ExecutionEngine.cpp revision ae7c59a01286a3babbc6245dcb1049c7bcde2573
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/ExecutionEngine/ExecutionEngine.h"
17
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Module.h"
21#include "llvm/ModuleProvider.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MutexGuard.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/System/DynamicLibrary.h"
30#include "llvm/System/Host.h"
31#include "llvm/Target/TargetData.h"
32#include <cmath>
33#include <cstring>
34using namespace llvm;
35
36STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
37STATISTIC(NumGlobals  , "Number of global vars initialized");
38
39ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
40                                             std::string *ErrorStr,
41                                             JITMemoryManager *JMM,
42                                             CodeGenOpt::Level OptLevel,
43                                             bool GVsWithCode,
44					     CodeModel::Model CMM) = 0;
45ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
46                                                std::string *ErrorStr) = 0;
47ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
48
49
50ExecutionEngine::ExecutionEngine(ModuleProvider *P)
51  : EEState(*this),
52    LazyFunctionCreator(0) {
53  CompilingLazily         = false;
54  GVCompilationDisabled   = false;
55  SymbolSearchingDisabled = false;
56  Modules.push_back(P);
57  assert(P && "ModuleProvider is null?");
58}
59
60ExecutionEngine::~ExecutionEngine() {
61  clearAllGlobalMappings();
62  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
63    delete Modules[i];
64}
65
66char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
67  const Type *ElTy = GV->getType()->getElementType();
68  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
69  return new char[GVSize];
70}
71
72/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
73/// Relases the Module from the ModuleProvider, materializing it in the
74/// process, and returns the materialized Module.
75Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
76                                              std::string *ErrInfo) {
77  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
78        E = Modules.end(); I != E; ++I) {
79    ModuleProvider *MP = *I;
80    if (MP == P) {
81      Modules.erase(I);
82      clearGlobalMappingsFromModule(MP->getModule());
83      return MP->releaseModule(ErrInfo);
84    }
85  }
86  return NULL;
87}
88
89/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
90/// and deletes the ModuleProvider and owned Module.  Avoids materializing
91/// the underlying module.
92void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
93                                           std::string *ErrInfo) {
94  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
95      E = Modules.end(); I != E; ++I) {
96    ModuleProvider *MP = *I;
97    if (MP == P) {
98      Modules.erase(I);
99      clearGlobalMappingsFromModule(MP->getModule());
100      delete MP;
101      return;
102    }
103  }
104}
105
106/// FindFunctionNamed - Search all of the active modules to find the one that
107/// defines FnName.  This is very slow operation and shouldn't be used for
108/// general code.
109Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
110  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
111    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
112      return F;
113  }
114  return 0;
115}
116
117
118void *ExecutionEngineState::RemoveMapping(
119  const MutexGuard &, const GlobalValue *ToUnmap) {
120  GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
121  void *OldVal;
122  if (I == GlobalAddressMap.end())
123    OldVal = 0;
124  else {
125    OldVal = I->second;
126    GlobalAddressMap.erase(I);
127  }
128
129  GlobalAddressReverseMap.erase(OldVal);
130  return OldVal;
131}
132
133/// addGlobalMapping - Tell the execution engine that the specified global is
134/// at the specified location.  This is used internally as functions are JIT'd
135/// and as global variables are laid out in memory.  It can and should also be
136/// used by clients of the EE that want to have an LLVM global overlay
137/// existing data in memory.
138void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
139  MutexGuard locked(lock);
140
141  DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
142        << "\' to [" << Addr << "]\n";);
143  void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
144  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
145  CurVal = Addr;
146
147  // If we are using the reverse mapping, add it too
148  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
149    AssertingVH<const GlobalValue> &V =
150      EEState.getGlobalAddressReverseMap(locked)[Addr];
151    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
152    V = GV;
153  }
154}
155
156/// clearAllGlobalMappings - Clear all global mappings and start over again
157/// use in dynamic compilation scenarios when you want to move globals
158void ExecutionEngine::clearAllGlobalMappings() {
159  MutexGuard locked(lock);
160
161  EEState.getGlobalAddressMap(locked).clear();
162  EEState.getGlobalAddressReverseMap(locked).clear();
163}
164
165/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
166/// particular module, because it has been removed from the JIT.
167void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
168  MutexGuard locked(lock);
169
170  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
171    EEState.RemoveMapping(locked, FI);
172  }
173  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
174       GI != GE; ++GI) {
175    EEState.RemoveMapping(locked, GI);
176  }
177}
178
179/// updateGlobalMapping - Replace an existing mapping for GV with a new
180/// address.  This updates both maps as required.  If "Addr" is null, the
181/// entry for the global is removed from the mappings.
182void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
183  MutexGuard locked(lock);
184
185  ExecutionEngineState::GlobalAddressMapTy &Map =
186    EEState.getGlobalAddressMap(locked);
187
188  // Deleting from the mapping?
189  if (Addr == 0) {
190    return EEState.RemoveMapping(locked, GV);
191  }
192
193  void *&CurVal = Map[GV];
194  void *OldVal = CurVal;
195
196  if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
197    EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
198  CurVal = Addr;
199
200  // If we are using the reverse mapping, add it too
201  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
202    AssertingVH<const GlobalValue> &V =
203      EEState.getGlobalAddressReverseMap(locked)[Addr];
204    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
205    V = GV;
206  }
207  return OldVal;
208}
209
210/// getPointerToGlobalIfAvailable - This returns the address of the specified
211/// global value if it is has already been codegen'd, otherwise it returns null.
212///
213void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
214  MutexGuard locked(lock);
215
216  ExecutionEngineState::GlobalAddressMapTy::iterator I =
217    EEState.getGlobalAddressMap(locked).find(GV);
218  return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
219}
220
221/// getGlobalValueAtAddress - Return the LLVM global value object that starts
222/// at the specified address.
223///
224const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
225  MutexGuard locked(lock);
226
227  // If we haven't computed the reverse mapping yet, do so first.
228  if (EEState.getGlobalAddressReverseMap(locked).empty()) {
229    for (ExecutionEngineState::GlobalAddressMapTy::iterator
230         I = EEState.getGlobalAddressMap(locked).begin(),
231         E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
232      EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
233                                                                     I->first));
234  }
235
236  std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
237    EEState.getGlobalAddressReverseMap(locked).find(Addr);
238  return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
239}
240
241// CreateArgv - Turn a vector of strings into a nice argv style array of
242// pointers to null terminated strings.
243//
244static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
245                        const std::vector<std::string> &InputArgv) {
246  unsigned PtrSize = EE->getTargetData()->getPointerSize();
247  char *Result = new char[(InputArgv.size()+1)*PtrSize];
248
249  DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n");
250  const Type *SBytePtr = Type::getInt8PtrTy(C);
251
252  for (unsigned i = 0; i != InputArgv.size(); ++i) {
253    unsigned Size = InputArgv[i].size()+1;
254    char *Dest = new char[Size];
255    DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
256
257    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
258    Dest[Size-1] = 0;
259
260    // Endian safe: Result[i] = (PointerTy)Dest;
261    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
262                           SBytePtr);
263  }
264
265  // Null terminate it
266  EE->StoreValueToMemory(PTOGV(0),
267                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
268                         SBytePtr);
269  return Result;
270}
271
272
273/// runStaticConstructorsDestructors - This method is used to execute all of
274/// the static constructors or destructors for a module, depending on the
275/// value of isDtors.
276void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
277                                                       bool isDtors) {
278  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
279
280  // Execute global ctors/dtors for each module in the program.
281
282 GlobalVariable *GV = module->getNamedGlobal(Name);
283
284 // If this global has internal linkage, or if it has a use, then it must be
285 // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
286 // this is the case, don't execute any of the global ctors, __main will do
287 // it.
288 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
289
290 // Should be an array of '{ int, void ()* }' structs.  The first value is
291 // the init priority, which we ignore.
292 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
293 if (!InitList) return;
294 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
295   if (ConstantStruct *CS =
296       dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
297     if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
298
299     Constant *FP = CS->getOperand(1);
300     if (FP->isNullValue())
301       break;  // Found a null terminator, exit.
302
303     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
304       if (CE->isCast())
305         FP = CE->getOperand(0);
306     if (Function *F = dyn_cast<Function>(FP)) {
307       // Execute the ctor/dtor function!
308       runFunction(F, std::vector<GenericValue>());
309     }
310   }
311}
312
313/// runStaticConstructorsDestructors - This method is used to execute all of
314/// the static constructors or destructors for a program, depending on the
315/// value of isDtors.
316void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
317  // Execute global ctors/dtors for each module in the program.
318  for (unsigned m = 0, e = Modules.size(); m != e; ++m)
319    runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
320}
321
322#ifndef NDEBUG
323/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
324static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
325  unsigned PtrSize = EE->getTargetData()->getPointerSize();
326  for (unsigned i = 0; i < PtrSize; ++i)
327    if (*(i + (uint8_t*)Loc))
328      return false;
329  return true;
330}
331#endif
332
333/// runFunctionAsMain - This is a helper function which wraps runFunction to
334/// handle the common task of starting up main with the specified argc, argv,
335/// and envp parameters.
336int ExecutionEngine::runFunctionAsMain(Function *Fn,
337                                       const std::vector<std::string> &argv,
338                                       const char * const * envp) {
339  std::vector<GenericValue> GVArgs;
340  GenericValue GVArgc;
341  GVArgc.IntVal = APInt(32, argv.size());
342
343  // Check main() type
344  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
345  const FunctionType *FTy = Fn->getFunctionType();
346  const Type* PPInt8Ty =
347    PointerType::getUnqual(PointerType::getUnqual(
348          Type::getInt8Ty(Fn->getContext())));
349  switch (NumArgs) {
350  case 3:
351   if (FTy->getParamType(2) != PPInt8Ty) {
352     llvm_report_error("Invalid type for third argument of main() supplied");
353   }
354   // FALLS THROUGH
355  case 2:
356   if (FTy->getParamType(1) != PPInt8Ty) {
357     llvm_report_error("Invalid type for second argument of main() supplied");
358   }
359   // FALLS THROUGH
360  case 1:
361   if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) {
362     llvm_report_error("Invalid type for first argument of main() supplied");
363   }
364   // FALLS THROUGH
365  case 0:
366   if (!isa<IntegerType>(FTy->getReturnType()) &&
367       FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) {
368     llvm_report_error("Invalid return type of main() supplied");
369   }
370   break;
371  default:
372   llvm_report_error("Invalid number of arguments of main() supplied");
373  }
374
375  if (NumArgs) {
376    GVArgs.push_back(GVArgc); // Arg #0 = argc.
377    if (NumArgs > 1) {
378      // Arg #1 = argv.
379      GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv)));
380      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
381             "argv[0] was null after CreateArgv");
382      if (NumArgs > 2) {
383        std::vector<std::string> EnvVars;
384        for (unsigned i = 0; envp[i]; ++i)
385          EnvVars.push_back(envp[i]);
386        // Arg #2 = envp.
387        GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
388      }
389    }
390  }
391  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
392}
393
394/// If possible, create a JIT, unless the caller specifically requests an
395/// Interpreter or there's an error. If even an Interpreter cannot be created,
396/// NULL is returned.
397///
398ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
399                                         bool ForceInterpreter,
400                                         std::string *ErrorStr,
401                                         CodeGenOpt::Level OptLevel,
402                                         bool GVsWithCode) {
403  return EngineBuilder(MP)
404      .setEngineKind(ForceInterpreter
405                     ? EngineKind::Interpreter
406                     : EngineKind::JIT)
407      .setErrorStr(ErrorStr)
408      .setOptLevel(OptLevel)
409      .setAllocateGVsWithCode(GVsWithCode)
410      .create();
411}
412
413ExecutionEngine *ExecutionEngine::create(Module *M) {
414  return EngineBuilder(M).create();
415}
416
417/// EngineBuilder - Overloaded constructor that automatically creates an
418/// ExistingModuleProvider for an existing module.
419EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
420  InitEngine();
421}
422
423ExecutionEngine *EngineBuilder::create() {
424  // Make sure we can resolve symbols in the program as well. The zero arg
425  // to the function tells DynamicLibrary to load the program, not a library.
426  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
427    return 0;
428
429  // If the user specified a memory manager but didn't specify which engine to
430  // create, we assume they only want the JIT, and we fail if they only want
431  // the interpreter.
432  if (JMM) {
433    if (WhichEngine & EngineKind::JIT)
434      WhichEngine = EngineKind::JIT;
435    else {
436      if (ErrorStr)
437        *ErrorStr = "Cannot create an interpreter with a memory manager.";
438      return 0;
439    }
440  }
441
442  // Unless the interpreter was explicitly selected or the JIT is not linked,
443  // try making a JIT.
444  if (WhichEngine & EngineKind::JIT) {
445    if (ExecutionEngine::JITCtor) {
446      ExecutionEngine *EE =
447        ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
448                                 AllocateGVsWithCode, CMModel);
449      if (EE) return EE;
450    }
451  }
452
453  // If we can't make a JIT and we didn't request one specifically, try making
454  // an interpreter instead.
455  if (WhichEngine & EngineKind::Interpreter) {
456    if (ExecutionEngine::InterpCtor)
457      return ExecutionEngine::InterpCtor(MP, ErrorStr);
458    if (ErrorStr)
459      *ErrorStr = "Interpreter has not been linked in.";
460    return 0;
461  }
462
463  if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
464    if (ErrorStr)
465      *ErrorStr = "JIT has not been linked in.";
466  }
467  return 0;
468}
469
470/// getPointerToGlobal - This returns the address of the specified global
471/// value.  This may involve code generation if it's a function.
472///
473void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
474  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
475    return getPointerToFunction(F);
476
477  MutexGuard locked(lock);
478  void *p = EEState.getGlobalAddressMap(locked)[GV];
479  if (p)
480    return p;
481
482  // Global variable might have been added since interpreter started.
483  if (GlobalVariable *GVar =
484          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
485    EmitGlobalVariable(GVar);
486  else
487    llvm_unreachable("Global hasn't had an address allocated yet!");
488  return EEState.getGlobalAddressMap(locked)[GV];
489}
490
491/// This function converts a Constant* into a GenericValue. The interesting
492/// part is if C is a ConstantExpr.
493/// @brief Get a GenericValue for a Constant*
494GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
495  // If its undefined, return the garbage.
496  if (isa<UndefValue>(C))
497    return GenericValue();
498
499  // If the value is a ConstantExpr
500  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
501    Constant *Op0 = CE->getOperand(0);
502    switch (CE->getOpcode()) {
503    case Instruction::GetElementPtr: {
504      // Compute the index
505      GenericValue Result = getConstantValue(Op0);
506      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
507      uint64_t Offset =
508        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
509
510      char* tmp = (char*) Result.PointerVal;
511      Result = PTOGV(tmp + Offset);
512      return Result;
513    }
514    case Instruction::Trunc: {
515      GenericValue GV = getConstantValue(Op0);
516      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
517      GV.IntVal = GV.IntVal.trunc(BitWidth);
518      return GV;
519    }
520    case Instruction::ZExt: {
521      GenericValue GV = getConstantValue(Op0);
522      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
523      GV.IntVal = GV.IntVal.zext(BitWidth);
524      return GV;
525    }
526    case Instruction::SExt: {
527      GenericValue GV = getConstantValue(Op0);
528      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
529      GV.IntVal = GV.IntVal.sext(BitWidth);
530      return GV;
531    }
532    case Instruction::FPTrunc: {
533      // FIXME long double
534      GenericValue GV = getConstantValue(Op0);
535      GV.FloatVal = float(GV.DoubleVal);
536      return GV;
537    }
538    case Instruction::FPExt:{
539      // FIXME long double
540      GenericValue GV = getConstantValue(Op0);
541      GV.DoubleVal = double(GV.FloatVal);
542      return GV;
543    }
544    case Instruction::UIToFP: {
545      GenericValue GV = getConstantValue(Op0);
546      if (CE->getType()->isFloatTy())
547        GV.FloatVal = float(GV.IntVal.roundToDouble());
548      else if (CE->getType()->isDoubleTy())
549        GV.DoubleVal = GV.IntVal.roundToDouble();
550      else if (CE->getType()->isX86_FP80Ty()) {
551        const uint64_t zero[] = {0, 0};
552        APFloat apf = APFloat(APInt(80, 2, zero));
553        (void)apf.convertFromAPInt(GV.IntVal,
554                                   false,
555                                   APFloat::rmNearestTiesToEven);
556        GV.IntVal = apf.bitcastToAPInt();
557      }
558      return GV;
559    }
560    case Instruction::SIToFP: {
561      GenericValue GV = getConstantValue(Op0);
562      if (CE->getType()->isFloatTy())
563        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
564      else if (CE->getType()->isDoubleTy())
565        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
566      else if (CE->getType()->isX86_FP80Ty()) {
567        const uint64_t zero[] = { 0, 0};
568        APFloat apf = APFloat(APInt(80, 2, zero));
569        (void)apf.convertFromAPInt(GV.IntVal,
570                                   true,
571                                   APFloat::rmNearestTiesToEven);
572        GV.IntVal = apf.bitcastToAPInt();
573      }
574      return GV;
575    }
576    case Instruction::FPToUI: // double->APInt conversion handles sign
577    case Instruction::FPToSI: {
578      GenericValue GV = getConstantValue(Op0);
579      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
580      if (Op0->getType()->isFloatTy())
581        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
582      else if (Op0->getType()->isDoubleTy())
583        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
584      else if (Op0->getType()->isX86_FP80Ty()) {
585        APFloat apf = APFloat(GV.IntVal);
586        uint64_t v;
587        bool ignored;
588        (void)apf.convertToInteger(&v, BitWidth,
589                                   CE->getOpcode()==Instruction::FPToSI,
590                                   APFloat::rmTowardZero, &ignored);
591        GV.IntVal = v; // endian?
592      }
593      return GV;
594    }
595    case Instruction::PtrToInt: {
596      GenericValue GV = getConstantValue(Op0);
597      uint32_t PtrWidth = TD->getPointerSizeInBits();
598      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
599      return GV;
600    }
601    case Instruction::IntToPtr: {
602      GenericValue GV = getConstantValue(Op0);
603      uint32_t PtrWidth = TD->getPointerSizeInBits();
604      if (PtrWidth != GV.IntVal.getBitWidth())
605        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
606      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
607      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
608      return GV;
609    }
610    case Instruction::BitCast: {
611      GenericValue GV = getConstantValue(Op0);
612      const Type* DestTy = CE->getType();
613      switch (Op0->getType()->getTypeID()) {
614        default: llvm_unreachable("Invalid bitcast operand");
615        case Type::IntegerTyID:
616          assert(DestTy->isFloatingPoint() && "invalid bitcast");
617          if (DestTy->isFloatTy())
618            GV.FloatVal = GV.IntVal.bitsToFloat();
619          else if (DestTy->isDoubleTy())
620            GV.DoubleVal = GV.IntVal.bitsToDouble();
621          break;
622        case Type::FloatTyID:
623          assert(DestTy == Type::getInt32Ty(DestTy->getContext()) &&
624                 "Invalid bitcast");
625          GV.IntVal.floatToBits(GV.FloatVal);
626          break;
627        case Type::DoubleTyID:
628          assert(DestTy == Type::getInt64Ty(DestTy->getContext()) &&
629                 "Invalid bitcast");
630          GV.IntVal.doubleToBits(GV.DoubleVal);
631          break;
632        case Type::PointerTyID:
633          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
634          break; // getConstantValue(Op0)  above already converted it
635      }
636      return GV;
637    }
638    case Instruction::Add:
639    case Instruction::FAdd:
640    case Instruction::Sub:
641    case Instruction::FSub:
642    case Instruction::Mul:
643    case Instruction::FMul:
644    case Instruction::UDiv:
645    case Instruction::SDiv:
646    case Instruction::URem:
647    case Instruction::SRem:
648    case Instruction::And:
649    case Instruction::Or:
650    case Instruction::Xor: {
651      GenericValue LHS = getConstantValue(Op0);
652      GenericValue RHS = getConstantValue(CE->getOperand(1));
653      GenericValue GV;
654      switch (CE->getOperand(0)->getType()->getTypeID()) {
655      default: llvm_unreachable("Bad add type!");
656      case Type::IntegerTyID:
657        switch (CE->getOpcode()) {
658          default: llvm_unreachable("Invalid integer opcode");
659          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
660          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
661          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
662          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
663          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
664          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
665          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
666          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
667          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
668          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
669        }
670        break;
671      case Type::FloatTyID:
672        switch (CE->getOpcode()) {
673          default: llvm_unreachable("Invalid float opcode");
674          case Instruction::FAdd:
675            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
676          case Instruction::FSub:
677            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
678          case Instruction::FMul:
679            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
680          case Instruction::FDiv:
681            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
682          case Instruction::FRem:
683            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
684        }
685        break;
686      case Type::DoubleTyID:
687        switch (CE->getOpcode()) {
688          default: llvm_unreachable("Invalid double opcode");
689          case Instruction::FAdd:
690            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
691          case Instruction::FSub:
692            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
693          case Instruction::FMul:
694            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
695          case Instruction::FDiv:
696            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
697          case Instruction::FRem:
698            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
699        }
700        break;
701      case Type::X86_FP80TyID:
702      case Type::PPC_FP128TyID:
703      case Type::FP128TyID: {
704        APFloat apfLHS = APFloat(LHS.IntVal);
705        switch (CE->getOpcode()) {
706          default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
707          case Instruction::FAdd:
708            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
709            GV.IntVal = apfLHS.bitcastToAPInt();
710            break;
711          case Instruction::FSub:
712            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
713            GV.IntVal = apfLHS.bitcastToAPInt();
714            break;
715          case Instruction::FMul:
716            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
717            GV.IntVal = apfLHS.bitcastToAPInt();
718            break;
719          case Instruction::FDiv:
720            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
721            GV.IntVal = apfLHS.bitcastToAPInt();
722            break;
723          case Instruction::FRem:
724            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
725            GV.IntVal = apfLHS.bitcastToAPInt();
726            break;
727          }
728        }
729        break;
730      }
731      return GV;
732    }
733    default:
734      break;
735    }
736    std::string msg;
737    raw_string_ostream Msg(msg);
738    Msg << "ConstantExpr not handled: " << *CE;
739    llvm_report_error(Msg.str());
740  }
741
742  GenericValue Result;
743  switch (C->getType()->getTypeID()) {
744  case Type::FloatTyID:
745    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
746    break;
747  case Type::DoubleTyID:
748    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
749    break;
750  case Type::X86_FP80TyID:
751  case Type::FP128TyID:
752  case Type::PPC_FP128TyID:
753    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
754    break;
755  case Type::IntegerTyID:
756    Result.IntVal = cast<ConstantInt>(C)->getValue();
757    break;
758  case Type::PointerTyID:
759    if (isa<ConstantPointerNull>(C))
760      Result.PointerVal = 0;
761    else if (const Function *F = dyn_cast<Function>(C))
762      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
763    else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
764      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
765    else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
766      Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
767                                                        BA->getBasicBlock())));
768    else
769      llvm_unreachable("Unknown constant pointer type!");
770    break;
771  default:
772    std::string msg;
773    raw_string_ostream Msg(msg);
774    Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
775    llvm_report_error(Msg.str());
776  }
777  return Result;
778}
779
780/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
781/// with the integer held in IntVal.
782static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
783                             unsigned StoreBytes) {
784  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
785  uint8_t *Src = (uint8_t *)IntVal.getRawData();
786
787  if (sys::isLittleEndianHost())
788    // Little-endian host - the source is ordered from LSB to MSB.  Order the
789    // destination from LSB to MSB: Do a straight copy.
790    memcpy(Dst, Src, StoreBytes);
791  else {
792    // Big-endian host - the source is an array of 64 bit words ordered from
793    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
794    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
795    while (StoreBytes > sizeof(uint64_t)) {
796      StoreBytes -= sizeof(uint64_t);
797      // May not be aligned so use memcpy.
798      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
799      Src += sizeof(uint64_t);
800    }
801
802    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
803  }
804}
805
806/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
807/// is the address of the memory at which to store Val, cast to GenericValue *.
808/// It is not a pointer to a GenericValue containing the address at which to
809/// store Val.
810void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
811                                         GenericValue *Ptr, const Type *Ty) {
812  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
813
814  switch (Ty->getTypeID()) {
815  case Type::IntegerTyID:
816    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
817    break;
818  case Type::FloatTyID:
819    *((float*)Ptr) = Val.FloatVal;
820    break;
821  case Type::DoubleTyID:
822    *((double*)Ptr) = Val.DoubleVal;
823    break;
824  case Type::X86_FP80TyID:
825    memcpy(Ptr, Val.IntVal.getRawData(), 10);
826    break;
827  case Type::PointerTyID:
828    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
829    if (StoreBytes != sizeof(PointerTy))
830      memset(Ptr, 0, StoreBytes);
831
832    *((PointerTy*)Ptr) = Val.PointerVal;
833    break;
834  default:
835    dbgs() << "Cannot store value of type " << *Ty << "!\n";
836  }
837
838  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
839    // Host and target are different endian - reverse the stored bytes.
840    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
841}
842
843/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
844/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
845static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
846  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
847  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
848
849  if (sys::isLittleEndianHost())
850    // Little-endian host - the destination must be ordered from LSB to MSB.
851    // The source is ordered from LSB to MSB: Do a straight copy.
852    memcpy(Dst, Src, LoadBytes);
853  else {
854    // Big-endian - the destination is an array of 64 bit words ordered from
855    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
856    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
857    // a word.
858    while (LoadBytes > sizeof(uint64_t)) {
859      LoadBytes -= sizeof(uint64_t);
860      // May not be aligned so use memcpy.
861      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
862      Dst += sizeof(uint64_t);
863    }
864
865    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
866  }
867}
868
869/// FIXME: document
870///
871void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
872                                          GenericValue *Ptr,
873                                          const Type *Ty) {
874  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
875
876  switch (Ty->getTypeID()) {
877  case Type::IntegerTyID:
878    // An APInt with all words initially zero.
879    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
880    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
881    break;
882  case Type::FloatTyID:
883    Result.FloatVal = *((float*)Ptr);
884    break;
885  case Type::DoubleTyID:
886    Result.DoubleVal = *((double*)Ptr);
887    break;
888  case Type::PointerTyID:
889    Result.PointerVal = *((PointerTy*)Ptr);
890    break;
891  case Type::X86_FP80TyID: {
892    // This is endian dependent, but it will only work on x86 anyway.
893    // FIXME: Will not trap if loading a signaling NaN.
894    uint64_t y[2];
895    memcpy(y, Ptr, 10);
896    Result.IntVal = APInt(80, 2, y);
897    break;
898  }
899  default:
900    std::string msg;
901    raw_string_ostream Msg(msg);
902    Msg << "Cannot load value of type " << *Ty << "!";
903    llvm_report_error(Msg.str());
904  }
905}
906
907// InitializeMemory - Recursive function to apply a Constant value into the
908// specified memory location...
909//
910void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
911  DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
912  DEBUG(Init->dump());
913  if (isa<UndefValue>(Init)) {
914    return;
915  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
916    unsigned ElementSize =
917      getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
918    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
919      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
920    return;
921  } else if (isa<ConstantAggregateZero>(Init)) {
922    memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
923    return;
924  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
925    unsigned ElementSize =
926      getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
927    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
928      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
929    return;
930  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
931    const StructLayout *SL =
932      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
933    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
934      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
935    return;
936  } else if (Init->getType()->isFirstClassType()) {
937    GenericValue Val = getConstantValue(Init);
938    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
939    return;
940  }
941
942  dbgs() << "Bad Type: " << *Init->getType() << "\n";
943  llvm_unreachable("Unknown constant type to initialize memory with!");
944}
945
946/// EmitGlobals - Emit all of the global variables to memory, storing their
947/// addresses into GlobalAddress.  This must make sure to copy the contents of
948/// their initializers into the memory.
949///
950void ExecutionEngine::emitGlobals() {
951
952  // Loop over all of the global variables in the program, allocating the memory
953  // to hold them.  If there is more than one module, do a prepass over globals
954  // to figure out how the different modules should link together.
955  //
956  std::map<std::pair<std::string, const Type*>,
957           const GlobalValue*> LinkedGlobalsMap;
958
959  if (Modules.size() != 1) {
960    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
961      Module &M = *Modules[m]->getModule();
962      for (Module::const_global_iterator I = M.global_begin(),
963           E = M.global_end(); I != E; ++I) {
964        const GlobalValue *GV = I;
965        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
966            GV->hasAppendingLinkage() || !GV->hasName())
967          continue;// Ignore external globals and globals with internal linkage.
968
969        const GlobalValue *&GVEntry =
970          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
971
972        // If this is the first time we've seen this global, it is the canonical
973        // version.
974        if (!GVEntry) {
975          GVEntry = GV;
976          continue;
977        }
978
979        // If the existing global is strong, never replace it.
980        if (GVEntry->hasExternalLinkage() ||
981            GVEntry->hasDLLImportLinkage() ||
982            GVEntry->hasDLLExportLinkage())
983          continue;
984
985        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
986        // symbol.  FIXME is this right for common?
987        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
988          GVEntry = GV;
989      }
990    }
991  }
992
993  std::vector<const GlobalValue*> NonCanonicalGlobals;
994  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
995    Module &M = *Modules[m]->getModule();
996    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
997         I != E; ++I) {
998      // In the multi-module case, see what this global maps to.
999      if (!LinkedGlobalsMap.empty()) {
1000        if (const GlobalValue *GVEntry =
1001              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1002          // If something else is the canonical global, ignore this one.
1003          if (GVEntry != &*I) {
1004            NonCanonicalGlobals.push_back(I);
1005            continue;
1006          }
1007        }
1008      }
1009
1010      if (!I->isDeclaration()) {
1011        addGlobalMapping(I, getMemoryForGV(I));
1012      } else {
1013        // External variable reference. Try to use the dynamic loader to
1014        // get a pointer to it.
1015        if (void *SymAddr =
1016            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1017          addGlobalMapping(I, SymAddr);
1018        else {
1019          llvm_report_error("Could not resolve external global address: "
1020                            +I->getName());
1021        }
1022      }
1023    }
1024
1025    // If there are multiple modules, map the non-canonical globals to their
1026    // canonical location.
1027    if (!NonCanonicalGlobals.empty()) {
1028      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1029        const GlobalValue *GV = NonCanonicalGlobals[i];
1030        const GlobalValue *CGV =
1031          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1032        void *Ptr = getPointerToGlobalIfAvailable(CGV);
1033        assert(Ptr && "Canonical global wasn't codegen'd!");
1034        addGlobalMapping(GV, Ptr);
1035      }
1036    }
1037
1038    // Now that all of the globals are set up in memory, loop through them all
1039    // and initialize their contents.
1040    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1041         I != E; ++I) {
1042      if (!I->isDeclaration()) {
1043        if (!LinkedGlobalsMap.empty()) {
1044          if (const GlobalValue *GVEntry =
1045                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1046            if (GVEntry != &*I)  // Not the canonical variable.
1047              continue;
1048        }
1049        EmitGlobalVariable(I);
1050      }
1051    }
1052  }
1053}
1054
1055// EmitGlobalVariable - This method emits the specified global variable to the
1056// address specified in GlobalAddresses, or allocates new memory if it's not
1057// already in the map.
1058void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1059  void *GA = getPointerToGlobalIfAvailable(GV);
1060
1061  if (GA == 0) {
1062    // If it's not already specified, allocate memory for the global.
1063    GA = getMemoryForGV(GV);
1064    addGlobalMapping(GV, GA);
1065  }
1066
1067  // Don't initialize if it's thread local, let the client do it.
1068  if (!GV->isThreadLocal())
1069    InitializeMemory(GV->getInitializer(), GA);
1070
1071  const Type *ElTy = GV->getType()->getElementType();
1072  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1073  NumInitBytes += (unsigned)GVSize;
1074  ++NumGlobals;
1075}
1076
1077ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1078  : EE(EE), GlobalAddressMap(this) {
1079}
1080
1081sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex(
1082  ExecutionEngineState *EES) {
1083  return &EES->EE.lock;
1084}
1085void ExecutionEngineState::AddressMapConfig::onDelete(
1086  ExecutionEngineState *EES, const GlobalValue *Old) {
1087  void *OldVal = EES->GlobalAddressMap.lookup(Old);
1088  EES->GlobalAddressReverseMap.erase(OldVal);
1089}
1090
1091void ExecutionEngineState::AddressMapConfig::onRAUW(
1092  ExecutionEngineState *, const GlobalValue *, const GlobalValue *) {
1093  assert(false && "The ExecutionEngine doesn't know how to handle a"
1094         " RAUW on a value it has a global mapping for.");
1095}
1096