ExecutionEngine.cpp revision b83eb6447ba155342598f0fabe1f08f5baa9164a
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ExecutionEngine/ExecutionEngine.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/MutexGuard.h"
25#include "llvm/System/DynamicLibrary.h"
26#include "llvm/Target/TargetData.h"
27#include <iostream>
28using namespace llvm;
29
30namespace {
31  Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
32  Statistic<> NumGlobals  ("lli", "Number of global vars initialized");
33}
34
35ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
36ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
37
38ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
39  Modules.push_back(P);
40  assert(P && "ModuleProvider is null?");
41}
42
43ExecutionEngine::ExecutionEngine(Module *M) {
44  assert(M && "Module is null?");
45  Modules.push_back(new ExistingModuleProvider(M));
46}
47
48ExecutionEngine::~ExecutionEngine() {
49  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
50    delete Modules[i];
51}
52
53/// FindFunctionNamed - Search all of the active modules to find the one that
54/// defines FnName.  This is very slow operation and shouldn't be used for
55/// general code.
56Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
57  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
58    if (Function *F = Modules[i]->getModule()->getNamedFunction(FnName))
59      return F;
60  }
61  return 0;
62}
63
64
65/// addGlobalMapping - Tell the execution engine that the specified global is
66/// at the specified location.  This is used internally as functions are JIT'd
67/// and as global variables are laid out in memory.  It can and should also be
68/// used by clients of the EE that want to have an LLVM global overlay
69/// existing data in memory.
70void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
71  MutexGuard locked(lock);
72
73  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
74  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
75  CurVal = Addr;
76
77  // If we are using the reverse mapping, add it too
78  if (!state.getGlobalAddressReverseMap(locked).empty()) {
79    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
80    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
81    V = GV;
82  }
83}
84
85/// clearAllGlobalMappings - Clear all global mappings and start over again
86/// use in dynamic compilation scenarios when you want to move globals
87void ExecutionEngine::clearAllGlobalMappings() {
88  MutexGuard locked(lock);
89
90  state.getGlobalAddressMap(locked).clear();
91  state.getGlobalAddressReverseMap(locked).clear();
92}
93
94/// updateGlobalMapping - Replace an existing mapping for GV with a new
95/// address.  This updates both maps as required.  If "Addr" is null, the
96/// entry for the global is removed from the mappings.
97void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
98  MutexGuard locked(lock);
99
100  // Deleting from the mapping?
101  if (Addr == 0) {
102    state.getGlobalAddressMap(locked).erase(GV);
103    if (!state.getGlobalAddressReverseMap(locked).empty())
104      state.getGlobalAddressReverseMap(locked).erase(Addr);
105    return;
106  }
107
108  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
109  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
110    state.getGlobalAddressReverseMap(locked).erase(CurVal);
111  CurVal = Addr;
112
113  // If we are using the reverse mapping, add it too
114  if (!state.getGlobalAddressReverseMap(locked).empty()) {
115    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
116    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
117    V = GV;
118  }
119}
120
121/// getPointerToGlobalIfAvailable - This returns the address of the specified
122/// global value if it is has already been codegen'd, otherwise it returns null.
123///
124void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
125  MutexGuard locked(lock);
126
127  std::map<const GlobalValue*, void*>::iterator I =
128  state.getGlobalAddressMap(locked).find(GV);
129  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
130}
131
132/// getGlobalValueAtAddress - Return the LLVM global value object that starts
133/// at the specified address.
134///
135const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
136  MutexGuard locked(lock);
137
138  // If we haven't computed the reverse mapping yet, do so first.
139  if (state.getGlobalAddressReverseMap(locked).empty()) {
140    for (std::map<const GlobalValue*, void *>::iterator
141         I = state.getGlobalAddressMap(locked).begin(),
142         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
143      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
144                                                                     I->first));
145  }
146
147  std::map<void *, const GlobalValue*>::iterator I =
148    state.getGlobalAddressReverseMap(locked).find(Addr);
149  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
150}
151
152// CreateArgv - Turn a vector of strings into a nice argv style array of
153// pointers to null terminated strings.
154//
155static void *CreateArgv(ExecutionEngine *EE,
156                        const std::vector<std::string> &InputArgv) {
157  unsigned PtrSize = EE->getTargetData()->getPointerSize();
158  char *Result = new char[(InputArgv.size()+1)*PtrSize];
159
160  DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
161  const Type *SBytePtr = PointerType::get(Type::SByteTy);
162
163  for (unsigned i = 0; i != InputArgv.size(); ++i) {
164    unsigned Size = InputArgv[i].size()+1;
165    char *Dest = new char[Size];
166    DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
167
168    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
169    Dest[Size-1] = 0;
170
171    // Endian safe: Result[i] = (PointerTy)Dest;
172    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
173                           SBytePtr);
174  }
175
176  // Null terminate it
177  EE->StoreValueToMemory(PTOGV(0),
178                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
179                         SBytePtr);
180  return Result;
181}
182
183
184/// runStaticConstructorsDestructors - This method is used to execute all of
185/// the static constructors or destructors for a program, depending on the
186/// value of isDtors.
187void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
188  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
189
190  // Execute global ctors/dtors for each module in the program.
191  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
192    GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
193
194    // If this global has internal linkage, or if it has a use, then it must be
195    // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
196    // this is the case, don't execute any of the global ctors, __main will do
197    // it.
198    if (!GV || GV->isExternal() || GV->hasInternalLinkage()) continue;
199
200    // Should be an array of '{ int, void ()* }' structs.  The first value is
201    // the init priority, which we ignore.
202    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
203    if (!InitList) continue;
204    for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
205      if (ConstantStruct *CS =
206          dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
207        if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
208
209        Constant *FP = CS->getOperand(1);
210        if (FP->isNullValue())
211          break;  // Found a null terminator, exit.
212
213        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
214          if (CE->getOpcode() == Instruction::Cast)
215            FP = CE->getOperand(0);
216        if (Function *F = dyn_cast<Function>(FP)) {
217          // Execute the ctor/dtor function!
218          runFunction(F, std::vector<GenericValue>());
219        }
220      }
221  }
222}
223
224/// runFunctionAsMain - This is a helper function which wraps runFunction to
225/// handle the common task of starting up main with the specified argc, argv,
226/// and envp parameters.
227int ExecutionEngine::runFunctionAsMain(Function *Fn,
228                                       const std::vector<std::string> &argv,
229                                       const char * const * envp) {
230  std::vector<GenericValue> GVArgs;
231  GenericValue GVArgc;
232  GVArgc.IntVal = argv.size();
233  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
234  if (NumArgs) {
235    GVArgs.push_back(GVArgc); // Arg #0 = argc.
236    if (NumArgs > 1) {
237      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
238      assert(((char **)GVTOP(GVArgs[1]))[0] &&
239             "argv[0] was null after CreateArgv");
240      if (NumArgs > 2) {
241        std::vector<std::string> EnvVars;
242        for (unsigned i = 0; envp[i]; ++i)
243          EnvVars.push_back(envp[i]);
244        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
245      }
246    }
247  }
248  return runFunction(Fn, GVArgs).IntVal;
249}
250
251/// If possible, create a JIT, unless the caller specifically requests an
252/// Interpreter or there's an error. If even an Interpreter cannot be created,
253/// NULL is returned.
254///
255ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
256                                         bool ForceInterpreter) {
257  ExecutionEngine *EE = 0;
258
259  // Unless the interpreter was explicitly selected, try making a JIT.
260  if (!ForceInterpreter && JITCtor)
261    EE = JITCtor(MP);
262
263  // If we can't make a JIT, make an interpreter instead.
264  if (EE == 0 && InterpCtor)
265    EE = InterpCtor(MP);
266
267  if (EE) {
268    // Make sure we can resolve symbols in the program as well. The zero arg
269    // to the function tells DynamicLibrary to load the program, not a library.
270    try {
271      sys::DynamicLibrary::LoadLibraryPermanently(0);
272    } catch (...) {
273    }
274  }
275
276  return EE;
277}
278
279/// getPointerToGlobal - This returns the address of the specified global
280/// value.  This may involve code generation if it's a function.
281///
282void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
283  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
284    return getPointerToFunction(F);
285
286  MutexGuard locked(lock);
287  void *p = state.getGlobalAddressMap(locked)[GV];
288  if (p)
289    return p;
290
291  // Global variable might have been added since interpreter started.
292  if (GlobalVariable *GVar =
293          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
294    EmitGlobalVariable(GVar);
295  else
296    assert("Global hasn't had an address allocated yet!");
297  return state.getGlobalAddressMap(locked)[GV];
298}
299
300/// FIXME: document
301///
302GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
303  GenericValue Result;
304  if (isa<UndefValue>(C)) return Result;
305
306  if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
307    switch (CE->getOpcode()) {
308    case Instruction::GetElementPtr: {
309      Result = getConstantValue(CE->getOperand(0));
310      std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
311      uint64_t Offset =
312        TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
313
314      if (getTargetData()->getPointerSize() == 4)
315        Result.IntVal += Offset;
316      else
317        Result.LongVal += Offset;
318      return Result;
319    }
320    case Instruction::Cast: {
321      // We only need to handle a few cases here.  Almost all casts will
322      // automatically fold, just the ones involving pointers won't.
323      //
324      Constant *Op = CE->getOperand(0);
325      GenericValue GV = getConstantValue(Op);
326
327      // Handle cast of pointer to pointer...
328      if (Op->getType()->getTypeID() == C->getType()->getTypeID())
329        return GV;
330
331      // Handle a cast of pointer to any integral type...
332      if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral())
333        return GV;
334
335      // Handle cast of integer to a pointer...
336      if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral())
337        switch (Op->getType()->getTypeID()) {
338        case Type::BoolTyID:    return PTOGV((void*)(uintptr_t)GV.BoolVal);
339        case Type::SByteTyID:   return PTOGV((void*)( intptr_t)GV.SByteVal);
340        case Type::UByteTyID:   return PTOGV((void*)(uintptr_t)GV.UByteVal);
341        case Type::ShortTyID:   return PTOGV((void*)( intptr_t)GV.ShortVal);
342        case Type::UShortTyID:  return PTOGV((void*)(uintptr_t)GV.UShortVal);
343        case Type::IntTyID:     return PTOGV((void*)( intptr_t)GV.IntVal);
344        case Type::UIntTyID:    return PTOGV((void*)(uintptr_t)GV.UIntVal);
345        case Type::LongTyID:    return PTOGV((void*)( intptr_t)GV.LongVal);
346        case Type::ULongTyID:   return PTOGV((void*)(uintptr_t)GV.ULongVal);
347        default: assert(0 && "Unknown integral type!");
348        }
349      break;
350    }
351
352    case Instruction::Add:
353      switch (CE->getOperand(0)->getType()->getTypeID()) {
354      default: assert(0 && "Bad add type!"); abort();
355      case Type::LongTyID:
356      case Type::ULongTyID:
357        Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
358                         getConstantValue(CE->getOperand(1)).LongVal;
359        break;
360      case Type::IntTyID:
361      case Type::UIntTyID:
362        Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal +
363                        getConstantValue(CE->getOperand(1)).IntVal;
364        break;
365      case Type::ShortTyID:
366      case Type::UShortTyID:
367        Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal +
368                          getConstantValue(CE->getOperand(1)).ShortVal;
369        break;
370      case Type::SByteTyID:
371      case Type::UByteTyID:
372        Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal +
373                          getConstantValue(CE->getOperand(1)).SByteVal;
374        break;
375      case Type::FloatTyID:
376        Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
377                          getConstantValue(CE->getOperand(1)).FloatVal;
378        break;
379      case Type::DoubleTyID:
380        Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
381                           getConstantValue(CE->getOperand(1)).DoubleVal;
382        break;
383      }
384      return Result;
385    default:
386      break;
387    }
388    std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
389    abort();
390  }
391
392  switch (C->getType()->getTypeID()) {
393#define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \
394  case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break
395    GET_CONST_VAL(Bool   , bool          , ConstantBool, getValue);
396    GET_CONST_VAL(UByte  , unsigned char , ConstantInt, getZExtValue);
397    GET_CONST_VAL(SByte  , signed char   , ConstantInt, getSExtValue);
398    GET_CONST_VAL(UShort , unsigned short, ConstantInt, getZExtValue);
399    GET_CONST_VAL(Short  , signed short  , ConstantInt, getSExtValue);
400    GET_CONST_VAL(UInt   , unsigned int  , ConstantInt, getZExtValue);
401    GET_CONST_VAL(Int    , signed int    , ConstantInt, getSExtValue);
402    GET_CONST_VAL(ULong  , uint64_t      , ConstantInt, getZExtValue);
403    GET_CONST_VAL(Long   , int64_t       , ConstantInt, getSExtValue);
404    GET_CONST_VAL(Float  , float         , ConstantFP, getValue);
405    GET_CONST_VAL(Double , double        , ConstantFP, getValue);
406#undef GET_CONST_VAL
407  case Type::PointerTyID:
408    if (isa<ConstantPointerNull>(C))
409      Result.PointerVal = 0;
410    else if (const Function *F = dyn_cast<Function>(C))
411      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
412    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
413      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
414    else
415      assert(0 && "Unknown constant pointer type!");
416    break;
417  default:
418    std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
419    abort();
420  }
421  return Result;
422}
423
424/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
425/// is the address of the memory at which to store Val, cast to GenericValue *.
426/// It is not a pointer to a GenericValue containing the address at which to
427/// store Val.
428///
429void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
430                                         const Type *Ty) {
431  if (getTargetData()->isLittleEndian()) {
432    switch (Ty->getTypeID()) {
433    case Type::BoolTyID:
434    case Type::UByteTyID:
435    case Type::SByteTyID:   Ptr->Untyped[0] = Val.UByteVal; break;
436    case Type::UShortTyID:
437    case Type::ShortTyID:   Ptr->Untyped[0] = Val.UShortVal & 255;
438                            Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
439                            break;
440    Store4BytesLittleEndian:
441    case Type::FloatTyID:
442    case Type::UIntTyID:
443    case Type::IntTyID:     Ptr->Untyped[0] =  Val.UIntVal        & 255;
444                            Ptr->Untyped[1] = (Val.UIntVal >>  8) & 255;
445                            Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
446                            Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
447                            break;
448    case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4)
449                              goto Store4BytesLittleEndian;
450    case Type::DoubleTyID:
451    case Type::ULongTyID:
452    case Type::LongTyID:
453      Ptr->Untyped[0] = (unsigned char)(Val.ULongVal      );
454      Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >>  8);
455      Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16);
456      Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24);
457      Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32);
458      Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40);
459      Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48);
460      Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56);
461      break;
462    default:
463      std::cout << "Cannot store value of type " << *Ty << "!\n";
464    }
465  } else {
466    switch (Ty->getTypeID()) {
467    case Type::BoolTyID:
468    case Type::UByteTyID:
469    case Type::SByteTyID:   Ptr->Untyped[0] = Val.UByteVal; break;
470    case Type::UShortTyID:
471    case Type::ShortTyID:   Ptr->Untyped[1] = Val.UShortVal & 255;
472                            Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
473                            break;
474    Store4BytesBigEndian:
475    case Type::FloatTyID:
476    case Type::UIntTyID:
477    case Type::IntTyID:     Ptr->Untyped[3] =  Val.UIntVal        & 255;
478                            Ptr->Untyped[2] = (Val.UIntVal >>  8) & 255;
479                            Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
480                            Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
481                            break;
482    case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4)
483                              goto Store4BytesBigEndian;
484    case Type::DoubleTyID:
485    case Type::ULongTyID:
486    case Type::LongTyID:
487      Ptr->Untyped[7] = (unsigned char)(Val.ULongVal      );
488      Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >>  8);
489      Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16);
490      Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24);
491      Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32);
492      Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40);
493      Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48);
494      Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56);
495      break;
496    default:
497      std::cout << "Cannot store value of type " << *Ty << "!\n";
498    }
499  }
500}
501
502/// FIXME: document
503///
504GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
505                                                  const Type *Ty) {
506  GenericValue Result;
507  if (getTargetData()->isLittleEndian()) {
508    switch (Ty->getTypeID()) {
509    case Type::BoolTyID:
510    case Type::UByteTyID:
511    case Type::SByteTyID:   Result.UByteVal = Ptr->Untyped[0]; break;
512    case Type::UShortTyID:
513    case Type::ShortTyID:   Result.UShortVal = (unsigned)Ptr->Untyped[0] |
514                                              ((unsigned)Ptr->Untyped[1] << 8);
515                            break;
516    Load4BytesLittleEndian:
517    case Type::FloatTyID:
518    case Type::UIntTyID:
519    case Type::IntTyID:     Result.UIntVal = (unsigned)Ptr->Untyped[0] |
520                                            ((unsigned)Ptr->Untyped[1] <<  8) |
521                                            ((unsigned)Ptr->Untyped[2] << 16) |
522                                            ((unsigned)Ptr->Untyped[3] << 24);
523                            break;
524    case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4)
525                              goto Load4BytesLittleEndian;
526    case Type::DoubleTyID:
527    case Type::ULongTyID:
528    case Type::LongTyID:    Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
529                                             ((uint64_t)Ptr->Untyped[1] <<  8) |
530                                             ((uint64_t)Ptr->Untyped[2] << 16) |
531                                             ((uint64_t)Ptr->Untyped[3] << 24) |
532                                             ((uint64_t)Ptr->Untyped[4] << 32) |
533                                             ((uint64_t)Ptr->Untyped[5] << 40) |
534                                             ((uint64_t)Ptr->Untyped[6] << 48) |
535                                             ((uint64_t)Ptr->Untyped[7] << 56);
536                            break;
537    default:
538      std::cout << "Cannot load value of type " << *Ty << "!\n";
539      abort();
540    }
541  } else {
542    switch (Ty->getTypeID()) {
543    case Type::BoolTyID:
544    case Type::UByteTyID:
545    case Type::SByteTyID:   Result.UByteVal = Ptr->Untyped[0]; break;
546    case Type::UShortTyID:
547    case Type::ShortTyID:   Result.UShortVal = (unsigned)Ptr->Untyped[1] |
548                                              ((unsigned)Ptr->Untyped[0] << 8);
549                            break;
550    Load4BytesBigEndian:
551    case Type::FloatTyID:
552    case Type::UIntTyID:
553    case Type::IntTyID:     Result.UIntVal = (unsigned)Ptr->Untyped[3] |
554                                            ((unsigned)Ptr->Untyped[2] <<  8) |
555                                            ((unsigned)Ptr->Untyped[1] << 16) |
556                                            ((unsigned)Ptr->Untyped[0] << 24);
557                            break;
558    case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4)
559                              goto Load4BytesBigEndian;
560    case Type::DoubleTyID:
561    case Type::ULongTyID:
562    case Type::LongTyID:    Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
563                                             ((uint64_t)Ptr->Untyped[6] <<  8) |
564                                             ((uint64_t)Ptr->Untyped[5] << 16) |
565                                             ((uint64_t)Ptr->Untyped[4] << 24) |
566                                             ((uint64_t)Ptr->Untyped[3] << 32) |
567                                             ((uint64_t)Ptr->Untyped[2] << 40) |
568                                             ((uint64_t)Ptr->Untyped[1] << 48) |
569                                             ((uint64_t)Ptr->Untyped[0] << 56);
570                            break;
571    default:
572      std::cout << "Cannot load value of type " << *Ty << "!\n";
573      abort();
574    }
575  }
576  return Result;
577}
578
579// InitializeMemory - Recursive function to apply a Constant value into the
580// specified memory location...
581//
582void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
583  if (isa<UndefValue>(Init)) {
584    return;
585  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) {
586    unsigned ElementSize =
587      getTargetData()->getTypeSize(CP->getType()->getElementType());
588    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
589      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
590    return;
591  } else if (Init->getType()->isFirstClassType()) {
592    GenericValue Val = getConstantValue(Init);
593    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
594    return;
595  } else if (isa<ConstantAggregateZero>(Init)) {
596    memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
597    return;
598  }
599
600  switch (Init->getType()->getTypeID()) {
601  case Type::ArrayTyID: {
602    const ConstantArray *CPA = cast<ConstantArray>(Init);
603    unsigned ElementSize =
604      getTargetData()->getTypeSize(CPA->getType()->getElementType());
605    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
606      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
607    return;
608  }
609
610  case Type::StructTyID: {
611    const ConstantStruct *CPS = cast<ConstantStruct>(Init);
612    const StructLayout *SL =
613      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
614    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
615      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]);
616    return;
617  }
618
619  default:
620    std::cerr << "Bad Type: " << *Init->getType() << "\n";
621    assert(0 && "Unknown constant type to initialize memory with!");
622  }
623}
624
625/// EmitGlobals - Emit all of the global variables to memory, storing their
626/// addresses into GlobalAddress.  This must make sure to copy the contents of
627/// their initializers into the memory.
628///
629void ExecutionEngine::emitGlobals() {
630  const TargetData *TD = getTargetData();
631
632  // Loop over all of the global variables in the program, allocating the memory
633  // to hold them.  If there is more than one module, do a prepass over globals
634  // to figure out how the different modules should link together.
635  //
636  std::map<std::pair<std::string, const Type*>,
637           const GlobalValue*> LinkedGlobalsMap;
638
639  if (Modules.size() != 1) {
640    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
641      Module &M = *Modules[m]->getModule();
642      for (Module::const_global_iterator I = M.global_begin(),
643           E = M.global_end(); I != E; ++I) {
644        const GlobalValue *GV = I;
645        if (GV->hasInternalLinkage() || GV->isExternal() ||
646            GV->hasAppendingLinkage() || !GV->hasName())
647          continue;// Ignore external globals and globals with internal linkage.
648
649        const GlobalValue *&GVEntry =
650          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
651
652        // If this is the first time we've seen this global, it is the canonical
653        // version.
654        if (!GVEntry) {
655          GVEntry = GV;
656          continue;
657        }
658
659        // If the existing global is strong, never replace it.
660        if (GVEntry->hasExternalLinkage() ||
661            GVEntry->hasDLLImportLinkage() ||
662            GVEntry->hasDLLExportLinkage())
663          continue;
664
665        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
666        // symbol.
667        if (GV->hasExternalLinkage())
668          GVEntry = GV;
669      }
670    }
671  }
672
673  std::vector<const GlobalValue*> NonCanonicalGlobals;
674  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
675    Module &M = *Modules[m]->getModule();
676    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
677         I != E; ++I) {
678      // In the multi-module case, see what this global maps to.
679      if (!LinkedGlobalsMap.empty()) {
680        if (const GlobalValue *GVEntry =
681              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
682          // If something else is the canonical global, ignore this one.
683          if (GVEntry != &*I) {
684            NonCanonicalGlobals.push_back(I);
685            continue;
686          }
687        }
688      }
689
690      if (!I->isExternal()) {
691        // Get the type of the global.
692        const Type *Ty = I->getType()->getElementType();
693
694        // Allocate some memory for it!
695        unsigned Size = TD->getTypeSize(Ty);
696        addGlobalMapping(I, new char[Size]);
697      } else {
698        // External variable reference. Try to use the dynamic loader to
699        // get a pointer to it.
700        if (void *SymAddr =
701            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
702          addGlobalMapping(I, SymAddr);
703        else {
704          std::cerr << "Could not resolve external global address: "
705                    << I->getName() << "\n";
706          abort();
707        }
708      }
709    }
710
711    // If there are multiple modules, map the non-canonical globals to their
712    // canonical location.
713    if (!NonCanonicalGlobals.empty()) {
714      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
715        const GlobalValue *GV = NonCanonicalGlobals[i];
716        const GlobalValue *CGV =
717          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
718        void *Ptr = getPointerToGlobalIfAvailable(CGV);
719        assert(Ptr && "Canonical global wasn't codegen'd!");
720        addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
721      }
722    }
723
724    // Now that all of the globals are set up in memory, loop through them all and
725    // initialize their contents.
726    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
727         I != E; ++I) {
728      if (!I->isExternal()) {
729        if (!LinkedGlobalsMap.empty()) {
730          if (const GlobalValue *GVEntry =
731                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
732            if (GVEntry != &*I)  // Not the canonical variable.
733              continue;
734        }
735        EmitGlobalVariable(I);
736      }
737    }
738  }
739}
740
741// EmitGlobalVariable - This method emits the specified global variable to the
742// address specified in GlobalAddresses, or allocates new memory if it's not
743// already in the map.
744void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
745  void *GA = getPointerToGlobalIfAvailable(GV);
746  DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n");
747
748  const Type *ElTy = GV->getType()->getElementType();
749  size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
750  if (GA == 0) {
751    // If it's not already specified, allocate memory for the global.
752    GA = new char[GVSize];
753    addGlobalMapping(GV, GA);
754  }
755
756  InitializeMemory(GV->getInitializer(), GA);
757  NumInitBytes += (unsigned)GVSize;
758  ++NumGlobals;
759}
760