ExecutionEngine.cpp revision 8b5295b7bb8bf44f13df7fc8e38069d1218b1f94
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ExecutionEngine/ExecutionEngine.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/MutexGuard.h"
25#include "llvm/System/DynamicLibrary.h"
26#include "llvm/Target/TargetData.h"
27#include <math.h>
28using namespace llvm;
29
30STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
31STATISTIC(NumGlobals  , "Number of global vars initialized");
32
33ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
34ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
35
36ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
37  LazyCompilationDisabled = false;
38  Modules.push_back(P);
39  assert(P && "ModuleProvider is null?");
40}
41
42ExecutionEngine::ExecutionEngine(Module *M) {
43  LazyCompilationDisabled = false;
44  assert(M && "Module is null?");
45  Modules.push_back(new ExistingModuleProvider(M));
46}
47
48ExecutionEngine::~ExecutionEngine() {
49  clearAllGlobalMappings();
50  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
51    delete Modules[i];
52}
53
54/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
55/// Release module from ModuleProvider.
56Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
57                                              std::string *ErrInfo) {
58  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
59        E = Modules.end(); I != E; ++I) {
60    ModuleProvider *MP = *I;
61    if (MP == P) {
62      Modules.erase(I);
63      return MP->releaseModule(ErrInfo);
64    }
65  }
66  return NULL;
67}
68
69/// FindFunctionNamed - Search all of the active modules to find the one that
70/// defines FnName.  This is very slow operation and shouldn't be used for
71/// general code.
72Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
73  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
74    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
75      return F;
76  }
77  return 0;
78}
79
80
81/// addGlobalMapping - Tell the execution engine that the specified global is
82/// at the specified location.  This is used internally as functions are JIT'd
83/// and as global variables are laid out in memory.  It can and should also be
84/// used by clients of the EE that want to have an LLVM global overlay
85/// existing data in memory.
86void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
87  MutexGuard locked(lock);
88
89  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
90  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
91  CurVal = Addr;
92
93  // If we are using the reverse mapping, add it too
94  if (!state.getGlobalAddressReverseMap(locked).empty()) {
95    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
96    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
97    V = GV;
98  }
99}
100
101/// clearAllGlobalMappings - Clear all global mappings and start over again
102/// use in dynamic compilation scenarios when you want to move globals
103void ExecutionEngine::clearAllGlobalMappings() {
104  MutexGuard locked(lock);
105
106  state.getGlobalAddressMap(locked).clear();
107  state.getGlobalAddressReverseMap(locked).clear();
108}
109
110/// updateGlobalMapping - Replace an existing mapping for GV with a new
111/// address.  This updates both maps as required.  If "Addr" is null, the
112/// entry for the global is removed from the mappings.
113void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
114  MutexGuard locked(lock);
115
116  // Deleting from the mapping?
117  if (Addr == 0) {
118    state.getGlobalAddressMap(locked).erase(GV);
119    if (!state.getGlobalAddressReverseMap(locked).empty())
120      state.getGlobalAddressReverseMap(locked).erase(Addr);
121    return;
122  }
123
124  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
125  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
126    state.getGlobalAddressReverseMap(locked).erase(CurVal);
127  CurVal = Addr;
128
129  // If we are using the reverse mapping, add it too
130  if (!state.getGlobalAddressReverseMap(locked).empty()) {
131    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
132    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
133    V = GV;
134  }
135}
136
137/// getPointerToGlobalIfAvailable - This returns the address of the specified
138/// global value if it is has already been codegen'd, otherwise it returns null.
139///
140void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
141  MutexGuard locked(lock);
142
143  std::map<const GlobalValue*, void*>::iterator I =
144  state.getGlobalAddressMap(locked).find(GV);
145  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
146}
147
148/// getGlobalValueAtAddress - Return the LLVM global value object that starts
149/// at the specified address.
150///
151const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
152  MutexGuard locked(lock);
153
154  // If we haven't computed the reverse mapping yet, do so first.
155  if (state.getGlobalAddressReverseMap(locked).empty()) {
156    for (std::map<const GlobalValue*, void *>::iterator
157         I = state.getGlobalAddressMap(locked).begin(),
158         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
159      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
160                                                                     I->first));
161  }
162
163  std::map<void *, const GlobalValue*>::iterator I =
164    state.getGlobalAddressReverseMap(locked).find(Addr);
165  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
166}
167
168// CreateArgv - Turn a vector of strings into a nice argv style array of
169// pointers to null terminated strings.
170//
171static void *CreateArgv(ExecutionEngine *EE,
172                        const std::vector<std::string> &InputArgv) {
173  unsigned PtrSize = EE->getTargetData()->getPointerSize();
174  char *Result = new char[(InputArgv.size()+1)*PtrSize];
175
176  DOUT << "ARGV = " << (void*)Result << "\n";
177  const Type *SBytePtr = PointerType::get(Type::Int8Ty);
178
179  for (unsigned i = 0; i != InputArgv.size(); ++i) {
180    unsigned Size = InputArgv[i].size()+1;
181    char *Dest = new char[Size];
182    DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
183
184    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
185    Dest[Size-1] = 0;
186
187    // Endian safe: Result[i] = (PointerTy)Dest;
188    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
189                           SBytePtr);
190  }
191
192  // Null terminate it
193  EE->StoreValueToMemory(PTOGV(0),
194                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
195                         SBytePtr);
196  return Result;
197}
198
199
200/// runStaticConstructorsDestructors - This method is used to execute all of
201/// the static constructors or destructors for a program, depending on the
202/// value of isDtors.
203void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
204  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
205
206  // Execute global ctors/dtors for each module in the program.
207  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
208    GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
209
210    // If this global has internal linkage, or if it has a use, then it must be
211    // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
212    // this is the case, don't execute any of the global ctors, __main will do
213    // it.
214    if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
215
216    // Should be an array of '{ int, void ()* }' structs.  The first value is
217    // the init priority, which we ignore.
218    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
219    if (!InitList) continue;
220    for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
221      if (ConstantStruct *CS =
222          dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
223        if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
224
225        Constant *FP = CS->getOperand(1);
226        if (FP->isNullValue())
227          break;  // Found a null terminator, exit.
228
229        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
230          if (CE->isCast())
231            FP = CE->getOperand(0);
232        if (Function *F = dyn_cast<Function>(FP)) {
233          // Execute the ctor/dtor function!
234          runFunction(F, std::vector<GenericValue>());
235        }
236      }
237  }
238}
239
240/// runFunctionAsMain - This is a helper function which wraps runFunction to
241/// handle the common task of starting up main with the specified argc, argv,
242/// and envp parameters.
243int ExecutionEngine::runFunctionAsMain(Function *Fn,
244                                       const std::vector<std::string> &argv,
245                                       const char * const * envp) {
246  std::vector<GenericValue> GVArgs;
247  GenericValue GVArgc;
248  GVArgc.IntVal = APInt(32, argv.size());
249
250  // Check main() type
251  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
252  const FunctionType *FTy = Fn->getFunctionType();
253  const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty));
254  switch (NumArgs) {
255  case 3:
256   if (FTy->getParamType(2) != PPInt8Ty) {
257     cerr << "Invalid type for third argument of main() supplied\n";
258     abort();
259   }
260   // FALLS THROUGH
261  case 2:
262   if (FTy->getParamType(1) != PPInt8Ty) {
263     cerr << "Invalid type for second argument of main() supplied\n";
264     abort();
265   }
266   // FALLS THROUGH
267  case 1:
268   if (FTy->getParamType(0) != Type::Int32Ty) {
269     cerr << "Invalid type for first argument of main() supplied\n";
270     abort();
271   }
272   // FALLS THROUGH
273  case 0:
274   if (FTy->getReturnType() != Type::Int32Ty &&
275       FTy->getReturnType() != Type::VoidTy) {
276     cerr << "Invalid return type of main() supplied\n";
277     abort();
278   }
279   break;
280  default:
281   cerr << "Invalid number of arguments of main() supplied\n";
282   abort();
283  }
284
285  if (NumArgs) {
286    GVArgs.push_back(GVArgc); // Arg #0 = argc.
287    if (NumArgs > 1) {
288      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
289      assert(((char **)GVTOP(GVArgs[1]))[0] &&
290             "argv[0] was null after CreateArgv");
291      if (NumArgs > 2) {
292        std::vector<std::string> EnvVars;
293        for (unsigned i = 0; envp[i]; ++i)
294          EnvVars.push_back(envp[i]);
295        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
296      }
297    }
298  }
299  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
300}
301
302/// If possible, create a JIT, unless the caller specifically requests an
303/// Interpreter or there's an error. If even an Interpreter cannot be created,
304/// NULL is returned.
305///
306ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
307                                         bool ForceInterpreter,
308                                         std::string *ErrorStr) {
309  ExecutionEngine *EE = 0;
310
311  // Unless the interpreter was explicitly selected, try making a JIT.
312  if (!ForceInterpreter && JITCtor)
313    EE = JITCtor(MP, ErrorStr);
314
315  // If we can't make a JIT, make an interpreter instead.
316  if (EE == 0 && InterpCtor)
317    EE = InterpCtor(MP, ErrorStr);
318
319  if (EE) {
320    // Make sure we can resolve symbols in the program as well. The zero arg
321    // to the function tells DynamicLibrary to load the program, not a library.
322    try {
323      sys::DynamicLibrary::LoadLibraryPermanently(0);
324    } catch (...) {
325    }
326  }
327
328  return EE;
329}
330
331ExecutionEngine *ExecutionEngine::create(Module *M) {
332  return create(new ExistingModuleProvider(M));
333}
334
335/// getPointerToGlobal - This returns the address of the specified global
336/// value.  This may involve code generation if it's a function.
337///
338void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
339  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
340    return getPointerToFunction(F);
341
342  MutexGuard locked(lock);
343  void *p = state.getGlobalAddressMap(locked)[GV];
344  if (p)
345    return p;
346
347  // Global variable might have been added since interpreter started.
348  if (GlobalVariable *GVar =
349          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
350    EmitGlobalVariable(GVar);
351  else
352    assert(0 && "Global hasn't had an address allocated yet!");
353  return state.getGlobalAddressMap(locked)[GV];
354}
355
356/// This function converts a Constant* into a GenericValue. The interesting
357/// part is if C is a ConstantExpr.
358/// @brief Get a GenericValue for a Constant*
359GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
360  // If its undefined, return the garbage.
361  if (isa<UndefValue>(C))
362    return GenericValue();
363
364  // If the value is a ConstantExpr
365  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
366    Constant *Op0 = CE->getOperand(0);
367    switch (CE->getOpcode()) {
368    case Instruction::GetElementPtr: {
369      // Compute the index
370      GenericValue Result = getConstantValue(Op0);
371      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
372      uint64_t Offset =
373        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
374
375      char* tmp = (char*) Result.PointerVal;
376      Result = PTOGV(tmp + Offset);
377      return Result;
378    }
379    case Instruction::Trunc: {
380      GenericValue GV = getConstantValue(Op0);
381      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
382      GV.IntVal = GV.IntVal.trunc(BitWidth);
383      return GV;
384    }
385    case Instruction::ZExt: {
386      GenericValue GV = getConstantValue(Op0);
387      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
388      GV.IntVal = GV.IntVal.zext(BitWidth);
389      return GV;
390    }
391    case Instruction::SExt: {
392      GenericValue GV = getConstantValue(Op0);
393      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
394      GV.IntVal = GV.IntVal.sext(BitWidth);
395      return GV;
396    }
397    case Instruction::FPTrunc: {
398      // FIXME long double
399      GenericValue GV = getConstantValue(Op0);
400      GV.FloatVal = float(GV.DoubleVal);
401      return GV;
402    }
403    case Instruction::FPExt:{
404      // FIXME long double
405      GenericValue GV = getConstantValue(Op0);
406      GV.DoubleVal = double(GV.FloatVal);
407      return GV;
408    }
409    case Instruction::UIToFP: {
410      GenericValue GV = getConstantValue(Op0);
411      if (CE->getType() == Type::FloatTy)
412        GV.FloatVal = float(GV.IntVal.roundToDouble());
413      else if (CE->getType() == Type::DoubleTy)
414        GV.DoubleVal = GV.IntVal.roundToDouble();
415      else if (CE->getType() == Type::X86_FP80Ty) {
416        const uint64_t zero[] = {0, 0};
417        APFloat apf = APFloat(APInt(80, 2, zero));
418        (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(),
419                               GV.IntVal.getBitWidth(), false,
420                               APFloat::rmNearestTiesToEven);
421        GV.IntVal = apf.convertToAPInt();
422      }
423      return GV;
424    }
425    case Instruction::SIToFP: {
426      GenericValue GV = getConstantValue(Op0);
427      if (CE->getType() == Type::FloatTy)
428        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
429      else if (CE->getType() == Type::DoubleTy)
430        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
431      else if (CE->getType() == Type::X86_FP80Ty) {
432        const uint64_t zero[] = { 0, 0};
433        APFloat apf = APFloat(APInt(80, 2, zero));
434        (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(),
435                               GV.IntVal.getBitWidth(), true,
436                               APFloat::rmNearestTiesToEven);
437        GV.IntVal = apf.convertToAPInt();
438      }
439      return GV;
440    }
441    case Instruction::FPToUI: // double->APInt conversion handles sign
442    case Instruction::FPToSI: {
443      GenericValue GV = getConstantValue(Op0);
444      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
445      if (Op0->getType() == Type::FloatTy)
446        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
447      else if (Op0->getType() == Type::DoubleTy)
448        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
449      else if (Op0->getType() == Type::X86_FP80Ty) {
450        APFloat apf = APFloat(GV.IntVal);
451        uint64_t v;
452        (void)apf.convertToInteger(&v, BitWidth,
453                                   CE->getOpcode()==Instruction::FPToSI,
454                                   APFloat::rmTowardZero);
455        GV.IntVal = v; // endian?
456      }
457      return GV;
458    }
459    case Instruction::PtrToInt: {
460      GenericValue GV = getConstantValue(Op0);
461      uint32_t PtrWidth = TD->getPointerSizeInBits();
462      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
463      return GV;
464    }
465    case Instruction::IntToPtr: {
466      GenericValue GV = getConstantValue(Op0);
467      uint32_t PtrWidth = TD->getPointerSizeInBits();
468      if (PtrWidth != GV.IntVal.getBitWidth())
469        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
470      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
471      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
472      return GV;
473    }
474    case Instruction::BitCast: {
475      GenericValue GV = getConstantValue(Op0);
476      const Type* DestTy = CE->getType();
477      switch (Op0->getType()->getTypeID()) {
478        default: assert(0 && "Invalid bitcast operand");
479        case Type::IntegerTyID:
480          assert(DestTy->isFloatingPoint() && "invalid bitcast");
481          if (DestTy == Type::FloatTy)
482            GV.FloatVal = GV.IntVal.bitsToFloat();
483          else if (DestTy == Type::DoubleTy)
484            GV.DoubleVal = GV.IntVal.bitsToDouble();
485          break;
486        case Type::FloatTyID:
487          assert(DestTy == Type::Int32Ty && "Invalid bitcast");
488          GV.IntVal.floatToBits(GV.FloatVal);
489          break;
490        case Type::DoubleTyID:
491          assert(DestTy == Type::Int64Ty && "Invalid bitcast");
492          GV.IntVal.doubleToBits(GV.DoubleVal);
493          break;
494        case Type::PointerTyID:
495          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
496          break; // getConstantValue(Op0)  above already converted it
497      }
498      return GV;
499    }
500    case Instruction::Add:
501    case Instruction::Sub:
502    case Instruction::Mul:
503    case Instruction::UDiv:
504    case Instruction::SDiv:
505    case Instruction::URem:
506    case Instruction::SRem:
507    case Instruction::And:
508    case Instruction::Or:
509    case Instruction::Xor: {
510      GenericValue LHS = getConstantValue(Op0);
511      GenericValue RHS = getConstantValue(CE->getOperand(1));
512      GenericValue GV;
513      switch (CE->getOperand(0)->getType()->getTypeID()) {
514      default: assert(0 && "Bad add type!"); abort();
515      case Type::IntegerTyID:
516        switch (CE->getOpcode()) {
517          default: assert(0 && "Invalid integer opcode");
518          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
519          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
520          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
521          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
522          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
523          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
524          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
525          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
526          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
527          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
528        }
529        break;
530      case Type::FloatTyID:
531        switch (CE->getOpcode()) {
532          default: assert(0 && "Invalid float opcode"); abort();
533          case Instruction::Add:
534            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
535          case Instruction::Sub:
536            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
537          case Instruction::Mul:
538            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
539          case Instruction::FDiv:
540            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
541          case Instruction::FRem:
542            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
543        }
544        break;
545      case Type::DoubleTyID:
546        switch (CE->getOpcode()) {
547          default: assert(0 && "Invalid double opcode"); abort();
548          case Instruction::Add:
549            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
550          case Instruction::Sub:
551            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
552          case Instruction::Mul:
553            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
554          case Instruction::FDiv:
555            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
556          case Instruction::FRem:
557            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
558        }
559        break;
560      case Type::X86_FP80TyID:
561      case Type::PPC_FP128TyID:
562      case Type::FP128TyID: {
563        APFloat apfLHS = APFloat(LHS.IntVal);
564        switch (CE->getOpcode()) {
565          default: assert(0 && "Invalid long double opcode"); abort();
566          case Instruction::Add:
567            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
568            GV.IntVal = apfLHS.convertToAPInt();
569            break;
570          case Instruction::Sub:
571            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
572            GV.IntVal = apfLHS.convertToAPInt();
573            break;
574          case Instruction::Mul:
575            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
576            GV.IntVal = apfLHS.convertToAPInt();
577            break;
578          case Instruction::FDiv:
579            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
580            GV.IntVal = apfLHS.convertToAPInt();
581            break;
582          case Instruction::FRem:
583            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
584            GV.IntVal = apfLHS.convertToAPInt();
585            break;
586          }
587        }
588        break;
589      }
590      return GV;
591    }
592    default:
593      break;
594    }
595    cerr << "ConstantExpr not handled: " << *CE << "\n";
596    abort();
597  }
598
599  GenericValue Result;
600  switch (C->getType()->getTypeID()) {
601  case Type::FloatTyID:
602    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
603    break;
604  case Type::DoubleTyID:
605    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
606    break;
607  case Type::X86_FP80TyID:
608  case Type::FP128TyID:
609  case Type::PPC_FP128TyID:
610    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt();
611    break;
612  case Type::IntegerTyID:
613    Result.IntVal = cast<ConstantInt>(C)->getValue();
614    break;
615  case Type::PointerTyID:
616    if (isa<ConstantPointerNull>(C))
617      Result.PointerVal = 0;
618    else if (const Function *F = dyn_cast<Function>(C))
619      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
620    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
621      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
622    else
623      assert(0 && "Unknown constant pointer type!");
624    break;
625  default:
626    cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
627    abort();
628  }
629  return Result;
630}
631
632/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
633/// is the address of the memory at which to store Val, cast to GenericValue *.
634/// It is not a pointer to a GenericValue containing the address at which to
635/// store Val.
636///
637void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
638                                         const Type *Ty) {
639  switch (Ty->getTypeID()) {
640  case Type::IntegerTyID: {
641    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
642    GenericValue TmpVal = Val;
643    if (BitWidth <= 8)
644      *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue());
645    else if (BitWidth <= 16) {
646      *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue());
647    } else if (BitWidth <= 32) {
648      *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue());
649    } else if (BitWidth <= 64) {
650      *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue());
651    } else {
652      uint64_t *Dest = (uint64_t*)Ptr;
653      const uint64_t *Src = Val.IntVal.getRawData();
654      for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i)
655        Dest[i] = Src[i];
656    }
657    break;
658  }
659  case Type::FloatTyID:
660    *((float*)Ptr) = Val.FloatVal;
661    break;
662  case Type::DoubleTyID:
663    *((double*)Ptr) = Val.DoubleVal;
664    break;
665  case Type::X86_FP80TyID: {
666      uint16_t *Dest = (uint16_t*)Ptr;
667      const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData();
668      // This is endian dependent, but it will only work on x86 anyway.
669      Dest[0] = Src[4];
670      Dest[1] = Src[0];
671      Dest[2] = Src[1];
672      Dest[3] = Src[2];
673      Dest[4] = Src[3];
674      break;
675    }
676  case Type::PointerTyID:
677    *((PointerTy*)Ptr) = Val.PointerVal;
678    break;
679  default:
680    cerr << "Cannot store value of type " << *Ty << "!\n";
681  }
682}
683
684/// FIXME: document
685///
686void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
687                                                  GenericValue *Ptr,
688                                                  const Type *Ty) {
689  switch (Ty->getTypeID()) {
690  case Type::IntegerTyID: {
691    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
692    if (BitWidth <= 8)
693      Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr));
694    else if (BitWidth <= 16) {
695      Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr));
696    } else if (BitWidth <= 32) {
697      Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr));
698    } else if (BitWidth <= 64) {
699      Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr));
700    } else
701      Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr);
702    break;
703  }
704  case Type::FloatTyID:
705    Result.FloatVal = *((float*)Ptr);
706    break;
707  case Type::DoubleTyID:
708    Result.DoubleVal = *((double*)Ptr);
709    break;
710  case Type::PointerTyID:
711    Result.PointerVal = *((PointerTy*)Ptr);
712    break;
713  case Type::X86_FP80TyID: {
714    // This is endian dependent, but it will only work on x86 anyway.
715    uint16_t x[8], *p = (uint16_t*)Ptr;
716    x[0] = p[1];
717    x[1] = p[2];
718    x[2] = p[3];
719    x[3] = p[4];
720    x[4] = p[0];
721    Result.IntVal = APInt(80, 2, x);
722    break;
723  }
724  default:
725    cerr << "Cannot load value of type " << *Ty << "!\n";
726    abort();
727  }
728}
729
730// InitializeMemory - Recursive function to apply a Constant value into the
731// specified memory location...
732//
733void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
734  if (isa<UndefValue>(Init)) {
735    return;
736  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
737    unsigned ElementSize =
738      getTargetData()->getTypeSize(CP->getType()->getElementType());
739    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
740      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
741    return;
742  } else if (Init->getType()->isFirstClassType()) {
743    GenericValue Val = getConstantValue(Init);
744    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
745    return;
746  } else if (isa<ConstantAggregateZero>(Init)) {
747    memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
748    return;
749  }
750
751  switch (Init->getType()->getTypeID()) {
752  case Type::ArrayTyID: {
753    const ConstantArray *CPA = cast<ConstantArray>(Init);
754    unsigned ElementSize =
755      getTargetData()->getTypeSize(CPA->getType()->getElementType());
756    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
757      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
758    return;
759  }
760
761  case Type::StructTyID: {
762    const ConstantStruct *CPS = cast<ConstantStruct>(Init);
763    const StructLayout *SL =
764      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
765    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
766      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
767    return;
768  }
769
770  default:
771    cerr << "Bad Type: " << *Init->getType() << "\n";
772    assert(0 && "Unknown constant type to initialize memory with!");
773  }
774}
775
776/// EmitGlobals - Emit all of the global variables to memory, storing their
777/// addresses into GlobalAddress.  This must make sure to copy the contents of
778/// their initializers into the memory.
779///
780void ExecutionEngine::emitGlobals() {
781  const TargetData *TD = getTargetData();
782
783  // Loop over all of the global variables in the program, allocating the memory
784  // to hold them.  If there is more than one module, do a prepass over globals
785  // to figure out how the different modules should link together.
786  //
787  std::map<std::pair<std::string, const Type*>,
788           const GlobalValue*> LinkedGlobalsMap;
789
790  if (Modules.size() != 1) {
791    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
792      Module &M = *Modules[m]->getModule();
793      for (Module::const_global_iterator I = M.global_begin(),
794           E = M.global_end(); I != E; ++I) {
795        const GlobalValue *GV = I;
796        if (GV->hasInternalLinkage() || GV->isDeclaration() ||
797            GV->hasAppendingLinkage() || !GV->hasName())
798          continue;// Ignore external globals and globals with internal linkage.
799
800        const GlobalValue *&GVEntry =
801          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
802
803        // If this is the first time we've seen this global, it is the canonical
804        // version.
805        if (!GVEntry) {
806          GVEntry = GV;
807          continue;
808        }
809
810        // If the existing global is strong, never replace it.
811        if (GVEntry->hasExternalLinkage() ||
812            GVEntry->hasDLLImportLinkage() ||
813            GVEntry->hasDLLExportLinkage())
814          continue;
815
816        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
817        // symbol.
818        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
819          GVEntry = GV;
820      }
821    }
822  }
823
824  std::vector<const GlobalValue*> NonCanonicalGlobals;
825  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
826    Module &M = *Modules[m]->getModule();
827    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
828         I != E; ++I) {
829      // In the multi-module case, see what this global maps to.
830      if (!LinkedGlobalsMap.empty()) {
831        if (const GlobalValue *GVEntry =
832              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
833          // If something else is the canonical global, ignore this one.
834          if (GVEntry != &*I) {
835            NonCanonicalGlobals.push_back(I);
836            continue;
837          }
838        }
839      }
840
841      if (!I->isDeclaration()) {
842        // Get the type of the global.
843        const Type *Ty = I->getType()->getElementType();
844
845        // Allocate some memory for it!
846        unsigned Size = TD->getTypeSize(Ty);
847        addGlobalMapping(I, new char[Size]);
848      } else {
849        // External variable reference. Try to use the dynamic loader to
850        // get a pointer to it.
851        if (void *SymAddr =
852            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
853          addGlobalMapping(I, SymAddr);
854        else {
855          cerr << "Could not resolve external global address: "
856               << I->getName() << "\n";
857          abort();
858        }
859      }
860    }
861
862    // If there are multiple modules, map the non-canonical globals to their
863    // canonical location.
864    if (!NonCanonicalGlobals.empty()) {
865      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
866        const GlobalValue *GV = NonCanonicalGlobals[i];
867        const GlobalValue *CGV =
868          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
869        void *Ptr = getPointerToGlobalIfAvailable(CGV);
870        assert(Ptr && "Canonical global wasn't codegen'd!");
871        addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
872      }
873    }
874
875    // Now that all of the globals are set up in memory, loop through them all
876    // and initialize their contents.
877    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
878         I != E; ++I) {
879      if (!I->isDeclaration()) {
880        if (!LinkedGlobalsMap.empty()) {
881          if (const GlobalValue *GVEntry =
882                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
883            if (GVEntry != &*I)  // Not the canonical variable.
884              continue;
885        }
886        EmitGlobalVariable(I);
887      }
888    }
889  }
890}
891
892// EmitGlobalVariable - This method emits the specified global variable to the
893// address specified in GlobalAddresses, or allocates new memory if it's not
894// already in the map.
895void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
896  void *GA = getPointerToGlobalIfAvailable(GV);
897  DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
898
899  const Type *ElTy = GV->getType()->getElementType();
900  size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
901  if (GA == 0) {
902    // If it's not already specified, allocate memory for the global.
903    GA = new char[GVSize];
904    addGlobalMapping(GV, GA);
905  }
906
907  InitializeMemory(GV->getInitializer(), GA);
908  NumInitBytes += (unsigned)GVSize;
909  ++NumGlobals;
910}
911