
874void ExecutionEngine::emitGlobals() {
875  const TargetData *TD = getTargetData();
876
877  // Loop over all of the global variables in the program, allocating the memory
878  // to hold them.  If there is more than one module, do a prepass over globals
879  // to figure out how the different modules should link together.
880  //
881  std::map<std::pair<std::string, const Type*>,
882           const GlobalValue*> LinkedGlobalsMap;
883
884  if (Modules.size() != 1) {
885    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
886      Module &M = *Modules[m]->getModule();
887      for (Module::const_global_iterator I = M.global_begin(),
888           E = M.global_end(); I != E; ++I) {
889        const GlobalValue *GV = I;
890        if (GV->hasInternalLinkage() || GV->isDeclaration() ||
891            GV->hasAppendingLinkage() || !GV->hasName())
892          continue;// Ignore external globals and globals with internal linkage.
893
894        const GlobalValue *&GVEntry =
895          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
896
897        // If this is the first time we've seen this global, it is the canonical
898        // version.
899        if (!GVEntry) {
900          GVEntry = GV;
901          continue;
902        }
903
904        // If the existing global is strong, never replace it.
905        if (GVEntry->hasExternalLinkage() ||
906            GVEntry->hasDLLImportLinkage() ||
907            GVEntry->hasDLLExportLinkage())
908          continue;
909
910        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
911        // symbol.  FIXME is this right for common?
912        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
913          GVEntry = GV;
914      }
915    }
916  }
917
918  std::vector<const GlobalValue*> NonCanonicalGlobals;
919  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
920    Module &M = *Modules[m]->getModule();
921    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
922         I != E; ++I) {
923      // In the multi-module case, see what this global maps to.
924      if (!LinkedGlobalsMap.empty()) {
925        if (const GlobalValue *GVEntry =
926              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
927          // If something else is the canonical global, ignore this one.
928          if (GVEntry != &*I) {
929            NonCanonicalGlobals.push_back(I);
930            continue;
931          }
932        }
933      }
934
935      if (!I->isDeclaration()) {
936        // Get the type of the global.
937        const Type *Ty = I->getType()->getElementType();
938
939        // Allocate some memory for it!
940        unsigned Size = TD->getABITypeSize(Ty);
941        addGlobalMapping(I, new char[Size]);
942      } else {
943        // External variable reference. Try to use the dynamic loader to
944        // get a pointer to it.
945        if (void *SymAddr =
946            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
947          addGlobalMapping(I, SymAddr);
948        else {
949          cerr << "Could not resolve external global address: "
950               << I->getName() << "\n";
951          abort();
952        }
953      }
954    }
955
956    // If there are multiple modules, map the non-canonical globals to their
957    // canonical location.
958    if (!NonCanonicalGlobals.empty()) {
959      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
960        const GlobalValue *GV = NonCanonicalGlobals[i];
961        const GlobalValue *CGV =
962          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
963        void *Ptr = getPointerToGlobalIfAvailable(CGV);
964        assert(Ptr && "Canonical global wasn't codegen'd!");
965        addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
966      }
967    }
968
969    // Now that all of the globals are set up in memory, loop through them all
970    // and initialize their contents.
971    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
972         I != E; ++I) {
973      if (!I->isDeclaration()) {
974        if (!LinkedGlobalsMap.empty()) {
975          if (const GlobalValue *GVEntry =
976                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
977            if (GVEntry != &*I)  // Not the canonical variable.
978              continue;
979        }
980        EmitGlobalVariable(I);
981      }
982    }
983  }
984}
985
986// EmitGlobalVariable - This method emits the specified global variable to the
987// address specified in GlobalAddresses, or allocates new memory if it's not
988// already in the map.
989void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
990  void *GA = getPointerToGlobalIfAvailable(GV);
991  DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
992
993  const Type *ElTy = GV->getType()->getElementType();
994  size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy);
995  if (GA == 0) {
996    // If it's not already specified, allocate memory for the global.
997    GA = new char[GVSize];
998    addGlobalMapping(GV, GA);
999  }
1000
1001  InitializeMemory(GV->getInitializer(), GA);
1002  NumInitBytes += (unsigned)GVSize;
1003  ++NumGlobals;
1004}
1005