ExecutionEngine.cpp revision ae7c59a01286a3babbc6245dcb1049c7bcde2573
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the common interface used by the various execution engine 11// subclasses. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "jit" 16#include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18#include "llvm/Constants.h" 19#include "llvm/DerivedTypes.h" 20#include "llvm/Module.h" 21#include "llvm/ModuleProvider.h" 22#include "llvm/ExecutionEngine/GenericValue.h" 23#include "llvm/ADT/Statistic.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/ErrorHandling.h" 26#include "llvm/Support/MutexGuard.h" 27#include "llvm/Support/ValueHandle.h" 28#include "llvm/Support/raw_ostream.h" 29#include "llvm/System/DynamicLibrary.h" 30#include "llvm/System/Host.h" 31#include "llvm/Target/TargetData.h" 32#include <cmath> 33#include <cstring> 34using namespace llvm; 35 36STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode, 44 CodeModel::Model CMM) = 0; 45ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 46 std::string *ErrorStr) = 0; 47ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 48 49 50ExecutionEngine::ExecutionEngine(ModuleProvider *P) 51 : EEState(*this), 52 LazyFunctionCreator(0) { 53 CompilingLazily = false; 54 GVCompilationDisabled = false; 55 SymbolSearchingDisabled = false; 56 Modules.push_back(P); 57 assert(P && "ModuleProvider is null?"); 58} 59 60ExecutionEngine::~ExecutionEngine() { 61 clearAllGlobalMappings(); 62 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 63 delete Modules[i]; 64} 65 66char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 67 const Type *ElTy = GV->getType()->getElementType(); 68 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 69 return new char[GVSize]; 70} 71 72/// removeModuleProvider - Remove a ModuleProvider from the list of modules. 73/// Relases the Module from the ModuleProvider, materializing it in the 74/// process, and returns the materialized Module. 75Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 76 std::string *ErrInfo) { 77 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 78 E = Modules.end(); I != E; ++I) { 79 ModuleProvider *MP = *I; 80 if (MP == P) { 81 Modules.erase(I); 82 clearGlobalMappingsFromModule(MP->getModule()); 83 return MP->releaseModule(ErrInfo); 84 } 85 } 86 return NULL; 87} 88 89/// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 90/// and deletes the ModuleProvider and owned Module. Avoids materializing 91/// the underlying module. 92void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 93 std::string *ErrInfo) { 94 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 95 E = Modules.end(); I != E; ++I) { 96 ModuleProvider *MP = *I; 97 if (MP == P) { 98 Modules.erase(I); 99 clearGlobalMappingsFromModule(MP->getModule()); 100 delete MP; 101 return; 102 } 103 } 104} 105 106/// FindFunctionNamed - Search all of the active modules to find the one that 107/// defines FnName. This is very slow operation and shouldn't be used for 108/// general code. 109Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 110 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 111 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 112 return F; 113 } 114 return 0; 115} 116 117 118void *ExecutionEngineState::RemoveMapping( 119 const MutexGuard &, const GlobalValue *ToUnmap) { 120 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 121 void *OldVal; 122 if (I == GlobalAddressMap.end()) 123 OldVal = 0; 124 else { 125 OldVal = I->second; 126 GlobalAddressMap.erase(I); 127 } 128 129 GlobalAddressReverseMap.erase(OldVal); 130 return OldVal; 131} 132 133/// addGlobalMapping - Tell the execution engine that the specified global is 134/// at the specified location. This is used internally as functions are JIT'd 135/// and as global variables are laid out in memory. It can and should also be 136/// used by clients of the EE that want to have an LLVM global overlay 137/// existing data in memory. 138void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 139 MutexGuard locked(lock); 140 141 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 142 << "\' to [" << Addr << "]\n";); 143 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 144 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 145 CurVal = Addr; 146 147 // If we are using the reverse mapping, add it too 148 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 149 AssertingVH<const GlobalValue> &V = 150 EEState.getGlobalAddressReverseMap(locked)[Addr]; 151 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 152 V = GV; 153 } 154} 155 156/// clearAllGlobalMappings - Clear all global mappings and start over again 157/// use in dynamic compilation scenarios when you want to move globals 158void ExecutionEngine::clearAllGlobalMappings() { 159 MutexGuard locked(lock); 160 161 EEState.getGlobalAddressMap(locked).clear(); 162 EEState.getGlobalAddressReverseMap(locked).clear(); 163} 164 165/// clearGlobalMappingsFromModule - Clear all global mappings that came from a 166/// particular module, because it has been removed from the JIT. 167void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 168 MutexGuard locked(lock); 169 170 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 171 EEState.RemoveMapping(locked, FI); 172 } 173 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 174 GI != GE; ++GI) { 175 EEState.RemoveMapping(locked, GI); 176 } 177} 178 179/// updateGlobalMapping - Replace an existing mapping for GV with a new 180/// address. This updates both maps as required. If "Addr" is null, the 181/// entry for the global is removed from the mappings. 182void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 183 MutexGuard locked(lock); 184 185 ExecutionEngineState::GlobalAddressMapTy &Map = 186 EEState.getGlobalAddressMap(locked); 187 188 // Deleting from the mapping? 189 if (Addr == 0) { 190 return EEState.RemoveMapping(locked, GV); 191 } 192 193 void *&CurVal = Map[GV]; 194 void *OldVal = CurVal; 195 196 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 197 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 198 CurVal = Addr; 199 200 // If we are using the reverse mapping, add it too 201 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 202 AssertingVH<const GlobalValue> &V = 203 EEState.getGlobalAddressReverseMap(locked)[Addr]; 204 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 205 V = GV; 206 } 207 return OldVal; 208} 209 210/// getPointerToGlobalIfAvailable - This returns the address of the specified 211/// global value if it is has already been codegen'd, otherwise it returns null. 212/// 213void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 214 MutexGuard locked(lock); 215 216 ExecutionEngineState::GlobalAddressMapTy::iterator I = 217 EEState.getGlobalAddressMap(locked).find(GV); 218 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 219} 220 221/// getGlobalValueAtAddress - Return the LLVM global value object that starts 222/// at the specified address. 223/// 224const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 225 MutexGuard locked(lock); 226 227 // If we haven't computed the reverse mapping yet, do so first. 228 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 229 for (ExecutionEngineState::GlobalAddressMapTy::iterator 230 I = EEState.getGlobalAddressMap(locked).begin(), 231 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 232 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 233 I->first)); 234 } 235 236 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 237 EEState.getGlobalAddressReverseMap(locked).find(Addr); 238 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 239} 240 241// CreateArgv - Turn a vector of strings into a nice argv style array of 242// pointers to null terminated strings. 243// 244static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 245 const std::vector<std::string> &InputArgv) { 246 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 247 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 248 249 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Result << "\n"); 250 const Type *SBytePtr = Type::getInt8PtrTy(C); 251 252 for (unsigned i = 0; i != InputArgv.size(); ++i) { 253 unsigned Size = InputArgv[i].size()+1; 254 char *Dest = new char[Size]; 255 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 256 257 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 258 Dest[Size-1] = 0; 259 260 // Endian safe: Result[i] = (PointerTy)Dest; 261 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 262 SBytePtr); 263 } 264 265 // Null terminate it 266 EE->StoreValueToMemory(PTOGV(0), 267 (GenericValue*)(Result+InputArgv.size()*PtrSize), 268 SBytePtr); 269 return Result; 270} 271 272 273/// runStaticConstructorsDestructors - This method is used to execute all of 274/// the static constructors or destructors for a module, depending on the 275/// value of isDtors. 276void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 277 bool isDtors) { 278 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 279 280 // Execute global ctors/dtors for each module in the program. 281 282 GlobalVariable *GV = module->getNamedGlobal(Name); 283 284 // If this global has internal linkage, or if it has a use, then it must be 285 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 286 // this is the case, don't execute any of the global ctors, __main will do 287 // it. 288 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 289 290 // Should be an array of '{ int, void ()* }' structs. The first value is 291 // the init priority, which we ignore. 292 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 293 if (!InitList) return; 294 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 295 if (ConstantStruct *CS = 296 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 297 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 298 299 Constant *FP = CS->getOperand(1); 300 if (FP->isNullValue()) 301 break; // Found a null terminator, exit. 302 303 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 304 if (CE->isCast()) 305 FP = CE->getOperand(0); 306 if (Function *F = dyn_cast<Function>(FP)) { 307 // Execute the ctor/dtor function! 308 runFunction(F, std::vector<GenericValue>()); 309 } 310 } 311} 312 313/// runStaticConstructorsDestructors - This method is used to execute all of 314/// the static constructors or destructors for a program, depending on the 315/// value of isDtors. 316void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 317 // Execute global ctors/dtors for each module in the program. 318 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 319 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 320} 321 322#ifndef NDEBUG 323/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 324static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 325 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 326 for (unsigned i = 0; i < PtrSize; ++i) 327 if (*(i + (uint8_t*)Loc)) 328 return false; 329 return true; 330} 331#endif 332 333/// runFunctionAsMain - This is a helper function which wraps runFunction to 334/// handle the common task of starting up main with the specified argc, argv, 335/// and envp parameters. 336int ExecutionEngine::runFunctionAsMain(Function *Fn, 337 const std::vector<std::string> &argv, 338 const char * const * envp) { 339 std::vector<GenericValue> GVArgs; 340 GenericValue GVArgc; 341 GVArgc.IntVal = APInt(32, argv.size()); 342 343 // Check main() type 344 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 345 const FunctionType *FTy = Fn->getFunctionType(); 346 const Type* PPInt8Ty = 347 PointerType::getUnqual(PointerType::getUnqual( 348 Type::getInt8Ty(Fn->getContext()))); 349 switch (NumArgs) { 350 case 3: 351 if (FTy->getParamType(2) != PPInt8Ty) { 352 llvm_report_error("Invalid type for third argument of main() supplied"); 353 } 354 // FALLS THROUGH 355 case 2: 356 if (FTy->getParamType(1) != PPInt8Ty) { 357 llvm_report_error("Invalid type for second argument of main() supplied"); 358 } 359 // FALLS THROUGH 360 case 1: 361 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 362 llvm_report_error("Invalid type for first argument of main() supplied"); 363 } 364 // FALLS THROUGH 365 case 0: 366 if (!isa<IntegerType>(FTy->getReturnType()) && 367 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { 368 llvm_report_error("Invalid return type of main() supplied"); 369 } 370 break; 371 default: 372 llvm_report_error("Invalid number of arguments of main() supplied"); 373 } 374 375 if (NumArgs) { 376 GVArgs.push_back(GVArgc); // Arg #0 = argc. 377 if (NumArgs > 1) { 378 // Arg #1 = argv. 379 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 380 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 381 "argv[0] was null after CreateArgv"); 382 if (NumArgs > 2) { 383 std::vector<std::string> EnvVars; 384 for (unsigned i = 0; envp[i]; ++i) 385 EnvVars.push_back(envp[i]); 386 // Arg #2 = envp. 387 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 388 } 389 } 390 } 391 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 392} 393 394/// If possible, create a JIT, unless the caller specifically requests an 395/// Interpreter or there's an error. If even an Interpreter cannot be created, 396/// NULL is returned. 397/// 398ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 399 bool ForceInterpreter, 400 std::string *ErrorStr, 401 CodeGenOpt::Level OptLevel, 402 bool GVsWithCode) { 403 return EngineBuilder(MP) 404 .setEngineKind(ForceInterpreter 405 ? EngineKind::Interpreter 406 : EngineKind::JIT) 407 .setErrorStr(ErrorStr) 408 .setOptLevel(OptLevel) 409 .setAllocateGVsWithCode(GVsWithCode) 410 .create(); 411} 412 413ExecutionEngine *ExecutionEngine::create(Module *M) { 414 return EngineBuilder(M).create(); 415} 416 417/// EngineBuilder - Overloaded constructor that automatically creates an 418/// ExistingModuleProvider for an existing module. 419EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 420 InitEngine(); 421} 422 423ExecutionEngine *EngineBuilder::create() { 424 // Make sure we can resolve symbols in the program as well. The zero arg 425 // to the function tells DynamicLibrary to load the program, not a library. 426 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 427 return 0; 428 429 // If the user specified a memory manager but didn't specify which engine to 430 // create, we assume they only want the JIT, and we fail if they only want 431 // the interpreter. 432 if (JMM) { 433 if (WhichEngine & EngineKind::JIT) 434 WhichEngine = EngineKind::JIT; 435 else { 436 if (ErrorStr) 437 *ErrorStr = "Cannot create an interpreter with a memory manager."; 438 return 0; 439 } 440 } 441 442 // Unless the interpreter was explicitly selected or the JIT is not linked, 443 // try making a JIT. 444 if (WhichEngine & EngineKind::JIT) { 445 if (ExecutionEngine::JITCtor) { 446 ExecutionEngine *EE = 447 ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 448 AllocateGVsWithCode, CMModel); 449 if (EE) return EE; 450 } 451 } 452 453 // If we can't make a JIT and we didn't request one specifically, try making 454 // an interpreter instead. 455 if (WhichEngine & EngineKind::Interpreter) { 456 if (ExecutionEngine::InterpCtor) 457 return ExecutionEngine::InterpCtor(MP, ErrorStr); 458 if (ErrorStr) 459 *ErrorStr = "Interpreter has not been linked in."; 460 return 0; 461 } 462 463 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 464 if (ErrorStr) 465 *ErrorStr = "JIT has not been linked in."; 466 } 467 return 0; 468} 469 470/// getPointerToGlobal - This returns the address of the specified global 471/// value. This may involve code generation if it's a function. 472/// 473void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 474 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 475 return getPointerToFunction(F); 476 477 MutexGuard locked(lock); 478 void *p = EEState.getGlobalAddressMap(locked)[GV]; 479 if (p) 480 return p; 481 482 // Global variable might have been added since interpreter started. 483 if (GlobalVariable *GVar = 484 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 485 EmitGlobalVariable(GVar); 486 else 487 llvm_unreachable("Global hasn't had an address allocated yet!"); 488 return EEState.getGlobalAddressMap(locked)[GV]; 489} 490 491/// This function converts a Constant* into a GenericValue. The interesting 492/// part is if C is a ConstantExpr. 493/// @brief Get a GenericValue for a Constant* 494GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 495 // If its undefined, return the garbage. 496 if (isa<UndefValue>(C)) 497 return GenericValue(); 498 499 // If the value is a ConstantExpr 500 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 501 Constant *Op0 = CE->getOperand(0); 502 switch (CE->getOpcode()) { 503 case Instruction::GetElementPtr: { 504 // Compute the index 505 GenericValue Result = getConstantValue(Op0); 506 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 507 uint64_t Offset = 508 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 509 510 char* tmp = (char*) Result.PointerVal; 511 Result = PTOGV(tmp + Offset); 512 return Result; 513 } 514 case Instruction::Trunc: { 515 GenericValue GV = getConstantValue(Op0); 516 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 517 GV.IntVal = GV.IntVal.trunc(BitWidth); 518 return GV; 519 } 520 case Instruction::ZExt: { 521 GenericValue GV = getConstantValue(Op0); 522 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 523 GV.IntVal = GV.IntVal.zext(BitWidth); 524 return GV; 525 } 526 case Instruction::SExt: { 527 GenericValue GV = getConstantValue(Op0); 528 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 529 GV.IntVal = GV.IntVal.sext(BitWidth); 530 return GV; 531 } 532 case Instruction::FPTrunc: { 533 // FIXME long double 534 GenericValue GV = getConstantValue(Op0); 535 GV.FloatVal = float(GV.DoubleVal); 536 return GV; 537 } 538 case Instruction::FPExt:{ 539 // FIXME long double 540 GenericValue GV = getConstantValue(Op0); 541 GV.DoubleVal = double(GV.FloatVal); 542 return GV; 543 } 544 case Instruction::UIToFP: { 545 GenericValue GV = getConstantValue(Op0); 546 if (CE->getType()->isFloatTy()) 547 GV.FloatVal = float(GV.IntVal.roundToDouble()); 548 else if (CE->getType()->isDoubleTy()) 549 GV.DoubleVal = GV.IntVal.roundToDouble(); 550 else if (CE->getType()->isX86_FP80Ty()) { 551 const uint64_t zero[] = {0, 0}; 552 APFloat apf = APFloat(APInt(80, 2, zero)); 553 (void)apf.convertFromAPInt(GV.IntVal, 554 false, 555 APFloat::rmNearestTiesToEven); 556 GV.IntVal = apf.bitcastToAPInt(); 557 } 558 return GV; 559 } 560 case Instruction::SIToFP: { 561 GenericValue GV = getConstantValue(Op0); 562 if (CE->getType()->isFloatTy()) 563 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 564 else if (CE->getType()->isDoubleTy()) 565 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 566 else if (CE->getType()->isX86_FP80Ty()) { 567 const uint64_t zero[] = { 0, 0}; 568 APFloat apf = APFloat(APInt(80, 2, zero)); 569 (void)apf.convertFromAPInt(GV.IntVal, 570 true, 571 APFloat::rmNearestTiesToEven); 572 GV.IntVal = apf.bitcastToAPInt(); 573 } 574 return GV; 575 } 576 case Instruction::FPToUI: // double->APInt conversion handles sign 577 case Instruction::FPToSI: { 578 GenericValue GV = getConstantValue(Op0); 579 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 580 if (Op0->getType()->isFloatTy()) 581 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 582 else if (Op0->getType()->isDoubleTy()) 583 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 584 else if (Op0->getType()->isX86_FP80Ty()) { 585 APFloat apf = APFloat(GV.IntVal); 586 uint64_t v; 587 bool ignored; 588 (void)apf.convertToInteger(&v, BitWidth, 589 CE->getOpcode()==Instruction::FPToSI, 590 APFloat::rmTowardZero, &ignored); 591 GV.IntVal = v; // endian? 592 } 593 return GV; 594 } 595 case Instruction::PtrToInt: { 596 GenericValue GV = getConstantValue(Op0); 597 uint32_t PtrWidth = TD->getPointerSizeInBits(); 598 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 599 return GV; 600 } 601 case Instruction::IntToPtr: { 602 GenericValue GV = getConstantValue(Op0); 603 uint32_t PtrWidth = TD->getPointerSizeInBits(); 604 if (PtrWidth != GV.IntVal.getBitWidth()) 605 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 606 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 607 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 608 return GV; 609 } 610 case Instruction::BitCast: { 611 GenericValue GV = getConstantValue(Op0); 612 const Type* DestTy = CE->getType(); 613 switch (Op0->getType()->getTypeID()) { 614 default: llvm_unreachable("Invalid bitcast operand"); 615 case Type::IntegerTyID: 616 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 617 if (DestTy->isFloatTy()) 618 GV.FloatVal = GV.IntVal.bitsToFloat(); 619 else if (DestTy->isDoubleTy()) 620 GV.DoubleVal = GV.IntVal.bitsToDouble(); 621 break; 622 case Type::FloatTyID: 623 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 624 "Invalid bitcast"); 625 GV.IntVal.floatToBits(GV.FloatVal); 626 break; 627 case Type::DoubleTyID: 628 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 629 "Invalid bitcast"); 630 GV.IntVal.doubleToBits(GV.DoubleVal); 631 break; 632 case Type::PointerTyID: 633 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 634 break; // getConstantValue(Op0) above already converted it 635 } 636 return GV; 637 } 638 case Instruction::Add: 639 case Instruction::FAdd: 640 case Instruction::Sub: 641 case Instruction::FSub: 642 case Instruction::Mul: 643 case Instruction::FMul: 644 case Instruction::UDiv: 645 case Instruction::SDiv: 646 case Instruction::URem: 647 case Instruction::SRem: 648 case Instruction::And: 649 case Instruction::Or: 650 case Instruction::Xor: { 651 GenericValue LHS = getConstantValue(Op0); 652 GenericValue RHS = getConstantValue(CE->getOperand(1)); 653 GenericValue GV; 654 switch (CE->getOperand(0)->getType()->getTypeID()) { 655 default: llvm_unreachable("Bad add type!"); 656 case Type::IntegerTyID: 657 switch (CE->getOpcode()) { 658 default: llvm_unreachable("Invalid integer opcode"); 659 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 660 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 661 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 662 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 663 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 664 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 665 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 666 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 667 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 668 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 669 } 670 break; 671 case Type::FloatTyID: 672 switch (CE->getOpcode()) { 673 default: llvm_unreachable("Invalid float opcode"); 674 case Instruction::FAdd: 675 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 676 case Instruction::FSub: 677 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 678 case Instruction::FMul: 679 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 680 case Instruction::FDiv: 681 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 682 case Instruction::FRem: 683 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 684 } 685 break; 686 case Type::DoubleTyID: 687 switch (CE->getOpcode()) { 688 default: llvm_unreachable("Invalid double opcode"); 689 case Instruction::FAdd: 690 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 691 case Instruction::FSub: 692 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 693 case Instruction::FMul: 694 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 695 case Instruction::FDiv: 696 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 697 case Instruction::FRem: 698 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 699 } 700 break; 701 case Type::X86_FP80TyID: 702 case Type::PPC_FP128TyID: 703 case Type::FP128TyID: { 704 APFloat apfLHS = APFloat(LHS.IntVal); 705 switch (CE->getOpcode()) { 706 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 707 case Instruction::FAdd: 708 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 709 GV.IntVal = apfLHS.bitcastToAPInt(); 710 break; 711 case Instruction::FSub: 712 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 713 GV.IntVal = apfLHS.bitcastToAPInt(); 714 break; 715 case Instruction::FMul: 716 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 717 GV.IntVal = apfLHS.bitcastToAPInt(); 718 break; 719 case Instruction::FDiv: 720 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 721 GV.IntVal = apfLHS.bitcastToAPInt(); 722 break; 723 case Instruction::FRem: 724 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 725 GV.IntVal = apfLHS.bitcastToAPInt(); 726 break; 727 } 728 } 729 break; 730 } 731 return GV; 732 } 733 default: 734 break; 735 } 736 std::string msg; 737 raw_string_ostream Msg(msg); 738 Msg << "ConstantExpr not handled: " << *CE; 739 llvm_report_error(Msg.str()); 740 } 741 742 GenericValue Result; 743 switch (C->getType()->getTypeID()) { 744 case Type::FloatTyID: 745 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 746 break; 747 case Type::DoubleTyID: 748 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 749 break; 750 case Type::X86_FP80TyID: 751 case Type::FP128TyID: 752 case Type::PPC_FP128TyID: 753 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 754 break; 755 case Type::IntegerTyID: 756 Result.IntVal = cast<ConstantInt>(C)->getValue(); 757 break; 758 case Type::PointerTyID: 759 if (isa<ConstantPointerNull>(C)) 760 Result.PointerVal = 0; 761 else if (const Function *F = dyn_cast<Function>(C)) 762 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 763 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 764 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 765 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 766 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 767 BA->getBasicBlock()))); 768 else 769 llvm_unreachable("Unknown constant pointer type!"); 770 break; 771 default: 772 std::string msg; 773 raw_string_ostream Msg(msg); 774 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 775 llvm_report_error(Msg.str()); 776 } 777 return Result; 778} 779 780/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 781/// with the integer held in IntVal. 782static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 783 unsigned StoreBytes) { 784 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 785 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 786 787 if (sys::isLittleEndianHost()) 788 // Little-endian host - the source is ordered from LSB to MSB. Order the 789 // destination from LSB to MSB: Do a straight copy. 790 memcpy(Dst, Src, StoreBytes); 791 else { 792 // Big-endian host - the source is an array of 64 bit words ordered from 793 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 794 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 795 while (StoreBytes > sizeof(uint64_t)) { 796 StoreBytes -= sizeof(uint64_t); 797 // May not be aligned so use memcpy. 798 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 799 Src += sizeof(uint64_t); 800 } 801 802 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 803 } 804} 805 806/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 807/// is the address of the memory at which to store Val, cast to GenericValue *. 808/// It is not a pointer to a GenericValue containing the address at which to 809/// store Val. 810void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 811 GenericValue *Ptr, const Type *Ty) { 812 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 813 814 switch (Ty->getTypeID()) { 815 case Type::IntegerTyID: 816 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 817 break; 818 case Type::FloatTyID: 819 *((float*)Ptr) = Val.FloatVal; 820 break; 821 case Type::DoubleTyID: 822 *((double*)Ptr) = Val.DoubleVal; 823 break; 824 case Type::X86_FP80TyID: 825 memcpy(Ptr, Val.IntVal.getRawData(), 10); 826 break; 827 case Type::PointerTyID: 828 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 829 if (StoreBytes != sizeof(PointerTy)) 830 memset(Ptr, 0, StoreBytes); 831 832 *((PointerTy*)Ptr) = Val.PointerVal; 833 break; 834 default: 835 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 836 } 837 838 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 839 // Host and target are different endian - reverse the stored bytes. 840 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 841} 842 843/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 844/// from Src into IntVal, which is assumed to be wide enough and to hold zero. 845static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 846 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 847 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 848 849 if (sys::isLittleEndianHost()) 850 // Little-endian host - the destination must be ordered from LSB to MSB. 851 // The source is ordered from LSB to MSB: Do a straight copy. 852 memcpy(Dst, Src, LoadBytes); 853 else { 854 // Big-endian - the destination is an array of 64 bit words ordered from 855 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 856 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 857 // a word. 858 while (LoadBytes > sizeof(uint64_t)) { 859 LoadBytes -= sizeof(uint64_t); 860 // May not be aligned so use memcpy. 861 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 862 Dst += sizeof(uint64_t); 863 } 864 865 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 866 } 867} 868 869/// FIXME: document 870/// 871void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 872 GenericValue *Ptr, 873 const Type *Ty) { 874 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 875 876 switch (Ty->getTypeID()) { 877 case Type::IntegerTyID: 878 // An APInt with all words initially zero. 879 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 880 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 881 break; 882 case Type::FloatTyID: 883 Result.FloatVal = *((float*)Ptr); 884 break; 885 case Type::DoubleTyID: 886 Result.DoubleVal = *((double*)Ptr); 887 break; 888 case Type::PointerTyID: 889 Result.PointerVal = *((PointerTy*)Ptr); 890 break; 891 case Type::X86_FP80TyID: { 892 // This is endian dependent, but it will only work on x86 anyway. 893 // FIXME: Will not trap if loading a signaling NaN. 894 uint64_t y[2]; 895 memcpy(y, Ptr, 10); 896 Result.IntVal = APInt(80, 2, y); 897 break; 898 } 899 default: 900 std::string msg; 901 raw_string_ostream Msg(msg); 902 Msg << "Cannot load value of type " << *Ty << "!"; 903 llvm_report_error(Msg.str()); 904 } 905} 906 907// InitializeMemory - Recursive function to apply a Constant value into the 908// specified memory location... 909// 910void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 911 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 912 DEBUG(Init->dump()); 913 if (isa<UndefValue>(Init)) { 914 return; 915 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 916 unsigned ElementSize = 917 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 918 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 919 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 920 return; 921 } else if (isa<ConstantAggregateZero>(Init)) { 922 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 923 return; 924 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 925 unsigned ElementSize = 926 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 927 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 928 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 929 return; 930 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 931 const StructLayout *SL = 932 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 933 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 934 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 935 return; 936 } else if (Init->getType()->isFirstClassType()) { 937 GenericValue Val = getConstantValue(Init); 938 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 939 return; 940 } 941 942 dbgs() << "Bad Type: " << *Init->getType() << "\n"; 943 llvm_unreachable("Unknown constant type to initialize memory with!"); 944} 945 946/// EmitGlobals - Emit all of the global variables to memory, storing their 947/// addresses into GlobalAddress. This must make sure to copy the contents of 948/// their initializers into the memory. 949/// 950void ExecutionEngine::emitGlobals() { 951 952 // Loop over all of the global variables in the program, allocating the memory 953 // to hold them. If there is more than one module, do a prepass over globals 954 // to figure out how the different modules should link together. 955 // 956 std::map<std::pair<std::string, const Type*>, 957 const GlobalValue*> LinkedGlobalsMap; 958 959 if (Modules.size() != 1) { 960 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 961 Module &M = *Modules[m]->getModule(); 962 for (Module::const_global_iterator I = M.global_begin(), 963 E = M.global_end(); I != E; ++I) { 964 const GlobalValue *GV = I; 965 if (GV->hasLocalLinkage() || GV->isDeclaration() || 966 GV->hasAppendingLinkage() || !GV->hasName()) 967 continue;// Ignore external globals and globals with internal linkage. 968 969 const GlobalValue *&GVEntry = 970 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 971 972 // If this is the first time we've seen this global, it is the canonical 973 // version. 974 if (!GVEntry) { 975 GVEntry = GV; 976 continue; 977 } 978 979 // If the existing global is strong, never replace it. 980 if (GVEntry->hasExternalLinkage() || 981 GVEntry->hasDLLImportLinkage() || 982 GVEntry->hasDLLExportLinkage()) 983 continue; 984 985 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 986 // symbol. FIXME is this right for common? 987 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 988 GVEntry = GV; 989 } 990 } 991 } 992 993 std::vector<const GlobalValue*> NonCanonicalGlobals; 994 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 995 Module &M = *Modules[m]->getModule(); 996 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 997 I != E; ++I) { 998 // In the multi-module case, see what this global maps to. 999 if (!LinkedGlobalsMap.empty()) { 1000 if (const GlobalValue *GVEntry = 1001 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1002 // If something else is the canonical global, ignore this one. 1003 if (GVEntry != &*I) { 1004 NonCanonicalGlobals.push_back(I); 1005 continue; 1006 } 1007 } 1008 } 1009 1010 if (!I->isDeclaration()) { 1011 addGlobalMapping(I, getMemoryForGV(I)); 1012 } else { 1013 // External variable reference. Try to use the dynamic loader to 1014 // get a pointer to it. 1015 if (void *SymAddr = 1016 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1017 addGlobalMapping(I, SymAddr); 1018 else { 1019 llvm_report_error("Could not resolve external global address: " 1020 +I->getName()); 1021 } 1022 } 1023 } 1024 1025 // If there are multiple modules, map the non-canonical globals to their 1026 // canonical location. 1027 if (!NonCanonicalGlobals.empty()) { 1028 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1029 const GlobalValue *GV = NonCanonicalGlobals[i]; 1030 const GlobalValue *CGV = 1031 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1032 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1033 assert(Ptr && "Canonical global wasn't codegen'd!"); 1034 addGlobalMapping(GV, Ptr); 1035 } 1036 } 1037 1038 // Now that all of the globals are set up in memory, loop through them all 1039 // and initialize their contents. 1040 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1041 I != E; ++I) { 1042 if (!I->isDeclaration()) { 1043 if (!LinkedGlobalsMap.empty()) { 1044 if (const GlobalValue *GVEntry = 1045 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1046 if (GVEntry != &*I) // Not the canonical variable. 1047 continue; 1048 } 1049 EmitGlobalVariable(I); 1050 } 1051 } 1052 } 1053} 1054 1055// EmitGlobalVariable - This method emits the specified global variable to the 1056// address specified in GlobalAddresses, or allocates new memory if it's not 1057// already in the map. 1058void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1059 void *GA = getPointerToGlobalIfAvailable(GV); 1060 1061 if (GA == 0) { 1062 // If it's not already specified, allocate memory for the global. 1063 GA = getMemoryForGV(GV); 1064 addGlobalMapping(GV, GA); 1065 } 1066 1067 // Don't initialize if it's thread local, let the client do it. 1068 if (!GV->isThreadLocal()) 1069 InitializeMemory(GV->getInitializer(), GA); 1070 1071 const Type *ElTy = GV->getType()->getElementType(); 1072 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1073 NumInitBytes += (unsigned)GVSize; 1074 ++NumGlobals; 1075} 1076 1077ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1078 : EE(EE), GlobalAddressMap(this) { 1079} 1080 1081sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex( 1082 ExecutionEngineState *EES) { 1083 return &EES->EE.lock; 1084} 1085void ExecutionEngineState::AddressMapConfig::onDelete( 1086 ExecutionEngineState *EES, const GlobalValue *Old) { 1087 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1088 EES->GlobalAddressReverseMap.erase(OldVal); 1089} 1090 1091void ExecutionEngineState::AddressMapConfig::onRAUW( 1092 ExecutionEngineState *, const GlobalValue *, const GlobalValue *) { 1093 assert(false && "The ExecutionEngine doesn't know how to handle a" 1094 " RAUW on a value it has a global mapping for."); 1095} 1096