ExecutionEngine.cpp revision 2b7d7b57ae8334687d6d4fea045fbfbea4864db0
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the common interface used by the various execution engine 11// subclasses. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "jit" 16#include "llvm/Constants.h" 17#include "llvm/DerivedTypes.h" 18#include "llvm/Module.h" 19#include "llvm/ModuleProvider.h" 20#include "llvm/ADT/Statistic.h" 21#include "llvm/ExecutionEngine/ExecutionEngine.h" 22#include "llvm/ExecutionEngine/GenericValue.h" 23#include "llvm/Support/Debug.h" 24#include "llvm/Support/MutexGuard.h" 25#include "llvm/System/DynamicLibrary.h" 26#include "llvm/Target/TargetData.h" 27#include <math.h> 28using namespace llvm; 29 30STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 31STATISTIC(NumGlobals , "Number of global vars initialized"); 32 33ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 34ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 35 36ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 37 LazyCompilationDisabled = false; 38 Modules.push_back(P); 39 assert(P && "ModuleProvider is null?"); 40} 41 42ExecutionEngine::ExecutionEngine(Module *M) { 43 LazyCompilationDisabled = false; 44 assert(M && "Module is null?"); 45 Modules.push_back(new ExistingModuleProvider(M)); 46} 47 48ExecutionEngine::~ExecutionEngine() { 49 clearAllGlobalMappings(); 50 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 51 delete Modules[i]; 52} 53 54/// FindFunctionNamed - Search all of the active modules to find the one that 55/// defines FnName. This is very slow operation and shouldn't be used for 56/// general code. 57Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 58 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 59 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 60 return F; 61 } 62 return 0; 63} 64 65 66/// addGlobalMapping - Tell the execution engine that the specified global is 67/// at the specified location. This is used internally as functions are JIT'd 68/// and as global variables are laid out in memory. It can and should also be 69/// used by clients of the EE that want to have an LLVM global overlay 70/// existing data in memory. 71void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 72 MutexGuard locked(lock); 73 74 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 75 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 76 CurVal = Addr; 77 78 // If we are using the reverse mapping, add it too 79 if (!state.getGlobalAddressReverseMap(locked).empty()) { 80 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 81 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 82 V = GV; 83 } 84} 85 86/// clearAllGlobalMappings - Clear all global mappings and start over again 87/// use in dynamic compilation scenarios when you want to move globals 88void ExecutionEngine::clearAllGlobalMappings() { 89 MutexGuard locked(lock); 90 91 state.getGlobalAddressMap(locked).clear(); 92 state.getGlobalAddressReverseMap(locked).clear(); 93} 94 95/// updateGlobalMapping - Replace an existing mapping for GV with a new 96/// address. This updates both maps as required. If "Addr" is null, the 97/// entry for the global is removed from the mappings. 98void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 99 MutexGuard locked(lock); 100 101 // Deleting from the mapping? 102 if (Addr == 0) { 103 state.getGlobalAddressMap(locked).erase(GV); 104 if (!state.getGlobalAddressReverseMap(locked).empty()) 105 state.getGlobalAddressReverseMap(locked).erase(Addr); 106 return; 107 } 108 109 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 110 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 111 state.getGlobalAddressReverseMap(locked).erase(CurVal); 112 CurVal = Addr; 113 114 // If we are using the reverse mapping, add it too 115 if (!state.getGlobalAddressReverseMap(locked).empty()) { 116 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 117 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 118 V = GV; 119 } 120} 121 122/// getPointerToGlobalIfAvailable - This returns the address of the specified 123/// global value if it is has already been codegen'd, otherwise it returns null. 124/// 125void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 126 MutexGuard locked(lock); 127 128 std::map<const GlobalValue*, void*>::iterator I = 129 state.getGlobalAddressMap(locked).find(GV); 130 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 131} 132 133/// getGlobalValueAtAddress - Return the LLVM global value object that starts 134/// at the specified address. 135/// 136const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 137 MutexGuard locked(lock); 138 139 // If we haven't computed the reverse mapping yet, do so first. 140 if (state.getGlobalAddressReverseMap(locked).empty()) { 141 for (std::map<const GlobalValue*, void *>::iterator 142 I = state.getGlobalAddressMap(locked).begin(), 143 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 144 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 145 I->first)); 146 } 147 148 std::map<void *, const GlobalValue*>::iterator I = 149 state.getGlobalAddressReverseMap(locked).find(Addr); 150 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 151} 152 153// CreateArgv - Turn a vector of strings into a nice argv style array of 154// pointers to null terminated strings. 155// 156static void *CreateArgv(ExecutionEngine *EE, 157 const std::vector<std::string> &InputArgv) { 158 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 159 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 160 161 DOUT << "ARGV = " << (void*)Result << "\n"; 162 const Type *SBytePtr = PointerType::get(Type::Int8Ty); 163 164 for (unsigned i = 0; i != InputArgv.size(); ++i) { 165 unsigned Size = InputArgv[i].size()+1; 166 char *Dest = new char[Size]; 167 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 168 169 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 170 Dest[Size-1] = 0; 171 172 // Endian safe: Result[i] = (PointerTy)Dest; 173 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 174 SBytePtr); 175 } 176 177 // Null terminate it 178 EE->StoreValueToMemory(PTOGV(0), 179 (GenericValue*)(Result+InputArgv.size()*PtrSize), 180 SBytePtr); 181 return Result; 182} 183 184 185/// runStaticConstructorsDestructors - This method is used to execute all of 186/// the static constructors or destructors for a program, depending on the 187/// value of isDtors. 188void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 189 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 190 191 // Execute global ctors/dtors for each module in the program. 192 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 193 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 194 195 // If this global has internal linkage, or if it has a use, then it must be 196 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 197 // this is the case, don't execute any of the global ctors, __main will do 198 // it. 199 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; 200 201 // Should be an array of '{ int, void ()* }' structs. The first value is 202 // the init priority, which we ignore. 203 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 204 if (!InitList) continue; 205 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 206 if (ConstantStruct *CS = 207 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 208 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 209 210 Constant *FP = CS->getOperand(1); 211 if (FP->isNullValue()) 212 break; // Found a null terminator, exit. 213 214 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 215 if (CE->isCast()) 216 FP = CE->getOperand(0); 217 if (Function *F = dyn_cast<Function>(FP)) { 218 // Execute the ctor/dtor function! 219 runFunction(F, std::vector<GenericValue>()); 220 } 221 } 222 } 223} 224 225/// runFunctionAsMain - This is a helper function which wraps runFunction to 226/// handle the common task of starting up main with the specified argc, argv, 227/// and envp parameters. 228int ExecutionEngine::runFunctionAsMain(Function *Fn, 229 const std::vector<std::string> &argv, 230 const char * const * envp) { 231 std::vector<GenericValue> GVArgs; 232 GenericValue GVArgc; 233 GVArgc.IntVal = APInt(32, argv.size()); 234 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 235 if (NumArgs) { 236 GVArgs.push_back(GVArgc); // Arg #0 = argc. 237 if (NumArgs > 1) { 238 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 239 assert(((char **)GVTOP(GVArgs[1]))[0] && 240 "argv[0] was null after CreateArgv"); 241 if (NumArgs > 2) { 242 std::vector<std::string> EnvVars; 243 for (unsigned i = 0; envp[i]; ++i) 244 EnvVars.push_back(envp[i]); 245 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 246 } 247 } 248 } 249 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 250} 251 252/// If possible, create a JIT, unless the caller specifically requests an 253/// Interpreter or there's an error. If even an Interpreter cannot be created, 254/// NULL is returned. 255/// 256ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 257 bool ForceInterpreter, 258 std::string *ErrorStr) { 259 ExecutionEngine *EE = 0; 260 261 // Unless the interpreter was explicitly selected, try making a JIT. 262 if (!ForceInterpreter && JITCtor) 263 EE = JITCtor(MP, ErrorStr); 264 265 // If we can't make a JIT, make an interpreter instead. 266 if (EE == 0 && InterpCtor) 267 EE = InterpCtor(MP, ErrorStr); 268 269 if (EE) { 270 // Make sure we can resolve symbols in the program as well. The zero arg 271 // to the function tells DynamicLibrary to load the program, not a library. 272 try { 273 sys::DynamicLibrary::LoadLibraryPermanently(0); 274 } catch (...) { 275 } 276 } 277 278 return EE; 279} 280 281/// getPointerToGlobal - This returns the address of the specified global 282/// value. This may involve code generation if it's a function. 283/// 284void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 285 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 286 return getPointerToFunction(F); 287 288 MutexGuard locked(lock); 289 void *p = state.getGlobalAddressMap(locked)[GV]; 290 if (p) 291 return p; 292 293 // Global variable might have been added since interpreter started. 294 if (GlobalVariable *GVar = 295 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 296 EmitGlobalVariable(GVar); 297 else 298 assert(0 && "Global hasn't had an address allocated yet!"); 299 return state.getGlobalAddressMap(locked)[GV]; 300} 301 302/// This function converts a Constant* into a GenericValue. The interesting 303/// part is if C is a ConstantExpr. 304/// @brief Get a GenericValue for a Constnat* 305GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 306 // If its undefined, return the garbage. 307 if (isa<UndefValue>(C)) 308 return GenericValue(); 309 310 // If the value is a ConstantExpr 311 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 312 Constant *Op0 = CE->getOperand(0); 313 switch (CE->getOpcode()) { 314 case Instruction::GetElementPtr: { 315 // Compute the index 316 GenericValue Result = getConstantValue(Op0); 317 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 318 uint64_t Offset = 319 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 320 321 char* tmp = (char*) Result.PointerVal; 322 Result = PTOGV(tmp + Offset); 323 return Result; 324 } 325 case Instruction::Trunc: { 326 GenericValue GV = getConstantValue(Op0); 327 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 328 GV.IntVal = GV.IntVal.trunc(BitWidth); 329 return GV; 330 } 331 case Instruction::ZExt: { 332 GenericValue GV = getConstantValue(Op0); 333 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 334 GV.IntVal = GV.IntVal.zext(BitWidth); 335 return GV; 336 } 337 case Instruction::SExt: { 338 GenericValue GV = getConstantValue(Op0); 339 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 340 GV.IntVal = GV.IntVal.sext(BitWidth); 341 return GV; 342 } 343 case Instruction::FPTrunc: { 344 GenericValue GV = getConstantValue(Op0); 345 GV.FloatVal = float(GV.DoubleVal); 346 return GV; 347 } 348 case Instruction::FPExt:{ 349 GenericValue GV = getConstantValue(Op0); 350 GV.DoubleVal = double(GV.FloatVal); 351 return GV; 352 } 353 case Instruction::UIToFP: { 354 GenericValue GV = getConstantValue(Op0); 355 if (CE->getType() == Type::FloatTy) 356 GV.FloatVal = float(GV.IntVal.roundToDouble()); 357 else 358 GV.DoubleVal = GV.IntVal.roundToDouble(); 359 return GV; 360 } 361 case Instruction::SIToFP: { 362 GenericValue GV = getConstantValue(Op0); 363 if (CE->getType() == Type::FloatTy) 364 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 365 else 366 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 367 return GV; 368 } 369 case Instruction::FPToUI: // double->APInt conversion handles sign 370 case Instruction::FPToSI: { 371 GenericValue GV = getConstantValue(Op0); 372 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 373 if (Op0->getType() == Type::FloatTy) 374 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 375 else 376 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 377 return GV; 378 } 379 case Instruction::PtrToInt: { 380 GenericValue GV = getConstantValue(Op0); 381 uint32_t PtrWidth = TD->getPointerSizeInBits(); 382 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 383 return GV; 384 } 385 case Instruction::IntToPtr: { 386 GenericValue GV = getConstantValue(Op0); 387 uint32_t PtrWidth = TD->getPointerSizeInBits(); 388 if (PtrWidth != GV.IntVal.getBitWidth()) 389 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 390 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 391 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 392 return GV; 393 } 394 case Instruction::BitCast: { 395 GenericValue GV = getConstantValue(Op0); 396 const Type* DestTy = CE->getType(); 397 switch (Op0->getType()->getTypeID()) { 398 default: assert(0 && "Invalid bitcast operand"); 399 case Type::IntegerTyID: 400 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 401 if (DestTy == Type::FloatTy) 402 GV.FloatVal = GV.IntVal.bitsToFloat(); 403 else if (DestTy == Type::DoubleTy) 404 GV.DoubleVal = GV.IntVal.bitsToDouble(); 405 break; 406 case Type::FloatTyID: 407 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 408 GV.IntVal.floatToBits(GV.FloatVal); 409 break; 410 case Type::DoubleTyID: 411 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 412 GV.IntVal.doubleToBits(GV.DoubleVal); 413 break; 414 case Type::PointerTyID: 415 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 416 break; // getConstantValue(Op0) above already converted it 417 } 418 return GV; 419 } 420 case Instruction::Add: 421 case Instruction::Sub: 422 case Instruction::Mul: 423 case Instruction::UDiv: 424 case Instruction::SDiv: 425 case Instruction::URem: 426 case Instruction::SRem: 427 case Instruction::And: 428 case Instruction::Or: 429 case Instruction::Xor: { 430 GenericValue LHS = getConstantValue(Op0); 431 GenericValue RHS = getConstantValue(CE->getOperand(1)); 432 GenericValue GV; 433 switch (CE->getOperand(0)->getType()->getTypeID()) { 434 default: assert(0 && "Bad add type!"); abort(); 435 case Type::IntegerTyID: 436 switch (CE->getOpcode()) { 437 default: assert(0 && "Invalid integer opcode"); 438 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 439 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 440 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 441 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 442 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 443 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 444 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 445 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 446 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 447 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 448 } 449 break; 450 case Type::FloatTyID: 451 switch (CE->getOpcode()) { 452 default: assert(0 && "Invalid float opcode"); abort(); 453 case Instruction::Add: 454 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 455 case Instruction::Sub: 456 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 457 case Instruction::Mul: 458 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 459 case Instruction::FDiv: 460 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 461 case Instruction::FRem: 462 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 463 } 464 break; 465 case Type::DoubleTyID: 466 switch (CE->getOpcode()) { 467 default: assert(0 && "Invalid double opcode"); abort(); 468 case Instruction::Add: 469 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 470 case Instruction::Sub: 471 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 472 case Instruction::Mul: 473 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 474 case Instruction::FDiv: 475 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 476 case Instruction::FRem: 477 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 478 } 479 break; 480 } 481 return GV; 482 } 483 default: 484 break; 485 } 486 cerr << "ConstantExpr not handled: " << *CE << "\n"; 487 abort(); 488 } 489 490 GenericValue Result; 491 switch (C->getType()->getTypeID()) { 492 case Type::FloatTyID: 493 Result.FloatVal = (float)cast<ConstantFP>(C)->getValue(); 494 break; 495 case Type::DoubleTyID: 496 Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue(); 497 break; 498 case Type::IntegerTyID: 499 Result.IntVal = cast<ConstantInt>(C)->getValue(); 500 break; 501 case Type::PointerTyID: 502 if (isa<ConstantPointerNull>(C)) 503 Result.PointerVal = 0; 504 else if (const Function *F = dyn_cast<Function>(C)) 505 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 506 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 507 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 508 else 509 assert(0 && "Unknown constant pointer type!"); 510 break; 511 default: 512 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; 513 abort(); 514 } 515 return Result; 516} 517 518/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 519/// is the address of the memory at which to store Val, cast to GenericValue *. 520/// It is not a pointer to a GenericValue containing the address at which to 521/// store Val. 522/// 523void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 524 const Type *Ty) { 525 switch (Ty->getTypeID()) { 526 case Type::IntegerTyID: { 527 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 528 GenericValue TmpVal = Val; 529 if (BitWidth <= 8) 530 *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue()); 531 else if (BitWidth <= 16) { 532 *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue()); 533 } else if (BitWidth <= 32) { 534 *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue()); 535 } else if (BitWidth <= 64) { 536 *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue()); 537 } else { 538 uint64_t *Dest = (uint64_t*)Ptr; 539 const uint64_t *Src = Val.IntVal.getRawData(); 540 for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i) 541 Dest[i] = Src[i]; 542 } 543 break; 544 } 545 case Type::FloatTyID: 546 *((float*)Ptr) = Val.FloatVal; 547 break; 548 case Type::DoubleTyID: 549 *((double*)Ptr) = Val.DoubleVal; 550 break; 551 case Type::PointerTyID: 552 *((PointerTy*)Ptr) = Val.PointerVal; 553 break; 554 default: 555 cerr << "Cannot store value of type " << *Ty << "!\n"; 556 } 557} 558 559/// FIXME: document 560/// 561void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 562 GenericValue *Ptr, 563 const Type *Ty) { 564 switch (Ty->getTypeID()) { 565 case Type::IntegerTyID: { 566 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 567 if (BitWidth <= 8) 568 Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr)); 569 else if (BitWidth <= 16) { 570 Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr)); 571 } else if (BitWidth <= 32) { 572 Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr)); 573 } else if (BitWidth <= 64) { 574 Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr)); 575 } else 576 Result.IntVal = APInt(BitWidth, BitWidth/64, (uint64_t*)Ptr); 577 break; 578 } 579 case Type::FloatTyID: 580 Result.FloatVal = *((float*)Ptr); 581 break; 582 case Type::DoubleTyID: 583 Result.DoubleVal = *((double*)Ptr); 584 break; 585 case Type::PointerTyID: 586 Result.PointerVal = *((PointerTy*)Ptr); 587 break; 588 default: 589 cerr << "Cannot load value of type " << *Ty << "!\n"; 590 abort(); 591 } 592} 593 594// InitializeMemory - Recursive function to apply a Constant value into the 595// specified memory location... 596// 597void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 598 if (isa<UndefValue>(Init)) { 599 return; 600 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 601 unsigned ElementSize = 602 getTargetData()->getTypeSize(CP->getType()->getElementType()); 603 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 604 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 605 return; 606 } else if (Init->getType()->isFirstClassType()) { 607 GenericValue Val = getConstantValue(Init); 608 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 609 return; 610 } else if (isa<ConstantAggregateZero>(Init)) { 611 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 612 return; 613 } 614 615 switch (Init->getType()->getTypeID()) { 616 case Type::ArrayTyID: { 617 const ConstantArray *CPA = cast<ConstantArray>(Init); 618 unsigned ElementSize = 619 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 620 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 621 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 622 return; 623 } 624 625 case Type::StructTyID: { 626 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 627 const StructLayout *SL = 628 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 629 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 630 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 631 return; 632 } 633 634 default: 635 cerr << "Bad Type: " << *Init->getType() << "\n"; 636 assert(0 && "Unknown constant type to initialize memory with!"); 637 } 638} 639 640/// EmitGlobals - Emit all of the global variables to memory, storing their 641/// addresses into GlobalAddress. This must make sure to copy the contents of 642/// their initializers into the memory. 643/// 644void ExecutionEngine::emitGlobals() { 645 const TargetData *TD = getTargetData(); 646 647 // Loop over all of the global variables in the program, allocating the memory 648 // to hold them. If there is more than one module, do a prepass over globals 649 // to figure out how the different modules should link together. 650 // 651 std::map<std::pair<std::string, const Type*>, 652 const GlobalValue*> LinkedGlobalsMap; 653 654 if (Modules.size() != 1) { 655 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 656 Module &M = *Modules[m]->getModule(); 657 for (Module::const_global_iterator I = M.global_begin(), 658 E = M.global_end(); I != E; ++I) { 659 const GlobalValue *GV = I; 660 if (GV->hasInternalLinkage() || GV->isDeclaration() || 661 GV->hasAppendingLinkage() || !GV->hasName()) 662 continue;// Ignore external globals and globals with internal linkage. 663 664 const GlobalValue *&GVEntry = 665 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 666 667 // If this is the first time we've seen this global, it is the canonical 668 // version. 669 if (!GVEntry) { 670 GVEntry = GV; 671 continue; 672 } 673 674 // If the existing global is strong, never replace it. 675 if (GVEntry->hasExternalLinkage() || 676 GVEntry->hasDLLImportLinkage() || 677 GVEntry->hasDLLExportLinkage()) 678 continue; 679 680 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 681 // symbol. 682 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 683 GVEntry = GV; 684 } 685 } 686 } 687 688 std::vector<const GlobalValue*> NonCanonicalGlobals; 689 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 690 Module &M = *Modules[m]->getModule(); 691 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 692 I != E; ++I) { 693 // In the multi-module case, see what this global maps to. 694 if (!LinkedGlobalsMap.empty()) { 695 if (const GlobalValue *GVEntry = 696 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 697 // If something else is the canonical global, ignore this one. 698 if (GVEntry != &*I) { 699 NonCanonicalGlobals.push_back(I); 700 continue; 701 } 702 } 703 } 704 705 if (!I->isDeclaration()) { 706 // Get the type of the global. 707 const Type *Ty = I->getType()->getElementType(); 708 709 // Allocate some memory for it! 710 unsigned Size = TD->getTypeSize(Ty); 711 addGlobalMapping(I, new char[Size]); 712 } else { 713 // External variable reference. Try to use the dynamic loader to 714 // get a pointer to it. 715 if (void *SymAddr = 716 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 717 addGlobalMapping(I, SymAddr); 718 else { 719 cerr << "Could not resolve external global address: " 720 << I->getName() << "\n"; 721 abort(); 722 } 723 } 724 } 725 726 // If there are multiple modules, map the non-canonical globals to their 727 // canonical location. 728 if (!NonCanonicalGlobals.empty()) { 729 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 730 const GlobalValue *GV = NonCanonicalGlobals[i]; 731 const GlobalValue *CGV = 732 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 733 void *Ptr = getPointerToGlobalIfAvailable(CGV); 734 assert(Ptr && "Canonical global wasn't codegen'd!"); 735 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 736 } 737 } 738 739 // Now that all of the globals are set up in memory, loop through them all 740 // and initialize their contents. 741 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 742 I != E; ++I) { 743 if (!I->isDeclaration()) { 744 if (!LinkedGlobalsMap.empty()) { 745 if (const GlobalValue *GVEntry = 746 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 747 if (GVEntry != &*I) // Not the canonical variable. 748 continue; 749 } 750 EmitGlobalVariable(I); 751 } 752 } 753 } 754} 755 756// EmitGlobalVariable - This method emits the specified global variable to the 757// address specified in GlobalAddresses, or allocates new memory if it's not 758// already in the map. 759void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 760 void *GA = getPointerToGlobalIfAvailable(GV); 761 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 762 763 const Type *ElTy = GV->getType()->getElementType(); 764 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 765 if (GA == 0) { 766 // If it's not already specified, allocate memory for the global. 767 GA = new char[GVSize]; 768 addGlobalMapping(GV, GA); 769 } 770 771 InitializeMemory(GV->getInitializer(), GA); 772 NumInitBytes += (unsigned)GVSize; 773 ++NumGlobals; 774} 775